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Abstract
In this paper we present two methods to create multiple classifier systems based on an initial transformation of the original features to the binary

domain and subsequent decompositions (quantisation). Both methods are generally applicable although in this work they are applied to grey-scale

pixel values of facial images which form the original feature domain. We further investigate the issue of diversity within the generated ensembles of

classifiers which emerges as an important concept in classifier fusion and propose a formal definition based on statistically independent classifiers

using the k statistic to quantitatively assess it. Results show that our methods outperform a number of alternative algorithms applied on the same

dataset, while our analysis indicates that diversity among the classifiers in a combination scheme is not sufficient to guarantee performance

improvements. Rather, some type of trade off seems to be necessary between participant classifiers’ accuracy and ensemble diversity in order to

achieve maximum recognition gains.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The benefits of recognition systems which combine the

output of multiple classification devices to improve perfor-

mance have been established in recent years through a large

number of mainly empirical studies [1–3]. More in-depth

analysis of the internal workings of such systems aiming to

identify conditions that influence their successful implementa-

tion have led to an increasingly interesting discussion about the

requirement for diversity among the component classifiers. In

particular, the definition and evaluation of diversity is currently

attracting the attention of numerous researchers in the field (see

for exam-pie [4]).

Contemporary applications such as those aiming to exploit

biometric data are of increasing interest. Face recognition

occupies a prominent position as one of the more intuitive,

albeit potentially complex, tasks related to such applications.

Difficulties can range from changes in the environmental

conditions, which typically cannot be controlled, to the variety
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of facial expressions and aging effects that can influence the

recognition ability of a specific system [5]. To address these

issues effectively, intelligently designed classification engines

are needed, among which multi-classifier schemes seem to

emerge as a preferred choice [6,7].

As a result of these considerations, in this paper we present

two methods to create multiple classifier systems for face

recognition based on an initial transformation of the original

feature vectors to the binary domain and a subsequent

quantisation. Both methods are generally applicable although

in this work they are applied to grey-scale pixel values of facial

images which form the original feature domain. In both cases

the final recognition is the result of the output combination of

classifiers trained on subspaces of the intermediate feature

spaces spawned by the binary strings. The way these subspaces

are formed is what, in essence, distinguishes the two methods,

which have been previously applied by the authors to

handwriting recognition problems with significant success

(see for example [8]).

However, the main focus of the work presented in the current

paper is to provide a definition for the diversity among the

classifiers in a multi-classifier scheme, propose a measure to

evaluate the levels of this diversity and finally explore the

relations of the estimators with performance characteristics of
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Fig. 1. Ordered feature quantisation schemes.
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the individual classifiers and their combination. Of course, the

scope of such an investigation is too wide to be covered

comprehensively here and hence we restrict our aim to

accumulating evidence for identifying possible hypotheses

about the role diversity plays in the final generalisation ability

(recognition of unknown samples) of the combination schemes.

In this sense, it should be noted that the two methodologies

we present for the creation of the classifiers to be combined

form appropriate vehicles for the type of investigations we are

interested in, due to the following reasons. First, they construct,

as will become clear in the following discussion, two

profoundly different sequences of individual classifiers, the

first being trained in a series of feature subsets of decreasing

information content and the second in a series of training sets of

similar information content. Second, it is expected that a

number of statistical characteristics of the sets of classifiers

produced, such as the homogeneity of the individual recogni-

tion rates and of the diversity of subsets in each case, will be

significantly different, due to differences in the training set

creation process. Therefore, they will provide the opportunity

of studying the quantities of interest in significantly diverse

conditions.

To this end, we report a series of cross-validation

experiments to estimate the chosen diversity measure as well

as the accuracy and variability of the classifiers and the

corresponding combinations. In the remainder of the paper we

first present formal descriptions of the grey-level image

decomposition schemes we propose, followed by a definition of

an interesting diversity measure along with a discussion of

related research. Then, we describe the multiple classifier

systems implemented and the data used in our experiments, and

finally, we discuss the results obtained leading to our

concluding remarks.

