
Prometheus: A Pragmatic Methodology for Engineering Intelligent Agents

Lin Padgham Michael Winikoff
RMIT University

{linpa,winikoff}@cs.rmit.edu.au

Abstract

Agents are a powerful technology with many significant
applications. A key issue in getting the technology into
mainstream software development is the development of
appropriatemethodologiesfor engineering agent-oriented
software. This paper presents thePrometheusmethodol-
ogy, which has been developed over several years in col-
laboration with Agent Oriented Software. The methodol-
ogy has been taught at industry workshops and university
courses. It has proven effective in assisting developers to
design, document, and build agent systems. Prometheus is
a detailed and complete (start to end) methodology for de-
veloping intelligent agents which has evolved out of indus-
trial and pedagogical experience, and which is supported
by tools. This paper gives a brief overview of the design
process as a whole and then discusses envisaged tool sup-
port as well as the implemented tool prototypes we have
been using.

1 Position Statement

Agents are a powerful technology with many signifi-
cant applications, both demonstrated and potential [8, 7].
A key issue in getting the technology into the mainstream
of software development is the development of appropri-
atemethodologiesfor engineering agent-oriented software.
This paper motivates and presents thePrometheus1 method-
ology for developing intelligent agent systems.

We consider a methodology to encompass (i) a set of
concepts used; (ii) notations for modelling aspects of the
software (requirements, designs, implementation); and (iii)
a process that is followed in order to produce the software.

The Prometheus methodology has been developed over
the last several years in collaboration with Agent Oriented

1Prometheus was the wisest Titan. His name means “forethought” and
he was able to foretell the future. Prometheus is known as the protector
and benefactor of man. He gave mankind a number of gifts including fire.
(http://www.greekmythology.com/)

Software2 (AOS). Our goal in developing Prometheus was
to have a process with associated deliverables which can be
taught to industry practitioners and undergraduate students
who do not have a background in agents and which they
can use to develop intelligent agent systems. To this end
Prometheus isdetailedand completein the sense of cov-
ering all the stages of software development as applied to
agent systems.

We believe that particular strengths of the Prometheus
methodology include:

• Provision of “start-to-end” support (from specification
to detailed design, implementation and testing), in-
cluding adetailed process, along with design artifacts
constructed and steps for deriving artifacts.

• Hierarchical structuring mechanisms which allow de-
sign to be performed at multiple levels of abstraction.
Such mechanisms are crucial to the practicality of the
methodology for large applications.

• The structured nature of the design artifacts facili-
tates development of tool support, especially auto-
mated cross checking of design artifacts, and auto-
mated provision of skeleton artifacts at certain stages.
Partial tool support already exists.

• Support for detailed design of the internals ofintelli-
gentagents. This necessarily makes increased assump-
tions about the implementation platform. The detailed
design assumes a plan based system where agents re-
act to events, based on their beliefs about the situation.
It is particularly well suited to BDI type systems.

• The fact that the methodology has evolved out of prac-
tical industrial and pedagogical experience, and thus
addresses issues in designing agent systems that have
been experienced by both industrial practitioners and
undergraduate students.

Prometheus also uses an iterative process over the phases
described in this paper, rather than a linear “waterfall”

2http://www.agent-software.com

1

model, although the amount of work on the earlier phases
decreases as the design progresses, just as the amount of
work on later phases increases.

Designs for large systems are almost always developed
incrementally with many revisions. When revising any arte-
fact, be it documentation, code, or design, it is easy to in-
troduce inconsistencies and minor errors. We have found
the prototype tool we have developed extremely useful for
checking and maintaining design consistency across vary-
ing levels of detail. The automatic generation of skeleton
code from design artifacts in the tool prototype is also ex-
tremely useful, and has encouraged students to do design
prior to coding.

We have worked with development of agent software for
eight years and have during this time had a wealth of expe-
rience in trying to teach students to build such systems. The
Prometheus methodology has partially grown out of this ex-
perience and we have noticed an enormous difference in the
last few years, in the ability of our students to develop agent
systems. Previously they would flounder and end up build-
ing a system which made little real use of agents. using
Prometheus, third year undergraduates are now able to build
reasonable agent systems in a one semester course. Over the
last summer vacation a second year student was given a de-
scription of the methodology and a description of an agent
application (in the area of Holonic Manufacturing). With
only (intentionally) limited support, the student was able to
design and implement an agent system to perform Holonic
Manufacturing using a simulator of a manufacturing cell.
Although this is only anecdotal evidence that the method-
ology is helpful, it has had a very significant effect on our
ability to teach students to program agent systems.

The methodology is also taught to industry software de-
velopers who are starting to use the JACK intelligent agents
development environment [2], and has been successful in
introducing them to methods to assist them in design of
agent applications.

In this paper we give a brief overview of the design pro-
cess as a whole, focussing in somewhat more detail on the
Architectural Design, in order to give some flavour of the
methodology. We discuss envisaged tool support as well as
the implemented tool prototypes we have been using. There
is not room in a paper of this length for much comparison
with other methodologies, but we mention this briefly in
section 4, in particular discussing the relationship to UML.

2 The Prometheus Methodology

ThePrometheusmethodology [15] includes three design
phases, where artifacts are produced which are used in both
production of skeleton code for implementation, and for de-
bugging and testing. Thesystem specification phasefocuses
on identifying the basic functionalities of the system, along

actions and p e r ce p ts

Scenarios

I nte r action
diag r am s

P rot ocol s

I nitial
C ap ab il ity
de scr ip tor s

A g ent
d escrip t ors

C ap ab il it y
d escrip t ors

P l an
d escrip t ors

D at a
d escrip t ions

E v ent
d escrip t ors

Sy st em
O v erv iew

A g ent
O v erv iew

C ap ab il it y
ov erv iew

ag e nt
g r ou p ing

ag e nt
acq u aintance

sh ar e d
data

e v e nts

De
ta

ile
d
de

sig
n

Ar
ch

ite
ct

ur
al
 de

sig
n

Sy
st

em
sp

ec
ifi

ca
tio

n

f inal de sig n
ar tif act
inte r m e diate
de sig n tool
cr ossch e ck
de r i v e s

Key

S ys t em g o a l s

Figure 1. Phases, artifacts and relationships
in the design process

with inputs (percepts), outputs (actions) and any important
shared data sources. Thearchitectural design phaseuses
the outputs from the previous phase to determine which
agents the system will contain and how they will interact.
The detailed design phaselooks at the internals of each
agent and how it will accomplish its tasks within the overall
system. Figure 1 indicates the main design artifacts arising
from each of these phases as well as some of the intermedi-
ary items and relationships between items.

