Methodol ogical Foundations for Agent-Based
Systems'

Michael Fisher!, Jorg Miiller?, Michael Schroeder?, Gerd Wagner* and Geof Staniford®

Department of Computing, Manchester Metropolitan University, UK

Digital Library Group, Mitsubishi Electric Europe B.V., London, UK

Ingtitut f"ur Rechnergest utzte Wissensverarbeitung, Universita’at Hannover, Germany
Institut f'ur Informatik, Universit'at Leipzig, Germany

Department of Computer Science, University College Chester, UK

grwdhpE

In spite of the rapid spread of agent technology, there is, as yet, little evidence of
an engineering approach to the development of agent-based systems. In particular,
development methods for these systems are relatively rare. One of the key reasons
for this is the inadequacy of standard software development approaches for these new,
and fundamentally different, agent-based systems. Traditional software development
methods often lack the flexibility to handle high-level concepts such as an agent's
dynamic control of its own behaviour, its ability to represent cooperative interactions,
and its mechanisms for representing internal change, assumptions, objectives, and the
uncertainty inherent in its interactions with the real-world.

1 Why Principled Development?

Perhaps the first question to consider is whether development methodolo-
gies are appropriate? Is agent technology advancing so rapidly that no
one will ever have the time to undertake principled development?

While the question is relevant whether we are considering agents or any other new
technology, the rapidity with which agent-based systems are being developed makes
the answer particularly important.

The speed of technological advance is related to how well the technology itself is
understood. It is therefore most unlikely that agent technology can continue to move
fast (if at all) without principled development. Without it, system engineers will never
know for certain what their system does. Once you have well-tried principles you can
use them to good advantage (e.g. checking that you have covered all possibilities,
analysing complexity issues, identifying limitations to the system you have designed).
Testing, reengineering, and reusing software also rely on principled development.

While undoubtedly, as with traditional systems, few people will use agent devel-
opment methods for small systems, when larger or more complex agent-based systems
are developed in the future these methods may come in to their own. At a pragmatic

*Aaron Sloman and Brian Logan from the University of Birmingham were also members of the panel.
Unfortunately, it was not possible within the time available to integrate their views (which differ from
those expressed here) into this document.



level, when substantial systems are built by large teams of software engineers, the use
of (approved) development methods is likely to be mandatory.

2 Developing Agent-Based Systems

How can we develop agent-based systems, from high-level requirements
or specifications through to implementations?

In general, developing agent-based systems has much in common with developing
other complex software. Therefore many of the problems and solutions known from
general software engineering apply to agent-based systems as well. In addition, an ap-
proach in which the key characteristics of agents (e.g. goal generation and autonomy)
are central is required.

How agent-based systems can be developed depends not only on the purpose they
are developed for, but also on whether we can afford the luxury of developing a stand-
alone system from scratch, or whether we must provide a subsystem that needs to
interact with legacy systems. In the former case, the focus is likely to be on the actual
process of agent modelling; in the latter case, it is on component interfaces. Industrial
agent-based systems are likely to fall under the latter category; therefore, a large effort
is necessary to provide a framework that allows agents to communicate with legacy
systems, for example by wrapping these legacy systems and giving them a clean inter-
face that allows agents in the system to interact with them.

Having created a uniform perspective of a heterogeneous system, the next question
is what the software development cycle that normally underlies the development of a
system should look like in the case of agent-based systems. Given the variety of agent
definitions (e.g. [8]), this is difficult to assess. Currently, no one approach is entirely
satisfactory and it may be the case that it is either impossible or undesirable to try to
develop one all embracing method given the rich diversity of approaches under the
heading of agent-based systems.

In recent years, there has been a growing tendency to standardize traditional soft-
ware application development by choosing a relational database as the kernel of an
application and using declarative database programming languages for specific tasks.
Agent-based systems may be implemented in a similar way: there could be standard-
ized knowledge systems which form the kernel of agent-based systems, together with
declarative agent specification languages, possibly extending SQL and including cer-
tain object-oriented features, which provide the operations of knowledge-based infer-
ence and update needed for intelligent agents.

Finally, as there is no generally accepted and well-defined taxonomy for classify-
ing agent-based applications, it is too early to assess which development approaches
will be appropriate for which classes of agent-based systems.

3 Using Structured M ethods?

In developing agent-based systems, can we use variations on traditional
structured methods?



