
focus

0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 7 3

themselves: Satisfying a particular market
segment’s specific needs and operating in a
prescribed way require solid requirements
and operational management. A product
line organization must therefore be a com-
plete product creation and delivery entity
that collects and analyzes requirements, cre-
ates the products, delivers them to cus-
tomers or distributors, and supports them
after delivery. It functions under a manage-
ment that has full responsibility for main-
taining the core assets and creating and de-
livering software products.

At Nokia, we used a product line to de-
velop mobile browser products that let mo-
bile phone or personal digital assistant users
access services over wireless telecommuni-
cations networks. We developed the tech-
nology first for our own handsets and later
distributed it as a software product. We had
two reasons to initiate the product line.
First, we needed to serve an increasingly

heterogeneous customer base. Second, we
wanted to benefit from large-scale reuse.
Neither of these reasons alone would have
justified initiating a new product line. How-
ever, the product line approach provided us
with tools to achieve both of these goals and
was therefore well justified. Our experience
at Nokia can serve as a case study for other
organizations debating a similar transition.

Mobile browsers and tools
In 1999, we launched the Nokia Browsers

and Tools product line. The technology was
initially based on the Wireless Application
Protocol specification, which specifies,
among other things, mark-up and scripting
languages and a communication protocol.3

We started by developing a WAP browser
and toolkit (see Figure 1). We then extended
our product family to include three browser
products and a multimode toolkit product.
We named the generic version of the browser

Developing Mobile
Browsers in a Product Line

Ari Jaaksi, Nokia

Developers at Nokia
recently initiated
and used a product
line to create and
deliver mobile
browser products.
They learned that, to
succeed, a software
product line must be
product and
application driven,
rather than reuse or
platform driven.

A
software product line is a set of systems sharing a common, man-
aged suite of features that satisfy a particular market or mission’s
needs and that are developed in a prescribed way.1,2 A software
product line basically consists of a family of interrelated software

products—applications that use a pool of core assets, such as software com-
ponents, documents, processes, and tools.

The organization developing a product line is inseparable from the systems

initiating software product lines

Nokia Mobile Browser. We offered it as a
software product to external customers
seeking a portable mobile browser, and we
delivered it as a source code product with a
reference implementation on Windows. The
Nokia operating system version of the
browser included Nokia-platform-specific
adaptations and interfaces. We delivered it
internally and ran it on Nokia’s proprietary
phone platforms. We tailored the Symbian
OS version of the browser for the Symbian
operating system with C++ wrappers and
Symbian extensions. We also delivered it as
a source code product. The Nokia Mobile
Internet Toolkit was a phone simulator cou-
pled with a development environment run-
ning on Windows platforms. We distributed
it over the www.nokia.com Web site for con-
tent developers. By the end of 2001, we had
several customers for all the embedded
browsers, and the toolkit had approximately
500,000 registered users.

We had many common requirements for
all the products. These included require-
ments for implementing the Extensible Hy-
pertext Markup Language (XHTML) with
Cascading Style Sheets and the Wireless
Markup Language 1.x browser, supporting
both languages natively.3,4 All products re-
quired connectivity through the specified
protocol, and we tested all of them for in-
teroperability with wireless gateways.

Several requirements varied from one
product to the next. A small phone, such as

the Nokia 6210, requires a compact C im-
plementation with small memory consump-
tion. A more advanced device, such as the
Nokia 7650, requires C++ interfaces, inte-
gration with various personal information
management applications, and other more
advanced features. Our external customers,
such as AOL, Samsung, and Symbian,
needed a compact implementation with no
dependencies on Nokia’s proprietary phone
platforms. The toolkit required accurate du-
plication of phone behavior on the Win-
dows platform, a separate content develop-
ment environment, and hooks to plug in to
various third-party components.

In spite of their differences, all the prod-
ucts used a common product line core,
which included elements such as protocol
stacks, markup and scripting handling com-
ponents, and layout managers. We imple-
mented the core in C, and it consisted of ap-
proximately 300,000 lines of code.

Developing the product line
A product line must benefit customers by

helping the software organization build bet-
ter products. Therefore, we first concen-
trated on the specification and speedy deliv-
ery of individual products. We built the
product line only after our first product re-
leases, which helped us get the first products
out quickly.

As an example, we needed to get phone
simulators and authoring tools out to con-

7 4 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

Figure 1. (a) The
Nokia Mobile
Internet Toolkit and
(b) an early browser
phone.

(a) (b)

tent developers before browser phones were
available. We implemented a browser simu-
lator from scratch, using Java for speedy de-
velopment instead of the existing C-based
browser components. In a later release, we
replaced the Java-based simulators with C-
based simulators that originated from the
product line.