2. Binary quantisation of images

Any grey-scaled image can be split into a series of binary

layers. This concept of splitting a multilevel (monochrome or

colour) image into a series of binary images is called bit-plane

decomposition. The idea was originally introduced by Schwarz

and Barker [9] as an approach to data compression.

For this decomposition (quantisation), the intensity levels of

the image are initially represented using binary notation. In its

simplest representation, if

U ¼ ðuxy;kÞ; x ¼ 1; . . . ;N; y ¼ 1; . . . ;M

denote a grey-level image with resolution N � M pixels, the

grey-level uxy,k, corresponding to the pixel with coordinates x

and y of a k-bit image, can be expressed in the form of a base-2

polynomial:

uxy;k ¼ bxy;k2k�1 þ bxy;k�12k�2 þ � � � þ b2;k21 þ b1;k20: (1)

The bxy,i (i = 1, . . ., k) can be extracted using

bxy;i ¼ ðuxy;i�1 � 2uxy;iÞ;
where

uxy; j , Int

�
uxy;k

2 j

�
; Int½x� , integerpart of x:

For ‘s’ distinct intensity levels, each pixel of the image is

represented by a k (�dlog2 se) bit binary code. It is also possible

to use other forms of binary notation (for example Grey coding,

Excess-3, etc.) to express the intensity values before quantisa-

tion, and classifier performance is somewhat dependent on this

choice (see [10] for details). Bits can be extracted from this

binary representation of the pixel intensity to form a number of

decomposed layers. Two distinct ways of achieving this are: the

Ordered (or Sequential), and the Random methods.

2.1. Ordered quantisation

This quantisation approach is also referred to as bit-plane

decomposition. In this approach, the image is decomposed into

k layers where layer ‘i’ consists of the ith order bits of the grey-

level values. Formally, the formation of the decomposed layers

can be expressed by:

Li ¼ ðlxy;iÞ; lxy;i 2f0; 1g; x ¼ 1; . . . N; y ¼ 1; . . . ;M; i

¼ 1; . . . ; k

where

lxy;i ¼
1; if bxy;i ¼ 1

0; otherwise

�

and Li denotes the ith layer decomposed images. Thus, for

example, layer ‘1’ is formed by collecting all the Least Sig-

nificant Bits (LSB) and layer ‘8’ the Most Significant Bits

(MSB), of an 8-bit binary coded grey-scale image. Fig. 1



Fig. 2. Random feature quantisation schemes.
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illustrates this scheme, while Fig. 3(b) shows the outcome of

this quantisation process when applied to a grey-scaled face

image (Fig. 3(a)).

2.2. Random quantisation

This approach is motivated by the Random Subspace

Method (RSM) for creating ensembles of classification trees

presented in [2]. In the RSM, randomly chosen features from

the original feature space in a pattern recognition task are used

to form subspaces. These are subsequently used to train

classifiers with an aim of generating diversity among them.

Similarly, in the random quantisation approach, bits are chosen

arbitrarily for the generation of random layers. To create a

randomly decomposed layer a matrix of random numbers W is

first generated where each element denotes which bit is to be

chosen from the binary representations of the corresponding

pixels’ intensity levels. The size of this template is equal to that

of the image resolution. If

Wi ¼ ðwxy;iÞ;wxy;i�U½1; k�; x ¼ 1; . . . ;N; y ¼ 1; . . . ;M

denotes one such random template for an image of resolution

N � M and k-bit pixel intensities, where �U½1; k� denotes

Uniformly distributed random integers from 1 to k, then the

produced randomly quantised layer images can be generally

defined as:

Ri ¼ ðrxy;iÞ; rxy;i 2f0; 1g; x ¼ 1; . . . N; y ¼ 1; . . . ;M; i

¼ 1; . . .

where Ri denotes the image generated by ith random template

and thus constitutes the ith random layer, and

rxy;i ¼
1; if bxy;d ¼ 1; d ¼ wxy;i

0; otherwise

�

where bxy,d are the corresponding coefficients in Eq. (1).