Tools from OO analysis and design are adapted in several
places as appropriate. For example, Prometheus’ scenarios
are a variant of the scenario part of UML’s use cases. while
our interaction diagrams are essentially UML sequence di-
agrams.

We describe the methodology using a running example:
an online bookstore that assists customers in finding and
choosing books, manages deliveries, stock, customer and
supplier information, and does selective advertising based
on interests. Space limitations prevent us from describing in
detail all aspects of the Prometheus methodology. However,
we hope that some understanding of its structure, phases,
artifacts and activities can be gained. We are not able to
cover testing and debugging in this paper, but some of this
is covered in [17].

2.1 System specification

Before starting to design or build any software system
there is discussion with clients, managers or other stake-
holders regarding the general purpose of the system. We do
not cover the preliminary part of this discussion, but start
from the point at which it is possible to start specifying
some of the details arising out of such discussions.

2

Agent systems are typically situated in a changing and
dynamic environment, which can be affected, though not
totally controlled by the agent system. One of the earliest
questions which must be answered is how the agent system
is going to interact with this environment. We call incom-
ing information from the environment “percepts”, and the
mechanisms for affecting the environment “actions”.

As discussed in [21] it is important to distinguish be-
tween percepts and events: an event is a significant occur-
rence for the agent system, whereas a percept is raw data
available to the agent system. Often percepts can require
processing in order to identify events that an agent can react
to. For example, if a soccer playing robot’s camera shows a
ball where it is expected to be then this percept is not signif-
icant. However, if the ball is seen where it is not expected
then thisis significant.

Actions may also be complex, requiring significant de-
sign and development outside the realm of the reasoning
system. This is especially true when manipulation of phys-
ical effectors is involved. We shall not address percept pro-
cessing and actions any further in this paper, although iden-
tification and specification of these are an important part of
the initial and ongoing design process.

The online bookstore’s percepts and events include
customers visiting the website, selecting items, placing or-
ders using forms, and receiving email from customers, de-
livery services and book suppliers. Actions include bank
transactions, sending email, and placing delivery orders.

In parallel with identifying or specifying (which of these
will depend on the situation) the percepts and actions the
developer must start to describe what it is the agent system
should do in a broader sense - the goals and functionalities3

of the system. For example, in order to define the book store
we may have goals such asmaintain stock levelsandpro-
vide competitive priceswith related functionalities such as
“stock ordering”, “stock monitoring”, “competitor moni-
toring” and“pricing review” . These goals and functionali-
ties start to give an understanding of the system.

It is important in defining functionalities that they be
kept as narrow as possible, dealing with a single aspect or
sub-goal of the system. If functionalities are too broad they
are likely to be less adequately specified leading to potential
misunderstanding.

In defining a functionality it is important to also define
information required and produced by it. The functional-
ity descriptor contains a name, a short natural language de-
scription, a list of actions, a list of relevant percepts, data
used and produced and a brief description of interactions
with other functionalities.4 For example, the following de-

3A number of methodologies call these “roles”. We prefer to avoid
overloading the term since it has a similar, but non-identical, meaning in
the context of teams of agents.

4Any of these except name and description may be empty.

scribes thewelcomingfunctionality in the online bookstore.

NAME: Welcoming
Description: Welcomes a new visitor to the world wide
web site (with personalised information if possible).
Percepts/events/messages:CustomerArrived (message),
CustomerInformation (message)
Messages sent:CustomerInformationRequest (message),
CustomisedWWWPage (message),
Actions: DisplayCustomisedWWWPage
Data used:CustomerDB, CustomerOrders
Interactions: CustomerManager (via CustomerInfor-
mationRequest, CustomerInformation) OnlineInteraction
(via CustomisedWWWPage, CustomerArrived)

Each functionality should be linked to some system goal,
while each goal should result in one or more functionality,
although there may not be a one to one mapping.

While functionalities focus on particular aspects of the
system,scenariosgive a more holistic view of system pro-
cessing. The basic idea is borrowed from object oriented de-
sign. However, the scenarios are given slightly more struc-
ture.

The central part of a scenario in Prometheus is the se-
quence of steps describing an example of the system in op-
eration. Each step in the scenario is one of the following:

• incoming event/percept (→ receiving functionality)

• message (sender→ receiver)

• activity5 (functionality)

• action (functionality)

These steps can optionally have data read and data written
noted.

Our scenario templates contain an identification number,
a brief natural language overview, an optional field called
context which indicates the situations in which this scenario
could occur – i.e. its preconditions, the sequence of steps,
a summary of all the information used in the various steps,
and a list of small variations. Because a scenario captures
only one particular sequence of steps it can be useful to in-
dicate small variations with a brief description. Any major
variations should be a separate scenario.

Scenario: Book Order
Overview: The user orders a book. Delivery options are
explored and then confirmed (with an OrderRequest). The
books are shipped, stock updated, and the user notified.
Context: Assumes the book is in stock.
Steps:

1. EVENT BookOrder (→ Online Interaction)
5We use the termactivity to denote anything done within the function-

ality - typically some kind of computation

3

2. DeliveryOptionQuery (Online Interaction→ Transport
Information)
3. DeliveryOptions (Transport Information→ Online
Interaction) Data read: Transport DB
4. Obtain preferred delivery option (Online Interaction)
5. MakePayment (Online Interaction→ Sales Transac-
tion)
6. ACTION BankTransaction (Sales Transaction)
7. PlaceOrder (Sales Transaction→ Order Handling)
8. Register order (Order Handling) Writes data: Cus-
tomerOrders
9. ACTION EmailCourierCompany (Order Handling)
10. DecreaseStock (Order Handling→ Stock Manager)
Variations: steps 9 (email courier) and 10 (decrease
stock) replaced with notification of delay (Order Handling
to Customer Contact) and then placing an order for more
stock (Order Handling to Stock Manager).

