
The Evolution of Tropos:
Contexts, Commitments and Adaptivity

Raian Ali, Amit K. Chopra, Fabiano Dalpiaz, Paolo
Giorgini, John Mylopoulos, and Vitor E. Silva Souza

June 7th, 2010

This talk's tag cloud

Created via
http://www.wordle.net/
.

http://www.wordle.net/

Software evolution (à la UniTn)

● We aim at a comprehensive approach to software evolution
based on requirements

● The systems we have in mind have to

– be aware of their own requirements

– consider the influence of the surrounding context

– take into account social relations with other systems

– be adaptive

What's in our approach?

● Four basic techniques

1) Contextual requirements

2) Modeling applications with social commitments

3) Adaptive sociotechnical systems

4) Requirements awareness

Contextual requirements

Contact: Raian Ali (ali@disi.unitn.it)

Contextual Goal Model

● Goals answer Why in requirements, not When/Where

– Context to the rescue

● Context influences humans before software:

– Software has to reflect human adaptation to context

● Example: if a tourist hasn't had lunch yet and it's lunch time, a
tour guide has to find a restaurant

– If the tourist is vegetarian, some alternatives will be ruled out

Contextual Variation Points

OR-Decomposition

Contribution

Dependency
Root goals
AND-Decomposition
Means-End

Context Analysis

● While goal is a state of the world to reach, context is a state of
the world that is the case

● Context analysis serves to know what to verify to judge if a
certain context holds

Automated Analysis

Analysis provided by our prototype CASE tool:
● Consistency

– Context specification
– Resource usage conflicts

● Derivation of variants
– For one specific context vs. for all contexts
– With minimum development cost

Modeling applications with social commitments

Contact: Amit K. Chopra (chopra@disi.unitn.it)

“I don’t know anything about Mr. Fitzpatrick,”
repeated Mrs. Kearney. “I have my contract, and I
intend to see that it is carried out.”

James Joyce, A Mother, Dubliners
Chopra, Dalpiaz

The i* framework

● Dependencies emphasizes social nature of requirements

– Agents depend on one another

● Formally, depends(A,B,g)

– A wants g

– B is committed and able to deliver g

Doesn't work well for open systems (e.g. eBay)

Why? Not as social as we need!

Limitations of i* dependencies

● Refer to agent internals (recall able to)

– A bidder does not know whether a seller has the ability to deliver

● The workability of a dependency must be justified

– Commitment to present a paper is taken at face value

● Gives no account for interaction

– How are dependencies established?

i* does not cleanly separate the social
(public) from the intentional (private)

Social commitments (1)

● Agent communication is meaningful

– Meaning in terms of commitments

– Meaning often specified for a particular context

● For example, an offer means

– C(seller, buyer, paid, delivered)

debtor
creditor antecedent

consequent

Social commitments (2)

A social commitment does not imply any goal, intention on part of
the agents

Merchant Customer
Offer message

C(seller, buyer, paid, delivered)

goal(merchant,delivered)?
intention(merchant,delivered)?
able(merchant,delivered)?
Maybe goal(merchant,takePaymentAndRun)!

How to use social commitments?

Enable modular reasoning
● First, an agent may reason about the communications at the

level of roles
– Talk on Wednesday in Session 3 at 2:30PM

● Then, an agent may use judgments about which specific
agents to interact with based on its beliefs about them

Adaptive sociotechnical systems

Contact: Fabiano Dalpiaz (dalpiaz@disi.unitn.it)

Runtime Adaptation: why?

● Approaches to design adaptive software are not sufficient

● At runtime

– Unexpected events happen

– The system might not work as designed (bugs)

– Some business partner might prove to be unreliable

● The solution is in the system architecture!

Our model-based architecture

● for sociotechnical systems (STS)

– interacting socio and technical agents

● desired agent behaviour via requirements models

– Extended goal models (context, parametric goals, activation and
fulfillment conditions, timeouts)

– Domain assumptions

● based on a monitor-diagnose-reconcile-compensate cycle

● compensation takes into account agents autonomy

Monitoring component

● The architecture monitors interaction and changes in the
context

Diagnosis component
● Check monitored data against contextual goal models and

domain assumptions

● A failure occurs when

– Something that should happen does not occur

– Something that should not happen does occur

Reconfigurator component

● Reconfiguration types: assign tasks or push (send reminders)
agents, control actuators to effect changes

– Diagnosis are prioritized

– Compensation actions to revert effects of failed plans

Feedback loops based
on requirements awareness

Contact: Vitor E. Souza Silva
(vitorsouza@disi.unitn.it)

Copyright by Profound
Whatever (taken from Flickr)

Adaptive software systems

● Change their behavior at run-time in response to changes in
their environment

● Adaptation mechanism = feedback loop

– Should fulfill purpose (= requirements)

– When output indicates otherwise, adapt

– Must be aware of requirements success/failure

● Which are the requirements that lead to such feedback loop?

Awareness Requirements (AwReqs)

● Refer to other requirements (goals, tasks, quality constraints,
domain assumptions) and their success/failure

● Examples:

– Quality constraint Q should never fail

– Goal G should complete within 2 hours (delta)

– Task T shouldn't fail > 3 times a year (aggregate)

– Failures of domain assumption A won't increase between
months (trend)

● AwReqs of AwReqs = Meta-AwReqs.

Adaptivity Requirements

● An AwReq that can also talk about changes of status for
another requirement

● Example:

– Relax: duration(R) > 2h => fail(R1) initiate(R2)∧

– Good-enough: 2h < duration(R) < 2.2h => fulfill(R)

– Abort: duration(R) > 4h => fail(R1) fail(R)∧

– Compensation: duration(R) > 2h => changeParam(R)

R1 = Requirement R will
complete within 2 hours

R2 = Requirement R will
complete within 3 hours

Some research directions

● Contextual security requirements

– Security requirements (e.g. privacy) can be relaxed sometimes

● Using commitments in adaptive open systems (e.g. STSs)

– How does one agent adapt in an open system?

– Which agents to interact with?

● A framework for AwReqs

– From requirements models to feedback loops

– Consider contextual requirements

www.troposproject.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Variation Points
	Context Analysis
	Automated Analysis
	Slide 10
	Slide 11
	Slide 12
	Social commitments (1)
	Social commitments (2)
	Social commitments
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

