
The cost of errors in software development: evidence from industry

J. Christopher Westland *

Department of Information and Systems Management, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Received 4 February 2000; received in revised form 13 March 2000; accepted 23 July 2001

Abstract

The search for and correction of errors in software are often time consuming and expensive components of the total cost of

software development. The current research investigates to what extent these costs of software error detection and correction

contribute to the total cost of software. We initiated the research reported here with the collection of a sample of transactions

recording progress on one phase of development of a set of software programs. Each of these projects represented the completion of

an identical phase of development (i.e., country localisation) for a different country. This enabled each project to be compared with

the other, and provided an unusually high degree of control over the data collection and analysis in real-world empirical study. The

research findings relied on programmers’ self-assessment of the severity of errors discovered. It found that serious errors have less

influence on total cost than errors that were classified as less serious but which occurred with more frequency once these less serious

errors are actually resolved and corrected. The research suggests one explanation – that programmers have greater discretion in how

and when to resolve these less severe errors. The data supports the hypothesis that errors generate significant software development

costs if their resolution requires system redesign. Within the context of the research, it was concluded that uncorrected errors become

exponentially more costly with each phase in which they are unresolved, which is consistent with earlier findings in the literature.

The research also found that the number of days that a project is open is a log-linear predictor of the number of software errors that

will be discovered, implying a bias in error discovery over time. This implies that testing results need to be interpreted in light of the

length of testing, and that in practice, tests should take place both before and after systems release. � 2001 Elsevier Science Inc. All

rights reserved.

Keywords: Software errors and reliability; Economics of information technology

1. Software life cycle costs

This research develops a model for costs generated in
software development, focusing on costs associated with
software error correction and detection. It draws on
empirical data extracted for one phase of the software
development life cycle by a vendor of packaged micro-
computer software.

In the past, empirical investigations of software costs
have been rare, most likely due to the difficulty in ob-
taining sufficient data for analysis. Financial accounting
systems do not require separate account information on
software error costs and, as noted by Software Pro-
ductivity Research executive Capers Jones, fewer than

10% of companies who collect software development
metrics include defect statistics and even fewer record
process errors (Inwood, 1994). Where we do possess
knowledge about error cost behaviour, the evidence is
spotty and seldom sufficient to build complete models.
Inwood (1993) suggested that the norm for software-
defect removal is about 75% of the errors that appear in
the first year after release. Bloor (1993) found that the
number of software errors was most strongly affected
by programming quality, software testing and choice of
‘safe’ programming tools and languages. Boehm (1981,
p. 40) (citing prior studies in Boehm, 1980, 1973; Myers,
1976, 1978) suggested that the cost of correcting an error
increased exponentially for each phase of the systems
development life cycle the correction was delayed.
Royce (1993) found that error control costs were posi-
tively correlated with the number of ‘late-breaking,
unforeseen external events’. Violino (1998) found that
many IS managers use quality performance measures

The Journal of Systems and Software 62 (2002) 1–9

www.elsevier.com/locate/jss

* Tel.: +852-2358-7643; fax: +852-2243-0712.

E-mail address: westland@ust.hk (J.C. Westland).

URL: http://www.ismt.ust.hk.

0164-1212/01/$ - see front matter � 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212 (01 )00130-3



beyond error counts which may depend on the com-
plexity, scale, and importance of the IT project in
question. Moser and Nierstrasz (1996) developed soft-
ware metrics using a statistical correlation between the
size of a software project and the amount of effort
typically required to realise it. Benyahia (1996) provided
a review of the principal costs and productivity estima-
tion method in management information systems, and
introduced two new models, testing their sensitivity
and reliability. Klepper and Bock (1995) examined
third generation languages. Jones (1993) found that
faulty scheduling, documentation, schedule pressure,
poor training, and ‘creeping’ user requirements were
correlated with higher error rates. Ferneley (2000) in-
vestigated the impact of complexity on maintenance
costs, and DeLucia et al. (1998) developed software
metric tools to evaluate reengineering costs.

