
UML and Agents: Current Trends and Future Directions

Marc-Philippe Huget
Agent ART Group

Department of Computer Science
University of Liverpool

Liverpool L69 7ZF
United Kingdom

M.P.Huget@csc.liv.ac.uk

James Odell
James Odell Associates

3646 W. Huron River Dr.
Ann Arbor, MI 48103

USA
email@jamesodell.com

Bernhard Bauer
Siemens, CT IC 6
81730 München

Germany
bernhard.bauer@siemens.com

Abstract

Recently, the development of multiagent systems is in-
creasing significantly, particularly in the domain of elec-
tronic commerce and business [31]. At the same time, de-
signing multiagent systems becomes more and more com-
plex. As a consequence, designers need methodologies
and tools to build them. Current methodologies used in
object-oriented software engineering do not address this
richness and the distribution of agents increases the com-
plexity of the problem. Two main directions are consid-
ered in multiagent system design: extending software engi-
neering methodologies (or knowledge engineering ones) or
providing specific agent engineering methodologies. UML
with its extension mechanisms (stereotypes and tagged
values) is a worthwhile candidate. Moreover, UML is
widespread in software community. UML has been extended
for agents along several approaches: Agent UML [36],
MESSAGE/UML [8], AOR [43], Tropos [32] or PASSI [7]
among others. The paper presents both the state of the art
for using UML to represent agent-based systems, as well as
possible future directions of work in this domain.

1. Introduction

Multiagent systems are a domain of research in dis-
tributed artificial intelligence as well as distributed problem
solving. Multiagent systems may be considered as a pro-
longation of the work on expert systems where distribution
of the expertise has been added. Agents are spread all over
the network and expertise is divided among agents. Two do-
mains of research are particularly considered in multiagent
systems: problem solving and simulation. In a context of
problem solving, agents encompass a portion of the exper-
tise. The problem is solved through their interactions. Early

examples are DVMT 1 and flight scheduling [10]. More
recent work is done around mobile computing, business
processes or logistics, e/m-commerce, information sourcing
and filtering. In a context of simulation, agents and multi-
agent systems act according to a model. Such models are
commonly based on an ethology such as ants [13] or from
human societies. In the latter case, the range of applications
is broad. It might be simulation of humans in ecosystems
[33], economic-based simulation [29] or industrial simula-
tion [17].

A commonly-held idea is to consider agents and objects
as equivalent notions. This view is too restrictive to show
all the richness of agents. As Odell [35] and Wooldridge
[45] note it, even if agents and objects have some points
in common, many differences exist between these two ap-
proaches. The main differences are autonomy and interac-
tion. Actually, agents are autonomous, reactive, proactive
and intelligent. Agents are capable of initiating action in-
dependent of any other entity. Autonomy for agents means
that agents are able to react to events occurring in the en-
vironment. Proactive agents will actually poll the environ-
ment for events and other messages to determine what ac-
tion they should take. They are not triggered by other agents
or by humans. Finally, interaction between agents is richer
than the one in object-oriented systems and also more ab-
stract through high-level messages. Interaction in object-
oriented systems corresponds to method calls. Interaction
between agents is completely different. Messages between
objects are simpler since it is only possible to invoke meth-
ods and give parameters. These parameters are fixed and
if designers want different kinds of parameters, they have
to provide as much methods as they have different kinds.
Agents use agent communication languages such as KQML
[15] or FIPA’s ACL [16] to exchange messages. The aim
of agent communication languages is to provide a precise

1http://dis.cs.umass.edu/research/dvmt.html



syntax and semantics for interaction between agents.

Several other areas where agents and objects differ in-
clude scheduling, learning, adaptivity, multiple and dy-
namic classification or the emergence. As soon as agents
have goals, they derive plans to fulfill them. By learning and
adaptivity, we mean that agents have the ability to modify
their behaviors given events occurring in the environment or
to acquire new behaviors based on their observation of other
agents or of the environment. Multiple and dynamic classi-
fication refer to the ability for agents to have different roles
during an execution and to move from one role to another
one during it. The emergence within multiagent systems
means that an overall behavior emerges from the interac-
tions between agents [34]. We let readers consult [35] [46]
for further details and another differences.

Current methodologies used in object-oriented software
engineering do not address this richness and the distribution
of agents increases the complexity of the problem. Two
main directions have been considered by multiagent sys-
tem designers: extending software engineering (or knowl-
edge engineering) methodologies or defining specific agent
methodologies. In the latter, we can find methodologies
such as Gaia [46], MaSE [12] or DESIRE [6]. In this paper,
we focus on the first direction: extending software engi-
neering methodologies. UML [5] with its extension mech-
anisms and its metamodel seems to be the right candidate.
Moreover, UML is widespread in software community and
several industrial-strength tools are available. The use of
UML in the design of multiagent systems gives birth to sev-
eral approaches: Agent UML [36], MESSAGE/UML [8],
AOR [43], Tropos [32] or PASSI [7]. This paper attempts
to recap what is currently done in the extension of UML for
agents and what could be future directions of work. This
paper does not claim to do an in-depth comparison of these
approaches. This work will be done in the future when ap-
proaches try to unify into one unique approach.