Use of a template ensures that the same bits are always

chosen to form a given random layer. Since many such

templates (i.e., random matrices) can be generated, this

quantisation approach can provide a large number of binary

layers which can be subsequently used in a multi-classifier

environment. Fig. 2 demonstrates this scheme, and Fig. 3(c)

shows the outcome of this quantisation process when applied to

a grey-scaled face image.

3. Independence and diversity

In this section, we discuss how to define diversity in a pool of

classifiers used in the combination scheme. Strongly related to

the notion of ‘‘diversity’’ is the concept of statistical

independence, from which we shall begin. Assume that m

classifiers f1, . . ., fm are available to classify points (feature

vectors) from a given k-class classification problem. Then, for

any given feature vector x, each classifier f i assigns x a class

label vj 2 V = {v1, . . ., vk}.
The independence of classifiers can be defined by the usual

statistical notion of independent experiments. Intuitively,

independence means that the output of f i is unaffected by

outputs of f1, . . ., f i�1, f i+1, . . ., fm. Let Oi 2 V denote the output

of f i and P(Oi) the probability that the output from fi is Oi. After

applying f i, . . ., fm, the classifiers are said to be independent if

the probability of observing the compound outcome (O1, . . .,
Om) equals the product of probabilities P(Oi), i.e., P(O1, . . .,
Om) = P(O1), . . ., P(Om) for all Oi 2 V, 1 � i � m. It is easy to

see that the independence of f1, . . ., fm is equivalent to the

independence of random variables f1(X), . . ., fm(X), where X is

a random feature vector.

3.1. Measurement of agreement among classifiers

In practice, in the majority of cases, the sequence of

classifiers are to some degree dependent on each other, and it is

then desirable to estimate the strength of the association among

their outputs. A metric serving this purpose is the measurement

of agreement among the classifiers based on their output, and

this estimator forms a natural measure for the classifier

diversity within a combination setting. Suppose that m

classifiers f1, . . ., fm (m � 2) are used to classify S ¼
fx1; . . . ; xng for a given k-class classification problem

(k � 2). For l = 1, . . ., n and j = 1, . . ., k, denote by ylj the

number of classifiers which assign xl to class j. That is,

yl j ¼
Xm

i¼1

Ið f iðxlÞ ¼ jÞ



Fig. 3. Effect of quantisation of the grey-scale image shown in (a). (a) Original image, (b) ordered layer quantisation outcome and (c) random layer quantisation

outcome.
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where I( f = a) equals 1 if f = a and 0 otherwise. Note thatPk
j¼1 yl j ¼ m for each l. The following displays ylj for m

classifications of each of n points (samples) into one of k

classes.
Points
 Class 1
 � � �
 Class j
 � � �
 Class k
x1
 y11
 � � �
 y1j
 � � �
 y1k
..

.
 ..
.
 ..

.
 ..
.

xl
 yl1
 � � �
 ylj
 � � �
 ylk
..

.
 ..
.
 ..

.
 ..
.

xn
 yn1
 � � �
 ynj
 � � �
 ynk
Then, a quantity that naturally measures the degree of

agreement among the classifiers’ outputs is the following

‘‘kappa’’ statistic [11]:

k ¼ 1�
nm2 �

Pn
l¼1

Pk
j¼1 y2

l j

nmðm� 1Þ
Pk

j¼1 p jq j

;

where p j ¼
Pn

l¼1 yl j=nm represents the overall proportion of

outputs of classifiers in support of category j, qj = 1 � pj, j = 1,

. . ., k. Clearly k expresses a special type of relationship among

classifiers. In fact, it quantifies the level to which the classifiers

agree in their decisions beyond any agreement that could occur

due to chance. Guidelines for the evaluation of n are given in
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[12] as follows: k � 0.75 indicates excellent agreement beyond

chance, 0.4 � k � 0.75 indicates good agreement beyond

chance, and k < 0.4 indicates poor agreement beyond chance,

and hence, a very ‘diverse’ group of classifiers.

