
The Software Factory: Combining Undergraduate
Computer Science and Software Engineering Education

John D. Tvedt Roseanne Tesoriero Kevin A. Gary
The Catholic University of America (CUA) CUA and UNICON, Inc.
Department of EE & Computer Science Fraunhofer Center for 3140 N. Arizona Ave.

201 Pangborn Hall Experimental Software Engineering Suite 113
Washington DC 20064 USA College Park, MD 20740 USA Chandler, AZ 85225 USA

+1 202 319 5299 +1 301 403 8937 +1 480 926 2368
tvedt@cua.edu tesoriero@cua.edu garyk@cua.edu

tvedt@orangebunny.com rtesoriero@fc-md.umd.edu garyk@unicon.net

Abstract

Industry often complains that current university
curricula fail to address the practical issues of real
software development. This paper outlines a proposal for
an innovative core curriculum for a Bachelor of Science in
Computer Science. The proposed core curriculum
contains elements of traditional computer science
programs combined with software engineering via a team-
oriented, hands-on approach to large-scale software
development. In addition to traditional
lecture/project/exam courses, students are required to take
an eight-semester sequence of “Software Factory”
courses. Software Factory courses put the students’ newly
acquired skills to work in a real software organization
staffed and managed by all students in the program.
Students from all courses in the Software Factory
sequence meet simultaneously to fulfill their roles in the
software organization. We expect the students will be
better-prepared software engineering practitioners after
completing a curriculum that combines traditional courses
with practical Software Factory experience.

1. Introduction

With the explosive growth of the Internet and the
permeation of software into nearly every aspect of our
lives, the need for qualified software developers to build
quality software is apparent. Industry would like
educational institutions to train future employees in the
latest technology. However, the value system of
universities emphasizes long term education rather than
training in short term skills. While it may be tempting to
focus on the latest technologies to satisfy industry
demand, from a pedagogical perspective, doing so would
not serve students in the long term. Once the latest

technology becomes obsolete, so does the students’
knowledge. Industry complains that current university
curricula fail to address the practical issues of real
software development [4] [5] [9] [15] [16]. With current,
undergraduate, computer science curricula, it is rare for
students to encounter large-scale development requiring
teamwork, written and oral communication skills,
maintenance, management, and quality activities.
Additionally, traditional computer science courses do not
expose students to the non-technical issues that often drive
decision making in a real development environment.

Universities have attempted to address industry
complaints with curricula in computer science. Assigning
team projects in semester courses [6] [11] [7] [12], team
projects that span multiple semesters [8] [13], and
encouraging internships [14] are a few of the ways
universities have attempted to include practical experience
along with traditional coursework. However, project
courses and internships often begin late in a student’s
career and are typically short in duration. The exposure
does not provide the depth of experience to appreciate the
responsibilities of the roles and the implications of their
decisions on future development. Nor, do the students
have the opportunity to learn from their mistakes and
apply their experience to future projects.

The Catholic University of America (CUA) is a small,
private institution in the heart of Washington D.C., which
has one of the nation’s fastest growing technology sectors.
This growth is fueled by an established government
services market and a rapidly expanding
telecommunications market. Of course, much of the
technology developed for these sectors has as its core,
complex software. Like many higher educational
institutions these days, CUA has difficulty retaining and
motivating students who see better immediate
opportunities in these markets. The challenge facing CUA
today is one echoing through the halls of Computer

0-7695-1050-7/01 $10.00 © 2001 IEEE
633

Science departments throughout the country (if not the
world), “How can we make our curriculum meaningful in
today’s technology-driven world without compromising
the essential knowledge and training a student in computer
science must receive?”

The purpose of this paper is to describe CUA’s answer
to this challenge, the Software Factory. The Software
Factory combines traditional computer science
coursework with experience-based learning in which
students participate in the development of a real-world
software project. Each student gains experience in every
participatory role in the software lifecycle, from serving as
a requirements analyst to a software tester to a project
manager, and all roles in between. In this paper, we
present the Software Factory curriculum.