Readers have to be aware that the work on UML for
agents is an ongoing research and, as a consequence, UML
for agents does not claim to be as strong as UML is for soft-
ware systems.

The remainder of this paper is as follows. In a first part,
we briefly present the different approaches: Agent UML
in Section 2.1, MESSAGE/UML in Section 2.2, AOR in
Section 2.3, Tropos in Section 2.4 or PASSI in Section 2.5.

In the second part (see Section 3), we describe what el-
ements within multiagent systems are already considered
through these different approaches. By elements, we mean
agents, beliefs, desires, intentions, goals, plans, social struc-
tures, etc.

In the third part (see Section 4), we discuss what could
be some future directions of work for these approaches.

Section 5 concludes the paper.

2. Current Approaches

Several approaches address the problem of extending
UML for agents. This section briefly presents some of them.

2.1. Agent UML

Of the approaches presented here, Agent UML [37] [3]
is now one of the most commonly used notations for agent-
based modeling. Like other approaches, the aim of Agent
UML is to provide a specific version of UML tailored to
multiagent system designer needs. Agent UML addresses
the analysis and design stages of life cycle. It particularly
addresses the question of how representing agents and in-
teraction protocols. Three diagrams are supplied by Agent
UML: agent class diagrams [2] [21], sequence diagrams
(also called protocol diagrams) [36] [4] [22] and group dia-
grams [40]. The international association FIPA for the stan-
dardization in multiagent systems selects Agent UML se-
quence diagrams to describe interaction protocols [16].

Some new works now consider the forward engineering
and test stages. [23] describes the generation of code for
sequence diagrams. [24] [41] [30] [28] are several different
approaches to check properties on sequence diagrams either
with Promela and SPIN [19] or with Petri nets.

2.2. MESSAGE/UML

MESSAGE (Methodology for Engineering Systems of
Software AGEnts) [8] is an agent-oriented software en-
gineering methodology based on UML. The MESSAGE
methodology covers multiagent system analysis and design.

MESSAGE defines several views to cope the analysis
stage:

Organization View This view shows the agents, the or-
ganizations, the roles and the resources used in the
system as well as the relationships between these el-
ements. The relationships are aggregation, power and
acquaintance. Power relationships refer to a hierarchy
between two agents. Acquaintance relationships indi-
cate the existence of at least one interaction involving
the entities concerned.

Goal/Task View This shows Goals, Tasks, and dependen-
cies among them.

Agent/Role View This focuses on the individual Agents
and Roles. For each agent/role it uses schemata sup-
ported by diagrams to its characteristics such as what
Goals it is responsible for, what events it needs to
sense, what resources it controls, what tasks it knows
how to perform, etc.



Interaction View For each interaction among agents/roles
shows the initiator, the collaborators, the motivator
(generally a goal the initiator is responsible for), the
relevant information supplied/achieved by each partic-
ipant, the events that trigger the interaction, other rele-
vant effects of the interaction.

Domain View This shows the domain specific concepts
and relations that are relevant for the system under de-
velopment.

Several diagrams are provided by MESSAGE: orga-
nization diagram defines the organization of the system,
goal/task diagram shows the decomposition of goals into
sub-goals, workflow diagram describes the task ordering
for a particular goal, delegation structure diagram presents
the delegation between organizations, roles and goals.
Agent/role schema describes the goals, the capabilities, the
beliefs and the requirements for each role. Interaction di-
agram shows the interaction between agents. It presents
agents or roles, goals and interactions. Finally, Domain di-
agram provides the different concepts in use in the system.
This diagram is usually a UML class diagram.

Several new stereotypes are supplied by MESSAGE to
cover notions not present in UML such as roles, organiza-
tions, goals, tasks or interactions. The complete list is in
[9].

2.3. AOR

AOR (Agent-Object Relationship) focuses on the design
of organizations and organization information systems [43].
A specific language is provided to this purpose: AORML
(AOR modeling language). In the AORML, an entity is ei-
ther an agent, an event, an action, a claim, a commitment or
an ordinary object.

Two models are considered in AOR: external model and
internal model. An external model adopts the perspective of
an external observer who is observing the agents and their
interactions in the problem domain under consideration. In
an internal AOR model, designers adopt the internal (first-
person) view of a particular agent to be modeled. This dis-
tinction suggests the following system development path: in
the analysis stage, draw up an external AOR model of the
domain under consideration including one or more focus
agents; in the design stage, for each focus agent, transform
the external AOR model into an internal one according to
the agent’s perspective; then, refine the internal AOR model
of each focus agent into an implementation model for the
target language.

AOR considers three types of agents: artificial agents,
human agents and institutional agents. Institutional agents
refer to organizations such as banks, hospital or organiza-
tional units.

