
A Textual Syntax with Tool Support for

the Goal-oriented Requirement Language

Vahdat Abdelzad, Daniel Amyot, Sanaa A. Alwidian, and Timothy Lethbridge

University of Ottawa, Ottawa, Canada

email: v.abdelzad@uottawa.ca

mailto:v.abdelzad@uottawa.ca

Outline

 Goal-oriented Requirement Language

 The Current Challenges

 Other Textual Syntax for Goal Modeling

 TGRL: A Textual Syntax for GRL

 TGRL Editor and Transformation

 Conclusion and Future Work

Vahdat Abdelzad 2

Goal-oriented Requirement Language

(GRL)

 Models the intentions of actors and systems, together

with their various relationships

 GRL core concepts:

 Actors

 Intentional elements (e.g., goals, softgoals, tasks, resources and

beliefs)

 links (decompositions, dependencies, weighted contributions)

 Indicators

Vahdat Abdelzad 3

Goal-oriented Requirement Language

(GRL) cont.

 Metadata and typed URN links

 GRL model analysis through strategies

 Qualitative (using contribution, satisfaction, and importance

values from their respective enumerated types)

 Quantitative (using integer values in specific ranges)

 Contribution changes

 Supported by jUCMNav

Vahdat Abdelzad 4

Vahdat Abdelzad 5

What’s the Issue?

 Creating/modifying goal models is often a tedious task with

current graphical environments.

 It’s not easy to create GRL models with complex features

(e.g., strategies and contribution overrides.)

 It is difficult to design a graphical modeling language that

offers good cognitive fitness for different types of users and

purposes.

 We don’t know how much graphical syntax is good for the

modeling

Vahdat Abdelzad 6

explore the design of a textual

syntax for GRL

Other Textual Syntax for Goal Modeling

 Liu and Yu [1] provided a textual grammar and an XML-

based interchange format

 Not simple and easy to be read by human (less cognitively affective)

 Formal Tropos‘s textual syntax [2]

 supports an inner layer for declaring constraints on attributes and

supports temporal logic properties

 is more declarative, verbose, and limited in scope

 does not have a feature-rich editor

Vahdat Abdelzad 7

TGRL: A Textual Syntax for GRL

 Used guiding principle inspired from the design of Umple

 Simplicity, consistency, and a programming language-like look and

feel

 Aligned the syntax and especially keywords with

jUCMNav’s metamodel

Vahdat Abdelzad 8

TGRL: General Rules

 GRL elements are usually defined through keywords using CamelCase

boundaries (e.g., a softgoal intentional element is represented by a softGoal).

 String values are surrounded by quotation marks.

 Model element properties and sub-elements (if any) are set inside curly

brackets.

 Every definition ends with a semicolon except when a pair of curly brackets is

utilized to include either sub-elements or properties.

 Comments are delimited by // and /*…*/

 Most elements have a textual identifier (ID) as well as optional metadata

(name-value pairs).
Vahdat Abdelzad 9

A Simple Example

Vahdat Abdelzad 10

Main structure and Comments

Vahdat Abdelzad 11

grl IStar2015 {

// A Graphical Model comment
comment "This is a simple TGRL model";

/*
* textual modeling comment
*/

}

TGRl: Actors

Vahdat Abdelzad 12

grl IStar2015{

actor User;

actor Developer { }

actor System {
}

}

TGRl: Intentional Elements

Vahdat Abdelzad 13

grl IStar2015 {
actor User {

softGoal EasyToUse {
name="Have a system that is easy to use";
importance = 100;

}
indicator LowLearningTime; // Indicator definition

}
actor Developer {

softGoal ReuseComponents {importance=100;}
}
actor System {

goal SomeFunctionality {importance=high; decompositionType=or;}
task FirstOption {metadata stereotype="SomeValue";}
task SecondOption {description = "Better alternative";}

}
}

TGRl: Element Links

Vahdat Abdelzad 14

actor User {
softGoal EasyToUse; indicator LowLearningTime;

LowLearningTime contributesTo EasyToUse {name=C2;help;};
}
actor Developer {softGoal ReuseComponents; }
actor System {

goal SomeFunctionality; task FirstOption; task SecondOption;

SomeFunctionality decomposedBy FirstOption, SecondOption;
FirstOption contributesTo Developer.ReuseComponents {75;};

}

System.FirstOption contributesTo User.EasyToUse {hurt;};
System.SecondOption contributesTo User.EasyToUse {name=C1;60;};

link mustUse; // Link type definition
User mustUse System; // Link instance between two actors

TGRl: Evaluation Strategies

Vahdat Abdelzad 15

strategy SelectFirst {
System.FirstOption = satisfied;
User.LowLearningTime = {unit="minutes"; target=30.0; threshold=60.0;

worst=120.0; eval=90.0;}
}

strategy SelectSecond extends SelectFirst { // Strategy inclusion!
System.FirstOption = none; // Overridden
System.SecondOption = 100; // Added, quantitatively this time

}

strategy RangeExample extends SelectFirst {
System.FirstOption = {start = 10; end = 40; step = 5;}

}

strategyGroup MyGroup includes SelectFirst, SelectSecond, RangeExample;

TGRl: Contribution overrides

Vahdat Abdelzad 16

contribution FirstOverride {
System.C1 = 30; User.C2 = make;

}

contribution SecondOverride extends FirstOverride {
System.C1 = {start = -40; end = 0; step = 10;}

}

contributionGroup SomeOverrides includes FirstOverride,
SecondOverride;

TGRL Editor and Transformation

 Eclipse plugin

 Open source (https://github.com/vahdat-ab/TGRL)

 Developed with Xtext

 Supports syntax highlight, an outline view, annotation of syntactic errors,

content assistance, and code formatting

Vahdat Abdelzad 17

TGRL Editor and Transformation cont.

 Transforms TGRL models to URN/jUCMNav

models

 Model-to-code transformation

(implemented with Acceleo)

 Not handling the layout

Vahdat Abdelzad 18

Conclusion

 Illustrated a new textual syntax for GRL, called TGRL, with a full
coverage of the language.

 Covered many concepts such as indicators, strategies, contribution
overrides, metadata and URN links.

 Developed a feature-rich Eclipse-based editor.

 Implemented an automated conversion to GRL models readable by
jUCMNav.

Vahdat Abdelzad 19

Future Work

 The language and the tool require further and more rigorous

validation.

 Improving by the inclusion of additional static semantic rules to

ensure the correctness of the GRL models

 A transformation from jUCMNav to TGRL (or develop a synchronized

textual and graphical tool)

 Combine TGRL (for goals) with Umple (for design and

implementation) as they provide complementary concepts

 Extend this language to support the whole URN standard

Vahdat Abdelzad 20

Thank You for your Attention

Vahdat Abdelzad 21