The current research is organised into three sections.
Section 2 discusses the data collection and control for
bias for the empirical study. Section 3 presents a series
of pair-wise specification searches that describe the in-
fluence of particular cost drivers on costs. Section 4
synthesizes a multiparameter cost model. Section 5 dis-
cusses the implications for the software industry, and
suggests avenues for extending this research.

2. Data collection

Data was collected from a packaged software vendor
with global operations and a number of competitive
products. The vendor developed, researched, specified,
and tested each software release at corporate head-
quarters before allowing global release. Each completed,
tested, and stable product was then released in the
vendors home market simultaneously with its being
passed on for localisation (i.e., translation to the local
language, culture and practice) to 31 strategically im-
portant global markets. The vendor allowed the author
to collect data from corporate accounting records and
databases on a condition of anonymity. This overcomes
perhaps the most significant problem facing prior stud-
ies on software error cost models – the commercial
sensitivity of the data.

Any analysis of corporate records (such as the current
study) tends to suffer from the weakness of other non-
experimental sciences – the unavailability of controlled,
replicable experiments. The restriction of data collection
to activities involved in localisation of an already com-
pleted product, as well as the rigorous and formal test-
ing procedure adopted by the vendor, limit potential
weaknesses and confounding effects from this non-
experimental data. Thus, localisation of software provides
a controlled environment for the specification of soft-
ware cost models. A full release version of the software
already exists, and this provides a common ‘baseline’ for

all of the individual localisation projects. This signifi-
cantly constrains the sources of errors, and assures that
projects are comparable. Errors specific to the localisa-
tion process arise when converting from the English
language software into a particular language and
cultural environment. Problems may arise from idio-
syncrasies of documentation and presentation; from
differing traditions for performing similar tasks required
by the software; and from different character sets (e.g.,
alphabets of English versus characters of Chinese versus
bi-directional script of Arabic).

The vendor observed that costs of translation to the
local language contributed less than 10% of total cost
incurred in the localisation phase of development; the
vendor’s major ‘localisation’ expenditure was directed
toward error search, detection and correction. There-
fore, the incurrence, detection, and correction of errors
were the focus of the analysis and model building in this
research.

The vendor conducted 31 separate localisation pro-
jects; these provide packages for 31 strategic markets.
These projects were prioritised into three groups (which
are called ‘tiers’ following the vendor’s convention
throughout the remainder of the paper).

Local language versions of the software are sequen-
tially released in the three different ‘tiers’. Tier 1 versions
of the software are released first. They localise versions
of the software into the languages of the vendor’s four
largest markets. Localisation of ‘tier 2’ begins only after
the release of the four ‘tier 1’ language versions of the
software; ‘tier 2’ covers the next 15 markets. Localisa-
tion of ‘tier 3’ starts towards the end of the ‘tier 2’
localisation tasks and covers the vendor’s remaining
markets. Often in these markets, it is economically fea-
sible to localise only portions of the package – e.g.,
documentation, help screens and menus, but not error
messages. A significant amount of learning takes place
in the localisation process for ‘tier 1’. The faults and
idiosyncrasies learned during ‘tier 1’ assist the localisa-
tion of the next two tiers. Typically, there is a delay of
one month between the start date of programming on
tier 1 and tier 2; and another month delay between tier 2
and tier 3.

The data set contained 21,017 records of error and
accounting information obtained from corporate data-
bases and four years of paper reports. These datasets
were merged and summarised into 31 observations
covering two versions of a single package that were lo-
calised for 31 markets. There were 3851 detailed records
of errors for the localisation process, each reflecting the
contents of error logs prepared by the programmers
when they detected and corrected an error. These were
restructured into counts or summary statistics in each
observation. The vendor observed that the volume of
errors detected depends on (1) how many errors exist in
total, (2) how hard each is to find, and (3) how intensely,

2 J.C. Westland / The Journal of Systems and Software 62 (2002) 1–9



systematically and intelligently the testers look for er-
rors. The vendor felt that there was considerable vari-
ance in each of these three factors across localisation
projects especially across tiers.