An external AOR model may comprise one or more of
the following diagrams:

Agent diagram This depicts the agent types of the do-
main, certain relevant object types and the relation-
ships among them.

Interaction frame diagram This depicts the action event
classes and commitment/claim classes that determine
the possible interactions between two agent types.

Interaction sequence diagram This depicts prototypical
instances of interaction processes.

Interaction pattern diagram This focuses on general in-
teraction patterns expressed by means of a set of reac-
tion rules defining an interaction process type.

An internal AOR models may comprise one or more of
the following diagrams:

Reaction frame diagram This depicts other agents (or
agent types) and the action and event types, as well
as the commitment and claim types that determine the
possible interactions with them.

Reaction sequence diagram This depicts prototypical in-
stances of interaction processes in the internal perspec-
tive.

Reaction pattern diagram This focuses on the reaction
patterns of the agent under consideration expressed by
means of reaction rules.

Several new stereotypes are supplied by AOR to cover
notions like agents, events and actions (see the list in [42]).

2.4. Tropos

Tropos [32] is another agent-oriented software engineer-
ing methodology based on UML notation. The two key fea-
tures of Tropos are: (1) the use of knowledge level concepts
such as agent, goal, plan and other through all phases of
software development and (2) a pivotal role assigned to re-
quirement analysis when the environment and the-system-
to-be is analyzed.

The phases covered by the methodology are as follows:

Early requirements: during this phase the relevant stake-
holders are identified, along with their respective ob-
jectives; stakeholders are represented as actors, while
their objectives are represented as goals.

Late requirements: the system-to-be is introduced as an-
other actor and is related to stakeholder actors in terms
of actor dependencies; these indicate the obligations
of the system towards its environment, also, what the
system can expect from actors in its environment.



Architectural design: more system actors are introduced
and they are assigned subgoals or subtasks of the goals
and tasks assigned to the system.

Detailed design: system actors are defined in further de-
tail, including specifications of communication and co-
ordination protocols.

Implementation: during this phase, the Tropos specifica-
tion, produced during detailed design, is transformed
into a skeleton for the implementation.

Different diagrams are considered within Tropos: UML
class diagrams with some new stereotypes supplied by Tro-
pos to represent the different actors of the system, Agent
UML sequence diagrams to represent interactions between
actors, once again some new stereotypes supplied by Tro-
pos are used, plan diagram to represent plans. The list of
new stereotypes is in [32].

2.5. PASSI

PASSI [7] is a step-by-step requirement-to-code method-
ology for designing and developing multiagent societies.
The PASSI methodology is made up of five models concern-
ing different design levels, and twelve steps in the process
of building multiagent systems.

The models of PASSI are the following:

System Requirements Model. An anthropomorphic
model of the system requirements in terms of agency
and target. It comprises four steps: domain descrip-
tion, agents identification, roles identification and
tasks specification.

Agent Society Model. A model of the social interactions
and dependencies between the agents playing a part in
the solution. It comprises four steps: roles identifica-
tion, ontology description, roles description, protocols
description.

Agent Implementation Model. A model of the solution
architecture in terms of classes and methods. It com-
prises two steps: agents structure definition and agents
behaviour description.

Code Model. A model of the solution at the code level. It
comprises two steps: code reuse and code completion.

Deployment Model. A model of the distribution of the
system’s parts across hardware processing units, and
of their migration. It comprise one step: deployment
configuration.

Several diagrams are in use in PASSI: class diagrams for
ontology description, role description, agent structure def-
inition and code reuse, use case diagrams for domain de-
scription and agent identification, sequence diagrams for
role identification and protocol description, activity dia-
grams for task specification, agent behavior specification
and code reuse and deployment diagrams for deployment
configuration.

3. Current Trends

The previous section presented different approaches
where UML is extended to represent agents and agent-based
systems. In this section, we describe what elements within
multiagent systems are already considered in UML or one
of its extension described above. By elements, we mean
agents, beliefs, goals, plans, interactions, interaction proto-
cols, groups, and so on.

3.1. Requirement Analysis

Requirement analysis is already considered either in
UML or in its extensions. Requirement analysis is ren-
dered through use case diagrams. Use case diagrams are
central to modeling the behavior of a system, a subsystem
or a class. Each one shows a set of use cases and actors and
their relationships. A use case is a description of a set of
sequences of actions, including variants, that a system per-
forms that yields an observable result of value to an actor
[5]. Use case diagrams can be found in the PASSI method-
ology to model either the domain description or the roles.
One can also quote the ROADMAP methodology [26] or
in MAS-CommonKADS [25]. Tropos with

���
is the most

achieved approach. Tropos considers two steps of require-
ments: early requirements and late requirements. The late
requirement stage corresponds to a more accurate view of
the early requirement stage.