2.2 Architectural design

A major decision to be made during architectural de-
sign is which agent types the system should have. We as-
sign functionalities to agents by analysing the artifacts of
the previous phase to suggest possible assignments of func-
tionalities to agents. These are then evaluated according to
the traditional software engineering criteria of cohesion and
coupling.

Once we have decided upon the agents in the system we
identify which agents react to which percepts or environ-
mental events, as well as which agents perform particular
actions on the external environment. In addition we specify
the messages that are sent between agents, and determine
the major data repositories. These items form the overall
design of the system and are depicted in thesystem overview
diagram. The system overview diagram is perhaps the sin-
gle most important product of the design process. It ties
together agents, data, external input and output, and shows
the communication between agents.

The system overview diagram shows the pathways of
communication - which agents talk to which other agents
- but not thetiming of communication – which messages
are followed by which other messages. An indication of the
timing of communication is captured initially in the scenar-
ios which describe processing. This can then be described
in the form of agent interaction diagrams which show mes-
sage passing between agents. Like scenarios, these depict
one possible sequence of messages between agents. In or-
der to describe all possible interactions we develop inter-
action protocols, depicted using the Agent UML (AUML)
notation [14].

The process of identifying agents by grouping function-
alities involves analysing the reasons for and against group-
ings of particular functionalities. If functionalities use the

same data it is an indication for grouping them, as is signif-
icant interaction between them. Reasons against groupings
may be clearly unrelated functionality or existence on dif-
ferent hardware platforms. More generally, we seek to have
agents which have strong internal cohesion and loose cou-
pling to other agents.

The main reasons for combining functionalities into a
single agent are:

• The functionalities seem related - it “makes sense” to
group them. For example, Competitor Monitoring and
Pricing Review functionalities in the electronic book-
store example.

• The functionalities require a lot of the same informa-
tion. If grouped into a single agent this can then be
represented in internal agent data structures. If sep-
arate agents are used the information must be passed
via messages unless a shared data store is used which
is not usually a good design decision.

Reasons fornotgrouping functionalities include:

• The functionalities are clearly unrelated

• The functionalities exist on different hardware plat-
forms

• Security and privacy - if data associated with one func-
tionality should not be available to another functional-
ity.

• Modifiability - if a functionality will change, or will be
modified by different people.

One technique that we use to systematically examine the
properties which lead to coupling is thedata coupling di-
agram. A data coupling diagram consists of the function-
alities and all identified data (not only persistent data, but
also data the functionalities require to fulfil their job). Di-
rected links are then inserted between functionalities and
data, where an arrow pointing towards the data indicates the
data isproduced or written bythat functionality, whereas an
arrow pointing towards the functionality indicates the data
is used bythe functionality. A double-headed arrow indi-
cates that the functionality both uses and produces the data.
An example data coupling diagram6 for the bookstore show-
ing one possible grouping of functionalities into agents is
shown below.

6This particular diagram is actually reached after some analysis and
refinement from the diagram first produced.

4

Book DB

S t oc k O r d e r s

C u s t om e r O r d e r s

De l i v e r y P r ob l e m s

C u s t om e r DB

C om p e t i t or
I n f or m a t i on

P r i c e S e t t i n g

P r i c i n g S t r a t e g y S e l e c t i on

S t oc k M a n a g e m e n t

Book F i n d i n g

O n l i n e I n t e r a c t i on

S a l e s T r a n s a c t i on

C u s t om e r C on t a c t

De l i v e r y P r ob l e m H a n d l i n gT r a n s p or t DB
T r a n s p or t I n f or m a t i on

O r d e r H a n d l i n g

C u s t om e r M a n a g e r

S u p p l i e r DB S u p p l i e r I n f or m a t i on

W e l c om i n g

BookDBS t oc k
A r r i v a l L i s t

The diagram can be checked to ensure that all data is
produced somewhere, unless it has been determined that it
is provided externally on system start-up and is static. Also,
the existence of data that is produced but not used usually
indicates an omission elsewhere in the design.

The diagram can be assessed visually for groupings
which are linked by their data use. Each such grouping must
also be assessed for cohesion and with respect to whether
there is some reason to keep the functionalities separated. It
is one mechanism to assist in analysis of how functionalities
may be combined.

To evaluate a potential grouping for coupling we use
an agent acquaintance diagram. This diagram simply links
each agent with each other agent with which it interacts. A
design with fewer linkages is less highly coupled and there-
fore preferable.

A simple heuristic for assessing cohesion is whether an
agent has a simple descriptive name which encompasses all
the functionalities without any conjunctions (“and”). For
example, the SalesAssistant agent combines the function-
alities of OnlineInteraction, SalesTransaction and Welcom-
ing; yet it has a simple descriptive name. This rule of thumb
is obviously not universally applicable, however, we have
found it to be a useful (and quick) way of assessing cohe-
sion in proposed designs.

Once a decision has been made regarding agent types,
high level information can be recorded in agent descriptors,
similar to functionality descriptors. Questions which need
to be resolved about agents at this stage include:

• How many agents of this type will there be (singleton,
a set number, or multiple based on dynamics of the
system, e.g. one sales assistant agent per customer)?

• What is the lifetime of the agent? If they are created or
destroyed during system operation (other than at start-
up and shut-down), what triggers this?

• Agent initialisation - what needs to be done?

• Agent demise - what needs to be done?

• What data does this agent need to keep track of?

• What events will this agent react to?

In addition we extract from the functionality descriptors,
information about goals, percepts and events, actions, data
and messages and add these to the agent descriptor.