The firm uses a ‘production line’ method for finding
errors – i.e., a preset number and type of tests (treat-
ments) are made to attempt to produce errors (effects).
This approach is systematic, but can be very labour in-
tensive due to the exponential growth in degrees of
freedom of testing as complexity of the product grows.
For example, if the software needs to be tested on sev-
eral hundred parameters, for several hundred effects, the
size of the test deck can be in the millions. The system
for collecting errors is depicted in Fig. 1.

3. Error cost

The vendor’s internal studies concluded that the
largest single contributor to localisation cost was the
detection and correction of errors. Consequently, this
research first investigated evidence on error costs.

Prior literature has suggested a growth model for
software errors and reliability. Evolutionary growth
models assume that the number of errors discovered
depends on time and that the underlying error distri-
bution is exponential. The most important of these was
proposed by Jelinski and Moranda (1972) and was
refined and promoted in Musa and Okumoto (1988),
Musa and Iannino (1991) and Musa (1996).

Analysis of the software error dataset collected
for this research involved: (1) confirmatory testing to
determine whether the evolutionary growth model as
presented in Musa and Okumoto (1988), Musa and
Iannino (1991) and Musa (1996) accurately represents
the occurrence of errors experienced by the vendor; and
(2) a specification search to find the error cost model
with the greatest explanatory power.

Confirmatory analysis therefore tests the hypothesis
H0 that error count is exponential over time.

H0: Error count is exponentially distributed in time
with c.d.f.:Z T

0

be�bf ðtÞ dt ¼ � e�bf ðtÞf 0ðtÞ
��T
0
:

HA: Error rate is distributed according to some other
continuous, monotonic increasing c.d.f.

To test H0 the observed error count was re-expressed
via a Box–Cox (1964) transformation for various ex-
ponents. The Box–Cox transformation re-expresses the
error count as powers or a logarithm via the formula
ðErrorsk � 1Þ=k, where k smoothly adjusts the shape of
the transformation from reciprocal powers for k < 0 to
the logarithm at k ¼ 0 to powers for k > 0. Implicit
in the assumption of exponential distribution in prior
research is the assumption that measurements perhaps
have not been taken on a linear scale (not unusual when
human judgment is involved). It is useful to search to see
if the exponential distribution provides the best fit for
the observed data. The Box–Cox transformation flexibly
incorporates the so-called ‘ladder of powers’ into its
parameter lambda. Thus if k ¼ 2 the function is x2, if
k ¼ 1 the function is x and so forth. Table 1 summarises
the findings. The transformation at k ¼ 0 has the largest
F -statistic and R2. This corresponds to an exponential
distribution of error count over time if f ðtÞ is nearly
linear, since logeð�e�bf ðtÞf 0ðtÞ T

0

�� Þ ffi cons: � t. This pro-
vides strong confirmatory evidence for the adequacy of
evolutionary models in describing error occurrence in
software.

The tests showed that H0 is strongly supported, with
the following ‘goodness-of-fit’ measures – an F -statistic
of 24.0, R-squared of 55.8; and adjusted R-squared of
53.5. The F -statistic measures the difference between the
true model and one where all of the parameters are zero,
whereas R-squared is a general measure of the variance
in the data explained by the model (it is a percentage
between zero and 100); adjusted R-squared adjusts for
the size of the dataset. Table 1 shows that an inverse
square root function gives slightly better fit. The curve
peaks at a value of k around 0.4, but this particular

Fig. 1. Process of error testing, discovery and acquisition.

J.C. Westland / The Journal of Systems and Software 62 (2002) 1–9 3



value does not have a clear intuitive significance. It
is more meaningful to choose the inverse square root
transform k ¼ 0:5, with a nearly identical behaviour,
and suggest that this has the most explanatory power.
The difference between k ¼ 0:4 and k ¼ 0:5 is well within
one standard deviation, and therefore k ¼ 0:5 provides a
plausible characterisation of error count over time.

