
Analysis of a software product line architecture: an experience report

Robyn R. Lutz a,*,1, Gerald C. Gannod b,2

a Jet Propulsion Laboratory, California Institute of Technology and Department of Computer Science, 226 Atanasoff Hall,

Iowa State University, Ames, IA 50011-1041, USA
b Department of Computer Science and Engineering, Arizona State University, Box 875406, Tempe, AZ 85287-5406, USA

Received 17 January 2002; received in revised form 9 April 2002; accepted 14 May 2002

Abstract

This paper describes experiences with the architectural specification and tool-assisted architectural analysis of a mission-critical,

high-performance software product line. The approach used defines a ‘‘good’’ product line architecture in terms of those quality

attributes required by the particular product line under development. Architectures are analyzed against several criteria by both

manual and tool-supported methods. The approach described in this paper provides a structured analysis of an existing product line

architecture using (1) architecture recovery and specification, (2) architecture evaluation, and (3) model checking of behavior to

determine the level of robustness and fault tolerance at the architectural level that are required for all systems in the product line.

Results of an application to a software product line of spaceborne telescopes are used to explain the approach and describe lessons

learned.

Published by Elsevier Science Inc.

1. Introduction

The analysis of a software product line architecture

investigates the extent to which a proposed architecture

supports both the shared requirements for all systems in

the product line and the distinct requirements pertaining
to individual systems in the product line. When the

product line implements mission-critical or high-per-

formance requirements, the analysis of the software

product line architecture must account for these addi-

tional constraints in the architectural design. This paper

describes experiences with the architectural specification

and tool-assisted architectural analysis of one such

mission-critical, high-performance software product
line. Topics include the architecture description lan-

guage representation of the product line, architecture

evaluation techniques, model checking of key behaviors,

and lessons learned from the application.

The paper is divided into six sections. Section 1

provides an overview of the process used in analyzing

the architecture. Section 2 presents the background,
namely an overview of the application domain (a

product line of spaceborne telescopes) and a discussion

of related work. Sections 3–5 describe the three main

steps in the architectural analysis process: architecture

recovery and specification (Section 3), architecture

evaluation (Section 4), and tool-assisted architecture

analysis (Section 5). Each of these three sections is

subdivided into (1) a process description for that step,
(2) an extended example of that step drawn from the

application domain, and (3) a discussion of the general

lessons learned, intended for developers of other critical,

high-performance product lines. Section 6, the con-

cluding section, summarizes the results for the archi-

tectural analysis of high-performance product lines.

The following paragraphs provide a brief overview of

the architectural analysis process. Fig. 1 depicts the
process graphically. Since this application built on an

existing product, rather than initiating a new product

line, the analysis began with an effort to recover, i.e., to

*Corresponding author. Tel.: +1-515-294-3654; fax: +1-515-294-

0258.

E-mail addresses: rlutz@cs.iastate.edu (R.R. Lutz), gannod@

asu.edu (G.C. Gannod).
1 This author�s research is supported in part by National Science

Foundation Grants CCR-0204139 and CCR-0205588.
2 This research was performed while this author was a visiting

researcher at the Jet Propulsion Laboratory. This author was

supported in part by NSF CAREER Grant CCR-0133956. Tel.: +1-

480-727-4475.

0164-1212/03/$ - see front matter Published by Elsevier Science Inc.

doi:10.1016/S0164-1212(02)00081-X

The Journal of Systems and Software 66 (2003) 253–267

www.elsevier.com/locate/jss

mail to: rlutz@cs.iastate.edu


understand and specify in a useful way, the existing

software architecture. This effort demonstrated the an-

alytical value of specifying an existing architecture with

an architecture description language (ADL), both in
terms of identifying mismatches between the supposed

and the actual architecture, and in terms of providing a

baseline for subsequent automated analyses. The ADL

model and its usefulness as a baseline are described in

Section 3.

Once an accurate ADL model of the software prod-

uct line architecture was established, it was used to

evaluate the adequacy and level of support provided by
the architecture for the slightly different requirements of

the individual systems in the product line. In particular,

a set of scenarios representing typical or anticipated

changes from the requirements of existing systems was

developed to exercise the architecture�s modifiability.

Section 4 details this step and describes the special

problems that requirements for high performance place

on the architectural evaluation of a software product
line.

The behavior of some key interfaces common to all

the systems in the product line was further verified using

tool-supported analysis. By extending the ADL model,

formal verification using model checking of these in-

terfaces was practical and cost-effective. Of particular

concern in the analysis was the fault-tolerance of a

critical data interface shared by the entire product line.
Tool-supported model checking allowed a demonstra-

tion of some undesirable consequences of an architec-

tural decision. Section 5 describes the process by which

the ADL model was translated into a format readable

by the model checker, the formal verification performed

on the critical interface, and the benefits of this verifi-

cation approach.

2. Background

This section discusses background material in the

areas of space interferometry and software architecture

analysis.

2.1. Interferometers

The product line described in this paper is a set of

interferometer systems under development by Jet Pro-
pulsion Laboratory. As shown in Fig. 2 (Origins Pro-

gram, 1997), an interferometer, in this context, is a

collection of telescopes that act together as a single, very

powerful instrument. An interferometer combines the

starlight it collects from telescopes in such a way that the

light ‘‘interferes’’ or interacts to increase the light�s in-

tensity and the precision of the observation. Over the

next several decades these interferometers will be used to
explore the origins of stars and galaxies and to search

for Earth-like planets around distant stars.

In particular, three spaceborne interferometers are

either under development or planned for launch in the

next eleven years, with additional formation-flying in-

terferometers envisioned for subsequent years (Danner

and Unwin, 1999; Origins Science Committee, 2000).