It seems likely that, just as in “standard" software engineering, structured methods will
be the most widely used of the (future) agent development approaches. Currently,
however, structured methods are not suitable for agent-based systems since they are
either data-oriented (e.g. Jackson Structured Programming) or action-oriented (e.g.
Data Flow Analysis), and therefore cannot capture the full complexity of agent-based
systems that is characterised by the knowledge (data) and behaviour (actions) of indi-
vidual agents together with their interaction.

While structured methods do not really provide adequate frameworks for speci-
fying the complex dynamic interactions that take place in agent-based systems, they
may be helpful in the early stages of designing heterogeneous systems that make use
of complex deliberative agents. When working with this early high-level design phase,
it may be that process and enterprise modelling techniques could be seen as a possi-
ble resource for use in conjunction with structured methods to help with the design of
large agent systems.

4 Using Object-Oriented M ethods?

In developing agent-based systems can we use variations on object-oriented
methods?

As many of the systems termed “agent-based” are little different from object-based
systems, popular analysis and design methods for object-based languages (e.g. Fusion)
may be able to be used directly.

Of the methods which have been specifically applied to agent based systems,
Georgeff and Kinny's work [9] is highly regarded. They set up a design methodol-
ogy based on object-oriented analysis and design models (OOAD) and differentiate
between an internal and an external view of an agent-based system. The internal view
explains how an agent works internally and should be based on a well-defined op-
erational model; the external view describes the agent—environment relationship and
is split into two submodels, the agent model and the interaction model. Decoupling
the two views allows us to develop agents internally based on a suitable architecture,
while being able to analyse and design the system as a whole, independent from this
architecture.

While using the OOAD paradigm as a basis for an agent-based methodology offers
some important advantages, including that it is likely to be accepted as it is based
on a well-known strategy and that system analysts and designers are likely to feel
comfortable with the model as it naturally extends the OOAD model, it is clearly
not sufficient. Such methods do not address issues of autonomy (e.g., decoupling the
process of receiving of a message from the action taken upon receiving it), reactivity
and proactiveness. They also fail to address interaction on a higher level: what are
the communication primitives that agents might use; what is their semantics; what are
protocols and strategies employed in negotiation?

5 Using Formal Methods?

In developing agent-based systems, should we use variations on standard



formal methods? Even if we do not utilise these explicitly, what can we
learn from existing formal methods for concurrent systems?

Formal methods can be useful in developing agent-based systems, in particular when
critical applications are being developed (this is obviously important in applications
such as air traffic control, power station management, etc), when prototyping agent-
based systems at a high-level (since much of the detail can be hidden using logical
statements and the key behaviour can be animated through executable specifications)
and when developing complex cooperating systems (here the use of formal methods
may be one way to establish that the system will exhibit the cooperative behaviour
required).

Although traditional formal methods such as Z or VDM are inappropriate for spec-
ifying agent interactions, there are a wide variety of formalisms that have been devel-
oped for concurrent and distributed systems (i.e. reactive systems). Since agent-based
systems are essentially reactive systems, we should be able to transfer some of the tech-
niques from concurrency theory (e.g. using CCS, CSP, temporal logics, etc) to agent-
based systems, extending these basic approaches with the core features of agents.

While formal methods are not easily scalable in practice, due to the complexity of
proof methods, they may be used to provide deeper understanding of certain critical
parts of an agent-based system. Another important benefit of utilising standard formal
approaches may be verification, which is well established in concurrency theory and
provides a number of practical verification tools. Well-known problems such as the
mutual-exclusion problem apply also to agent-based systems, whenever agents have
to access critical resources in a synchronized way. Concurrency theory may provide
(useful ideas for) solutions of such problems.

Thus, formal methods are being applied to agent-based systems, often by extending
formal approaches to concurrent systems, such as temporal logic, to incorporate the
key elements of agents.

6 What dowerequirefor Development M ethods?

What is required of agent theories for them to be useful in the development
of agent-based systems? In particular, what kinds of agent theories and
programming models for agent-based systems lend themselves to princi-
pled development?

It is essential that the agent theory be an appropriate one for the modelling required. It
is generally a mistake to worry too much about operational issues at a high level. Once
the theoretical framework is in place, and it can be shown to model all the required
behaviours, then consideration can be given to refinement and implementation.
However, as Rodney Brooks has pointed out, many Al theories of knowledge rep-
resentation have been mainly proposed to handle certain representation and reasoning
problems, but, in fact, they are never used (because they have not really been designed
for practical use). These rather academic theories typically make conceptual and onto-
logical stipulations which are not grounded in computational practice. Useful theories
relate to the basic components and operations constituting their domain. They provide
both a declarative and an operational semantics. If the latter is sufficiently elaborated,

4



this already indicates that the theory will be a good basis for the development of work-
ing agent-based systems.