For example consider the following agent descriptor
from our electronic bookstore example:

Name: Sales Assistant agent
Description: greets customer, follows through site, as-
sists with finding books
Cardinality: one/customer.
Lifetime: Instantiated on customer arrival at site. Demise
when customer logs out or after inactivity period.
Initialisation: Obtains cookie. Reads Customer DB.
Demise:Closes open DB connections.
Functionalities included: Online Interaction, Sales
Transaction, Welcomer, Book Finder.
Uses data:Customer DB, Customer Orders, Book DB.
Produces data:Customer preferences, orders, queries
Goals: Welcome customer; Update customer details; Re-
spond to queries; Facilitate purchases;
Events responded to:new arrival; customer query; cus-
tomer purchase; credit check response customer response;
Actions: Display information to customer (greetings,
book info, info requests, Display customised WWW page,
RequestCreditCheck messages
Interacts with: Warehouse Manager (book request proto-
col), Delivery Manager (order protocol, order query pro-
tocol), Customer Manager (customer information query
protocol, customer information update protocol)

Having identified the agent types we proceed to capture
the top level structure of the system using a system overview
diagram. We identifyevents(i.e. significant occurrences)
that will be generated as a result of information from the en-
vironment (the percepts), and will be noticed by the agents,
andshared data objects.

A good design will minimise shared data objects, al-
though there may be situations where this makes sense. If
multiple agents will be writing to shared data objects this
will require significant additional care for synchronisation
(as agents operate concurrently with each other). Often
shared data objects can be avoided by having the data source
managed by a single agent, with information provided to
other agents as needed. Sometimes each agent can have
its own version of the information, without there being any
need for a single centralised data object. Data objects could
be specified using traditional object oriented techniques or
database design techniques as appropriate.

The system overview diagramties together the agents,
events and shared data objects. It is arguably the single most
important artifact of the entire design process, although of
course it cannot really be understood fully in isolation. By

5

percept
i n ci d en t
a cti o n
a g en t

d a ta

pro to co l
pro to co l
w i th repl y

m es s a g e
m es s a g e
w i th repl y
ev en t

ca pa b i l i ty pl a n

Figure 2. Notation for System Overview and
other diagrams

viewing a system overview diagram we obtain a general un-
derstanding of how the system as a whole will function, in-
cluding interactions between agents. Agent descriptors and
protocols provide additional detail needed to understand the
high level functioning of the system. Similar diagrams are
used at lower levels of the system as it is broken down in a
hierarchical fashion. A (partial) system overview diagram
for the electronic bookstore is shown below; the notation
used is summarised in figure 2.

��

��

��

��

�	
��

����������
���
	�

������

������	�

	���

��������	�

�
�
�
�
��
�
�
	�

�
��
��
	���

�

�
	

�
	
�
�
	�
��
	
��
	��

�	
��	���	
��	��

�	
��	�������
	� �	��

	���

���	�

�����

�����	

�	
��	��

�	
��	��

��	��

�������	��

����

��

����
�	�

��

������	�

��

 �������

��

���

���������

��	�

����

The final aspect of the architectural design is to specify
fully the interactionbetween agents. Interaction diagrams
are used as an initial tool for doing this, while fully specified
interaction protocols are the final design artifact.

Interaction diagramsare borrowed directly from object
oriented design (UML’s sequence diagrams), showing inter-
action between agents rather than objects. An advantage of
the highly structured scenarios developed in the specifica-
tion phase is that they can be used directly for producing
interaction diagrams. Often at this stage there is some mod-
ification and refinement of scenarios to produce simpler in-
teraction diagrams.

Interaction diagrams, like scenarios, give only a par-
tial picture of the system’s behaviour. In order to have
a precisely defined system we progress from interaction
diagrams tointeraction protocols, specified in AUML,

which define precisely which interaction sequences are
valid within the system. These are generalisations of the
interaction diagrams. At each point that a message is sent,
the question must be asked as to whether there are other
choices that could be made - no message sent or a differ-
ent message. Similarly the question must be asked for each
message, whether it is necessarily sequenced, or whether
some parallelism is allowed.

2.3 Detailed design

Detailed design focuses on developing the internal struc-
ture of each of the agents and how it will achieve its tasks
within the system.

Detailed design is, by its nature, specific (at least to some
degree) on the model of agents used; specifically on the
internals of agents. In order to develop a detailed design
process and associated models we need to select a partic-
ular agent model. We have chosen to focus onplan-based
agents that use a library of user-defined plans. Thus, the
results of the detailed design phase include a collection of
event-triggered plans. These can be mapped directly to the
implementation constructs that are provided by certain plan-
based implementations, including the various implementa-
tions of Belief, Desire, Intention (BDI) systems (e.g. PRS,
dMARS, JAM, or JACK). Thus the detailed design phase is
particularly well suited for such systems.

Although our detailed design caters well for BDI agents,
it is not limited to them. The principles are easily adapted to
the specifics of whichever development platform has been
chosen, as long as it is within the broad general category
of agents which use plans and react to events. The earlier
phases of the methodology arenot specific to a given agent
model.

The focus of the detailed design phase is on defining ca-
pabilities (modules within the agent), internal events, plans
and detailed data structures. A progressive refinement pro-
cess is used which begins by describing agents’ internals in
terms of capabilities. The internal structure of each capabil-
ity is then described, optionally using or introducing further
capabilities. These are refined in turn until all capabilities
have been defined. At the bottom level capabilities are de-
fined in terms of plans, events, and data.

The functionalities from the specification phase provide
a good initial set of capabilities, which can be further re-
fined if desired. Sometimes there is also functionality akin
to “library routines” which is required in multiple places -
either within multiple agents, or within multiple capabili-
ties within a single agent. Such functionality should also be
extracted into a capability which can then be included into
other capabilities or agents as required.

Capabilities are allowed to be nested within other capa-
bilities and thus this model allows for arbitrarily many lay-

6

ers within the detailed design, in order to achieve an under-
standable complexity at each level.

Each capability should be described by a capability de-
scriptor which contains information about the external inter-
face to the capability - which events areinputs and which
events areproduced (as inputs to other capabilities). It also
contains a natural languagedescription of the functionality,
a unique descriptivename, information regardinginterac-
tions with other capabilities, orinclusions of other capa-
bilities, and a reference to dataread and written by the
capability. We use structured capability descriptor forms
containing the above fields.

The agent overview diagram provides the top level view
of the agent internals. It is very similar in style to the system
overview diagram, but instead of agents within a system,
it shows capabilities within an agent. This diagram shows
the top level capabilities of the agent and the event or task
flow between these capabilities, as well as data internal to
the agent. By reading the relevant capability descriptors,
together with the diagram, it is possible to obtain a clear
high level view of how the modules within the agent will
interact to achieve the overall tasks of the agent as described
in the agent descriptor from the architectural design.