Two ground-based, prototype interferometers in the
product line are currently operational, with at least two

more planned.

The software in these interferometers has a high de-

gree of commonality with a managed set of shared fea-

tures built from core software components (Gannod and

Lutz, 2000; Lutz, 2000; Gannod et al., 2001). A group of

developers at JPL with a strong background in inter-

ferometer software provides reusable, generic software
components to the interferometer projects.

2.2. Related work

The work in this paper builds on product family

techniques such as Commonality Analysis (Ardis and

Weiss, 1997; Lutz, 2000) and the FAST process (Weiss

and Lai, 1999), which systematically model the required
similarities and differences among family members. The

architectural implications of product line models have

been analyzed by Perry (1998), Gomaa and Farrukh

(1999), Bosch (2000), and by researchers at SEI, among

others (Clements and Northrup, 2002). To date, the

emphasis has been on developing architectures for new

Fig. 1. Architectural analysis process.

254 R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267



product lines rather than on evaluating the architecture

of an existing product line, as is done here.
The software architecture analysis method (SAAM)

(Kazman et al., 1996) is a scenario-based method for

architectural assessment. A scenario, in this context, is a

description of an expected use of a specific product line.

SAAM also tests modifiability, e.g., by proposing spe-

cific changes to be made to the system. A related ar-

chitectural analysis method is the architecture tradeoff

analysis method (ATAM) (Kazman et al., 1998). This
iterative method is based on identifying a set of quality

attributes and associated analysis techniques that mea-

sure an architecture along the dimensions of the attri-

butes. Sensitive points in an architecture are determined

by assessing the degree to which an attribute analysis

varies with variations in the architecture. In our ap-

proach, we focus on quality attributes that are specific to

product line architectures. As such, the approach can be
applied in either the SAAM or the ATAM context.

ACME is an architecture description language for

high-level architectural specification and interchange

(Garlan et al., 1997). For the work described in this

paper, ACME was selected as a specification language in

part because it contains constructs for embedding

specifications written in a wide variety of existing ADLs,

making it extensible to both existing and future specifi-
cation languages. Another advantage of ACME is that it

is supported by an architectural specification tool,

ACMEStudio, for graphical construction and manipu-

lation of software architectures. ACME provided an

easy-to-read, easy-to-update, graphical view of the ar-

chitecture that facilitated review by the engineers. The

product line architecture described in this chapter was

specified using the ACME ADL (Garlan et al., 1997)
and ACMEStudiosupport tool.

Rapide (Luckham and Vera, 1995) is a suite of

techniques and tools that support the use of executable

architectural design languages (EADLs). The toolset

supports analysis of time-sensitive systems from the
early construction phase (e.g., architecture definition) to

analysis of correctness and performance. Wright (Allen

and Garlan, 1997) is an ADL based on the CSP speci-

fication language (Hoare, 1985). The primary focus of

the Wright ADL is to facilitate the specification of

connector, role, and port semantics. In addition to being

based on the well-established CSP semantics and al-

lowing partial specification, existing Wright tools sup-
port the ACME ADL, thus providing a clean interface

with the existing ACME specification.

In this work, the motivation for choosing a particular

technique was based on a desire to eventually transfer

the technology to the project engineers. In addition,

there was an interest in achieving interoperability with

other tools. As such, it was found that the ACME ADL

and associated ACMEStudio tool presented the least
amount of educational overhead. ACME also had the

advantage of being able to embed other ADLs, includ-

ing Wright, in its specification. However, it was recog-

nized that several alternatives such as Rapide exist and

we are investigating the possibility of performing similar

analyses with those tools.

3. Architecture recovery and specification

3.1. Process

The goals of architecture recovery and specification

are to familiarize the analysts with the problem domain

and implemented solution, and to support construction

of a software architectural representation that is, above
all, correct and consistent. In the experience described

here, the main inputs to the process were project docu-

mentation, source code, and communication with de-

velopers.

Fig. 2. Interferometer.

R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267 255



Recovery of the software architecture involved a

fairly intensive study of the product line requirements

and the available systems (testbeds and prototypes).

Extensive documentation of the requirements and de-

sign for the reusable software components, as well as C

code for the prototypes of the components, were avail-
able. In addition, several hundred pages of project-spe-

cific documentation, maintained in a web-based library,

were used. Predictably, more documentation existed for

projects farther along in their development. System de-

scriptions were available for all the interferometers in

the product line; software requirements and design

documents were still high-level and informal for later

missions; and code was not yet available for any of the
spaceborne interferometers.

A draft architecture was recovered from the available

information and compared with an existing description,

somewhat out-of-date, of the architecture then planned.

As shown in Fig. 3, the original documentation for the

interferometry software depicts the software using a

layered style. However, during the analysis and subse-

quent specification of the architecture, it was discovered
that the documented architecture exhibited ‘‘layer

bridging’’ properties, whereby non-adjacent layers in the

architecture communicated, thus ‘‘bridging’’ or by-

passing intermediate layers. In addition, sibling com-

ponents located in a layer were found to communicate,

contrary to the layered style.

Differences between the actual architecture and the

architecture as previously documented were investigated
and resolved. The high-level interferometer architecture

was re-specified in a style that was consistent with the

services and behaviors described in lower-level docu-

mentation and currently planned for implementation.

The resulting architecture more accurately specified the

architectural style as heterogeneous with a collection of

communicating processes as well as a constrained pipe

and filter (e.g., data flow) interaction between the In-

strument CDS (Command and Data Subsystem) and all

the remaining components.