An agent-based representation, be it a theory or a language, should meet the fol-
lowing requirements: it must support both reactive and pro-active behaviour; it must
have a formal semantics; the specification of agent behaviour should be both declara-
tive and executable; it must be platform independent; it must be open; it must support
heterogeneous agents; it must be modular. While agent theories must give a clear un-
derstanding of how an agent is defined in the respective theory (agent model) and how
agents interact (interaction model), the programming language used must be able to
represent these aspects in an appropriate way.

In general, the clearer the theory you have about the domain you are working in
the more likely you are to be able to solve the problem you are working on. However,
generality has its costs, as usual. More specific tools would speed up design and im-
plementation of systems directly supported by those tools, and they might run faster.
But the cost of that would be reduced flexibility.

In order to evaluate agent theories and programming models, benchmark problems
may help. Once a benchmark is accepted, results are comparable and research becomes
more competitive. It may be difficult, however, to identify good benchmarks and have
them accepted by the agent-based systems community.

7 Bridging the Gap between Theory and Practice

Although there has been important research in both agent theories and
agent-based programming, the gulf between these is often large. Rather
than producing development methods to bridge this gap, should we con-
sider either providing theories at a lower level or programming languages
at a higher level?

If possible, both of these should be provided, combining top down and bottom-up ap-
proaches is a good way to bridge gaps. Theories, starting from the kind of behaviour
one would like to have, need to become more operational. Languages, usually devel-
oped by people that care very much about what one can do, need to take a step further
in supporting higher-level agent-based concepts such as goals, plans, and services.

If a choice has to be made, then the provision of higher-level programming lan-
guages is essential. We definitely do not want to compromise the high-level modelling
of agent-based systems by forcing too many operational elements into agent theories.

Finally, a great difficulty which occurs when one tries to work with agent-based
systems is that the skills required to design and develop such systems run the whole
gamut, from the ability to work at very high-level designs and high-level programming
through to the ability to work with detailed operating system and communication lay-
ers. As it is often very difficult to get those kind of skills together in small teams or
individual efforts, the abstract modelling and development of systems without being
concerned with the full detail of implementation would be particularly useful.



8 Tension between Al and Computer Science

Should we address artificial intelligence or software engineering concerns
in agent-based systems? How is what we do different to mainstream com-
puter science?

If we are considering building real systems, then it is difficult to see how we can (or
would want to) avoid software engineering questions. If we intend to build software
systems that serve any useful purpose we should utilise any useful technology. Al has
much to offer as regards useful features and capabilities of the individual agent; dis-
tributed Al addresses models of cooperation; software engineering contains valuable
guidelines for actually building systems.

While, from a general point of view, we are doing much the same as other computer
scientists (i.e. developing complex systems), we have specific ambitions. We want to
build “programs with common-sense” (John McCarthy). Agent-based systems repre-
sent much of the grand vision of Al and they combine many important sub-disciplines.
An agent has to reason, to plan, to act, etc. On the other hand we could be less am-
bitious, and just take the software engineering point of view considering agent-based
systems as an extension of the object-oriented paradigm. Both approaches can learn
from each other and may eventually converge: the former in a top-down, and the latter
in a bottom-up fashion.

9 Agent Testbeds

How important are testbeds for agent-based systems?

While testbeds, and testing regimes in general, are always useful in the production
of complex, open, and reactive systems, they are particularly important in the devel-
opment of agent-based systems. Not only are the systems developed potentially very
complex, incorporating cooperation, competition and evolution, but the large numbers
of agents used requires test suites exhibiting a large range of potential configurations.

There is a clear distinction between two uses of testbeds: a domain-related use
and a technology-related use. The former simulates complex domains in order to gain
empirical results allowing us to explain, predict, or verify their behaviour. Certainly, a
common feature of agent-based systems is that they are often applied to model com-
plex, open, and distributed domains. This is a valuable aspect of testbeds that is in-
dependent of what technology (agents, objects, etc) is used to model the respective
domain.

The latter usage of testbeds involves an evaluation of the technology itself. In
this respect, testbeds are suitable for the agent domain, since a good understanding of
what agent-based systems are and how they behave is still lacking. Once we have this
experience, agent testbeds of this sort lose their importance.

