14

FONDAZIONE
BRUNO KESSLER

On the use of the Goal-Oriented
Paradigm for System Design and Law
Compliance Reasoning

Authors: M. Morandini, L. Sabatucci, A. Siena,
J. Mylopoulos, L. Penserini, A. Perini, A. Susi

Speaker: Luca Sabatucci

Hammamet, 08/06/2010, i* workshop



Common concerns and paradigms
in three different contexts

— (RE) when analysts have to build a requirements
specification compliant with a set of laws

— (DESIGN) when designers have to choose a suitable
design pattern

— (GD EXECUTION) when adaptive software agents

[} [
Pl Nal Vel oYael

IAA‘ 2 I~ *A LAIIA A 1A *:MA AIA
Ndve LU LdiC TUri—uirie ucCisiulils



Law Compliance Reasoning

contact: Alberto Siena
(siena@fbk.eu)



NOMOS: The Problem of Law in
Requirements Engineering

— No clear-cut separation from the “software” and
the “physical” world

— A choice in the software world may have effects
on the physical world, and viceversa

— New laws trying to regulate this reality
— New effects of old laws



NOMOS: Problem statement

 Laws regulate the increased pervasiveness of IS
e Laws are source of requirements

e However law prescriptions are NOT goals
— Stakeholders want to achieve goals,
— law prescriptions are imposed to stakeholders

— Law prescriptions can contradict goals

D = Domain assumptions D

G = Set of states of the world
represented by the stakeholders
goals

L = Set of states of the world described
by law sentences

S = Set of states of the world specified to

the system C — G N L




v\ \AZ

Th NNONN ~ AVAIA
11 \ \ dlliIT VWU

£\ C l:lf' V‘II
IT IN IViVO T | |
A modeling language for legal concepts and

software requirements

A modeling process for systematically going
from a model of law to a model of law-
compliant requirements

A set of properties for analyzing models of
requirements with respect to:

— completeness;
— traceability;
— audit-ability;
— vulnerability;



Meta-model of a NP

Actor wants g_*

1

Goal 1 0..*
—| | Realzation
. rgalize.

Subject
0. 1 counterpary 1 | realizedBy
. | 1
Embodiment _ .
1 1 holder PrescripedAction
e —— F ﬂ..i
D-. J bEfﬂ"E l|:|' - T
Dominancs . :
1 Right a.
salrcesnt - concems
'D--i EIr[EI" 1 f
r_|
PrivilegeNoclaim ClaimDuty PowerLiability | [ ImmunityDisability




o

Publications

A. Siena. Engineering Law-Compliant Requirements: the Nomos Framework. PhD
Thesis

A. Siena, J. Mylopoulos, A. Perini, and A. Susi. The Nomos framework: Modelling
requirements compliant with laws. Technical Report TR-0209-SMSP, FBK — Irst,
2009.

A. Siena, J. Mylopoulos, A. Perini, A. Susi: Designing Law-Compliant Software
Requirements. ER 2009: 472-486

A. Siena, A. Perini, A. Susi, J. Mylopoulos: Towards a framework for law-compliant
software requirements. ICSE Companion 2009: 251-254

A. Siena, N. Maiden, J. Lockerbie, I. Karlsen, A. Perini, A. Susi: Exploring the
Effectiveness of Normative i* Modelling: Results from a Case Study on Food Chain
Traceability. CAISE 2008: 182-196

Future Work

Argumentation-based compliance evidence
Integration with
* natural language processing; security analysis; risk analysis; ...
Qualitative and quantitative analyses
e Model complexity; readability;
Compliance in the Internet of services



System Design Reasoning

Contact: Luca Sabatucci
(sabatucci@fbk.eu)



DESIGN PATTERN

Design Patterns are more than solutions
Motivations describe ‘why’ to apply the pattern

The reuse is described as a general context and a
set of forces to balance

The applicability

— conditions to meet for applying the pattern

rluu\.\.- [ |

— conseqguences of reuse, result of force balance

Implementing issues describes design
alternatives



 Help | Intro | Case Stuly | Paiem Catalog
Proxy Object Structural

Intent

Prowvide a surrogate or placeholder for another object Lo control access o L.

* Motivation

Dine reason for controlling access to an object 1sfio d::[l:r the full cost of iis -;.:n:mj-;m and 'L:L'Lliu]i:r.uu'-;:lu ntil
we actually need 1o use it Consider a document
Some graphical objects, like large raster images, can be expensive Lo G‘l:.-J.'I.I: Bul opening a document ':-l:I.I:JIJlIJ.
be fast, =0 we should avoid creating all the expensive objects al once when the document 15 opened. Thas

1sn't necessary anyway, because nol all of these objects will be visible in the document al the same Ume.

[...]
» Applicability

-

Proxy is applicable whenever there 1§ aneed {or a more versatile or sopbisticated reference w an object fhan

@ simmple pointer. Here are several corfiimoeT SOTAONE (17 WilcH O1F FIOAy paiern (= appocaee.

. A remote proxy provides a local representative for an object in a different acdress space.
NEXTSTEP [Add9d] uses the class WXProxy for this purpose. Coplien [Cop2] calls this kind of
proxy an " Ambassador.”

2. A wirtual proxy creates expensive objects on demand. The ImageProxy described in the Mouvation
(] 18 an example of such a proxy.