The main objectives of the Software Factory
curriculum are the following:

1. meet industry needs for producing computer scientists
familiar with today’s technology and processes;

2. ensure computer science students are given a solid
and lasting foundation in computer science by
providing an accredited computer science program;

3. attract and retain high quality students;

4. conduct empirical software engineering research; and

5. encourage multidisciplinary collaboration.

2. The Software Factory

The Software Factory concept combines traditional
computer science coursework with Software Factory
courses. The traditional courses cover the fundamental
topics of computer science (see Appendix A). Software
Factory courses expose students to large-scale, team-
oriented development in a software development
organization staffed and managed by students under the
guidance of faculty. There are eight Software Factory
courses that combine to form a software development
organization. Each course represents a specific, software
engineering role or job within the development
organization. The eight semester sequence progresses the
students through the following roles: (1) Software Factory
process and tools trainee, (2) software system tester, (3 &
4) software developer and maintainer, (5) requirements
analyst and test planner, (6) software designer and (7 & 8)
software project manager. Students from all courses in the
Software Factory sequence meet simultaneously to fulfill
their roles in the software organization. The enrollment in
the program allows for multiple teams within the
organization.

Software Factory courses are hands-on courses that
require student participation in the Software Factory
throughout their undergraduate career. The Software
Factory is a software organization staffed and managed by

students in the Computer Science program. Software
Factory courses are facilitated by an instructor, but they
emphasize learning through real work-experience. These
classes meet twice each week. One class meeting lasts
one hour and is led by the instructor/“consultant.” During
this meeting, the “consultant” introduces concepts that are
relevant to the current work being performed in the factory
and addresses problems faced by the students at the
factory. The second class meeting lasts two hours.
During this second meeting, all Software Factory classes
meet simultaneously in one location, thus fully staffing the
factory. During this session, the instructor is a
“facilitator” who does not decide right or wrong (as in
traditional courses), but instead facilitates learning the
pitfalls and peaks in development processes. The
facilitator may perform various roles external to the
organization, such as “customer”, “patent agent”, “end-
user”, “certification agent” (health-case, aviation, etc.),
and so forth.

The purpose of the Software Factory is to provide
students with practical experience in software
development. The students should gain business
experience, as well as technical experience. It is important
for the students to be exposed to the constraints that
business decisions place on technological decisions. The
classroom space for the Software Factory simulates a real
working environment with cubicles, meeting rooms and
office equipment.

The projects for the Software Factory will be chosen by
the managers (senior computer science students). These
projects may reflect current trends in industry. For
example, the Internet has created unique opportunities for
students in the Software Factory to gain experience in both
new technologies and entrepreneurial areas. The students
could create e-commerce web sites to provide services and
software. One potential project for the Software Factory
would be to build and run an online auction site. The site
could be targeted at students, allowing them to auction
used textbooks, or other small items. Revenue from the
web site could be used to support the Software Factory.

Additional projects might be related to ongoing
research at the university. The students could negotiate
with faculty to develop software that would support their
research projects, thus, encouraging multidisciplinary
collaboration. The Software Factory could negotiate with
industry for projects that would promote
university/industry partnerships.

Software Factory Course Sequence/Description
Each course in the eight-semester sequence through the

Software Factory is described below.

1st Semester:
CSC 151: Software Development Process and Tools (3)

This course introduces students to the software
development process and the tools that support it.

634

Students learn about software processes, in general, as
well as the process in use at the factory. These students
learn about the roles and activities of the members of the
factory, such as developers, testers, QA, and management.
Finally, the students learn about and use the tools that
support the roles and activities at each different stage in
the software development process.

2nd Semester:
CSC 152: Software System Testing (3)

In this course, students are put in the role of software
testers. Student responsibilities include: writing test plans
that test the requirements, writing test cases, running test
cases, documenting test results, and following the
documented process and standards.

3rd Semester:
CSC 251: Software Development and Maintenance I

(Code and Unit Test) (3)
In this course, students are put in the role of software

developers. Student responsibilities include: writing
software that adheres to the design, unit testing,
integration testing, documenting, performing peer reviews,
and following the documented process and standards.

4th Semester:
CSC 252: Software Development and Maintenance II

(Code and Unit Test) (3)
This course is a continuation of CSC251.