3.2. Agents

This notion encompasses two meanings: (1) representing
the internal structure of each agent and (2) representing the
relationships between agents. Since agents are more com-
plex than objects, one can think that UML class diagrams
are no longer sufficient to represent agent structure. A first
attempt is in the PASSI methodology. Class diagrams con-
tain a new compartment dealing with plans. AOR is another
approach and presents some interests with its specific re-
lationships related to relationships in human organizations
[42]. The most achieved solution seems to be the one sup-
plied by Agent UML: Bauer’s proposal [2] and its elabora-
tion in [21]. In these two proposals, some new elements are
included within class diagrams:



� Agent’s name: as classes, agents are identified by
a name which could be an instance of parent agent.
The agent’s name is prepended by the stereotype
<<agent>> to make the distinction between agents
and objects. Actually, agents are frequently imple-
mented as a set of objects or use objects. Such an ex-
ample is the case of ant society [13] where ants are
agents and pheromones are objects.

� Agent’s roles: agents play roles in multiagent systems.
A role is a class that defines a normative behavioral
repertoire of an agent [40][38]. It groups common fea-
tures such as knowledge, behaviors or data. For in-
stance, for auctions, we have two roles: Auctioneer
and Participant. An agent playing an Auctioneer role
tries to sell items to participants at the highest price; an
agent playing the Participant role tries to buy items at
the lowest price.

Agents in a multiagent systems may have several roles.
For instance, an agent may be an auctioneer for one
auction and participant for another one.

This piece of information is also provided in UML but,
since agents are richer than objects, a role contains
more information. Moreover, agents have the ability
of multiple and dynamic classification. It means that
agents can have different roles during their executions
and they can go from role to role during their execu-
tions.

� State: states correspond to attributes used in classes.

� Operation: operations correspond to methods used in
classes. However, it is possible to adorn these op-
erations with pre-conditions and post-conditions. It
means that the operation is runnable if and only if the
pre-conditions are satisfied and if and only if the post-
conditions are satisfied. These conditions are related
to the agent autonomy. Agents can do tasks if and only
if they think that these tasks are of interest to them.

� Capability: this piece of information denotes what ac-
tions the agents are able to do. Agents need to coor-
dinate each other to complete their tasks. These capa-
bilities help agents to know what agents can help them
for a particular task. Capabilities are written as a free-
format text or formally.

� Perception: as stated in introduction, agents are reac-
tive. It means that they react to events occuring in
the environment. The list of perceptions can be rep-
resented elsewhere in various ways, such as in a state-
chart. Even if objects can react to events, they are less
autonomous since they have to react or if they refuse,
such a response has been traditionally considered to be
an abnormal execution of the program.

� Interaction protocol: interaction protocols (IPs) are an-
other difference between agents and objects. Agent-
based systems can employ IPs as a mechanism to guide
and constrain agent interactions. Objects can also use
an IP mechanism. However, object-oriented systems
traditionally practice a synchronous form of interac-
tion that is centrally controlled, whereas agent-based
IP typically employ an asynchronous form that is more
organic in nature. The list of protocols in this class
corresponds to defined elsewhere, which are typically
expressed as sequence diagrams or activity diagrams.

� Group: A group is a set of agents that are related via
their roles [40]. Agents have the ability to join groups
in order to cooperate and coordinate. This capac-
ity is another difference between agents and objects.
Objects are traditionally grouped according to a mas-
ter/slave relationship. Agents can be grouped similar
to human ones such as manufacturing cells, organiza-
tions, or markets. We consider organizations to be a
subtype of group. Here, an organization is defined as
a group whose roles and interactions are typically ex-
pected to be relatively stable and change slowly over
time [40]. For those groups that are not stable or that
change often, the notion of organization cannot apply.
In this way, then, the concept of group is based on
agents, roles, and their interactions - and not neces-
sarily with respect to the volatility of its set.

This compartment only specifies the name of the
group. The two pieces of information constraints and
role gives respectively the constraints that have to be
satisfied before entering the group and the role played
in this group.

� Service: services are equivalent to the ones defined for
classes except that we had conditions. These condi-
tions have to be satisfied in order to apply for these
services.

� Knowledge: with groups, protocols and perceptions,
knowledge is certainly the most important difference
between agents and objects. We propose to represent
knowledge as objects. As a consequence, it is easier
for agents to update a piece of knowledge if knowl-
edge adopt some specific patterns. Moreover, there ex-
ist mutual beliefs within multiagent systems [44]. If
beliefs are outside agents, it is easier to share them for
several agents.

3.3. Knowledge and Ontology

Cognitive agents encompass knowledge and domain
knowledge in order to complete their tasks. An ontology
defines the meaning of terms and concepts and describes



the relationships between the elements [14]. Ontologies are
practical to deal with heterogeneous agents. Then, agents
which do not share the same vocabulary can interact each
other if they are able to know how to translate words from
one language to another one. This feature is interesting in a
context of interoperability.