* Consequences

The Proxy pattern introduces a level of indirection when accessing an object. The addimtional indirection has
many uses, depending on the kind of proxy:

. A remole proxy cin hide the fact that an object resides in a differenl address space.

2. A virtual proxy can perform opimizations such as eresting an obect on demand.




The i* framework and design patterns

— the designer is the main actor who delegates
design problems to the pattern

— pattern roles are actors, which hold design
responsibilities

— a design goal is a condition of the modeling
activity to achieve

— the solution is provided as a collection of tasks

— system elements are resource to manipulate

DESIGNER’S NEEDS FOR THE PROXY PATTERN
to decouple a class from its clients distributed subsystem
to control the lifecycle of a class speed up the class instantiation

to delay the creation of a class reduce the memory allocation



The Actor Model (Proxy Pattern)

to introduce a level of proxy
indirection to the real role
subject
to de-couple J access_to
client and real real subject

subject unctionalitie

designerlL T
/ to control the \

K lifecycle of a class real
to provide ) client
functionality subject rala

/’\/

KEY

@ [ i \ system 77N [ delegation of \
pattern design goat force SOIUIlon role A oo
W \ / l_’\_/_) \ / element U—' responsibility

N

A Dependency describes how a source actor depends
on a destination actor, for a responsibility




proxy \~ B to l'epl'elsent the Tl .
role subject -~
# d
e
e
s
/;
/!
/
/
/ <
!

The Goal Model (Proxy Pattern)

to receive
requests from
client

AND
- \\ AN

implement the
ubject interfa

\\
to communicate %
to the subject \

OR ‘

\

1

I

T Ty hdndle a protocoltQ !
lallitallll a Ullrew r i

subiect real subject /
/
Subject real subject K
interface object + 3 /
N to control the
AN real subject -
. lifecycle .
) + _ to simulate a local
"~ to create objects > representative for
on demand a remote object

X
f
<

-
-

boundary

!
1
|

1‘ design goal ,'

system
element

decomposition
———AND
—+—OR

means-end

—

contribution
+/++/-/--

resource usec

—

OR Decompositions used for detailing alternatives

A Means-End for providing plans to goals

A Contributions as a mean for choice selection




Benefits

e Understandability

— a couple of compact diagrams for reporting the
most relevant information

* Quick Browsing of the Repository

— explicit structure where intent, applicability and
consequences are highlighted

— documenting motivations for design choices

— a pattern is not represented as a rigid template,
but as a reasoning process to customize for the
specific context



Publications

e L. Sabatucci, M. Cossentino, A. Susi. Introducing
Motivations in Design Pattern Representation. In
Formal Foundations of Reuse and Domain
Engineering (ICRS’10), Washington DC, 2010.

Future Works

* Design Pattern Composition
 Empirical Study
e Tool for automatic support of pattern reuse



Adaptive Agent Systems

Contact: Mirko Morandini
(morandini@fbk.eu)



T DN DTI\/C A-CNIT
l ro rliitvoe A !

C C
LINTO

)

DN CLCNAD ADNDA
NN S I'UI\N AUA

 Goal models are used in many agent-oriented
methodologies

e BUT most AOSE methodologies loose the

concept of goal in the later development
phases

How can we deal with goal
models at run-time?



Modeling Self-Adaptivity by BDI Agents

Self-adaptive systems, we consider, are able to

— identify changes in the environment and dynamically
adapt their behaviour to reach their goals

— prevent goal failure, managing error recovery.

Approach
Main idea: preserve goals and high-level alternatives in all
development phases until implementation and run-time.

* Provide a framework for the modelling of adaptive systems, in
which goals, failures and the environment are treated as first-
class abstractions.

e Define a (automated) mapping from goal models to software
(BDI) agents implementing the desired run-time behaviour.



Extending Tropos Goal modelling for Self-Adaptivity
(examples along 3 main concerns)

1) Goal types:

Maintain: maintain a state @
Achieve: reach astate @
Perform: do some action @

<— Inhibition Relation
Sequence Relation

2) Correlation of the environment
to goal achievement

Floor
sensor

Contextcondit.:
wood | tiles

(A)
CleanRoom

3) Prevent failures

Cleaning
" accuracy )

(A)
CleanOutside
‘.

alternative configuration 1 alt. config 2



Publications

M. Morandini, L. Penserini and A. Perini, Operational
Semantics of Goal Models in Adaptive Agents,
AAMAS'09, Budapest, Hungary, May 2009.

M. Morandini, L. Penserini, and A. Perini. Towards
Goal-Oriented Development of Self-Adaptive Systemes.
SEAMS at ICSEQS, Leipzig, Germany, May 2008.

M. Morandini, L. Penserini and A. Perini, Automated
Mapping from Goal Models to Self-Adaptive Systems,
In Proc. of the 23rd Conference on Automate
Software Engineering (ASEO0S8), L'Aquila, Italy, 2008

Future Work

Experimental evaluation for the effectiveness
Writing the PhD Thesis



CAancliicinn
CVUUTILVIUODIVUL

Goal-orientation supports decision
making in different contexts

— (LAW COMPLIANCE) goals represents the states
that the "actions" induced by laws aim to achieve

— (DESIGN PATTERNS) goals represent designer
objectives that will be met by reusing a pattern

— (ADAPTIVE AGENTS) goals drive agent decisions on
which behavior to select, that is, they have an
operational semantics.



Any Questions?