5th Semester:
CSC 351: Software Requirements and Test Planning (3)

In this course, students are put in the role of software
requirements analysts and test planners. Student
responsibilities include: meeting with customers,
analyzing customer requirements, writing a requirements
specification document, writing test plans, performing
peer reviews, and following the documented process and
standards.

6th Semester:
CSC 352: Software Design (3)

In this course, students are put in the role of a software
designer. Student responsibilities include: writing a
design document that meets the requirements
specification, performing peer reviews, and following the
documented process and standards.

7th Semester:
CSC 451: Software Project Management I (3)

In this course, students are put in the role of a software
project manager. Student responsibilities include: project
planning, resource allocation, project estimation, project
tracking, risk analysis/mitigation, personnel management,
SQA, and planning the future direction of the Software

8th Semester:
CSC 452: Software Project Management II (3)

This course is a continuation of CSC451.

3. Discussion

We believe that the Software Factory concept meets the
objectives listed in Section 1. This section describes how
the design of the Software Factory meets each objective.

Meet the needs of industry
The needs of industry addressed by the Software

Factory design include: exposing students to new
technologies, teamwork, large-scale development,
management activities, maintenance activities, quality
activities and written and oral communication. By having
the students meet in one location simultaneously, we
simulate a real world, development organization. By
participating in the different roles of the Software Factory,
students are learning the skills needed by industry as well
as gaining an appreciation for their use in industry. For
example, configuration management can be taught in a
traditional course, but when a student is confronted with a
large-scale system, the need for configuration
management is better appreciated. The structure of the
Software Factory allows the course to be flexible and
adaptive to new technology.

Create an accredited program
The coursework designed for the Software Factory

follows guidelines for software engineering education
[2][10][1] and meets the ABET computer science
curriculum requirements [3]. A mapping from the
requirements to the coursework is given in Appendix B.

Attract and retain quality students
Students often complain that they do not get enough

exposure to coursework in their major until later in their
academic careers. The Software Factory concept
immediately immerses students into their area of academic
interest. By offering a unique program that gives students
an opportunity to have early exposure in their area of
concentration, we can attract quality students. With
exposure to the latest technologies and interesting projects
and opportunities, we hope to be able to retain those
students.

Conduct empirical software engineering research
The Software Factory will benefit the computer science

faculty as well. With a fully staffed Software Factory,
there will be multiple teams working within the
organization. Those teams could work independently to
develop distinct versions of the same product. This setup
would provide an opportunity to conduct empirical
software engineering studies. For example, an experiment
could be run to test the benefits of implementing software
inspections. Some teams in the Software Factory could
act as a control group while others could develop the same
product utilizing inspections.

635

Encourage multidisciplinary collaboration
Faculty are confronted often with the need for software

developers when working on and applying for research
grants. As with industry, often the supply does not meet
the demand. The Software Factory could provide
resources to support those grants. The students would be
exposed to problems from various disciplines. The end
result is an environment that encourages collaboration
among the departments of the university.

4. Implementation plan

Implementing the Software Factory concept requires
special consideration. In this section, we describe
alternatives for implementing the Software Factory and
give a concrete example of how we plan to implement it in
our environment.

The Catholic University of America is a small, private
university that uses the semester system. There is an
existing computer science program in place. The
enrollment goal of the computer science program is to
have 25 new, freshmen students each Fall. Once we
achieve that goal, the Software Factory will have five
teams, each consisting of twenty students. These numbers
do not take into account attrition, however a small attrition
rate should not greatly impact the success of a team.
Attrition is one of the biggest problems in industry. It’s
another real world problem that the students must face.

Physical Environment
Each team will have its own laboratory session in

which the students on the team will staff the Software
Factory. The physical location for the Software Factory
laboratory must be able to accommodate 20 people. The
laboratory should be set up like an office space with
meeting rooms, cubicles equipped with computers and
miscellaneous office equipment and supplies.

Flow of Work
In our instance of the Software Factory, we will start

with a waterfall-like process model. Each project will
have a two-year cycle time (See Figure 1).