The majority of works found in the literature to date define

diversity and use estimators based on an ‘‘oracle’’ type of

classifier output (e.g., [13,4,14,15]), that is ‘‘0/1’’ to denote

wrong and correct classification decisions. However, we take

the view that to define the type of association of f i’s based on

‘‘0/1’’ outputs of classifiers, representing erroneous and correct

decisions, respectively, for a random sample of feature vectors

may lead to ill-defined estimators of diversity since the

differences of the k � 1 possible erroneous decisions is not

accounted for. Therefore, the full range of the crisp output (i.e.,

class labels) of the classifiers in the pool of our trained

individual classifiers is employed here in the definition of

independence and the resulting diversity estimation.

4. Related work

Ensembles of classifiers have been applied successfully in

different domains such as handwriting recognition [16],

medical diagnosis [17] and biometrics [18], among others.

Despite the existence of a significant body of experimental

evidence about a wide range of different ways to combine

classifiers, there is still no rigorous theoretical approach to

established what are the vital ingredients for constructing a

successful ensemble. Intuitively, it is accepted that the

incorporation of team members which are accurate and do

not make similar errors (i.e., they are ‘diverse’ in their

predictions) will lead to performance improvements. It is,

therefore, not surprising that in order to systematically

construct accurate ensembles, more research is now

focussing on establishing the properties which an ensemble

team should posses to achieve the desired gains. A significant

part of these studies aim to establish different measures of

diversity for classifier ensembles and their relationship

with the ensemble accuracy [4] and other characteristics of

the individual classifiers and the selection of suitable feature

sets [19].

In particular, the relationship between the gain obtained

from using an ensemble and the diversity among the classifiers

has been the subject of a number of research papers [4,15].

These investigations are centered, mainly, on the correlation
Fig. 4. The multiple classifier schemes w
between the diversity measure and either the ensemble

accuracy or the gain over the average base classifier or the

best performing classifier of the ensemble team [4,14]. As a

result a number of recommendations were reported in favour of

the use of particular diversity measures. Despite these

recommendations, there is still no agreement on the best

diversity measure to use, or whether indeed, diversity measures

can be used effectively in building ensembles which maximise

performance. Where diversity measures have been used for

ensemble feature selection, it has been reported that the process

was sensitive to the choice of the diversity measure used, and

choice of the best diversity measure to use was dependent on

other factors such as the data being processed [20]. In this paper

we take a different approach, and present two feature extraction

methods which aim to infuse diversity to the group of the base

classifiers which are going to be used in our multiple classifier

schemes.

5. The multiple classifier schemes

We start this section about the multi-classifier systems

implemented with a short presentation of the individual

component classifier used and we proceed with a more formal

description of classifier ensembles and the decision fusion rules

we used.

The Moving Window Classifier (MWC) is used as the basic

individual classifier in the implementation of our multiple

classifier systems. The choice of MWC is due to its fast and

accurate recognition performance as well as its easy hardware

implementation. Details of the MWC scheme, which is an

enhanced n-tuple based classification system, can be found in

[21–23]. One MWC is trained using each of the decomposed

layers and finally a fusion mechanism (here, the Sum and the

Majority Vote rules [3]) is used to combine the individual

classifier outputs in the ensemble and generate the final class

decision.

In the present work the individually trained classifiers used

are arranged in a parallel structure to form a multi-classifier

recognition system. The choice of this simple architecture to

form the ensemble was preferred so that our experimental

results could be more easily studied and interpreted. Fig. 4 gives

a schematic representation of the systems illustrating the

information flow in the parallel combination architecture

through the components of the schemes from the layered
ith the associated quantised layers.



Fig. 5. Ten different images of ‘subject 4’ in the ORL data set.

1 The database can be downloaded from: http://www.uk.research.att.com/

facedatabase.html.
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sampling of the binary feature quantisations to the component

classifiers and finally the output combination stage.