A further level of detail is provided by capability dia-
grams which take a single capability and describe its in-
ternals. At the bottom level these will contain plans, with
events providing the connections between plans, just as they
do between capabilities and between agents. At interme-
diate levels they may contain nested capabilities or a mix-
ture of capabilities and plans. These diagrams are similar in
style to the system overview and agent overview diagram,
although plans are constrained to have a single incoming
(triggering) event.

The final design artifacts required are the individual plan,
event and data descriptors. These descriptions provide the
details necessary to move into implementation. Exactly
what are the appropriate details for these descriptors will
depend on aspects of the implementation platform. For ex-
ample if the context in which a plan type is to be used is split
into two separate checks within the system being used (as is
the case in JACK) then it is appropriate to specify these sep-
arately in the descriptor. Fields regarding what information
an event carries assumes that events are composite objects
able to carry information, and so on.

The plan descriptors we use provide anidentifier , the
triggering event type, events, messages and actions, the
plan stepsas well as a short natural languagedescription,
a context specification indicating when this plan should be
used and a list of dataread andwritten .

Event descriptors are used to fully specify all events, in-
cluding those identified earlier. The event descriptor should
identify thepurposeof the event and anydata that the event
carries. We also indicate for each event itscoverage: how

many plans should be applicable to handle it? This is gen-
erally a range with the interesting values being zero, one, or
many. Interesting cases include1 − 1 (always a single ap-
plicable plan),1−N (there will always be a plan to handle
the event and there may be more than one possible plan),
0− 1 (there will never be more than one applicable plan in
a given situation, however it is possible for there to not be
any applicable plan), and0 − N . The coverage informa-
tion is useful for debugging: a common programming error
involves incorrect context conditions leading to the wrong
plan being used, or to an event not being handled because
no plan has is applicable.

Data descriptors should specify the fields and methods of
any classes used for data storage within the system. If spe-
cialised data structures are provided for maintaining beliefs,
these should also be specified.

An additional artifact that needs to be maintained as the
design evolves is thedata dictionary. The data dictionary
should be started at the beginning of the project and devel-
oped further at each stage. The data dictionary is important
in ensuring consistent use of names (for example, what is
called “delivery info” in one place in the design should not
be called “deliv. information” elsewhere).

3 Tool Support

In this section we describe the tool support for
Prometheus that Agent Oriented Software and ourselves
have developed. We begin by describing the support for
the Prometheus methodology that is currently provided by
the Jack Development Environment, including the recently-
added design tool. We then describe further support that
we have developed in a prototype tool and some ideas for
supporting the specification phase that have not yet been
implemented.

Our experience in using these tools has been positive.
In particular, the cross checking provided by the prototype
tool has been useful in finding inconsistencies in designs
and in helping ensure that a design remains consistent as it
is evolved.

3.1 JACK Support for Prometheus

The Jack Development Environment (JDE) provides a
graphical user interface that allows the structure7 of an
agent system to be built by drag-and-drop and by filling in
forms (see below, left). The JDE supports the Prometheus
methodology in that the concepts provided by JACK cor-
respond to the artifacts developed in Prometheus’ detailed

7Basically, everything except the bodies of plans. However, a graphical
editor for plan bodies is under development.

7

design phase. It is important to realise that the agent struc-
ture described in the JDE generates JACK code that can be
compiled and run.

A recent addition to the JDE is thedesign tool. This
is a graphical canvas that allows overview diagrams to be
drawn. However, unlike a drawing program, the diagrams
are structured and are linked to the underlying agent sys-
tem model. For example, the diagram above (right) was
constructed by dragging two events and a plan onto the
canvas. The links between the nodes are inserted (and la-
belled) automatically. If the diagram is changed (for exam-
ple by adding a link between two nodes) then the entities
involved are automatically updated. Likewise, if the enti-
ties are updated (for example, the plan is modified so that
it sends a message rather than posts an event) then the di-
agram is automatically updated. This automatic insertion
(and maintenance) of links ensures consistency between di-
agrams where possible.

Although consistency is maintained by the JDE in some
areas, for example the JDE does not allow type errors to be
made such as declaring a plan as handling a posted capabil-
ity, there are still a number of places where an agent system
design may become inconsistent. For example, since nodes
are added to diagrams by hand, it is possible to create an
agent overview diagram that accidently omits an event. It is
possible for an agent or capability to declare that it handles
a certain event without the agent/capability actually having
a plan to handle the event.

Finally, the JDE and design tool do not (yet) support the
earlier phases of the Prometheus methodology. For exam-
ple, the process of deciding on agent types by combining
functionalities, determining system functionality by devel-
oping use case scenarios and functionalities, and proceeding
from scenarios via interaction diagrams to interaction pro-
tocols are not supported by the current tool. Some of these
aspects are supported and addressed by the prototype tool
described below.

Our experience has been that the design tool allows for
the production of overview diagrams and that these are use-
ful in understanding the structure and “big picture” of an
agent system.

3.2 Prometheus Design Tool

The Prometheus Design Tool(PDT) is a prototype that
we have developed. It allows a user to enter and edit a de-
sign, in terms of Prometheus concepts; check the design for
a range of possible inconsistencies; automatically generate
a range of diagrams according to the methodology; and au-
tomatically generate a design description (in LATEX format)
that includes descriptors for each design entity, a design dic-
tionary, and the diagrams generated earlier.

PDT provides a graphical user interface (below) that al-
lows a user to enter design elements (capabilities8, events9,
agents, databases, and plans). Each of these has associated
information that matches the Prometheus descriptors. For
example, events have a coverage field, a sub-type field (e.g.
action, percept, message, event) as well as a name and a
description.

PDT supports the Prometheus methodology in a number
of ways. It supports the process of deriving agent types from
functionalities by deriving part of each agent’s interface10,
by cross checking the declared interface of an agent against
the functionalities that make up the agent type, and by gen-
erating coupling and acquaintance diagrams. It supports the
process of developing the internals of agents in the detailed
design phase by cross checking an agent’s internals against
the agent’s declared interface, checking the consistency of a
plan with its context, and by generating design diagrams at
different levels (system overview, agent overview, and mod-
ule overview).