Factory will accept during the first few weeks of the
Fall semester. Upon acceptance, those projects will
undergo requirements analysis, test planning and design
by the junior class during the academic year. The
managers will be responsible for guiding and measuring
the development and testing of the projects for which they
wrote the requirements and design in the previous year.
The development and maintenance will be performed by
the sophomore class. The testing will be performed by the
freshmen class (second semester). The trainees (first
semester freshmen) will be assigned to one of the
developers as a mentor to learn about the process and the
tools used in the Software Factory. The trainees will be
exposed to all of the different software engineering roles.

Due to the length of the cycle time, other life cycle
models are being considered. However, we do not expect
to implement them initially.

Grading
The Software Factory courses are meant to be

participatory classes. The management will be
responsible for writing performance reviews for each team
member, each semester. These performance evaluations
will be the basis for the students’ course grades assigned
by the faculty member. The managers are better-suited to
evaluate the team members than the faculty due to their
working relationship. By evaluating their team members,
managers will gain valuable experience in interpersonal
communication skills and writing performance
evaluations. The performance review will give the
managers leverage to motivate the team members.

Managers’ grades will be based on evaluations from
team members. This grading method provides checks and
balances between the management and team members.

Implementation Alternatives
Many universities already have an existing computer

science program in place. Therefore, it is important to
analyze the existing situation and choose an alternative
that provides the most benefits and least disruption to the
university and students. We have considered three
alternative approaches for implementing the Software
Factory in our environment: the incremental, big-bang and
sandwich approaches. The incremental approach is
defined as introducing the Software Factory in incremental
stages, starting with the freshmen factory courses
(Process/Tools and Software Testing). Each additional
year, more courses are offered until all of the courses for
the Software Factory are offered. The big-bang approach
is the opposite of the incremental approach. In this case,
all four years of Software Factory courses are offered
immediately. The sandwich approach is a compromise
between the incremental and big-bang approaches. With
this approach, in the first year, only the freshmen and the
senior (Management I and Management II) courses are
introduced. In the second year, the full set of Software

Figure 1. Two-year project work flow

Year 1 Year 2
1st
Semester

2nd
Semester

Mgmt Mgmt

Reqs Design

Dev Dev

Process/
Tools

Test

1st
Semester

2nd
Semester

Mgmt Mgmt

Reqs Design

Dev Dev

Process/
Tools

Test

636

Factory courses are offered. Each alternative has its own
set of advantages and disadvantages.

Incremental Approach
Some of the advantages to implementing the Software

Factory courses incrementally include a reduced course
load and the possibility of smaller lab space requirements.
By only offering the freshmen courses in the first year,
only two additional courses are added instead of the full
eight courses required with full implementation of the
Software Factory. Additionally, since only the freshmen
would be involved, the university could incrementally
allocate resources and equipment to set up the lab.

Although there are some advantages to an incremental
approach, there are also several disadvantages. The most
serious concern is the amount of time it will take to be
able to evaluate the full benefits and drawbacks of having
the Software Factory. This approach would require four
years to fully staff the Software Factory. This approach
also delays using the Software Factory for
experimentation and research purposes. A more practical
issue is that although only two courses are introduced, the
work products for the freshmen to use for the testing
course in the second semester of the first year would have
to be developed or obtained. And, in each additional year,
the work products for all of the courses that have not yet
been introduced would have to be developed or obtained.
Implementing the incremental approach starting with the
senior year and working backward to the freshman year or
using one of the alternative approaches eliminates this
need.

Big Bang Approach
Introducing all of the new Software Factory courses

has several advantages over the incremental approach.
During the first semester, the students will be producing
the work products required for the second semester
courses. With this approach, the only work product that
would have to be developed would be a design document
for the developers to use for the first semester. Many
universities already offer courses in which a design
document is used or developed. These existing design
documents could be used for the developers in the first
year. Another advantage is that the second semester
courses can use the work products from the first semester.
This approach provides quick feedback since the Software
Factory will be staffed at all levels in the first year. This
approach also makes the Software Factory available for
experimentation and research more quickly than other
approaches.

There are some drawbacks to this approach. The most
serious is that introducing eight new courses may be
difficult for existing faculty to cover. One solution would
be to rely on adjuncts and lecturers to teach some of the
courses. This approach also assumes that current students
will want to participate in the Software Factory. While

one can’t expect full participation from the existing
students, some students will have to participate in order to
staff the Software Factory fully.