Project engineers were consulted to validate the ac-

curacy of the newly drafted architectural model against

the actual architecture. They also reviewed the accuracy

of the analysts� understanding of architectural compo-
nents of future systems in the product line. The expert

feedback was instrumental in constructing a more ac-

curate representation of the interferometer architecture.

3.2. Example

A diagram depicting the interferometer product line

architecture is shown in Fig. 4. The ACME representa-
tion of this architecture formed the basis for subsequent

analyses, both manual and automated. In the diagram,

hardware components are shown as rounded rectangles

while the software components are shown as sharp

rectangles. The connectors, represented by lines between

components, depict the relationships among components

in the architecture. This particular diagram represents

the software that exists within an ‘‘arm’’ of an interfer-
ometer, where a standard interferometer has two arms.

The architecture of the interferometer software uses a

heterogeneous architectural style that includes the use of

both the independent component style and a sequential

data flow style. Each of the connectors from the In-

strument CDS component to the Wide Angle Pointer,

Star Tracker, Fringer Tracker, and Delay Line compo-

nents are either input or output queues. The semantics
between the components from the Instrument CDS

perspective adheres to an independent components style.

The interaction between the Wide Angle Pointer and the

Star Tracker, the Star Tracker and the Fringe Tracker,

and the Fringe Tracker and the Delay Line is in the form

of a data flow style, where transformations of data occur

in sequence starting from the Wide Angle Pointer and

ending at the Delay Line.

Fig. 3. Original core architecture.

256 R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267



Among the components shared by the interferometer

systems and discussed in this paper are the Delay Line,

the Fringe Tracker, and the Internal Metrology. Briefly,

the Delay Line component compensates for the differ-

ence in time between the arrival of starlight at the sep-
arate mirrors. The Fringe Tracker component provides

constant feedback to the Delay Line regarding needed

adjustments to maintain peak intensity of the fringe

(patterns of light and dark bands produced by inter-

ference of the light). The Internal Metrology component

provides input to the Delay Line regarding small chan-

ges in distances among parts of the interferometer that

must be included in its calculations.
With regard to the interferometer product line, the

most difficult part of architectural recovery and specifi-

cation was understanding the required variations among

the systems in the product line, especially the variation

in the number of copies of core components in the

specific systems. It was found that the interferometers

have a single baseline (labeled the ‘‘core’’ in Table 1) as

their basic building block. The baseline has as compo-
nents two arms, two delay lines, two fringe trackers, etc.

Most interferometers have a single baseline. Those sys-

tems with more than one baseline have multiple copies

of the baseline building block and, thus, a number of

each component that is a multiple of two (e.g., a

two-baseline system with four delay lines, four fringe

trackers, etc.). There are a few deviations from this ar-

chitecture (one interferometer operates with a variable
number of baselines; an interferometer testbed may use

a single component where two would be used on a flight

interferometer), but in general, the core architecture,

shown in Fig. 4, captures the baseline.

To further validate the accuracy of the architecture in

terms of its scalability to future, planned products in the

product line, the architecture was checked against the

individual product line derivatives. A simple table was
constructed and maintained to describe the components

of future systems in the product line in a format that the

developers could quickly review for accuracy.

In the table (excerpted in Table 1), each row repre-

sents a different component that could be potentially

present in an interferometer system. The columns rep-

resent the different derivatives that are currently either

being developed or are planned for deployment over the
next several years. This table represents features of the

architecture that are common in behavior across all

systems in the product line, but that can vary in multi-

plicity based on the number of potential starlight col-

lectors or ‘‘arms’’.

3.3. Lessons learned for product lines

The architectural recovery and specification of the

interferometer product line provide some insight into

issues involved in modeling existing product lines:

achieving consistency between the specified and the ac-

tual architecture, using abstraction to identify a core

architectural building block, and facilitating review by

domain experts via readable ADL specifications.

Table 1

Comparison matrix

Components Core D1 D2 D3

Baselines 1 1 3–4 1

Arms 2 2 6–8 2

Wide Angle Pointer 2 2 6–8 2

Star Tracker 2 2 6–8 2

Delay Line 2 2 6–8 4

Fringe Tracker 2 1 3–4 2

Instrument CDS 1 1 1 1

User Interface 1 1 1 1

Fig. 4. Interferometer software architecture.

R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267 257



• Resolving discrepancies between actual and docu-

mented architectures. Some product lines, such as

the interferometer, are not originally designed as

product lines but evolve into them as new products

are created. When a product line approach is applied

to a set of systems in which some have already been
built, the actual architecture may give evidence of

evolution away from the earlier planned architec-

tures. In this case, the documented architecture may

not match the architecture that has been, and will

be, used to build systems in the product line. Archi-

tectural recovery can contribute to the re-specifica-

tion of the architecture that will serve as a baseline

for future implementations.
• Abstraction. It proved quite useful in the architectural

specification phase to abstract out a core architec-

tural building block (the baseline shown in Fig. 4)

that was reused intact throughout the product line.

Some systems in the product line (e.g., testbeds) use

a single copy of this building block; others have mul-

tiple copies that operate either serially or in parallel.

The use of parallel building blocks and of multiple
copies of the building block to achieve performance

requirements (here, high accuracy and image resolu-

tion) appears to be typical of high-performance prod-

uct lines. Additional work is needed to investigate

how abstraction in architectural specification can best

handle such critical performance requirements.

• Advantages of ADL specifications. Use of the architec-

tural interchange language, ACME, to specify the ar-
chitecture encouraged communication and review by

experts. The graphical view provided a front-end that

represented the abstract architecture clearly and ac-

curately. The readability of the ADL specification

made it easier to verify that the architectural style

was common to each of the systems in the product

line.