The origin of Nokia’s product line assets
In 1998, the US Nokia team started to

develop mobile browser modules such as a
script engine and WML markup handling
routines for the Nokia 7110, the first WAP
browser phone. There were no requirements
to make code available on any other plat-
form or to document or packetize it as a
software product. The group simply devel-
oped software components to a specific
hardware device.

We also started to develop the Nokia
WAP Toolkit—a WAP simulation and con-
tent development environment—which we
released on 17 December 1998, only four
months after the project’s initiation. The
product included full WML and WMLScript
development facilities with a WAP phone
simulation.

Simultaneously, another team developed
WAP gateway products, creating a client-side
protocol stack to test gateway protocols. The
development happened at Nokia Hungary,
with several components coming from other
Nokia groups. The protocol stack was not
tailored for small devices nor designed for
use as part of a software product.

A team in Denmark implemented and
adapted browser technology to specific Nokia
phone models. The team had another imple-
mentation of the WAP protocol stack running
in a phone that was small but designed to
work only on Nokia’s own platform.

Thus, we had many components avail-
able for the product line: several core
browser components, the WAP Toolkit de-
veloped as an authoring tool and simulator,
a WAP protocol implementation built as a
WAP test suite, and a Nokia platform-de-
pendent protocol stack developed to run
only in Nokia phones. We developed and
maintained all these components separately.
Clearly, it was time for a product line.

Incorporating existing components
In April 1999, we decided to integrate

available browser components, put the
browser on different Nokia phones, and of-
fer it to external customers such as device
manufacturers and telecom operators. This
was the first time Nokia licensed out its own
phone software—we had already distributed
the WAP Toolkit. Now that we needed to de-
velop two different products with a lot of
overlapping functionality, we decided to or-
ganize the common parts into a product line.
Thus began the Nokia Browsers and Tools
product line.

We selected the core browser compo-
nents and the test protocol stack to form the
initial product line. We first enhanced these
components to meet our key product re-
quirements of full WAP implementation,
portability, and product quality. To meet the
implementation requirement, we set up a
project to build missing functionality. We
also set up an interoperability test suite to
verify that we had implemented the stan-
dard as specified. To meet the portability re-
quirement, we removed all dependencies to
Nokia phone platforms and used only ANSI
C and a limited set of standard libraries. We
modified all components, especially the pro-
tocol stack, to be suitable for small portable
devices. Finally, we isolated platform-de-
pendent code and APIs into a portability
layer (see Figure 2). At this time, we kept
the toolkit separate and didn’t use common
software components in it. However, the
toolkit benefited from the product line’s re-
quirements, testing facilities, documenta-
tion, and software development processes.

We analyzed the two available stack im-
plementations: the generic test suite imple-
mentation and the Nokia platform-specific

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 7 5

Figure 2. The Nokia
product line
architecture.Layout manager

User agent

Loader

Browser

Browser
utilities APIs to cache,

persistent
stotage,
memory,

strings, math,
messaging,

settings,
logging,

time, and
so on

Protocol
utilities

Portability layer

Session

Transaction

Security

Datagram

Protocol stack

compact protocol stack. We chose the
generic one. The effort of making platform
specific code generic and portable seemed
to exceed the work needed to tailor an ex-
isting generic stack to meet a small device’s
requirements.

We cleaned, tested, verified, and docu-
mented the acquired components to achieve
product quality. We concluded that inconsis-
tent error handling, memory management,
and coding standards were our most critical
problems. We set up a separate maintenance
project to clean the memory management,
which was all we had time for.

To achieve product quality, we needed
first to assess existing quality. We needed the
information to focus our development ef-
forts and to set customer expectations right.
We constructed test suites, trained person-
nel, contacted other vendors for interoper-
ability testing, and set up rules and proce-
dures for testing the product line.

We also created customer documenta-
tion, which was a major effort: none of the
original product line components except the
toolkit had any customer documentation.
To give an idea of the task’s difficulty, the
porting guide for the Nokia Mobile Browser
consists of almost 500 pages, and the
toolkit documentation exceeds 300 pages.

After eight months of cleanup, imple-
mentation, testing, and documentation, we
released the 1.0 version of the generic
browser product from the product line. We
now had a pool of core assets on which to
build our future products. The fact that
most of our core assets were already being
used in existing products demonstrated that
our technology worked.

Organization and processes
As I mentioned earlier, the technical prod-

uct line architecture and the developing or-
ganization’s structure must resemble each
other. We had five separate functional enti-
ties in our product line organization:

� Product management collected, ana-
lyzed, and prioritized product require-
ments; created requirements specifica-
tions and roadmaps; and oversaw the
functionality of all products.