4. Specification searches

This part of the research reports the findings from a
general multiple variable analysis of software costs and
cost drivers for development tasks during the ‘localisa-
tion’ phase. Because part of the data used is accounting
cost data, there is the possibility of results being con-
founded by double-entry bookkeeping. Double-entry
bookkeeping, by definition, records information about
the same transactions in multiple places around the
corporate accounts simultaneously. This can weaken

our conclusions due to the multicollinearity of sample
data. Multicollinearity is typically a matter of degree,
and reflects the weakness of the data for answering the
researcher’s questions.

To assure that the data obtained was adequate to
answer the research questions it was tested for multi-
collinearity. Principal components analysis was per-
formed for the attributes used in the research to see
whether our results were subject to significant multi-
collinearity. Principal components analysis indicated
that the model parameterisation used to answer research
questions in the confirmatory and exploratory analysis
was appropriate and that significant multicollinearity
was not present.

4.1. Regression of error occurrence and software cost

When the vendor’s test program identifies an error, it
is prioritised from 1 to 3:

Table 1

Search for f with best linear fit for f ðErrorsÞ ¼ Constantþ b time

k F R2 R2 Adj. Constant Time (Project length)

Estimate t-Value p-Value Estimate t-Value p-Value

2.0 square 5.0 20.7 16.5 1477.16 0.4 0.7289 60.2298000 2.23 0.0383

1.0 raw data 12.6 39.9 36.8 37.65 1.5 0.1451 0.5674300 3.55 0.0021

0.5 square root 18.8 49.7 47.1 10.07 4.5 0.0002 0.0625067 4.34 0.0004

0.0 loge 24.0 55.8 53.5 3.59 15.2 0.0001 0.0074378 4.90 0.0001

)0.5 – inverse of square root 24.2 56.0 53.7 1.65 58.1 0.0001 0.0008965 4.91 0.0001

)1.0 – inverse 19.7 50.8 48.3 0.97 220.0 0.0001 0.0001264 4.43 0.0003

)2.0 – inverse of square 10.7 35.9 32.6 0.50 3470.0 0.0001 0.0000030 3.26 0.0041

4 J.C. Westland / The Journal of Systems and Software 62 (2002) 1–9



1. a serious error (in the judgment of the programmer) is
called priority 1 and must be resolved;

2. a moderately severe error is a priority 2 error, and may
or may not be corrected by release time;

3. a minor error which is typically cosmetic, such as
spelling, is called priority 3.

When priority 3 errors are removed, the regression re-
sults improve significantly, suggesting that there may be
a good deal of arbitrariness in recording priority 3
errors. These three priority levels are completely inde-
pendent of the ‘tier’ designation, which designates the
timing of market release. Tier is included in the regres-
sion to capture differences in the sequence of localizing
for different markets.

Dependent variable: Total delivered cost of localised
software

The regression shows that the count of serious errors is
less important in determining cost than the number of
less serious errors. This likely reflects greater discretion
available in how and when to resolve the less severe
errors. Priority 1 errors are likely to need immediate
attention, and may be thought of as a fixed cost asso-
ciated with staffing quality and complexity of localisa-
tion.

4.2. Regression of error resolution and software cost

Software errors are costly because the firm uses up
scarce resources (mainly programmer labour) in re-
solving the error. The vendor assumed that there were
four possible resolutions to a reported error:

1. The software design is modified to resolve the error.
2. The error has occurred elsewhere, and is resolved in

conjunction with resolving the error elsewhere. Reso-
lution of duplicate errors tended to occur within clus-
ters of languages within a tier, especially in the second
or third tier where errors may have already been re-

solved in the first tier, which is localised before other
tiers.

3. A decision is made not to resolve the error, e.g., be-
cause it is cosmetic, rare, or inconspicuous.

4. The resolution of the error is postponed, typically to
allow its resolution in conjunction with resolving the
error elsewhere.

The following regression results were obtained.

Dependent variable: Total delivered cost of localised
software

The p-values are unconvincing for the duplication, won’t
resolve and postponed actions. This would be expected,
since there would be little marginal increase in cost for
the duplicated and won’t resolve actions. If the postponed
action ultimately creates another duplicate, then the
impact at the margin is also likely to be slight. These
results were robust to the selective exclusion of one or
more of the variables. Most of the cost arises from er-
rors that require some system redesign.