We have found the cross checking to be very useful in
maintaining the consistency of an evolving design. We have
recently developed the design of the book store application
in detail, working part-time over a period of weeks. When
the design was first entered into PDT and cross-checked,
a number of inconsistencies were detected. These included
inconsistent naming of entities, and inconsistencies in send-
ing and receiving messages (for example, the descriptor for
functionality A would say it receives messagem1 from
functionality B, whereasm1 was actually being sent by
functionality C).

8We use this to represent both functionalities and capabilities.
9Encompassing percepts, actions, messages, and events.

10At the time of writing this has not yet been implemented.

8

As we have continued to develop the design the cross
checking has proved to be valuable in ensuring that changes
are made consistently across the design, for example, when
we change a functionality by removing a message that it
sends, the cross checking tells us where the message is ex-
pected and reminds us that we need to either modify the re-
cipients by removing the expected message, or have another
functionality post the message in question.

The cross-checking procedure consists of the following
steps:

1. Check for undefined references and unused (unreach-
able) components.

2. Check for correct type and sub-type usage.

3. Check scenarios for consistency.

4. Check interface consistency of composite (see below)
components.

We begin with a few definitions before discussing each of
these in turn. The first two steps are straightforward and so
we focus on the third and fourth.

Plans, events, and databases areatomicdesign compo-
nents: they do not have children components. Agents and
capabilities arecomposite: they havechildren that are ei-
ther plans or capabilities. For the purposes of checking we
also create a single implicit (composite) component of type
systemthat has all of the defined agents as children.

Components of type system, agents, capabilities, and
plans all have aninterface: a definition of the events that
are incoming and outgoing, as well as a list of databases
that are read or written. For the purposes of cross-checking
designs reading data is treated identically to an incoming
event and writing data is treated identically to an outgoing
event. We thus associate with each design componentC the
following attributes:

• A set of children componentschildren(C), defined to
be empty for atomic components.

• An interface, defined by two sets: the set of incoming
events and read databasesIC , and the set of outgoing
events and written databasesOC . The interface set is
only defined for plans and for composite components.

Check for undefined references and unused (unreach-
able) components: It is clearly an error for a component
to refer to an undefined component and this is checked in
the obvious way. Although not an error, it is unusual for
an component to be defined but not used. All components
that are reachable from the system component by following
children or interfaces are considered reachable. Warnings
are issued for any unreachable components.

Check for correct type and sub-type usage:The fol-
lowing simple constraints are checked:

• Actions cannot appear in an incoming interface.

• Percepts cannot appear in an outgoing interface.

• The interface of a component (where defined) must
contain only events and databases.

• The children of a (composite) component can only be
capabilities or plans.

• The interface of the system component can only in-
clude actions (outgoing) or percepts (incoming).

Check scenarios for consistency:11 As discussed in
section 2.1 we use a fairly structured format for the steps in
a scenario. This allows scenarios to be checked for internal
consistency and for scenarios to be checked for consistency
against functionalities (and to partially derive them).

We perform simple consistency checking on scenarios
using the notions ofinitiative andactive participants. Once
an event is received, the functionality that has received it
has the initiative. It can then perform actions/activities or
send messages. Sending a message transfers the initiative
to the recipient functionality. A warning is issued if a func-
tionality acts in some way without having the initiative. The
notion of active participants is similar to the notion of ini-
tiative, except that the active participant is a set that is ex-
tended by message sending and does not contract. It is an
error for a functionality to act without it being in the set of
active participants.

For example, if step 2 of the example scenario in sec-
tion 2.1 was accidently omitted, then at step 3 Transport
Information would be sending a message without being in
the active participant set. This would be reported by the
cross checking algorithm as an error. If, instead, step 3 was
deleted, then at step 4 Online Interaction would be perform-
ing an activity without having the initiative, (although it is
in the active participant set). This would be reported as a
warning.

The interface of a functionality should be a superset of
what is implied by its usage in scenarios. For example,
where a scenario contains a step where an event is received
by a functionality, then that event should be in the incoming
interface of the functionality. Likewise, where a message
is sent from functionalityC1 to C2, then the message type
should be inC1’s outgoing interface and inC2’s incoming
interface. This constraint allows for functionalities to be
partly derived from scenarios, and for them to be checked
against scenarios.

Check interface consistency of composite compo-
nents: Consider a composite component, say an agentA.
AgentA has children (plans and capabilities) and each child
has a defined interface. Any incoming event that appears in
a child’s interface must come from somewhere. It can either

11At the time of writing this has not been implemented.

9

come from outside the agent, or from another12 component
that is internal to the agent (or both). For example, ifA has
as children a planP and a capabilityC andP is triggered
by the incoming eventE, then eitherA has to allow forE
to come in (from another agent), orE must be anoutgoing
event ofC (orP). This situation is depicted below: one (or
both) of the edges labelled 1 and 2 must be present, other-
wise there is no source for the eventE.

Agent A

E

P

C

Another Agent

2

1

This condition can be defined formally as follows. Let
C be a composite component and letIC andOC be its in-
terface. We define thecombined incoming interfaceof C ’s
children I+

C = {i | ch ∈ children(C) ∧ i ∈ Ich} and
the outgoing interface ofC ’s childrenO+

C = {o | ch ∈
children(C) ∧ o ∈ Och}. Then the condition just says that
any interface component (event or database) in a child’s
incoming interface (I+

C) that is not in some child’s outgo-
ing interface (O+

C) must be in the parent component’s in-
coming interface (IC). HenceIC must include anything in
I+
C that is not inO+

C , thusI+
C \ O

+
C ⊆ IC and conversely

O+
C \ I

+
C ⊆ OC .

Another, simpler, condition is that any component that is
in C ’s interface (whereC is a composite component – that
is, excluding plans) must be realised13 in a plan contained
in (a descendent of)C. This condition can be defined as
IC ⊆ I+

C andOC ⊆ O+
C . Putting these two conditions

together we have that:

(I+
C \O

+
C) ⊆ IC ⊆ I+

C

(O+
C \ I

+
C) ⊆ OC ⊆ O+

C

These do not determine the interface of a component, but
only constrain it. The “looseness” corresponds to the case
where an event can come from both the outsideand from
another child.