Sandwich Approach
The sandwich approach, while reducing the initial

course load that is required by the big-bang approach, still
has many of the problems of the incremental approach. If
there are no developers in the first semester of the
Software Factory, a work product for the second semester
testers will have to be developed or obtained by the
faculty. This approach reduces by half the time to have a
fully operational Software Factory when compared to the
incremental approach, but it would still take two full
years. In addition, the faculty would have to develop or
provide work products for the testers in the second
semester of the first year and design documents for the
developers in the second year.

After considering the three alternatives, the big-bang
approach was considered to be the most desirable for our
situation. Using this approach will require some students
to incorporate some of the new courses into their existing
programs. We plan to count the Software Factory courses
as fulfilling current computer science electives. Students
entering into the Software Factory course sequence will
enter at a level based on a recommendation from their
academic advisor. Transfer students will be handled in
the same way as existing, computer science students.

5. Evaluation Plan

We plan to use our objectives in Section 1 to guide our
evaluation plan. Based on our objectives, we would like
to answer the following questions:

Meet the needs of industry
1. Is industry interested in collaborating with the

Software Factory?
We will keep track of the number of inquiries from

industry. We will monitor the number of projects and
experiments completed for industry in the Software
Factory.

Create an accredited program
1. Does the new curriculum satisfy ABET curriculum

requirements for accreditation?
We have mapped the courses for the new curriculum to

the ABET curriculum requirements. The Software
Factory curriculum meets these requirements. See
Appendix B.
2. Is industry happy with our graduates?

To address this question, we need to get feedback from
the employers and potential employers of our graduates.
3. Are our graduates trained in the technologies that

industry is interested in?

637

To address this question, we will compare the
technologies used in the Software Factory with those that
are in-demand in industry.

Attract and retain quality students
1. Have the number of applicants in computer science

increased?
We will look at the total number of computer science

applicants each year over the 5 years prior to the
introduction of the Software Factory and compare it to the
total number of computer applicants each year since the
introduction of the Software Factory.
2. Have the GPA and SAT scores of applicants in

computer science increased?
We will look at the GPA, SAT scores and quality

ratings of computer science students for the 5 years prior
to the introduction of the Software Factory. We will
compare these scores and ratings to the GPA, SAT scores
and quality ratings of applicants since the introduction of
the Software Factory.
3. Has the retention rate been maintained or improved?

We will look at the retention rate of computer science
students for the 5 years prior to the introduction of the
Software Factory. We will look for the same or better rate
of retention in each year since the introduction of the new
curriculum.

Conduct empirical software engineering research
1. Has the factory been used to conduct empirical

software engineering research?
The number of experiments completed in the Software

Factory will be monitored. We will also keep track of the
number of papers generated from work done in the
factory.

Encourage multidisciplinary collaboration
1. Are other departments interested in the factory?

We will keep track of the number of grants supporting
the factory, the dollar amount of funding for the factory
and the number of departments utilizing the factory.

6. Summary and Future Work

With current, undergraduate, computer science
curricula, students graduate with technical skills, but lack
practical software engineering skills needed in industry.
We believe the Software Factory concept will benefit the
students, the faculty, the university and industry. Students
will learn more and retain more by putting their newly
acquired skills to use in a real software development
organization. Faculty will have the opportunity to contract
out software to students running the Software Factory and
conduct software engineering experimentation. The
university may be able to attract a greater number of

quality students. Finally, industry will benefit by gaining
access to students that have experience in a real world,
software development organization upon graduation.

The new curriculum was approved by the Department
of Electrical Engineering and Computer Science at The
Catholic University of America during the Spring of 2000.
We are working with other colleges and universities to
help them with the implementation of the Software
Factory curriculum.

7. References

[1] Bagert D. J., A model for the software engineering
component of a software engineering curriculum.
Information and Software Technology, 40, 4, 195 – 201.

[2] Bagert D.J., Hilburn T.B., Hislop G., Lutz M., McCracken
M., and Mengel S. Guidelines for software engineering
education. Version 1.0. Technical Report CMU/SEI-99-TR-
032, October 1999.