10 Current Approaches

What approaches would we advocate (a chance to advertise our own sys-
tems)?



VIVA Knowledge-Based Agent Programming

VIVA is a rule-based agent-oriented programming language [12]. It adopts many con-
cepts from SQL and Prolog such as, e.g., the distinction between the schema and the
state of an agent, or the use of facts and rules with negation-as-failure, logical variables
and unification. In addition to the well-known deduction rules of Prolog, VIVA also
employs action rules for representing the pro-active behaviour repertoire, and reaction
rules for representing the reactive behaviour of an agent[11].

A first prototype interpreter (not yet suitable for distribution) has been imple-
mented on the basis of PVM-Prolog. It is currently used to evaluate basic constructs
of the language [10]. A full-fledged VIVA interpreter is planned, using Visual Prolog
from Prolog Development Center. This interpreter will be available as an executable
for Windows 95+NT, OS/2 and LINUX. It will include support for http.

Further information is available from

http://ww. informatik.uni-Ieipzig.de/ "gwagner

SIM_AGENT

The Birmingham SIM_AGENT toolkit is intended to support exploration of designs in
a variety of application domains, including, for example, adventure games involving
a number of interacting characters, control mechanisms in which a number of differ-
ent components concurrently monitor and send control signals to various parts of a
complex machine or factory, teaching systems where intelligent agents interact with
a trainee user, and for cognitive scientists wishing to explore designs for more or less
human-like agents, including emotional agents. It is currently being used both at Birm-
ingham University and at DRA Malvern.

All the code and documentation for the toolKkit is freely available via ftp to Poplog
users, from the Birmingham site:

ftp://ftp.cs. bham ac. uk/ pub/ di st/ popl og

More information about Pop-11 and Poplog, including the free linux Poplog, can be
found in

ftp://ftp.cs. bham ac. uk/ pub/ di st/ popl og/ popl og. i nfo. ht

The toolkit incorporates various libraries and packages, an overview of which can be
found at

ftp://ftp.cs. bham ac. uk/ pub/ di st/ popl og/ prb/ hel p/ rul esyst ens
For an overview of the toolkit, including some “mpeg” movies, see
http://ww. cs. bham ac. uk/ axs/cog.affect/si magent. htm

The toolkit continues to evolve, driven by the needs of users. We would welcome
collaborators interested in developing reusable libraries. Although it is implemented
in Pop-11 the main ideas could be implemented in another Al language, such as Lisp,
and if that were done it would be possible to develop common high level libraries.



Concurrent METATEM

Concurrent METATEM [2] is a dynamic (temporal logic is used to represent individ-
ual agent behaviours), open (broadcast message-passing is central and replication is
achieved via cloning), flexible (asynchronous concurrency, asynchronous message-
passing and structuring of agent-space via groups) and simple (that's all there is!)
language in which to represent agent-based systems [4]. These representations can
either be executed directly [5, 1], verified with respect to a logical requirement, or
transformed into a more refined representation.

Currently, the system consists of: an interpreter, which is mainly used to test ex-
tensions and applications, and thus is not suitable for wide distribution; several ex-
ample systems [3], including simple reactive systems, concurrent theorem-provers,
multi-agent planning and a (slightly simplified) version of the PRS (this can also be
seen as a semantics for the PRS); semantics for Concurrent METATEM, together with
(prototype) formal development methodology for transforming Concurrent METATEM
systems; verification techniques for propositional systems.

Our future work includes: developing a better implementation — compiler is almost
finished (system to be released in 1997); representing agents using knowledge/belief
as well as temporal logics [7]; implementation of more and larger examples [6]; pro-
duction of full development framework from a single high-level agent to a cooperating
multi-agent system; implementation extended verification tools. Further information
can be found at

http://ww. doc. mmu. ac. uk/ STAFF/ M Fi sher/cret. ht n

11 ThePand

Michael Fisher (M fi sher @oc. mru. ac. uk) is a Reader in the Department of
Computing and is head of the Logic and Computation Group. He has a range of
research interests concerning agent-based systems: the use of non-classical logics,
particularly temporal logics, in specification and verification of agent-based systems;
high-level agent programming languages; and the use of formal methods in the devel-
opment of agent-based systems. Papers on all these topics can be downloaded from
http://ww. doc. nmu. ac. uk/ STAFF/ M Fi sher