A consequence of the definitions above is that an agent
or capabilitymustexport any action or percept (since a per-
cept/action cannot appear in bothI+

C andO+
C).

Once cross-checking has been performed the tool gener-
ates a number of design diagrams: thesystem overview(all
agents and their interfaces), a collection ofagent/capability

12Actually it can also come from the same component. For example, a
plan can post an event that will trigger another instance of itself. This is
just the agent equivalent of a recursive call.

13Only plans contain code that is executed, so if, for example, a capabil-
ity reads a database or posts an event, then it must contain a plan that does
these things.

diagrams (all capabilities/plans of the agent/capability and
their interfaces), acoupling diagram (capabilities and ex-
ported data), and anacquaintancediagram (all agents and
links between those agents that interact).

The diagram generation creates the diagram elements
and links automatically. This is important for two reasons:
firstly, it saves the designer having to manually create mul-
tiple diagrams; secondly, and more importantly, it means
that mistakes such as leaving out edges or nodes cannot be
made.

The placement of nodes (i.e. determining their(x, y) co-
ordinates) is done manually by dragging them – links are
automatically repositioned (see below). The diagrams posi-
tions are saved and encapsulated postscript is generated.

This encapsulated postscript is used in the gener-
ated design report. The report (in LATEX format) in-
cludes a descriptor for each design element including au-
tomatically generated cross-referencing. Generated cross-
referencing includes for agents and capabilities: what
other components they interact with, and via which
event/database; and for events and databases: what com-
ponents read/post/write/receive them.

4 Related Work

There is currently a large amount of work being done
in agent-oriented software engineering methodologies (e.g.
[1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 18, 19, 22], and see the
references in [15]). It is not possible in a brief conference
paper to do justice to the significant amount of work being
done.

The GAIA methodology [22] has, like Prometheus, been
developed over a number of years by people experienced in
building agent systems. However we found that the lack of
a detailed design process - intentionally absent due to a de-
sire for generality - meant that it did not provide sufficient
support for the needs of those we were working with. There
are similarities between Prometheus and Gaia for specifica-
tion and architectural design. Our agent acquaintance dia-
grams are essentially the same as those used by Gaia, and
the roles of Gaia are similar in concept to functionalities
in Prometheus, although there are slightly different things
which are considered.

10

The Tropos methodology covers early requirements to
detailed design. Its detailed design is oriented very specif-
ically towards JACK as an implementation platform. Com-
pared with Prometheus, Tropos provides an early require-
ments phase, which Prometheus doesn’t (although, it would
certainly be possible to adapt Tropos’ early requirements
phase for use in Prometheus). Prometheus provides a more
detailed process – particularly in the architectural design
phase. Prometheus also provides tool support and cross
checking; tool support for Tropos is currently only in the
form of a diagram editor14, rather than the consistency
checking and automatic generation of some parts of the de-
sign that is part of PDT.

The MaSE methodology [5] is one of the few methodolo-
gies that appears to have significant tool support. However,
MaSE is unsuitable for our purposes since it views agents
“. . . merely as a convenient abstraction, which may or may
not possess intelligence” [5, p232]. Thus, MaSE (intention-
ally) does not support the construction of plan-based agents
that are able to provide a flexible mix of reactive and proac-
tive behaviour.

Because the field is still young, none of the available
methodologies can claim extensive use well beyond the
group which has developed them. However the widespread
development and use of these many new methodologies
clearly indicates a need that is starting to be met, to pro-
vide more specific design methodologies for building agent
systems.

Some approaches are based on taking UML15 and ex-
tending or modifying it, as is done by Odell et. al. [14] as
well as others with a slightly different approach (e.g. [16]).
This approach is sometimes justified by the observation that
agents are just a special case of active objects.

In our experience, just extending UML did not pro-
vide sufficient assistance to start thinking in a different
paradigm. Although agents can in some ways be seen as
a specialised type of object, it is important to focus on such
concepts as goals, plans and descriptions of situations. This
is better supported by a more specialised methodology, bor-
rowing and drawing from UML as appropriate.

In the current state-of-the-art, where the concepts and
notations for designing agent systems are still not agreed,
we believe it is best to consider possibilities without the
world-view suggested by OO. Our students who just used
modified OO design, had enormous difficulty in conceptu-
alising agent applications and ultimately in building good
agent systems.

Some of the significant differences between agent ori-
ented design in Prometheus and OO methodologies are:

14Conversation with Anna Perini at AAMAS’02 (July, 2002)
15Strictly speaking UML is not a methodology but rather a notation.

However it is often coupled, either explicitly or implicitly with a method-
ology such as the Rational Unified Process (RUP).

• The provision of a process for determining the agents
in the system.

• Treating messages as components in their own right,
not just as labels on arcs.

• Distinguishing percepts and actions from messages,
and looking explicitly at percept processing.

• Distinguishing beliefs from agents: in OO both are
(passive) objects.

• The identification of agent life-cycle issues.

• The use of protocols to capture the dynamics of agent
interaction.

• The use of goals.

Although there are clear differences between
Prometheus and OO methodologies, there are also
commonalities. Although we do not believe that current
OO methodologies are sufficient, we certainlydo believe
that they are relevant – agents are software, and indeed,
many aspects of the Prometheus methodology have been
based on OO methods and notations. For example, the
scenarios are adapted from OO use-case scenarios; inter-
action diagrams are used as-is; AUML (itself an extension
of UML) is used as-is, and Prometheus follows the RUP
approach to applying an iterative process over clearly
delineated phases.

In the longer term we see integrating agent methodolo-
gies with OO methodologies (and specifically with UML,
since it is the de facto standard notation) as important steps
in making the agent methodology accessible to developers.
In this respect the work of [16] and [20] is valuable.

Certainly further work to compare and categorise the
growing number of proposed agent-oriented software en-
gineering methodologies extending the work of [18] would
be a valuable contribution.