4.3. Regression of life cycle phase of an error and software
cost

Boehm (1981, p. 40) argued that the cost of correcting
an error increased exponentially for each phase of the
systems development life cycle that resolution is delayed.
We can consider the localisation process to have two
distinct phases: (1) the creation of the base software
in the vendor’s home market, and (2) localisation to
a particular global market. Development of the base
software is assumed to follow the traditional phases of
the systems development life cycle, and since it is com-
plete prior to localisation, it is considered as a single
phase for categorizing the source of errors – errors are
either presumed to exist already in the delivered base
software or to occur during the localisation phase. The
regression results are as follows:

Coefficient Standard
error

t-Ratio p-Value

Constant 104 143 24 934 4.18 0.0011
Tier )23533.7 8955 )2.63 0.0209
Priority 1
errors

)614.322 826.6 )0.743 0.4706

Priority 2
errors

599.089 295.5 2.03 0.0636

R2 ¼ 49:0% F ¼ 4:16 31 cases

Coeffi-
cient

Standard
error

t-Ratio p-Value

Constant 112 469 27 824 4.04 0.0019
Tier )24768.6 10 050 )2.46 0.0314
Redesigned 1151.11 815.3 1.41 0.1856
Duplicated )217.748 2497 )0.087 0.9321
Won’t re-
solve

)170.497 2221 )0.077 0.9402

Postponed 1064.09 1830 0.582 0.5726

R2 ¼ 44:8% F ¼ 1:78 31 cases

J.C. Westland / The Journal of Systems and Software 62 (2002) 1–9 5



Dependent variable: Total delivered cost of localised
software

The regression seems to confirm that errors from the
earlier phase are much more influential on cost than
those for the later phase. The p-values for the localisa-
tion phase are not very convincing, and the coefficient
for the localisation phase is negative implying that
errors help reduce costs (which is unlikely). This most
likely reflects the overwhelming influence of errors
occurring early in the process.

Boehm’s assertion that the cost of an error that is
unresolved increases exponentially with each additional
phase it goes through without resolution can be restated
as

Software cost ¼ b0 þ b1 Tierþ b2 e
Base Software Errors

þ b3 Localisation Errors:

The equation characterises the exponential influence of
the unresolved, English language base software phase
errors. A regression gives the following:

Dependent variable: Total delivered cost of localised
software

In the vendors localisation process, the code for the
English language base software is completed, tested and
frozen at the corporate headquarters, and then is sent to
specific localisation programming groups to be con-
verted to specific language markets. The base software
essentially provides a very detailed requirement and
design specification, since all of the functions are de-

tailed in that software. Localisation represents the sub-
sequent development phase – the implementation for a
specific market.

This regression strongly supports Boehm’s contention
that uncorrected errors in the ‘base software’ become
exponentially more costly to correct when they are left
until the ‘localisation phase’. Anecdotal evidence ob-
tained during this study from programmers suggests
that much of the additional expense is accounted for by
the search for an error that was not created in the lo-
calisation phase. The regression coefficient on the ‘base
phase error count’ is very small because the counts are
generally integers between 1 and 100 and thus the expo-
nents become very large. Box–Cox power transforma-
tions of base software phase error count across a range
of k 2 ½�2;þ2� were investigated, but provided a poor
fit in comparison to the exponential transformation.

4.4. Investigation of potential error reporting biases and
their impact on software cost

Up to this point, it has been assumed that the number
of errors reported is solely a function of technical pa-
rameters such as inherent complexity, quality of pro-
gramming and so forth. However, reported errors are
also a function of the intensity of search, and the impact
of more or less thorough searches on each project need
to be taken into account. Localisation of software is
performed as well-defined tasks, within a tight schedule,
on a base of code that is already in release. The search
for errors can begin as soon as the localisation pro-
grammers receive the base software. The vendor sets
deadlines for compilation, test, and cloture on all pro-
gramming modifications for a ‘build’ – after that dead-
line, the project is designated ‘closed’ and all subsequent
work was to the next ‘build’ of the software. Because of
this, the length of time that a project is open was con-
sidered a good measure of the length of time spent
searching and the thoroughness of search. Here are the
results for a regression of error count on length of time
that a project is open.