MESSAGE proposes to represent domain concepts and
knowledge through class diagrams. Another approach is in
PASSI where domain description is done through use case
diagrams. In our opinion, the most achieved approach is
the one from Cranefield [11] where a piece of knowledge is
described as an object.

Such an approach is interesting in a context of mutual or
shared beliefs. If knowledge is located outside agents, it is
easier to share it.

3.4. Agent Behavior

Agents are reactive and act provided events in the envi-
ronment or coming from other agents. Agents’ behaviors
can be represented through statecharts. A statechart dia-
gram shows a state machine [18], consisting of states, tran-
sitions, events and activities. Statechart diagrams are used
to illustrate the dynamic view of a system. They are espe-
cially important in modeling the behavior of an interface,
class or collaboration. Statechart diagrams emphasize the
even-ordered behavior of an object, which is especially use-
ful in modeling reactive systems.

Each approach provides its specific statechart diagram or
related statechart diagram to model agents’ behaviors. An
interesting approach is in [1] used to model robotic agents.

3.5. Goals/Tasks/Plans

Cognitive agents use desires and intentions. Intentions
are described through goals. These goals give birth to plans
as soon as they become executable. Activity diagrams seem
to be the right candidate to represent goals, tasks or plans.
An activity diagram shows the flow from activity to activ-
ity within a system while statechart diagrams show the flow
from state to state. An activity diagram shows a set of ac-
tivities, the sequential or branching flow from activity to
activity, and objects that act and are acted upon. Activity
diagrams are especially important in modeling the function
of a system.

The PASSI approach to model goals and plans is simi-
lar to the one found in UML. The MESSAGE approach is
related to a second diagram called workflow diagram de-
scribing the task ordering for a particular goal.

3.6. Groups

Agents in multiagent systems are grouped as sets of
agents related via their roles. This notion of groups is not

present within object-oriented systems. As a consequence,
no diagram is supplied by UML for this purpose.

Several proposals are available: Parunak’s and Odell’s
proposal [40] where a diagram gives the agents, their roles
in the groups and the relationships between these agents (or
roles). Another solution is the one from AOR [42]. This
proposal is interesting since it proposes several new rela-
tionships between agents in comparison with the one pro-
vided by UML.

Even if groups are already considered through UML
based diagrams, they are still immature. The number of
information is less numerous than in electronic institution
organizations such as Fishmarket [33].

3.7. Interaction Protocols

At this time, interaction protocols are certainly one of the
most popular areas that require extending UML for agents.
First works on this extension were on the description of in-
teraction protocols [37] [3]. It is not surprising since inter-
action is one of the main differences between agents and
objects. Interaction protocols are represented by sequence
diagrams.

A sequence diagram is an interaction diagram that em-
phasizes the time ordering of messages. A sequence dia-
gram shows a set of objects and the messages sent and re-
ceived by those objects. The objects are typically named or
anonymous instances of classes, but may also represent in-
stances of other things, such as collaborations, components
or nodes.

Two solutions are currently considered: Tropos’s pro-
posal [32] where sequence diagrams are extended to de-
scribe the link to plans. The Agent UML proposal is the
most achieved one [37] [3].

Since agents are represented by their roles, this piece of
information replaces the information provided within the
lifelines at the top of the diagram as shown on Figure 1.
The general form of describing agent roles in Agent UML
is:

instance-1 ����� instance-n / role-1 ����� role-m : class
denoting a distinguished set of agent instances instance-

1 ����� instance-n satisfying the agent roles role-1 ����� role-m
with n,m

�
0 and class it belongs to. Instances, roles or

class can be omitted, in the case that the instances are omit-
ted, the roles and class are not underlined.

Agents are more flexible for their interactions. It means
that they are able to select a path in the interaction among
others given their goals, intentions and beliefs. Some new
connectors appear in Agent UML sequence diagrams to
tackle this point (shown on Figure 2).

Three connectors are supplied for these features (shown
on Figure 2). The connector AND is rendered as a thick
vertical line as shown on Figure 2a. It means that messages



inform(start auction)1 n

cfp(initial price)1 n

n

m

k

reject−proposal(price)

k

n

1

inform(end auction)

{actual price>=reserved price}
request(price)

1

1

1

1

1 {k >= 2} cfp(new price)

accept−proposal(price)

ParticipantAuctioneer

{d < t units}

1

k−1

propose(price)

not−understood(syntax error)

not−understood(ontology}

Figure 1. English Auction Protocol

CA−1

CA−3

CA−2

a) AND

CA−1

CA−2

CA−3

b) OR

CA−1

CA−2

CA−3

c) XOR

Figure 2. Agent UML Connectors

have to be sent concurrently. On Figure 2a, CA-1, CA-2,
CA-3 are sent in parallel. The connectors OR is rendered as
a diamond as shown on Figure 2b and XOR is rendered as a
diamond and a cross within it as shown on Figure 2c. They
mean that a decision between several messages has to be
done. When considering the connector OR, zero or several
messages is chosen: a subset of the set � CA-1, CA-2, CA-
3 � . In the case of several messages are taken, the messages
are sent in parallel. The connector XOR also represents a
decision but in this case, one and only one message is cho-
sen, it is either CA-1 or CA-2 or CA-3.