4. Architecture evaluation using scenarios

4.1. Process

The next phase of the process was to perform a

number of analyses in order to help determine to what

extent the architecture was amenable to a product line
development approach. The primary goal was to deter-

mine if certain desirable quality attributes present in

most product line architectures were also present in the

interferometer architecture. The goal of this analysis was

to exercise the product line architecture by considering

the effect on it of representative change scenarios. To do

this, the effect of the variabilities required by the indi-

vidual missions on the architecture was evaluated.
To study the modifiability of the interferometry

product line architecture, representative examples of

required modifications were extracted from the re-

quirements specification of four systems currently

planned or under development. The advantage of using

these scenarios was to move the discussion from a rather

amorphous, high level of generality (‘‘modifiability’’) to

a concrete, context-based level of detail particular to the
product line (‘‘adds pathlength feedforward capabil-

ity’’).

Singling out the modifiability requirements from the

documentation for the various systems was straight-

forward. Required changes to previous systems were

usually called out explicitly. Rationales were often de-

scribed, based on the unique scientific aspects of each

system�s mission. Analysis of architectural consequences
of required changes was more challenging, since this

required design knowledge. Occasional access to domain

experts was essential, since they could elaborate on the

design consequences of the planned evolvability and

answer analysts� questions. This scenario-based archi-

tectural analysis provided a rapid, low-cost way to

evaluate the architectural consequences of some key

product line variabilities for the interferometer appli-
cations.

4.2. Example

Of the properties that cannot be observed at runtime,

modifiability is the key property required by the inter-

ferometer product line. Modifiability, according to Bass

et al., ‘‘may be the quality attribute most closely aligned
to the architecture of a system,’’ and, as such, is a good

way to evaluate the architecture (Bass et al., 1998). Bass

et al. identify four categories of modifiability: extensi-

bility (changing capabilities, adding new functionality,

repairing bugs); deleting capabilities (streamlining, per-

haps to deliver a less-capable and less-expensive version

of a product); portability (adapting to new operating

environments, such as processor hardware, input/output
devices, and logical devices); and restructuring (modu-

larizing, optimizing, or creating reusable components).

All four of these categories of modifiability are rep-

resented by significant requirements within the inter-

ferometer product line systems:

Extensibility. Potential extensibility variations include

new algorithms (e.g., a different fringe-search algorithm)

and added features (e.g., pathlength feedforward, in-
ternal metrology).

Deletions. Deletions involve removal of previously

required capabilities. Architectural support for deletions

in product lines is essential since experience has shown

that systems are often scaled down unexpectedly during

development to meet resource or schedule constraints

(Lutz, 2000). In the interferometer application, deletions

usually involved testbeds or prototypes that both added
capabilities to support analysis of new technologies and

also deleted, or stubbed in, some previous capabilities.

258 R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267



For example, testbeds use pseudostar (simulated) input

rather than actual starlight, whereas the science inter-

ferometers use direct starlight as input.

Portability. Portability changes are widespread, since

different interferometers in the product line will use

different starlight detector hardware and different oper-
ator interfaces (e.g., a handheld paddle for the testbeds,

remote commandability for the flight units). The inter-

ferometer software will run on multiple processors, with

the number of processors being a variability among the

systems. The software is required to run on these dif-

ferent platforms with only minor modifications.

Restructuring. Restructuring changes that are not

included in the other categories are limited. A proposed
change to optimize for reuse is the only scenario used in

the architectural evaluation. It is worth noting that all

the changes are evolutionary rather than revolutionary

in nature. Even the most far-reaching change, a pro-

posed move to CORBA, would initially implement only

some of the standard�s features. While more dramatic

change scenarios could be imagined, they were judged

unlikely in this set of systems. Whether scenario-based
evaluation of modifiability is useful where change sce-

narios are broader and less concrete is an open question.

Table 2 shows nine of the representative changes se-

lected to evaluate the modifiability of the architecture:

three extensibility changes, one deletion, four portability

changes, and one restructuring. The scenarios were

selected on the basis of coverage of the classes of modi-

fiability, likelihood of architectural impact, and impor-
tance to the future system(s) in the product line. The

changes were all variabilities in the product line speci-

fication, i.e., not common to all the interferometers. The

approach was to use these representative scenarios to

exercise and evaluate the baseline architecture.

A summary of the results of the evaluation of the

architecture�s modifiability appears in Table 2. Column

1 indicates to which of the four categories of modifi-
ability each scenario belongs (extensibility, deletion,

portability, or restructuring). Column 2 is a high-level

description of the scenario (e.g., ‘‘Change algorithm’’,

‘‘Add feature’’, ‘‘Change sensor’’, etc.). Column 3 briefly

describes the particular scenario. Column 4 indicates the

effect of that modifiability scenario on the baseline ar-

chitecture.

Of the nine scenarios in Table 2, four involved no

change to the baseline architecture. These scenarios

were: change of algorithm, deletion of input, change of

human–computer interface device, and change of sensor
device. Two other scenarios, related to extensibility,

require additional connectors and, in one case, an ad-

ditional component not in the original architecture.

However, these extensions are relatively straight-for-

ward and their scope is easy to anticipate.

The other three scenarios require significant changes

to the product line architecture, but the changes are not

visible at the level of the specified architecture. In one
case (add input units), implementation of the scenario

can involve adding ‘‘arms’’ (i.e., additional axes) to the

interferometer. This has no effect on the more detailed

core architecture (which represents a single axis), but

requires duplication/replication of connectors and com-

ponents on the baseline architecture, a significant ar-

chitectural consequence. The scenario that distributes

the targeting computation over more processors can be
accommodated without change to the baseline archi-

tecture. At the level of the model, there was no com-

mitment to implementation details such as number of

processors. The sole restructuring scenario, a possible

switch to CORBA, might change both the style and the

implementation of the connectors, and would require

further investigation.