Although a variety of fusion rules have been devised by

researchers [3], the choice of the most appropriate scheme is

usually dependent on the degree of diversity of the feature

spaces on which the participant classifiers are trained, and the

nature of their outputs.

To better understand this, let us consider that a pattern q is to

be assigned to one of the k possible classes {v1, . . ., vk} and

there are m independent classifiers to each of which q is

represented by a feature vector xi, i = 1, . . ., m. Let each class vj

be modelled by the probability density function P(xijvj).

Following a Bayesian perspective, each classifier is considered

to provide an estimate of the true class posterior probability

P(vjjxi) given xi. The pattern q should be assigned,

consequently, to the class having the highest posterior

probability. Assuming equal a priori probabilities for all the

classes, the corresponding decision rule is:

assign u!v j if Pðv jjx1; . . . ; xmÞ

¼ max
k

l¼1
ðPðvljx1; . . . ; xmÞ;

where u is the class label of the pattern under consideration q.

The idea underlying multiple classifier fusion is to obtain a

better estimator of the posterior probability by combining the

resulting estimates of the individual members of the ensemble.

Then, the corresponding ‘Sum’ combination rule can be

formally expressed as follows:

assign u!v j if
Xm

i¼1

Pðv jjxiÞ ¼ max
k

l¼1

�Xm

i¼1

PðvljxiÞ
�
:

The ‘Majority Vote’ rule uses ‘hardened’ decisions Dij

which can be obtained from the posterior probability estimates

provided by the participant classifiers as follows:

Di j ¼ 1; if Pðv jjxiÞ ¼ max
k

l¼1
PðvljxiÞ

0; otherwise

(

Then, after combination

assign u!v j if
Xm

i¼1

Di j ¼ max
k

l¼1

�Xm

i¼1

Dil

�
:

6. Experiments and discussion

For our experimental investigations of the two presented

multi-classifier schemes and the estimation of the diversity

among the constituent classifiers, we chose a task from the face

recognition domain using grey-scale images. The reasons

underlying our choice will become apparent from the following

description of the characteristics of the particular database

used. In addition, face recognition is a complex task domain

which still poses challenges to classification algorithms, and

therefore it forms an ideal example where the possible benefits

of our proposed multi-classifier schemes can be observed and

evaluated. Also, important conclusions can be drawn about the

role of classifier diversity in the performance of the

combination system under the adverse conditions of such a

realistic task domain.

The ORL face image database1 has been used in the

experiments. This database consists of 400 images, 10 each of

40 different subjects (4 female and 36 male), captured over the

span of a 2-year period from subjects aged between 18 and 81.

All the subjects are in an upright, frontal position without

restrictions on facial expression. Limited lateral movement and

limited tilt is present. Subjects were photographed under

different lighting conditions, but always against a dark

homogeneous background. Some subjects were captured both

with and without glasses. The images have been manually

cropped and re-scaled to a resolution of 112 � 92, 8-bit grey-

levels. Fig. 5 illustrates a typical set of the 10 images per subject

from the ORL data set. A set of five images of each subject was

http://www.uk.research.att.com/facedatabase.html
http://www.uk.research.att.com/facedatabase.html


Table 1

Mean error rates (%) of individual classifiers over the 5 cross-validation runs

Quantisation method Layer used for training

1 2 3 4 5 6 7 8 9 10

Ordered (O) 96.5 95.3 62.7 30.7 11.9 6.1 5.4 9.3 – –

Random (R) 12.5 14.2 12.9 11.9 12.1 12.9 13.5 13.2 12.0 11.6

Table 2

Performance after fusion (error rates) of ordered layers only

Layers combined Error rates (%) Absolute gain

Before fusion After fusion: fusion rule used

Mean of pool Standard deviation Best of pool SUM rule Majority Vote

LI–L8 39.76 37.54 5.40 3.00 5.70 2.40

LI–L4 71.35 27.92 30.70 33.10 64.50 �2.40

L3–L6 27.90 22.98 6.10 5.50 12.90 0.60

L4–L8 12.68 9.82 5.40 2.90 4.50 2.50

L5–L8 8.18 3.45 5.40 3.10 4.70 2.30

L3, L4 46.80 17.44 30.7 31.70 – �1.70

L4, L5 21.30 10.43 11.9 11.80 – 0.10

L6, L7 5.75 2.28 5.40 3.60 – 1.80

L7, L8 7.35 2.58 5.40 4.50 – 0.90
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selected at random for training and the rest used for testing, in

each of 5 cross-validating experiments.