As stated in the introduction, agents send message asyn-
chronously. Messages in interaction are sent usually asyn-
chronously (the symbol with a stick arrowhead as shown on
the Figure 3a). It shows the sending of the message with-
out yielding control. It is also possible to sent messages
synchronously (the symbol with a filled solid arrowhead
as shown on the Figure 3b). It shows the yielding of the
thread of control (wait semantics), i.e. the agent role waits

a) c)b)

Figure 3. Types of Message Delivery in Agent
UML

until an answer message is received and nothing else can
be processed. Normally, messages are drawn horizontally.
This indicates the duration required to send the message is
“atomic”, i.e. it is brief compared to the granularity of the
interaction and that nothing else “happen” during the mes-
sage transmission. If the messages require some time to ar-
rive, for instance for mobile communication, during which
something else can occur. The message is shown on Figure
3c.

The main differences between UML sequence diagrams
and Agent UML sequence diagrams are the fact that mes-
sages are sent asynchronously and that agents can choose
the path in the interaction. This choice is done according to
their beliefs, intentions, goals or conditions.

This list is extended in [22] with some new features such
as time, broadcast, synchronization, triggering actions and
exceptions.

4. Future Directions

Previous sections described the current use of UML for
agents and multiagent systems. The elements presented do
not cover all the needs that multiagent system designers
have. This section attempts to give an agenda of future work
on UML for agents.

Some elements within agents or multiagent systems are
not yet considered. For instance, the notion of planning is
still immature. Designers need to represent the plan but also
the decomposition of this plan by agents, the conditions to
be satisfied to execute each part of the plan, etc. Activity di-
agrams are the right candidate, but they need to be enhanced
for this purpose.

Even if some preliminary work is available around mo-
bility [27], this notion has to be extended to several kinds of
diagrams. Deployment diagrams are not the only ones that
have to deal with mobility issues. Activity diagrams can
be enhanced to express mobility by employing UML swim-
lanes that represent agent platforms. Moreover, the notion
of mobility has to appear on class diagrams when design-
ing agents and the relationships between agents or between
agents and objects.

Few works consider the whole life cycle. It is important
to develop the implementation and test stages. Forward en-
gineering is only considered for Agent UML sequence dia-



grams in [23] but remains incomplete and this work does not
consider all the features present in Agent UML sequence
diagrams. A second approach is in PASSI [7] through code
reuse library.

Testing and quality of service (QoS) are also issues.
Several work are presented in 2002 on this subject: two
papers [24] [28] propose to derive directly a program in
PROMELA [19] [20] and using the model checker SPIN.
Two other papers [41] [30] propose to derive Agent UML
sequence diagrams into Petri nets, then to check properties
on these Petri nets.

The main pitfall in using Agent UML to design multia-
gent systems is there are no tools dedicated to Agent UML.
Moreover, it is not easy to extend UML tools to exploit
UML extended diagrams. Wagner proposes a template for
Visio for his AOR models. Burrafato and Cossentino pro-
pose an add-in for Rational Rose.

Another direction of work is to extend XMI [39] in order
to store UML-based representations and to exchange them
between users and tools.

A current problem for UML-based extensions is the lack
of formal semantics. It is crucial that a common understand-
ing appears for each stereotypes or elements in UML based
extensions.

Finally, the most promising work is certainly trying to
merge all these approaches into a unified modeling lan-
guage that is coherent and consistent. Some propose
methodological aspects, some propose new diagrams or
stereotypes. For the moment, the overlapping is not too im-
portant. As a consequence, it seems possible to accomplish
this work in the near future.

5. Conclusion

Agents and multiagent systems are now viewed as a se-
rious approach for designing open, complex systems such
as electronic commerce applications. Several methodolo-
gies exist in multiagent system literature, but their main
drawback is that users need to learn how to use it. For
some of them, a formal background is required. All these
points slow down the adoption by software engineering
users. A new approach appeared recently that proposes to
make profit of software engineering. This new approach
proposes to make profit of the extensibility of UML. Sev-
eral UML based extensions are available in the literature:
Agent UML [36], MESSAGE/UML [8], AOR [43], Tropos
[32] or PASSI [7] among others.

This paper presented a state of the art of the use of UML
for agent and multiagent system design. Then, it describes
what could be the future directions for these approaches.
The most important seems to be the definition of a unique
UML extension using the features of these different ap-
proaches.

Acknowledgements. Marc-Philippe Huget thanks the UK

government for its support through the EPSRC project
GR/R27518 (Verifiable Languages and Protocols for Multi-
agent Systems).

References

[1] T. Arai and F. Stolzenburg. Multiagent systems specification
by UML statecharts aiming at intelligent manufacturing. In
Proceedings of the 1st International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, volume 1, pages
11–18, Bologna, Italy, July 2002. ACM Press.

