
A Textual Syntax with Tool Support for

the Goal-oriented Requirement Language

Vahdat Abdelzad, Daniel Amyot, Sanaa A. Alwidian, and Timothy Lethbridge

University of Ottawa, Ottawa, Canada

email: v.abdelzad@uottawa.ca

mailto:v.abdelzad@uottawa.ca

Outline

 Goal-oriented Requirement Language

 The Current Challenges

 Other Textual Syntax for Goal Modeling

 TGRL: A Textual Syntax for GRL

 TGRL Editor and Transformation

 Conclusion and Future Work

Vahdat Abdelzad 2

Goal-oriented Requirement Language

(GRL)

 Models the intentions of actors and systems, together

with their various relationships

 GRL core concepts:

 Actors

 Intentional elements (e.g., goals, softgoals, tasks, resources and

beliefs)

 links (decompositions, dependencies, weighted contributions)

 Indicators

Vahdat Abdelzad 3

Goal-oriented Requirement Language

(GRL) cont.

 Metadata and typed URN links

 GRL model analysis through strategies

 Qualitative (using contribution, satisfaction, and importance

values from their respective enumerated types)

 Quantitative (using integer values in specific ranges)

 Contribution changes

 Supported by jUCMNav

Vahdat Abdelzad 4

Vahdat Abdelzad 5

What’s the Issue?

 Creating/modifying goal models is often a tedious task with

current graphical environments.

 It’s not easy to create GRL models with complex features

(e.g., strategies and contribution overrides.)

 It is difficult to design a graphical modeling language that

offers good cognitive fitness for different types of users and

purposes.

 We don’t know how much graphical syntax is good for the

modeling

Vahdat Abdelzad 6

explore the design of a textual

syntax for GRL

Other Textual Syntax for Goal Modeling

 Liu and Yu [1] provided a textual grammar and an XML-

based interchange format

 Not simple and easy to be read by human (less cognitively affective)

 Formal Tropos‘s textual syntax [2]

 supports an inner layer for declaring constraints on attributes and

supports temporal logic properties

 is more declarative, verbose, and limited in scope

 does not have a feature-rich editor

Vahdat Abdelzad 7

TGRL: A Textual Syntax for GRL

 Used guiding principle inspired from the design of Umple

 Simplicity, consistency, and a programming language-like look and

feel

 Aligned the syntax and especially keywords with

jUCMNav’s metamodel

Vahdat Abdelzad 8

TGRL: General Rules

 GRL elements are usually defined through keywords using CamelCase

boundaries (e.g., a softgoal intentional element is represented by a softGoal).

 String values are surrounded by quotation marks.

 Model element properties and sub-elements (if any) are set inside curly

brackets.

 Every definition ends with a semicolon except when a pair of curly brackets is

utilized to include either sub-elements or properties.

 Comments are delimited by // and /*…*/

 Most elements have a textual identifier (ID) as well as optional metadata

(name-value pairs).
Vahdat Abdelzad 9

A Simple Example

Vahdat Abdelzad 10

Main structure and Comments

Vahdat Abdelzad 11

grl IStar2015 {

// A Graphical Model comment
comment "This is a simple TGRL model";

/*
* textual modeling comment
*/

}

TGRl: Actors

Vahdat Abdelzad 12

grl IStar2015{

actor User;

actor Developer { }

actor System {
}

}

TGRl: Intentional Elements

Vahdat Abdelzad 13

grl IStar2015 {
actor User {

softGoal EasyToUse {
name="Have a system that is easy to use";
importance = 100;

}
indicator LowLearningTime; // Indicator definition

}
actor Developer {

softGoal ReuseComponents {importance=100;}
}
actor System {

goal SomeFunctionality {importance=high; decompositionType=or;}
task FirstOption {metadata stereotype="SomeValue";}
task SecondOption {description = "Better alternative";}

}
}

TGRl: Element Links

Vahdat Abdelzad 14

actor User {
softGoal EasyToUse; indicator LowLearningTime;

LowLearningTime contributesTo EasyToUse {name=C2;help;};
}
actor Developer {softGoal ReuseComponents; }
actor System {

goal SomeFunctionality; task FirstOption; task SecondOption;

SomeFunctionality decomposedBy FirstOption, SecondOption;
FirstOption contributesTo Developer.ReuseComponents {75;};

}

System.FirstOption contributesTo User.EasyToUse {hurt;};
System.SecondOption contributesTo User.EasyToUse {name=C1;60;};

link mustUse; // Link type definition
User mustUse System; // Link instance between two actors

TGRl: Evaluation Strategies

Vahdat Abdelzad 15

strategy SelectFirst {
System.FirstOption = satisfied;
User.LowLearningTime = {unit="minutes"; target=30.0; threshold=60.0;

worst=120.0; eval=90.0;}
}

strategy SelectSecond extends SelectFirst { // Strategy inclusion!
System.FirstOption = none; // Overridden
System.SecondOption = 100; // Added, quantitatively this time

}

strategy RangeExample extends SelectFirst {
System.FirstOption = {start = 10; end = 40; step = 5;}

}

strategyGroup MyGroup includes SelectFirst, SelectSecond, RangeExample;

TGRl: Contribution overrides

Vahdat Abdelzad 16

contribution FirstOverride {
System.C1 = 30; User.C2 = make;

}

contribution SecondOverride extends FirstOverride {
System.C1 = {start = -40; end = 0; step = 10;}

}

contributionGroup SomeOverrides includes FirstOverride,
SecondOverride;

TGRL Editor and Transformation

 Eclipse plugin

 Open source (https://github.com/vahdat-ab/TGRL)

 Developed with Xtext

 Supports syntax highlight, an outline view, annotation of syntactic errors,

content assistance, and code formatting

Vahdat Abdelzad 17

TGRL Editor and Transformation cont.

 Transforms TGRL models to URN/jUCMNav

models

 Model-to-code transformation

(implemented with Acceleo)

 Not handling the layout

Vahdat Abdelzad 18

Conclusion

 Illustrated a new textual syntax for GRL, called TGRL, with a full
coverage of the language.

 Covered many concepts such as indicators, strategies, contribution
overrides, metadata and URN links.

 Developed a feature-rich Eclipse-based editor.

 Implemented an automated conversion to GRL models readable by
jUCMNav.

Vahdat Abdelzad 19

Future Work

 The language and the tool require further and more rigorous

validation.

 Improving by the inclusion of additional static semantic rules to

ensure the correctness of the GRL models

 A transformation from jUCMNav to TGRL (or develop a synchronized

textual and graphical tool)

 Combine TGRL (for goals) with Umple (for design and

implementation) as they provide complementary concepts

 Extend this language to support the whole URN standard

Vahdat Abdelzad 20

Thank You for your Attention

Vahdat Abdelzad 21