Dependent variable: Total number of errors discovered
in the localised software

The regression indicates that the number of days that a
project is open is a good predictor of the number of
software errors, which will be discovered. The search for

Coeffi-
cient

Standard
error

t-Ratio p-Value

Constant 125 079 36 010 3.47 0.0041
Tier )24290.3 10 748 )2.26 0.0416
Base phase
error count

461.928 413.7 1.12 0.2844

Localisation
phase error
count

)52.5658 198.6 )0.265 0.7954

R2 ¼ 33:5% F ¼ 2:18 31 cases

Coefficient Standard
error

t-Ratio p-Value

Constant 134 590 3.026e4 4.45 0.0007
Tier )22282.3 8560 )2.26 0.0416
Base phase
error count

1.04318e)29 3.865e)30 2.7 0.0182

Localisa-
tion phase
error count

)90.5385 152.6 )0.593 0.5631

R2 ¼ 53:3% F ¼ 4:94 31 cases

Coeffi-
cient

Standard
error

t-Ratio p-Value

Constant 38.6522 24.78 1.56 0.1353
Days open 0.567430 0.1596 3.55 0.0021

R2 ¼
39:9%

F ¼ 12:6 22 cases

6 J.C. Westland / The Journal of Systems and Software 62 (2002) 1–9



errors is likely to be non-linear – obvious errors are
caught with little effort and cost; other errors require
large expenditures of money, time and effort. A Box–
Cox transformation yields the results graphed in Table
2.

Recall that the Box–Cox transformation provides a
continuous set of ‘power’ transformations to the data.
The curve peaks at a value of k around 0.2, but this
particular value does not have any clear intuitive sig-
nificance; k ¼ 0:2 corresponds to data0:2 ¼

ffiffiffiffiffiffiffiffiffiffi
data5

p
. It is

more meaningful to choose the natural logarithm
transform k ¼ 0, with a nearly identical behaviour, and
suggest that this has the most explanatory power. Note
that the difference between k ¼ 0:2 and k ¼ 0 is well
within one standard deviation, and thus k ¼ 0 provides
an acceptable interpretation of the data. This supports
an explanation that errors tend to be found rapidly at
first, trailing off logarithmically as the search continues.
The logarithm shows up in many inherently human
processes like programming.

As localisation progresses on a given piece of soft-
ware, participants will learn more about the idiosyn-

crasies of the product, and thus should find it less costly
to localise versions that are scheduled for later release.
As noted earlier, particular markets are classified into
one of three tiers, depending on their size and strategic
importance to the company. The most important mar-
kets (tier 1) are localised first, and the least important
(tier 3) are localised last. Tier 1 projects are also those
that tend to identify significant errors first, and that
would be likely to absorb a significant amount of start-
up and learning costs. Typically, tier 2 and tier 3 projects
stay open longer, because of scheduled completion un-
certainties with projects in prior tiers (which are per-
formed by programmers who will eventually be assigned
to later tiers). Tier information has been shown in prior
regressions to account for a large amount of the vari-
ance in project cost. It can also be shown to be a strong
predictor of errors discovered, as shown in Fig. 2.

Note that tier 1 regression line slopes down, while the
tier 2 line slopes up slightly faster than the tier 3 line.
Obviously different things are happening in tier 1 than
in subsequent localisation activities. This suggests that
software localisation experiences a steep and rapid