[2] B. Bauer. UML class diagrams revisited in the context of
agent-based systems. In M. Wooldridge, P. Ciancarini, and
G. Weiss, editors, Proceedings of Agent-Oriented Software
Engineering (AOSE 01), number 2222 in LNCS, pages 1–8,
Montreal, Canada, May 2001. Springer-Verlag.

[3] B. Bauer, J. Müller, and J. Odell. Agent UML: A formal-
ism for specifying multiagent interaction. In P. Ciancarini
and M. J. Wooldridge, editors, Agent-Oriented Software En-
gineering (AOSE-00), 2000.

[4] B. Bauer, J. P. Müller, and J. Odell. An extension of UML by
protocols for multiagent interaction. In International Con-
ference on MultiAgent Systems (ICMAS’00), pages 207–214,
Boston, Massachussetts, july, 10-12 2000.

[5] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, Reading,
Massachusetts, USA, 1999.

[6] F. Brazier, B. Dunin-Keplicz, N. R. Jennings, and J. Treur.
Formal specification of multi-agent systems: a real-world
case. In V. Lesser, editor, Proceedings of the First Inter-
national Conference on Multi–Agent Systems, pages 25–32,
San Francisco, CA, 1995. MIT Press.

[7] P. Burrafato and M. Cossentino. Designing a multi-
agent solution for a bookstore with the PASSI methodol-
ogy. In Fourth International Bi-Conference Workshop on
Agent-Oriented Information Systems (AOIS-2002), Toronto,
Canada, May 2002.

[8] C. Caire, F. Garijo, J. Gomez, J. Pavon, F. Leal, P. Chainho,
P. Kearney, J. Stark, R. Evans, and P. Massonet. Agent ori-
ented analysis using MESSAGE/UML. In Proceedings of
Agent-Oriented Software Engineering (AOSE 01), Montreal,
Canada, May 2001.

[9] C. Caire, F. Garijo, J. Gomez, J. Pavon, F. Leal, P. Chainho,
P. Kearney, J. Stark, R. Evans, and P. Massonet. Mes-
sage: Methodology for agent-oriented software engineering.
Technical report, Eurescom, 2001. Deliverable 3.

[10] S. Cammarata, D. M. Arthur, and R. Steeb. Strategies of
cooperation in distributed problem solving. In A. Bond and
L. Gasser, editors, Readings in Distributed Artificial Intelli-
gence, pages 102–105. Morgan Kaufmann Publishers, Inc.,
San Mateo, CA, 1988.

[11] S. Cranefield. Networked knowledge representation and ex-
change using UML and RDF. Journal of Digital Informa-
tion, 1(8), 2001.

[12] S. A. DeLoach. Multiagent systems engineering: a method-
ology and language for designing agent systems. In



Proceedings of Agent Oriented Information Systems ’99
(AOIS’99), pages 45–57, Seattle, USA, May 1999.

[13] A. Drogoul. De la simulation multi-agents à la résolution
collective de problème. Une étude de l’émergence de struc-
tures d’organisation dans les systèmes multi-agents. PhD
thesis, Universit Paris 6, 1993.

[14] D. Fensel. Ontologies: Silver Bullet for Knowledge Man-
agement and Electronic Commerce. Springer-Verlag, 2001.

[15] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML
as an agent communication language. In Third Interna-
tional Conference on Information and Knowledge Manage-
ment (CIKM-94). ACM Press, 1994.

[16] FIPA. Specification. Foundation for Intelligent Phys-
ical Agents, http://www.fipa.org/repository/fipa2000.html,
2000.

[17] M. S. Fox, J. G. Chionglo, and M. Barbuceanu. The inte-
grated supply chain management system. Technical report,
Enterprise Integration Laboratory, University of Toronto,
1993.

[18] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231–274, 1987.

[19] G. J. Holzmann. Design and Validation of Computer Proto-
cols. Prentice-Hall, 1991.

[20] G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5), May 1997.

[21] M.-P. Huget. Agent UML class diagrams revisited. In
B. Bauer, K. Fischer, J. Muller, and B. Rumpe, editors,
Proceedings of Agent Technology and Software Engineering
(AgeS), Erfurt, Germany, October 2002.

[22] M.-P. Huget. Extending Agent UML protocol diagrams.
In F. Giunchiglia, J. Odell, and G. Weiss, editors, AAMAS
Workshop on Agent-Oriented Software Engineering (AOSE),
Bologna, Italy, July 2002.

[23] M.-P. Huget. Generating code for agent UML sequence di-
agrams. In B. Bauer, K. Fischer, J. Muller, and B. Rumpe,
editors, Proceedings of Agent Technology and Software En-
gineering (AgeS), Erfurt, Germany, October 2002.

[24] M.-P. Huget. Model checking Agent UML protocol dia-
grams. In ECAI Workshop on Model Checking Artificial In-
telligence (MoChArt), Lyon, France, July 2002.