5 Discussion and conclusions

We have briefly described the key aspects of the
Prometheus methodology. The methodology has been
in use for several years as a teaching tool, and has
also been taught in industry workshops (most recently at
Net.ObjectDays in Germany, October 2002). The feed-
back we have received indicates that it provides substantial
guidance for the process of developing the design and for
communicating the design within a work group. With stu-
dent projects it is abundantly clear that the existence of the
methodology is an enormous help in thinking about and de-
ciding on the design issues, as well as conveying the design
decisions.

11

There are a number of areas where the Prometheus
methodology and PDT are currently being extended. These
include extending PDT to support the specification phase
and moving from scenarios to interaction protocols, repre-
senting and using life-cycle information and cardinality in-
formation (e.g. in debugging), testing techniques, and eval-
uating the methodology. Evaluating a software engineering
methodology is difficult to do well, but is important.

We are also investigating how some of the design arti-
facts, such as the protocol definitions, and the capability di-
agrams, can be used for providing debugging and tracing
support within the implemented system [17]. Having a de-
sign methodology which can be used through to testing and
debugging is clearly advantageous in terms of an integrated
and complete methodology.

Acknowledgements: We would like to acknowledge
the support of Agent Oriented Software Pty. Ltd. and
of the Australian Research Council (ARC) under grant
CO0106934.

References

[1] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and
J. Treur. DESIRE: Modelling multi-agent systems in a com-
positional formal framework. Int Journal of Cooperative
Information Systems, 6(1):67–94, 1997.

[2] P. Busetta, R. R̈onnquist, A. Hodgson, and A. Lucas. JACK
Intelligent Agents - Components for Intelligent Agents in
Java. Technical report, Agent Oriented Software Pty. Ltd,
Melbourne, Australia, 1998.

[3] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez,
J. Pavon, P. Kearney, J. Stark, and P. Massonet. Agent ori-
ented analysis using MESSAGE/UML. In M. Wooldridge,
P. Ciancarini, and G. Weiss, editors,Second International
Workshop on Agent-Oriented Software Engineering (AOSE-
2001), pages 101–108, 2001.

[4] J. Debenham and B. Henderson-Sellers. Full lifecycle
methodologies for agent-oriented systems – the extended
OPEN process framework. InProceedings of Agent-
Oriented Information Systems (AOIS-2002) at CAiSE’02,
Toronto, May 2002.

[5] S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multia-
gent systems engineering.International Journal of Software
Engineering and Knowledge Engineering, 11(3):231–258,
2001.

[6] C. Iglesias, M. Garijo, and J. González. A survey of agent-
oriented methodologies. In J. M̈uller, M. P. Singh, and A. S.
Rao, editors,ATAL-98, pages 317–330. Springer-Verlag:
Heidelberg, Germany, 1999.

[7] N. Jennings and M. Wooldridge. Applications of intelligent
agents. In N. R. Jennings and M. J. Wooldridge, editors,
Agent Technology: Foundations, Applications, and Markets,
chapter 1, pages 3–28. Springer, 1998.

[8] N. R. Jennings. An agent-based approach for building
complex software systems.Communications of the ACM,
44(4):35–41, 2001.

[9] E. A. Kendall, M. T. Malkoun, and C. H. Jiang. A method-
ology for developing agent based systems. In C. Zhang
and D. Lukose, editors,First Australian Workshop on Dis-
tributed Artificial Intelligence, 1995.

[10] D. Kinny and M. Georgeff. Modelling and design of multi-
agent systems. InIntelligent Agents III: Proceedings of
the Third International Workshop on Agent Theories, Archi-
tectures, and Languages (ATAL-96). LNAI 1193. Springer-
Verlag, 1996.

[11] D. Kinny, M. Georgeff, and A. Rao. A methodology and
modelling technique for systems of BDI agents. In R. van
Hoe, editor,Seventh European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, 1996.

[12] J. Lind. A development method for multiagent systems. In
Cybernetics and Systems: Proceedings of the 15th European
Meeting on Cybernetics and Systems Research, Symposium
“From Agent Theory to Agent Implementation”, 2000.

[13] J. Mylopoulos, J. Castro, and M. Kolp. Tropos: Toward
agent-oriented information systems engineering. InSecond
International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS2000), June 2000.

[14] J. Odell, H. Parunak, and B. Bauer. Extending UML for
agents. InProceedings of the Agent-Oriented Information
Systems Workshop at the 17th National conference on Arti-
ficial Intelligence., 2000.

[15] L. Padgham and M. Winikoff. Prometheus: A method-
ology for developing intelligent agents. InThird Interna-
tional Workshop on Agent-Oriented Software Engineering,
July 2002.

[16] M. Papasimeon and C. Heinze. Extending the UML for de-
signing JACK agents. InProceedings of the Australian Soft-
ware Engineering Conference (ASWEC 01), Aug. 2001.

[17] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging
multi-agent systems using design artifacts: The case of in-
teraction protocols. InProceedings of the First International
Joint Conference on Autonomous Agents and Multi Agent
Systems (AAMAS’02), 2002.

[18] O. Shehory and A. Sturm. Evaluation of modeling tech-
niques for agent-based systems. In J. P. Müller, E. Andre,
S. Sen, and C. Frasson, editors,Proceedings of the Fifth In-
ternational Conference on Autonomous Agents, pages 624–
631. ACM Press, May 2001.

[19] L. Z. Varga, N. R. Jennings, and D. Cockburn. Integrating
intelligent systems into a cooperating community for elec-
tricity distribution management.Int Journal of Expert Sys-
tems with Applications, 7(4):563–579, 1994.

[20] G. Wagner. A UML profile for external AOR models. In
Third International Workshop on Agent-Oriented Software
Engineering, July 2002.

[21] M. Winikoff, L. Padgham, and J. Harland. Simplifying the
development of intelligent agents. In M. Stumptner, D. Cor-
bett, and M. Brooks, editors,AI2001: Advances in Artifi-
cial Intelligence. 14th Australian Joint Conference on Ar-
tificial Intelligence, pages 555–568. Springer, LNAI 2256,
Dec. 2001.

[22] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
methodology for agent-oriented analysis and design.Au-
tonomous Agents and Multi-Agent Systems, 3(3), 2000.

12