In summary, the following results were noted in the
study of the architecture�s support for the required

modifiability scenarios:

• Locality of change. Most modifiability scenarios dem-

onstrated good locality of change for the specified ar-

chitecture (i.e., involved changes that could be readily

scoped). The existence of an architectural specifica-

tion assisted in this effort. Most scenarios do not
affect the services required of other components.

• Units of reuse. The units of reuse in the architecture

tended to be small. For example, a Delay Line is

a unit, but a Delay Line-Fringe Tracker-Star Tracker

is not. All Delay Lines have a high degree of

Table 2

Analyzing the architecture�s modifiability via scenarios

Attribute Scenario type Example scenario Effect on architecture

Extensibility Change algorithm Algorithm for fringe search changed No change required

Extensibility Add feature Pathlength feedforward capability No style change; additional connectors

Extensibility Add feature Internal metrology added No style change; additional components and connectors

Deletion Delete input Use pseudostar rather than actual No change required

Portability Change HCI device Shift handheld paddle to remote device Connector unchanged

Portability Change sensor Starlight detector hardware changed Interface intact; component implementation changes

Portability Add input units More starlight collectors No style change; ‘‘duplicate’’ existing pieces; see discussion

Portability Add processors Distribute targeting computation No style change; change within components

Restructuring Optimize for reuse Proposed switch to CORBA Might change style and connectors

R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267 259



commonality, and the interfaces between a single

Delay Line and a single Fringe Tracker are similar for

all members (the ‘‘portability layer’’), but the number

of Delay Line–Fringe Tracker interfaces varies

greatly among the product line members. The archi-

tectural style was not changed by the scenarios, but
the number of connections and, to a lesser degree,

components, was changed. There are many different

cross-strappings possible and a large amount of re-

configuration involved in meeting the real-time con-

straints on the various missions. Having small units

of reuse may complicate verification and integration

of individual members (e.g., with regard to conten-

tion, race conditions, starvation, etc.).
• Role of multiplicity in a high-performance product line.

Several of the scenarios involved adding multiple,

identical components or connectors. However, these

copies are not redundant, in the sense of adding fault

tolerance, since they are all needed to achieve the re-

quired performance. For example, if starlight collec-

tors are added, it is to increase the amount of

starlight that the interferometer can process in order
to meet requirements for detecting dim targets. Like-

wise, if processors are added, it is to meet require-

ments for increasing the resolution capability of an

interferometer. In this architecture, multiplicity does

not add redundancy or robustness for the most part;

there are not spare units or alternate data paths.

• Architectural style. Despite the range of variations

that affect the architecture (e.g., varying the number
of ports on a component, varying the number of in-

stances of a component), the interfaces themselves are

relatively stable. Recognizing the long timeline over

which the product line will extend (proposed launches

from 2003 to 2020) and the primacy of performance

(with continuous improvement of hardware and algo-

rithms), the project designed well for evolvability.

4.3. Lessons learned for product lines

A baseline architecture for a product line shows the

commonality that exists among the members of that
product line. Each member of the product line uses this

architecture or an adaptation of it. Thus, nothing in the

architecture can constrain the anticipated variabilities

among the members. The modifiability analysis of the

interferometer product line architecture was based on

well-documented techniques that have worked well in a

variety of application domains. The process is summa-

rized below, followed by a discussion of its applicability
to high-performance product lines and its use in chal-

lenging architectural support for planned variations in

requirements.

• Verifying architectural support for modifiability. The

process of verifying that the architectural style ac-

commodates the required modifications for future

systems is:

1. Identify anticipated changes from available docu-

mentation and project information. These antici-

pated changes form product line variabilities that

the baseline architecture must accommodate.
2. Categorize the anticipated changes into modifi-

ability categories (extensibility, deletion, portabil-

ity, restructuring).

3. Select and develop scenarios for each category.

The choice of scenarios is made to broadly chal-

lenge the goodness of the architecture with regard

to the four modifiability categories.

4. Evaluate the effect of each modifiability scenario
on the baseline architecture. This gives a measure

of the goodness of the architecture with respect to

the anticipated variabilities for this product line.

• Availability of scenarios. Appropriate scenarios for

exercising the architectural support for required sys-

tem variabilities were readily available in the existing

project documentation. Many of the requirements

variabilities were explicit (‘‘unlike system x and y, sys-
tem z shall. . .’’). Additional scenarios were provided

by use cases, descriptions of operational modes, and

requirements for exceptional (off-nominal) cases or

fault handling. Scenarios were selected to exercise

all four categories of modifiability, with representa-

tion of both narrowly scoped changes (e.g., deleting

an input source in a testbed) and broader, more

loosely defined changes (e.g., adding complex capa-
bilities such as internal metrology).

• Performance issues. Most studies of product lines do

not involve high-performance product lines. How-

ever, high-performance product lines are being built

and put into operation. In high-performance product

lines, the range and scope of the variabilities tend to

be less negotiable than in other product lines. This

is due to the very tight performance and accuracy
requirements. For example, an upcoming interfero-

meter, the Space Interferometry Mission (SIM), re-

quires precision at the level of picometer metrology

and microarcsecond astrometry (Colavita et al., 1999;

Origins Program, 1997) (see Table 3). To achieve a

high level of precision, significant real-time con-

straints exist, often with limited flexibility to accom-

modate reuse concerns. In such product lines,
performance requirements on new systems may drive

Table 3

High-performance system requirements driving software

Component Requirement

Baselines 10 m–10 km

Imaging resolution 10 microarcsecond

Path length knowledge 50 picometers

Path length control 10 nanometers

Formation flying 1 cm precision

260 R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267



the choice of hardware, algorithms, and added capa-

bilities. The consequence for reuse is that in trade-offs

of modifiability vs. performance, performance wins.