[25] C. Iglesias, M. Garrijo, J. Gonzales, and J. Velasco. De-
sign of multi-agent system using MAS-CommonKADS. In
Springer-Verlag, editor, Proceedings of ATAL 98, Workshop
on Agent Theories, Architectures, and Languages, volume
LNAI 1555, pages 163–176, Paris, France, July 1998.

[26] T. Juan, A. Pearce, and L. Sterling. Extending the Gaia
methodology for complex open systems. In Proceedings of
Autonomous Agents and Multi-Agent Systems (AAMAS 02),
Bologna, Italy, July 2002. ACM Press.

[27] C. Klein, A. Rausch, M. Sihling, and Z. Wen. Extension
of the Unified Modeling Language for mobile agents. In
K. Siau and T. Halpin, editors, Unified Modeling Language:
Systems Analysis, Design and Development Issues, chap-
ter 8, pages 116–128. Idea Publishing Group, 2001.

[28] J.-L. Koning and I. Romero-Hernandez. Generating ma-
chine processable representations of textual representations
of AUML. In F. Giunchiglia, J. Odell, and G. Weiss, editors,
AAMAS Workshop on Agent-Oriented Software Engineering
(AOSE), Bologna, Italy, July 2002.

[29] B. LeBaron. Agent based computational finance: Suggested
readings and early research. Technical report, Brandeis Uni-
versity, 1999. o appear in the Journal of Economic Dynam-
ics and Control.

[30] H. Mazouzi, A. El Fallah Seghrouchni, and S. Haddad. Open
protocol design for complex interactions in multi-agent sys-
tems. In Proceedings of the First International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems (AA-
MAS 2002), Bologna, Italy, July 2002.

[31] J. Müller, B. Bauer, and M. Berger. Software agents for
electronic business: Opportunities and challenges. In V. M.
et al., editor, Proceedings of MASA 2001, number 2322 in
LNAI, pages 61–106. Springer, 2001.

[32] J. Mylopoulos, M. Kolp, and J. Castro. UML for agent-
oriented software development: the tropos proposal. In Pro-
ceedings of the Fourth International Conference on the Uni-
fied Modeling Language (UML 2001), Toronto, Canada, Oc-
tober 2001.

[33] P. Noriega. Agent mediated auctions: The Fishmarket
Metaphor. PhD thesis, Universitat Autnoma de Barcelona,
1998.

[34] J. Odell. Agents and complex systems. Journal of Object
Technology, 1(2), July-August 2002.

[35] J. Odell. Objects and agents compared. Journal of Object
Computing, 1(1), May 2002.

[36] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML
for agents. In G. Wagner, Y. Lesperance, and E. Yu, ed-
itors, Proceedings of the Agent-Oriented Information Sys-
tems Workshop at the 17th National conference on Artificial
Intelligence, Austin, Texas, july, 30 2000. ICue Publishing.

[37] J. Odell, H. V. D. Parunak, and B. Bauer. Representing
agent interaction protocols in UML. In P. Ciancarini and
M. Wooldridge, editors, Proceedings of First International
Workshop on Agent-Oriented Software Engineering, Limer-
ick, Ireland, june, 10 2000. Springer-Verlag.

[38] J. Odell, H. V. D. Parunak, and M. Fleischer. Designing
effective agent organizations: Using roles. In A. Lucena,
F. Zambonelli, A. Omicini, and J. Castro, editors, Software
Engineering for Large-Scale Multi-Agent Systems. Springer-
Verlag, 2002.

[39] OMG. XMI 1.1. Technical Report 01-03-10, OMG, 2001.
[40] H. V. D. Parunak and J. Odell. Representing social struc-

tures in UML. In M. Wooldridge, G. Weiss, and P. Cian-
carini, editors, Second International Workshop on Agent-
Oriented Software Engineering (AOSE-2001), LNCS, Mon-
treal, Canada, May 2001. Springer-Verlag.

[41] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging
multi-agent systems using design artifacts: The case of in-
teraction protocols. In Proceedings of the First International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2002), Bologna, Italy, July 2002.

[42] G. Wagner. The agent-object-relationship metamodel: To-
wards a unified conceptual view of state and behavior. In-
formation Systems, 2002. to appear.

[43] G. Wagner. A UML profile for external AOR models. In
F. Giunchiglia, J. Odell, and G. Weiss, editors, Proceedings
of Third International Workshop on Agent-Oriented Soft-
ware Engineering (AOSE-2002), Bologna, Italy, July 2002.



[44] M. Wooldridge. Reasoning about Rational Agents. MIT
Press, 2000.

[45] M. Wooldridge. An Introduction to Multiagent Systems.
John Wiley and Sons, April 2002.

[46] M. Wooldridge, N. R. Jennings, and D. Kinny. The
Gaia methodology for agent-oriented analysis and design.
Journal of Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.