It is important to note here that exactly the same type of

classifier was used in both the proposed systems. Hence, the

variability that can be observed with respect to the performance

and other characteristics of the individual classifiers and the

fusion strategies applied are solely due to the differences in the

feature set quantisation processes used and the information

content of the resulting layers used as training sets. The

diversity in information content can be thought to be reflected

by the degradation of the image clarity in the sequence of faces

in Fig. 3(b) for the Ordered Quantisation method. However, this

visual representation of the information content of training

feature set does not seem to hold for the Random Quantisation-

based images in Fig. 3(c). The latter, although they are visually

very similar to the layer corresponding to the least informative

bit (i.e., LSB) shown in Fig. 3(b) when considering the

individual classifier error rates for the corresponding layers

presented in Table 1, indicate that they contain significantly

different information. Thus, while Layer f of the Ordered

Quantisation (first row) has an error of 96.5%, that of the

Random Quantisation achieves 12.5% error, which is similar to

the classifiers generated by layer 5 of ordered method. This

inconsistency between the visual representation and the

information content as measured by the observed recognition

performance is interesting in its own right and worthy of further

investigation.

From Table 1, which includes the mean error rates of the

individual classifiers created by the two proposed methods, it

can be easily observed that while the Ordered method results in

heterogeneous performances the Random method generates a

significantly homogeneous set. Thus, if differences in

performance are considered to express diversity in information
content of the training sets (since the classifiers used are

identical in all other respects), our experimental setting can be

claimed to be performed in appropriately varied conditions.

Also, it is not difficult to observe in the same table that the most

successful of all the individual classifiers produced are among

those trained on the most significant bit layers of the Ordered

Feature Quantisation, as is expected since the layers (feature

subsets) created by the Random Quantisation consist of a

mixing of highly informative and less informative bits.

In Table 2 we present the mean error rates and their standard

deviations (columns 2 and 3) of subsets of classifiers trained on

the Layers shown in column 1, which were used to form

combination schemes for the Ordered case (indicated by ‘O’).

Similar results for the Random Quantisation case (indicated by

‘R’) are presented in Table 3. The error rate of the most

successful classifiers in every subset is included in column 4 of

these tables, while the fifth and sixth columns present the error

rates achieved by the well-known Sum and Majority Voting

decision fusion strategies [1]. The seventh column of the tables

contains, for comparisons, the absolute gain (error rate

reduction) achieved by the best performing combination rule

(in this case, the sum rule) with respect to the most successful

among the classifier in the corresponding ensemble (defined in

the first column of the tables). It is easily observed that in both

the Ordered and the Random Quantisation cases the combina-

tion improves the performance in comparison to that achieved

by the best individual classifiers. However, the most important

observation to be made here is that in neither case does the

combination of the two best performing individual classifiers

(pairs 06, 07 and R4, R10. for the Ordered and Random

Quantisations, respectively, included in the bottom part of the

two tables) correspond to the highest gain from the fusion.

Rather, the most successful combinations correspond to



Table 3

Performance after fusion (error rates) of random layers only

Layers combined Error rates (%) Absolute gain

Before fusion After fusion: fusion rule used

Mean of pool Standard deviation Best of pool SUM rule Majority Vote

Rl–R10 12.68 3.62 11.60 6.70 6.70 4.90

Rl–R4 12.88 3.20 11.90 7.90 9.30 4.00

R4–R7 12.60 3.86 11.90 7.20 8.60 6.30

R7–R10 12.58 3.75 11.60 7.20 9.90 4.40

R4, R10 11.75 4.71 11.60 8.20 – 3.40

R2, R7 13.85 2.98 13.50 10.60 – 2.90

K. Sirlantzis et al. / Applied Soft Computing 8 (2008) 437–445444
classifier subsets that include the best individual classifiers as

well as others with lower accuracy.