Table 2

Errors found versus transformed time spent on search

k R2 F-statistic Constant Days project was open

Coefficient t-Value p-Value Coefficient t-Value p-Value

1.5 29.5 7.94 194.966 0.624 0.5398 5.66895 2.82 0.011

1 39.9 12.6 37.6522 1.52 0.1451 0.56743 3.55 0.0021

0.5 49.6 18.7 10.355 4.38 0.0003 0.065741 4.32 0.0004

0 55.9 24.1 3.51474 15.7 Nil 0.007085 4.91 Nil

)0.5 56 24.2 1.64624 58.1 Nil 0.000897 4.91 Nil

)1 50.7 19.5 0.962307 227 Nil 0.000121 4.42 0.0003

)1.5 43.3 14.5 0.664907 864 Nil 1.89E) 05 3.81 0.0012

J.C. Westland / The Journal of Systems and Software 62 (2002) 1–9 7



learning curve. The longer tier 1 jobs are kept open, the
fewer errors are found. Tiers 2 and 3 apparently learn
from tier 1’s efforts – which is precisely why the vendor
chose to split the localisation effort into three tiers.

5. Conclusions and implications for the software industry

The dataset acquired for this research provides strong
support for an evolutionary model of error occurrence
with an exponential distribution of error count over-
time. It also provided some additional specifications for
enhanced models for software cost estimation. Specifi-
cally:

(1) The regression shows that the serious errors have
less influence on cost than other errors, assuming that
they are ultimately resolved. This likely reflects greater
discretion available in how and when to resolve the less
severe errors. One explanation is that severe errors
(priority 1 errors in the research) are likely to need im-
mediate attention, and may be thought of as a fixed cost
associated with staffing quality and complexity of lo-
calisation.

(2) Errors only generate significant costs if their
resolution requires system redesign. Prior studies have
often not considered how errors are resolved only their
occurrence. These models are likely to overstate costs,
because they fail to discount errors for which no action
is taken, and for which there is likely to be no impact on
the user after release.

(3) The data support the conclusion that uncorrected
errors become exponentially more costly with each
phase in which they are unresolved.

(4) The data indicate that the number of days that a
project is open is a log-linear predictor of the number of
software errors that will be discovered.

(5) The research found that as development pro-
gresses on a given piece of software, participants will
learn more about the idiosyncrasies of the product, and
thus find it less costly to perform tasks scheduled later in
the life cycle.

(6) Testing must occur over a substantial portion of
the useful life of the system in order to detect a sub-
stantial portion of the total errors which will ever occur.
Cost effective testing thus should be incorporated into
the maintenance of the system, with user feedback loops
to report on errors when they occur, and to analyse and
correct them quickly.

This research has shown that, not only does software
error detection and correction contribute a substantial
proportion of the total cost of software, but that
the management of error detection and correction can
be complex. Because human judgments are made
throughout the detection and correction process, the
cost of the errors may appear either as part of the
programming budget, or as increased warranty or user
service costs after release. This suggests that the soft-
ware industry – and increasingly important component
of the New Economy – is itself becoming structurally
complex. This research has taken an important step

Fig. 2. Effect of tier on error discovery.

8 J.C. Westland / The Journal of Systems and Software 62 (2002) 1–9



towards understanding the nature of this complexity, in
exploring error costs as they contribute to the overall
programming costs of the software.

Consistent with the quality assurance viewpoint
adopted in this paper, we could consider there to be fully
five classes of metrics to measure the quality of software
– defect, technical, satisfaction, warranty and reputation.
Defect measures are not available until the system can
be run. Control of defects is the main objective of the
testing and debugging phase of software development.
Technical measures assess whether the software code
is well-structured, whether manuals for hardware and
software use are adequate, whether it is complete, cor-
rect and up-to-date. Technical measures are available
for any system at any time. User satisfaction measures
actually describe the value received from using the sys-
tem. The vendor engages in market studies and beta
testing to ascertain user satisfaction. Nevertheless, this
data tend to be quite difficult to directly link to devel-
opment costs, despite the best wishes of the vendor.
Warranty costs include technical support and training,
and may be one of the most significant costs of software.
Warranty costs are influenced by the level of defects, but
also by the willingness of users to come forth with
complaints, and ability and willingness of the software
vendor to accommodate the user. Reputation measures
the perceived user satisfaction with the software. Rep-
utation could be significantly different from actual sat-
isfaction for two reasons: (1) because individual users
may use only a small fraction of the functions provided
in any software package (e.g., consider the fraction of
functionality actually used in any word processor); and
(2) because marketing and advertising often influences
buyer perceptions of software quality more than actual
use. This strongly favours a strategy of continuous
process improvement.