[3] Computing Accreditation Commission Acreditation Board
for Engineering and Technology (ABET), 2000-2001
criteria for accrediting computing programs. November 1,
2000.

[4] Coulter N. and Dammann J. Current practices, culture
changes, and software engineering education. Computer
Science Education, 5, 2, 1994, 211 – 227.

[5] Dawson R.J., Newsham, R.W. and Kerridge, R.S.
Introducing new software engineering graduates to the ‘real
world’ at the GPT company. Software Engineering Journal,
7, 3, (1992), 171 – 176.

[6] Dawson, R. and Newsham, R. Introducing software
engineers to the real world. IEEE Software
(November/December 1997), 37 – 43.

[7] Easterbrook S.M. and Arvanitis T.N. Preparing students for
software engineering. In Proc. of the Third International
Workshop on Software Engineering Education (IWSEE3),
(Berlin, Germany, March 1996).

[8] Garlan, D., Glutch D.P. and Tomayko, J.E. Agents of
change: Educating software engineering leaders. IEEE
Computer, 30, 11, 59 – 65.

[9] Gibbs N. The SEI education program: The challenge of
teaching future software engineers, Comm. of the ACM,
(May 1989), 594 – 605.

[10] IEEE/ACM Software Engineering Coordinating Committee,
Accreditation criteria for software engineering. Sep. 1998.
http://computer.org/tab/Accred10.html.

[11] Hilburn, T.B. Software engineering education: A modest
Proposal. IEEE Software (Nov/Dec 1997), 44 – 48.

[12] Horning, J.J. and Wortman D.B. Software hut: A computer
program engineering project in the form of a game. IEEE
Trans. on Software Engineering, SE-3, 7, (July 1997), 325 –
330.

[13] Moore, M. and Potts, C. Learning by doing: Goals and
experiences of two software engineering project courses. In
Proceedings of the Seventh Software engineering Institute
Conference on Software Engineering Education, (San
Antonio, Texas, January 1994).

638

[14] Powell, G.M., Diaz-Herrera, J.L., and Turner D.J.
Achieving synergy in collaborative education. IEEE
Software (November/December 1997), 58 – 65.

[15] Shaw M. Prospects for an engineering discipline of
software. IEEE Software (November 1990), 15 – 24.

[16] Wasserman A.I. Toward a discipline of software
engineering. IEEE Software (November 1996), 23 – 31.

Appendix A Course Sequence/Description

1st Semester:
xxx: Required Elective
xxx: Required Elective
MATH 121: Calculus I (4)
CSC 131: Computer Science I (Java) (3)
CSC 151: Software Development Process and Tools (3)

2nd Semester:
xxx: Required Elective
xxx: Required Elective
MATH 122: Calculus II (4)
CSC 132: Computer Science II (Java) (3)
CSC 152: Software System Testing (3)

3rd Semester:
xxx: Required Elective
xxx: Required Elective
CSC 211: Discrete Structures (3)
CSC 231: Data Structures (3)
CSC 251: Software Development and Maintenance I

(Code and Unit Test) (3)

4th Semester:
xxx: Required Elective
xxx: Required Elective
CSC 212: Theoretical Computer Science (3)
CSC 222: Computer Organization and Assembly

Language (3)
CSC 252: Software Development and Maintenance II

(Code and Unit Test) (3)

5th Semester:
xxx: Required Elective
MATH 501: Linear Algebra (3)
CSC 311: Design and Analysis of Algorithms (3)
CSC 331: Programming Languages (3)
CSC 351: Software Requirements and Test Planning (3)

6th Semester:
xxx: Required Elective
MATH 531: Probability and Statistics (3)
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC 352: Software Design (3)

7th Semester:
xxx: Required Elective

xxx: Required Elective
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC 451: Software Project Management I (3)

8th Semester:
xxx: Required Elective
xxx: Required Elective
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC 452: Software Project Management II (3)

Required electives: (44)

Science:
SCI xxx: 1st semester of a lab course (4)
SCI xxx: 2nd semester of a lab course (4)
SCI xxx: Science Elective (3)
SCI xxx: Science Elective (3)

English:
ENG 101 (or 105,103,104): English Composition (3)