J'org P. M7lller (j pm@l i b. com is currently working in the Mitsubishi Electric Dig-
ital Library Group in London where he is developing agent-based languages, tools,
and methodologies for building large scale information systems. Previously, he was a
scientist in the multiagent systems research group at the German Atrtificial Intelligence
Research Centre (DFKI GmbH), Saarbr ucken, Germany. In addition to the above men-
tioned topics, his research interests include agent architectures and cooperation mod-
els. Further details can be found at ht t p: / / www. dl i b. com peopl e/ j pm

Michael Schroeder (schr oeder @bs. uni - hannover. de) is currently a PhD
student at the insitute for knowledge-based systems at the university of Hannover.
Besides multi-agent systems his research interests include logic programming, non-
monotonic reasoning, model-based diagnosis, concurrency theory. Further details can
be found at ht t p: / / www. kbs. uni - hannover . de/ "schr oede



Gerd Wagner (gw@ nf or mat i k. uni - | ei pzi g. de) is currently working on his
Habilitation thesis at the institute for computer science at the university of Leipzig. Be-
sides multi-agent systems his research interests include logical and conceptual founda-
tions of information and knowledge systems, nonmonotonic and uncertain reasoning.

Papers can be downloaded from ht t p: / / www. i nf or mat i k. uni -1 ei pzi g.

Geof Staniford (G St ani f ord@sc. | i v. ac. uk)isa member of the Department
of Computer Science at University College Chester.

Aaron Sloman (A. SI oman@s. bham ac. uk)and Brian Logan (B. S. Logan@s
both members of the School of Computer Science at the University of Birmingham,
were also panel members and were invited to contribute to this paper. However, they
had some disagreements with the views expressed here and it was not possible within
the time available to integrate their views into this document. Further details can be
found at ht t p: / / www. ¢cs. bham ac. uk/

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds (editors). The
Imperative Future. Chichester, UK: Research Studies Press, May 1996.

M. Fisher. Concurrent METATEM — A Language for Modeling Reactive Systems.
In Proceedings of Parallel Architectures and Languages, Europe (PARLE), Mu-
nich, Germany, June 1993. Lecture Notes in Computer Science, Springer-Verlag.

M. Fisher. A Survey of Concurrent METATEM — the language and its applica-
tions. In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic — Proceed-
ings of the First International Conference (LNAI Volume 827), pages 480-505.
Springer-Verlag: Heidelberg, Germany, July 1994.

M. Fisher. Representing and Executing Agent-Based Systems. In M. Wooldridge
and N. Jennings, editors, Intelligent Agents — Proceedings of the 1994 Workshop
on Agent Theories, Architectures, and Languages. Springer-Verlag, 1995.

M. Fisher. An Introduction to Executable Temporal Logics. Knowledge Engineer-
ing Review, 11(1), March 1996.

M. Fisher and M. Wooldridge. A Logical Approach to the Representation of So-
cieties of Agents. In N. Gilbert and R. Conte, editors, Artificial Societies. UCL
Press, 1995.

M. Fisher and M. Wooldridge. On the Formal Specification and Verification of
Multi-Agent Systems. International Journal of Cooperating Information Systems,
6(1), January 1997.

S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy
for autonomous agents . In J. Muller, M. Wooldridge, and N. Jennings, editors,
Intelligent Agents 111 — Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages (ATAL-96), Lecture Notes in Atrtificial
Intelligence. Springer-Verlag, Heidelberg, 1997.

de/ “gwagner

. bham ac. uk),



[9] D. Kinny and M. Georgeff. Modelling and design of multi-agent systems. In
J. Muller, M. Wooldridge, and N. Jennings, editors, Intelligent Agents Il — Pro-
ceedings of the Third International Workshop on Agent Theories, Architectures,
and Languages (ATAL-96), Lecture Notes in Artificial Intelligence. Springer-
Verlag, Heidelberg, 1997.

[10] M. Schroeder, R. Marques, G. Wagner, and J. Cunha. CAP - Concurrent Action
and Planning: Using PVM-Prolog to Implement Vivid Agents. In Proceedings
of the Fifth International Conference on The Practical Application of PROLOG,
1997.

[11] M. Schroeder and G. Wagner. Distributed Diagnosis by Vivid Agents. In Pro-
ceedings of International Conference on Autonomous Agents, ACM Press, 1997.

[12] G. Wagner. VIVA Knowledge-Based Agent Programming. Technical Report,
University of Leipzig, Germany, 1996.

10