• Differences from single-system architectural analysis.

The scenario-based analysis of the product line archi-

tecture differs from a scenario-based analysis of a sin-
gle-system architecture in that the scenarios do not

represent use cases of a system but variabilities, i.e.,

the differences among systems. The modifiability sce-

narios serve a role somewhat like boundary testcases,

probing the limits of the architecture. The scenario-

based analysis for the product line also differs from

a scenario-based analysis of a single system in that

the architectural style of the product line, rather than
the architecture of a specific system, is challenged.

For example, a requirement to add starlight collec-

tors to a system would change that system�s architec-
ture but, as seen above, does not change the product

line�s architectural style.

5. Tool assisted architecture analysis

5.1. Process

The process of automated analysis involved: (1) ar-

chitecture specification in an ADL, (2) formal specifi-

cation of behavior, and (3) analysis of behavior to

determine fault-tolerance and robustness. The approach

used in the selection of notations and tools is described
here. One of the goals of this project was to determine

the extent to which automated support tools could be

used to aid in the analysis of a product line software

architecture. Specifically, this involved identifying tools

that could be adopted with little overhead, while still

satisfying the objective of formally analyzing the archi-

tectural behavior to determine fault-tolerance and ro-

bustness. This meant that the selected tools should have
a reasonable level of support and documentation.

In addition to recovering and specifying the high-level

view of the interferometer architecture, behaviors of

component interactions were derived from existing de-

sign documentation. Specifically, we used information

found in design documents to help construct a formal

specification of component interactions in the interfer-

ometer software.
While ACME provides an infrastructure for high-level

architecture specification and ADL interchange, it lacks

a significant behavioral specification component. Con-

sequently, another ADL,Wright, was used for the formal

specification of behavior. The resulting formal specifi-

cations were used to analyze the behavior of various as-

pects of certain interactions between components in the

architecture. To validate the formal analysis, source code
from the interferometer components planned for reuse

was informally reverse engineered to determine whether

properties observed in the formal specification were

present in the implementation. The Spin Model Checker

was used to further analyze behaviors of interest. Spin

(Holzmann, 1997) is a model checker that has been used

for verifying the behavior of a wide variety of hardware

and software applications. Promela, the input specifica-
tion language for Spin, is based on Dijkstra�s guarded

command language as well as CSP.

The primary reason for choosing each of the nota-

tions and tools listed above was a pragmatic one. The

notations are related either via direct tool interchange

support (as is the case between ACME and Wright) or

by some semantic foundation (e.g., CSP foundation for

Wright and Promela). As such, the ACME framework
(including Wright specifications) could be used for

specifying the interferometer architecture, and verifica-

tion using Spin could follow naturally with a small

amount of translation of the embedded Wright into

Promela.

5.2. Example

A key element of the interferometer architecture was

the use of the ‘‘Target Buffer’’ connector. This connec-

tor, both in the design and in the implementation, is a

non-locking buffer used to communicate target trajec-

tories to the Delay Line component by several other

components. A target is a specified position for the

Delay Line controller to achieve. The target trajectories

from multiple sources are combined by the Delay Line�s
target generation software to calculate a target. The

Target Buffer connector was viewed as a possible con-

cern, especially in light of the non-locking feature. Be-

havior involving this connector was formally specified

in order to study its impact on the system.

There are several components that are either directly

or indirectly impacted by the non-locking nature of the

Target Buffer connector: Target Sources, a Command
Controller, and a Target Generator component. The

Target Generator uses the values written to the Target

Buffer by various Target Sources to compute a target

position for the interferometer. The Command Con-

troller provides control for the computation by enabling

or disabling the Target Sources. Target Sources write a

timestamped value to the Target Buffer, with the time-

stamp determining a time that the target value becomes
valid.

The Target Generator uses the following four-step

sequence for calculating the target position:

1. promote waiting targets to active status if the current

time is greater than or equal to the timestamp

2. read new targets from enabled target sources

3. pend (assign to wait status) or activate new targets
based on timestamps

4. compute the total target

R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267 261



The Wright specification of the interaction between

the Target Generator and the potential sources of data

that are written to the Target Buffer is shown in Fig. 5.

The source specification models the fact that a source

internally decides whether or not to write a new value to

the Target Buffer. Finally, the Target Generator speci-
fication models the target-position algorithm described

above.

From the Wright specification, we constructed a

Promela specification, portions of which are found in

Figs. 7 and 8. A sample of a message sequence chart for

this model is shown in Fig. 6. In the diagram, the

vertical bars represent processeses, messages received or

sent by a process are shown as arrows between the
bars; and the relative time between sending and re-

ceiving the various messages is shown by the length and

angle of the arrows. Here, a controlling process (icds)

sends a message to a pair of sources, corresponding to

enabling or disabling commands. Since the delay_line

process (e.g., the target generator) receives data only

through shared target buffers, only messages indicating

which sources are enabled are sent. The message and

timestamp processes are merely function calls that are

used to randomly generate data (message) and time-

stamps.

The model of the target generation process was used

to determine whether or not the following situations
could occur.

Data from disabled sources. Is there a potential for

calculating the target position by using data from

sources that are currently disabled?