A possible hypothesis for the reasons underlying these

observations can be formed if we consider them in conjunction

with the estimated diversity measures k for the same ensembles

of classifiers. The k values with the corresponding standard

deviations are presented in Tables 4 and 5 for the Ordered and

Random Quantisation, respectively. In order to provide an
Table 4

Estimated diversity measures for the ordered layers with the corresponding gain

achieved by the combination

Layers combined Relative gain Agreement statistic (k) Std. of k

LI–L8 44.44 0.3723 0.0170

LI–L4 �7.82 0.0917 0.0115

L3–L6 9.84 0.5566 0.0334

L4–L8 46.30 0.7988 0.0246

L5–L8 42.59 0.8767 0.0224

L3, L4 �3.26 0.3709 0.0346

L4, L5 0.84 0.6842 0.0343

L6, L7 33.3 0.9263 0.0280

L7, L8 16.67 0.8769 0.0210

Table 5

Estimated diversity measures for the random layers with the corresponding gain

achieved by the combination

Layers combined Relative gain Agreement statistic (k) Std. of k

R1–R10 42.24 0.8450 0.0285

R1–R4 33.61 0.8454 0.0230

R4–R7 39.50 0.8392 0.0312

R7–R10 37.93 0.8419 0.0294

R4, R10 29.31 0.8497 0.0515

R2, R7 21.48 0.8194 0.0375

Table 6

Comparisons with alternative face recognition algorithms

Classification algorithm Recognition error rates (%)

Self-organizing map + convolutional network 3.8

Top–bottom hidden Markov model 13.0

Pseudo-2D hidden Markov model 5.0

Eigenfaces (Euclidean distance) 10.0

Best combination of ordered layers 2.9

Best combination of random layers 6.7
additional perspective we have also included, in column 2, the

error reduction achieved as a percentage of the error rate of the

best component classifier. A closer examination of the

information in these tables reveals that in all cases the most

successful combination ensembles are those in which the

addition of a number of reasonably performing classifiers to the

best performing pair resulted in an increase of the group

diversity (reduction of the agreement statistic k). It is not

difficult to observe that the top performing pairs are

characterised by high levels of agreement in their output and

this is the reason for not exhibiting the best performance when

combined.

On the other hand, the most diverse ensembles are also those

including very poor classifiers and as a result their fusion does

not cause significant gains in performance. It seems that the

evidence produced in this work supports the hypothesis that

there exists some kind of (possibly complex) relation between

individual classifier accuracy and ensemble diversity (see also

[24] for a similar hypothesis obtained through a bias/variance

decomposition of the recognition error) which should be

investigated further in order to gain insight into the mechanisms

governing the creation of multi-classifier systems with

guaranteed performance improvements. Finally it is easily

realised from Table 6 that the best performing among the

proposed multi-classifier systems outperform significantly a

number of alternative methods applied to the same database, as

reported in [25].

7. Conclusion

We have presented two methods for exploiting the

advantages of multiple classifier systems in face recognition

and showed that they can both be used with significant success.

We have further investigated the issue of diversity within the

generated ensembles of classifiers which emerges as an

important concept in classifier fusion. This concept has been

typically used in a rather vague way to date, and hence we have

proposed a formal definition based on statistically independent

classifiers and used the k statistic to quantitatively assess it. Our

results indicate that diversity among the classifiers in a

combination scheme is not sufficient to guarantee performance

improvements. Rather, some type of trade-off seems to be

necessary between the participant classifiers’ accuracy and

ensemble diversity in order to achieve maximum recognition
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gains. We believe that this is an issue worthy of further rigorous

investigation, mainly in relation to the information content of

the feature sets used for classifier training.
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