Religion:
REL 201 (or 203): Christian Difference (201 cannot be

taken 1st semester freshman year) (3)
REL xxx: Religion Elective (3)
REL xxx: Religion Elective (3)

Philosophy:
PHIL 362: Professional Ethics in Engineering (3)

Liberal Studies:
LS xxx: Liberal Studies Elective (3)
LS xxx: Liberal Studies Elective (3)
LS xxx: Liberal Studies Elective (3)
LS xxx: Liberal Studies Elective (3)
LS xxx: Liberal Studies Elective (3)

Additional requirements
1. To be accepted as a major, a student must have

completed CSC 131, CSC 132, CSC 211, and CSC
231 with a minimum G.P.A. of 2.5 in these three
courses.

2. To ensure competence in the core material, all core
math and computer science courses must be passed
with a grade of C or better to satisfy the requirements
of the degree.

3. To ensure breadth in the choice of the six computer
science electives, at least one course, and no more
than two courses, must be taken from each of the
following areas: Computer Science Foundations (CSC
x1x), Computer Systems (CSC x2x), Software
Systems (CSC x3x), and Computing Methodologies
(CSC x4x).

639

Appendix B Mapping to ABET curriculum requirements [3]

The table below contains section IV from the ABET requirements for accreditation. The standards are given on the
left and the evidence of the Software Factory curriculum on the right.

IV. Curriculum
Intent: The curriculum is consistent with program's
documented objectives. It combines technical
requirements with general education requirements and
electives to prepare students for a professional career in
the computer field, for further study in computer
science, and for functioning in modern society. The
technical requirements include up-to-date coverage of
basic and advanced topics in computer science as well
as an emphasis on science and mathematics.
Standards: Evidence:
General
IV-1. The curriculum must include at least 40 semester
hours of up-to-date study in computer science topics.

63 semester hours
CSC 131: Computer Science I (Java) (3)
CSC 151: Software Development Process and Tools (3)
CSC 132: Computer Science II (Java) (3)
CSC 152: Software System Testing (3)
CSC 231: Data Structures (3)
CSC 251: Software Development and Maintenance I (Code
and Unit Test) (3)
CSC 212: Theoretical Computer Science (3)
CSC 222: Computer Organization and Assembly Language
(3)
CSC 252: Software Development and Maintenance II (Code
and Unit Test) (3)
CSC 311: Design and Analysis of Algorithms (3)
CSC 331: Programming Languages (3)
CSC 351: Software Requirements and Test Planning (3)
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC 352: Software Design (3)
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC 451: Software Project Management I (3)
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC 452: Software Project Management II (3)

IV-2. The curriculum must contain at least 30 semester
hours of study in mathematics and science as specified
below under Mathematics and Science.

31 semester hours
Math:
MATH 121: Calculus I (4)
MATH 122: Calculus II (4)
CSC 211: Discrete Structures (3)
MATH 501: Linear Algebra (3)
MATH 531: Probability and Statistics (3)
Science:
SCI xxx: 1st semester of a lab course (4)
SCI xxx: 2nd semester of a lab course (4)
SCI xxx: Science Elective (3)
SCI xxx: Science Elective (3)

640

IV-3. The curriculum must include at least 30 semester
hours of study in humanities, social sciences, arts and
other disciplines that serve to broaden the background
of the student.

30 semester hours
English:
ENG 101 (or 105,103,104): English Composition (3)
Religion:
REL 201 (or 203): Christian Difference (201 cannot be taken
1st semester freshman year) (3)
REL xxx: Religion Elective (3)
REL xxx: Religion Elective (3)
Philosophy:
PHIL 362: Professional Ethics in Engineering (3)
Liberal Studies:
LS xxx: Liberal Studies Elective (3)
LS xxx: Liberal Studies Elective (3)
LS xxx: Liberal Studies Elective (3)
LS xxx: Liberal Studies Elective (3)
LS xxx: Liberal Studies Elective (3)

IV-4. The curriculum must be consistent with the
documented objectives of the program.
Computer Science
IV-5. All students must take a broad-based core of
fundamental computer science material consisting of at
least 16 semester hours.