Best data from enabled sources. Is there a potential for

calculating a target position by using data that is less

current than data currently in the target buffer?

In the first case the interest was in determining whe-
ther or not it was possible to generate a target position

by using data from inactive sources. In essence, a target

position input can be read by the Target Generator,

pended due to the timestamp (e.g., the timestamp indi-

cates that the target value is not to be used until some

time in the future), and subsequently promoted into use

when the timestamp matches (or precedes) the current

Fig. 5. Subset of the Wright specification.

262 R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267



time. The potential inconsistency occurs during the time

that the target is pended and is caused by the fact that a

source can be disabled during this waiting period. To

verify the existence of this behavior within the model, an

assertion was used to compare the value of the target as

computed from the currently active sources and the sum

computed from the values stored in the target buffer. If,

at the time that values from multiple target buffers are

being used to compute a target, the value computed

from the target buffers is not identical to the sum that

can be computed from the currently active sources, then

the data is inconsistent.

Within the specification in Fig. 8, the statement

assert (active_sum¼ ¼sum), is used to verify this

scenario. Fig. 9 shows the output of the Spin model

checker for the corresponding assertion. Specifically, the

Fig. 6. Message sequence chart for target generation.

Fig. 7. Promela specification of target source.

R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267 263



figure shows that the assertion failed as well as statistics

on the verification run.

The second case involves the following situation. As
before, a target from a source is read, potentially pen-

ded, and eventually promoted. Because of the sequenc-

ing of events, a new target value from the source can

overwrite the recently promoted target and, based on
the timestamp, be valid for immediate use. Again we

Fig. 8. Promela specification of target generator.

264 R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267



used an assertion to verify the existence of this behavior,

this time checking to see whether recently promoted

data has been overwritten with older data.

In order to determine whether these cases were also
present in the code, we examined source files and were

able to verify that the situations, as documented and as

specified with Wright, did in fact exist in an early, pre-

flight version of the source code.

In each of these cases, the use of a non-locking buffer

coupled with the target-generator algorithm provided

the potential for intermittent values that are inconsistent

with the desired and current target. The interferometry
project engineers confirmed that the Spin model checker

accurately modeled the software behavior in both situ-

ations. In the first case, a target from a currently dis-

abled target source may still be activated. In the second

case, a newly received target with a less-current time-

stamp can overwrite an active target. However, in nei-

ther case is the software behavior contrary to intent,

given the underlying assumptions about the operational
use of the software.

5.3. Lessons learned

The construction and analysis of a formal model of

the interferometer product line provides some insight
into the behavior shared across products and is a

mechanism for supporting automated analysis. In

addition, the formal model provides an infrastructure

for analyzing future changes.

• Model checking common behavior to determine robust-

ness and fault-tolerance. The automated analysis of

the interferometer architecture using the Spin model
checker was greatly facilitated by the availability

and use of the Wright and ACME ADLs. In effect,

by using this combination of tools, we were able to

use model checking in a manner that was directed

by the structure and behavior of a software architec-

ture. That is, the software architecture specification

was used to direct the model checking activity by fa-

cilitating identification of potentially interesting
points of interaction in the interferometer architecture.

Fig. 9. Spin output of verification for the disabled source scenario.

R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267 265



Given the fact that any behavior observed in the ar-

chitecture is potentially replicated among all product

line members, we found that the approach was a

good complement to the manual analysis activities.

• Model checking modifications. One area of high risk

during software modification is the interfaces be-
tween various components and their connectors. In

particular, changes in interfaces can often lead to po-

tential mismatches between provided and expected

behavior. By constructing a formal model of the

interaction between components through the corre-

sponding connectors, some assurance can be attained

regarding communication via shared buffers. In addi-

tion, the formal model provides an infrastructure for
analyzing future changes to the communication prop-

erties between components.

• Lightweight formal methods. From a formal methods

perspective, the investigations described here provide

yet another example of the value of lightweight for-

mal analysis. That is, we were able to obtain a reason-

ably high payoff in analysis with a small amount

of specification effort.

6. Conclusion

The experience described here regarding the recovery,

specification, and analysis of a high performance, sci-

entific product line may be useful to practitioners in

several ways. First, the approach used was adapted to
the realities of an existing product line architecture. This

meant that the architecture had evolved away from the

initially documented architecture and that recovery of

the actual architecture formed an initial step.

Secondly, the need for accurate representation of a

set of highly complicated systems with tight perfor-

mance constraints required iterative review by domain

experts. The results of the architectural recovery were
thus captured in an ADL model that supported review

as well as subsequent inquiries.

Thirdly, a key concern with a product line intended to

span several decades was the adequacy of the architec-

ture�s modifiability in implementing required variabili-

ties in the future systems. To address this issue, the

architecture was analyzed against a set of representative

scenarios exemplifying the required modifiability attri-
butes. It was found that high-performance requirements

are often inflexible, and that this can limit the modifi-

ability of the architecture.

Fourthly, the criticality of the application domain

motivated the use of additional, formal analysis of key

critical quality attributes such as robustness and fault

tolerance at the architectural level. Automated tools and

model checking were used to evaluate the consequences
of architectural decisions for the product line. The

model checking provided additional assurance that

some specific architectural features, flagged by the ana-

lysts as possibly vulnerable, were correct. While the

earlier scenario analysis addressed issues related to the

modifiability of the interferometer architecture for a

product line, the automated analysis was primarily of

use for analyzing quality attributes such as robustness
and fault tolerance, which were viewed as common

across product line members.

The application of this combined approach to the

interferometer product line architecture resulted in some

measurements of both the flexibility and limits of its

architectural style that assisted the project in planning

for future missions. Similar combined approaches may

be useful for developers of other product lines where an
architecture is to be recovered from existing systems or

where the architecture must support high-performance

requirements.

