Requirements Engineering for Control Systems

Dominik Schmitz*, Hans W. Nissen, Matthias Jarke, Thomas Rose

RWTH Aachen University,
Cologne University of Applied Sciences,
Fraunhofer FIT
ZAMOMO Project

• „Integration of model-based software and model-based control systems engineering“

• Innovations in cars nowadays mainly driven by software, but control system engineering and software engineering currently not interacting ⇒ methodological supplement is hindered

• Application domain: combustion engine controller
ZAMOMO Project

- Integration of model-based software and model-based control systems engineering
- Innovations in cars nowadays mainly driven by software, but control system engineering and software engineering currently not interacting ⇒ methodological supplement is hindered

Application domain: combustion engine controller

Characteristics
- Interdisciplinary
- Importance of hardware, in particular sensors and actuators
- Flexible, innovative, customer-oriented small- & medium enterprises
- RE as part of offer development (timing, costs, reuse decisions, …)
- Project-driven work, frequent innovations
i* based RE

- control systems requirements
- software requirements
- common problem understanding with customer
- model-based requirements capture
- transition to (mathematical) design
- traceability, configuration management
- common comprehensible representation

- tool and analysis support
- model-based requirements capture
- transition to (mathematical) design
- traceability, configuration management

Transition to (Mathematical) Design

- Pot
- Variables
- Requirements
- Interfaces
- Implementation
- Design

Traceability

- Agent
- Goal

Common Comprehensible Representation

- Agent
- Goal

June 7-8th 2010

iStar 2010

3/12
i* based RE

i* based capture of control requirements

- Model-based
- Functional and non-functional aspects
- Combined, inter-disciplinary investigation
- Capture any (kind of) stakeholder
- Sensors and actuators as resource dependencies

(control systems requirements)

(software requirements)
Domain Model-based RE
Domain Model-based RE

Features

- Common starting point
- Accelerates modeling
 - Eliminate non-applicable elements
 - Add project-specific elements
- Tailoring, update possible
Challenges during Offer Development

Offer development

- Model requirements from SMEs point of view
- Senior engineer manually selects similar projects, inspects, and includes reusable artifacts
- Prepare cost calculation

Two dangers

- Reusable artifacts not found (too many projects, too less time) ⇒ offer too expensive
- Artifacts actually not reusable ⇒ project loss
Challenges during Offer Development

Offer development

- Model requirements from SMEs point of view
 - Support engineer in identifying similar projects
 - Similar = requirements match
 - Reduce and focus number of relevant projects to be inspected in-depth

- Reusable artifacts not found (too many projects, too less time) ⇒ offer too expensive
- Artifacts actually not reusable ⇒ project loss
Similarity Search

Pre-defined queries (currently 11) referring to the domain model

Ad-hoc, user-defined queries

Query weights, sum up to 1

Earlier projects stored in the database

Objects from current project that occur also in the earlier project

Overall ranking

Table: Comparing Current Project with Projects in Database

<table>
<thead>
<tr>
<th>Project</th>
<th>Customer req.</th>
<th>Combustion engine block</th>
<th>Cylinder positioning</th>
<th>No. of cylinders</th>
<th>Fuel</th>
<th>Overall similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project 1</td>
<td>50%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>15%</td>
</tr>
<tr>
<td>Project 2</td>
<td>0%</td>
<td>100%</td>
<td>100%</td>
<td>50%</td>
<td>100%</td>
<td>95%</td>
</tr>
<tr>
<td>Project 4</td>
<td>75%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>93%</td>
</tr>
</tbody>
</table>

Weights:

<table>
<thead>
<tr>
<th>Weights</th>
<th>0.3</th>
<th>0.1</th>
<th>0.2</th>
<th>0.1</th>
<th>...</th>
<th>0.3</th>
</tr>
</thead>
</table>

Diagram:

- Controlled system: combustion engine block
- Carburettor
- Boxer
- Rod
- Cylinder positioning
- Common rail
Domain Model Evolution

- Adjust domain model to reasonable size and to reflect new innovations

- Problems for model comparison ⇒ push domain model changes to finalized projects

June 7-8th 2010
Domain Model Evolution (2)

- Suggestions for reductions, extensions from usage in previous projects
- Computation of extension in 5 steps
 - Identify project-specific extensions
 - Compute similarity between them (shared anchor objects in domain model)
 - Group similar extensions
 - Inspection and implementation by engineer
 - Store results
Domain Model Evolution (2)

- Suggestions for reductions, extensions from usage in previous projects

Computation of extension in 5 steps:
- Identify project-specific extensions
- Compute similarity between them (shared anchor objects in domain model)
- Group similar extensions
- Inspection and implementation by engineer
- Store results

Extension 1+2

Extension 1
- controller: electronic control unit
- sensor: cylinder pressure
- controlled system: combustion engine block

Extension 2
- measure cylinder pressure
- control cycle

Extension 3
- actuator: waste gate
- turbine
- biturbo

Refinement path
- cylinder positioning
- stroke
- no. of cylinders
- cooling
- oil
- fuel
- gasoline
- pump injection
- direct injection
- gasoline
Transformation to Simulink

1. Take design decisions
 - Manual Support for checking readiness
 - Refined model (PIM)

2. Derive Matlab/Simulink skeleton
 - Matlab/Simulink model (PSM – Matlab)
 - Matlab/Simulink model (PIM – RCP)

3. Incorporate hardware details
 - Interactive Add RCP platform specific libraries
 - Specific libraries considered (PSM – RCP)

Implementation Details

- ConceptBase
 - i* module
 - i* framework
 - i* models
 - Model-to-model
 - query i* model, reformat results via answer format
 - Simulink module
 - Simulink framework
 - Simulink models
 - Model-to-text
 - XML export SimEx-Tool by IT Power Consult

June 7-8th 2010
iStar 2010
Summary

interdisciplinary methodology

consider non-functional requirements

equal treatment of

continuously model-based

domain- & project-oriented reuse

traceability, configuration management

June 7-8th 2010

iStar 2010
Future Work

- Enhance domain model evolution support, e.g. by additional heuristics
- Simulation at RE level
 - against abstract model of controlled system?
 - against detailed Matlab/Simulink model?
- Investigate sociality of i^* actors in control system setting
- Apply domain model based approach to other fields
• **i* Wiki** – http://istar.rwth-aachen.de
 – Quick guide
 – Tool comparison
 – Growing community
 – *i* workshops
 – *i* news, e.g. on iStarML, upcoming events, project ideas, …
ZAMOMO – Publications