45 semester hours
CSC 131: Computer Science I (Java) (3)
CSC 151: Software Development Process and Tools (3)
CSC 132: Computer Science II (Java) (3)
CSC 152: Software System Testing (3)
CSC 231: Data Structures (3)
CSC 251: Software Development and Maintenance I (Code
and Unit Test) (3)
CSC 212: Theoretical Computer Science (3)
CSC 222: Computer Organization and Assembly Language
(3)
CSC 252: Software Development and Maintenance II (Code
and Unit Test) (3)
CSC 311: Design and Analysis of Algorithms (3)
CSC 331: Programming Languages (3)
CSC 351: Software Requirements and Test Planning (3)
CSC 352: Software Design (3)
CSC 451: Software Project Management I (3)
CSC 452: Software Project Management II (3)

IV-6. The core materials must provide basic coverage
of algorithms, data structures, software design,
concepts of programming languages, and computer
organization and architecture.

CSC 311: Design and Analysis of Algorithms (3)
CSC 231: Data Structures (3)
CSC 352: Software Design (3)
CSC 331: Programming Languages (3)
CSC 222: Computer Organization and Assembly Language
(3)

IV-7. Theoretical foundations, problem analysis, and
solution design must be stressed within the program’s
core materials.

CSC 212: Theoretical Computer Science (3)
CSC 311: Design and Analysis of Algorithms (3)
CSC 351: Software Requirements and Test Planning (3)
CSC 352: Software Design (3)

IV-8. Students must be exposed to a variety of
programming languages and systems and must become
proficient in at least one higher-level language.

CSC 331: Programming Languages (3)
CSC 131: Computer Science I (Java) (3)
CSC 132: Computer Science II (Java) (3)

IV-9. All students must take at least 16 semester hours
of advanced course work in computer science that

18 semester hours
CSC xxx: Computer Science Elective (3)

641

provides breadth and builds on the core to provide
depth.

CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
CSC xxx: Computer Science Elective (3)
To ensure breadth in the choice of the six computer science
electives, at least one course, and no more than two courses,
must be taken from each of the following areas: Computer
Science Foundations (CSC x1x), Computer Systems (CSC
x2x), Software Systems (CSC x3x), and Computing
Methodologies (CSC x4x).

Mathematics and Science
IV-10. The curriculum must include at least 15
semester hours of mathematics.

17 semester hours
MATH 121: Calculus I (4)
MATH 122: Calculus II (4)
CSC 211: Discrete Structures (3)
MATH 501: Linear Algebra (3)
MATH 531: Probability and Statistics (3)

IV-11. Course work in mathematics must include
discrete mathematics, differential and integral calculus,
and probability and statistics.

CSC 211: Discrete Structures (3)
MATH 121: Calculus I (4)
MATH 122: Calculus II (4)
MATH 531: Probability and Statistics (3)

IV-12. The curriculum must include at least 12
semester hours of science.

14 semester hours
SCI xxx: 1st semester of a lab course (4)
SCI xxx: 2nd semester of a lab course (4)
SCI xxx: Science Elective (3)
SCI xxx: Science Elective (3)

IV-13. Course work in science must include the
equivalent of a two-semester sequence in a laboratory
science for science or engineering majors.

SCI xxx: 1st semester of a lab course (4)
SCI xxx: 2nd semester of a lab course (4)

IV-14. Science course work additional to that specified
in Standard IV-13 must be in science courses or
courses that enhance the student's ability to apply the
scientific method.

SCI xxx: Science Elective (3)
SCI xxx: Science Elective (3)

Additional Areas of Study
IV-15. The oral communications skills of the student
must be developed and applied in the program.

ENG 101 (or 105,103,104): English Composition (3)
CSC 451: Software Project Management I (3)
CSC 452: Software Project Management II (3)

IV-16. The written communications skills of the
student must be developed and applied in the program.

ENG 101 (or 105,103,104): English Composition (3)
CSC 352: Software Design (3)
CSC 351: Software Requirements and Test Planning (3)
CSC 451: Software Project Management I (3)
CSC 452: Software Project Management II (3)

IV-17. There must be sufficient coverage of social and
ethical implications of computing to give students an
understanding of a broad range of issues in this area.

PHIL 362: Professional Ethics in Engineering (3)

642