References

Benyahia, H., 1996. Costs and productivity estimation in computer

engineering economics. The Engineering Economist 41 (3), 229–

238.

Bloor, R., 1993. Software quality standards: do software quality

initiatives such as ISO 9000 reduce the introduction of dangerous

programmatic errors? DBMS 6 (8), 10(2).

Boehm, B.W., 1973. Software and its impact: a quantitative assess-

ment. Datamation, 48–59.

Boehm, B.W., 1980. 8th World computer congress developing small-

scale application software products: some experimental results. In:

Proceedings, IFIP, October, pp. 321–326.

Boehm, B.W., 1981. In: Software Engineering Economics. Prentice-

Hall, Englewood Cliffs, NJ, p. 1981.

Box, G.E.P., Cox, D.R., 1964. An Analysis of Transformations.

Journal of the Royal Statistical Society, Series B 26, 211–

243.

Canfora, G., DeLucia, A., Munro, M., 1998. An integrated environ-

ment for reuse reengineering C code. The Journal of Systems and

Software 42 (2), 153–164.

Ferneley, E., 2000. Coupling and control flow measures in practice.

The Journal of Systems and Software 51 (2), 111–118.

Inwood, C., 1993. Formal methods can cut your error rate. Computing

Canada 19 (2), 29(1).

Inwood, C., 1994. To err is human, to forgive uncommon in IS.

Computing Canada 20 (6), 22.

Jelinski, Z., Moranda, P.B., 1972. Software reliability research. In:

Freiberger, W. (Ed.), Statistical Computer Performance Evalua-

tions, Academic Press, New York, NY, pp. 465-484.

Jones, C., 1993. Sick software. Computerworld 27 (50), 115.

Klepper, R., Bock, D., 1995. Third and fourth generation language

productivity differences. Communications of the ACM 38 (9), 69–

81.

Moser, S., Nierstrasz, O., 1996. The effect of object-oriented frame-

works on developer productivity. Computer 29, 45–51.

Musa, J.D., 1996. Software reliability-engineered testing. Computer 29

(11), 61–68.

Musa, J.D., Iannino, A., 1991. Estimating the total number of

software failures using an exponential model. SIGSOFT Software

Engineering Notes 16 (3), 80.

Musa, J.D., Okumoto, K., 1988. Application of basic and logarithmic

Poisson execution time models in software reliability measurement.

In: Bittanti, S. (Ed.), Software Reliability Modeling and Identifi-

cation. Springer, Berlin, p. 1988.

Myers, G.J., 1976. In: Software Reliability. Wiley, New York,

p. 1976.

Myers, G.J., 1978. A controlled experiment in program testing and

code walkthroughs/inspections. Communications of the ACM,

760–768.

Royce, W., 1993. Why software costs so much: how to get people

and technology to work together. IEEE Software 10 (3), 90(2).

Violino, B., 1998. ROI in the real world. Informationweek (April 27),

60–72.

J. Christopher Westland is Professor and Head of the Department of
Information Systems and Management at the Hong Kong University
of Science and Technology. He received a BA in mathematics, and an
MBA in accounting from Indiana University. He received his Ph.D. in
information systems from the University of Michigan. He has pro-
fessional experience in the US as a certified public accountant and as a
consultant in information systems in the US, Europe, Latin America
and Asia. He is a US CPA, an active member of Mensa, and sits on the
editorial boards of several of the leading academic journals in infor-
mation technology and has written two books, The New Science of
Wealth (forthcoming October 2001, Wiley) and Global Electronic
Commerce (MIT Press, 2000). He has been a frequent commentator on
Hong Kong’s technology policy. A full biography and selected papers
may be found at http://www.ismt.ust.hk/faculty/westland/.

J.C. Westland / The Journal of Systems and Software 62 (2002) 1–9 9