Acknowledgements

We thank Dr. John C. Kelly for his continued sup-

port of this work. We thank Dr. Braden E. Hines, Dr.
Charles E. Bell, and Thomas G. Lockhart for helpful

discussions and explanations regarding the reuse of in-

terferometry software. Part of the work described in this

paper was carried out at the Jet Propulsion Laboratory,

California Institute of Technology, under a contract

with the National Aeronautics and Space Administra-

tion. Funding was provided under NASA�s Code Q

Software Program Center Initiative, UPN #323-08 and
a NASA/ASEE Summer Faculty Fellowship.

References

Allen, R., Garlan, D., 1997. A formal basis for architectural

connection. ACM Transactions on Software Engineering and

Methodology 6 (3), 213–249.

Ardis, M.A., Weiss, D.M., 1997. Tutorial: Defining families: The

commonality analysis. Proceedings of ICSE�97.
Bass, L., Clements, P., Kazman, R., 1998. Software Architecture in

Practice. Addison-Wesley.

Bosch, J., 2000. Design and Use of Software Architectures: Adopting

and Evolving a Product-Line Approach. Addison-Wesley.

Clements, P., Northrup, L., 2002. Software Product Lines, Practices

and Patterns. Addison-Wesley.

Colavita, M.M., Wallace, J.K., Hines, B.E., Gursel, U., Malbet, F.,

Palmer, D.L., Pan, X.P., Shao, M., Yu, J.W., Boden, A.F.,

Dumont, P., Gubler, J., Koresko, D.C., Kulkarni, S.R., Lance,

B.F., Mobley, D.W., van Belle, G.T., 1999. The Palomar Testbed

Interferometer. Astrophysical Journal 510, 505–521.

Danner, R., Unwin, S. (Eds.), 1999. Space Interferometry Mis-

sion: Taking Measure of the Universe. Jet Propulsion Laboratory.

JPL 400-81.

Gannod, G.C., Lutz, R.R., 2000. An approach to architectural

analysis of product lines. In: Proceedings of the International

Conference on Software Engineering (ICSE) 2000, pp. 548–557.

266 R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267



Gannod, G.C., Lutz, R.R., Cantu, M., 2001. Embedded software for a

space interferometry system: Automated analysis of a software

product line architecture (invited). In: Proceedings of the Interna-

tional Conference on Performance Computing and Communica-

tions, pp. 145–150.

Garlan, D., Monroe, R.T., Wile, D., 1997. ACME: An architecture

description interchange language. In: Proceedings of CASCON�97�,
Toronto, Ontario, pp. 169–183.

Gomaa, H., Farrukh, G.A., 1999. A reusable architecture for federated

client/server systems. In: Proceedings of the Fifth Symposium on

Software Reusability, pp. 113–121.

Hoare, C., 1985. Communicating Sequential Processes. Prentice Hall.

Holzmann, G.J., 1997. The model checker spin. IEEE Transactions on

Software Engineering 23 (5), 279–295.

Kazman, R., Abowd, G., Bass, L., Clements, P., 1996. Scenario-based

analysis of software architecture. IEEE Software, pp. 47–55.

Kazman, R., Klein, M., Barbacci, M., Lipson, H., Longstaff, T.,

Carriere, S., 1998. The architecture tradeoff analysis method. In:

Proceedings of ICECCS, pp. 68–78.

Luckham, D., Vera, J., 1995. An event-based architecture definition

language. IEEE Transactions on Software Engineering 21 (9), 717–

734.

Lutz, R., 2000. Extending the product family approach to support safe

reuse. The Journal of Systems and Software 53 (3), 207–217.

Origins Program, 1997. NASA�s interferometry program: the search

for life beyond the solar system, some facts and figures, NASA.

Origins Science Committee, 2000. Origins Science Roadmap 2000,

NASA.

Perry, D.E., 1998. Generic architecture descriptions for product lines.

In: Proceedings of the of ARES II: Software Architectures for

Product Families (LNCS 1429). Springer-Verlag, pp. 51–56.

Weiss, D.M., Lai, C.T.R., 1999. Software Product-Line Engineering.

Addison-Wesley, Reading, MA.

Robyn R. Lutz is a Senior Engineer at Jet Propulsion Laboratory,
California Institute of Technology, and an Associate Professor in the
Department of Computer Science at Iowa State University, Ames,
Iowa. Dr. Lutz has worked on spacecraft projects in fault protection,
real-time commanding, and software requirements and design verifi-
cation. Her research interests include software safety, safe reuse of
product families, formal methods for requirements analysis, intrusion
detection, and fault monitoring and recovery strategies for spacecraft.

Gerald C. Gannod is an assistant professor in the Department of
Computer Science and Engineering at Arizona State University. He
received the MS (�94) and PhD (�98) degrees in Computer Science from
Michigan State University. His research interests include software
product lines, software reverse engineering, formal methods for soft-
ware development, software architecture, and software for embedded
systems. Dr. Gannod is a recipient of a 2002 NSF CAREER grant.

R.R. Lutz, G.C. Gannod / The Journal of Systems and Software 66 (2003) 253–267 267


	Analysis of a software product line architecture: an experience report
	Introduction
	Background
	Interferometers
	Related work

	Architecture recovery and specification
	Process
	Example
	Lessons learned for product lines

	Architecture evaluation using scenarios
	Process
	Example
	Lessons learned for product lines

	Tool assisted architecture analysis
	Process
	Example
	Lessons learned

	Conclusion
	Acknowledgements
	References