� Product development owned the archi-
tecture and implementation resources
and ran the development projects.

� System testing tested and released the fi-
nal products.

� Customer support assisted customers in
using our products.

� Advanced development ran the stan-
dardization work and provided archi-
tectural studies, prototypes, and demon-
strations of new technologies and
features.

Development took place in the US, but
we developed parts of the product line in
Finland and Hungary. By the end of 2001,
the product line organization employed
over 100 people. We released approxi-
mately six major product releases each year.

Requirements analysis in product
management

During the analysis phase, a product man-
ager responsible for a specific version of a
product would create a requirement specifica-
tion document that analyzed and prioritized
requirements for the product release in ques-
tion. However, this document didn’t specify
requirements for the whole product line.

During the first two product projects, we
tried to allocate product requirements di-
rectly to the product line components,
which we soon discovered to be difficult.
Our customers wanted to discuss features
and products, not components. Also, our
product management didn’t have the techni-
cal expertise to allocate product require-
ments to technical components. Thus, we
started to map requirements directly to
product releases. Further allocation to sepa-
rate components happened later in the de-
sign phase.

Product managers maintained roadmaps
that outlined the characteristics of individ-
ual products for the next few years. The
product board—composed of participants
from all functions of the product line and
from major customers—reviewed all the
roadmaps together. Such review meetings
synchronized different product features: if a
feature appeared first in one product’s
roadmap and then later in others, synchro-
nizing our products provided a means of
domain analysis over all the products we
developed.

Software creation in product development
Our product development organization

We cleaned,
tested, verified,
and documented

the acquired
components to

achieve product
quality.

7 6 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

had four teams—namely, the core team, the
platforms team, the toolkit team, and the
testing team. The teams were competency
centers with a certain technical focus, and
they allocated their resources to various
product development projects.

The core team was further divided into
the browser and protocol teams. These
teams maintained the core product line—
the reusable assets that all the products
used. The platforms team specialized in
porting the core product to the various
hardware and software platforms. The
toolkit team developed the toolkit product.
The testing team maintained the tools and
expertise to test the various products devel-
oped from the product line.

Product managers defined a product re-
lease’s requirements in a requirement speci-
fication. The engineering teams analyzed
this specification and extracted generic
functionality into the product line core,
with the goal being to make the core as big
as possible. Then, the core team members
within the projects handled the common
core parts while platform and toolkit teams
handled platform- and customer-specific
parts within development projects.

The core team had an architect responsi-
ble for the product line’s architecture. She
used the requirements specifications, her ex-
pertise, and the platforms and toolkit expert-
ise of the other teams to create a functional
specification document. This document was
an engineering view of the requirements and
specified how to develop products and
reusable components. Thus, the core team
maintained the product line architecture.

We had only a few projects in which to
develop product line components independ-
ently from any product release. Typically, we
allocated product line maintenance work in-
side individual product projects, prioritizing
component development efforts and embed-
ding them into our tightly scheduled product
development projects.5 This ensured strong
product focus but made caring for the prod-
uct line architecture a challenge.

Our design and implementation phases
of the development projects included several
cycles that resembled other software proj-
ects at Nokia.5,6 First, each new product re-
lease built on the previous one. Second, we
built individual product releases incremen-
tally. Our internal customer often wanted

intermediate releases during the develop-
ment project. Finally, we used daily builds,7

which ensured that one project modifying
the product line would not harm another
concurrent project using the same compo-
nents. Daily builds also let us detect prob-
lems early.

Developing products from a product line
calls for solid configuration management.
We stored all the phase products such as
documents, test cases, and code in a central-
ized configuration management system. We
shared the system with our internal cus-
tomers who needed early access to the con-
figuration items.

A test lead developed the initial test plan
based on the functional specification. We
conducted system and interoperability test-
ing as part of the product projects—different
products shared test suites and cases. We
also invested a lot in the implementation of
reusable test suites. They formed an impor-
tant part of the product line’s core assets and
let us reuse test cases, tools, and expertise.

We originally planned to test software
components independently and then assem-
ble product releases from these tested com-
ponents, but we soon realized that this was
not enough. Every product needed full test-
ing on different operating systems, with dif-
ferent applications and memory constraints.
We never trusted that a component tested in
the context of one product would automat-
ically work in the context of another. In-
stead, we tested all components separately
for each delivered product version, using a
regression testing approach.

A project board run by the product line
management oversaw all the development
projects. It reviewed all projects on a regu-
lar basis to ensure timely and synchronized
project execution, solve resource conflicts
between projects, and assign resources to
work on common tasks outside the product
projects. The board was a key means of
maintaining a coherent product line view
within individual development projects.

Innovation and standardization in advanced
development

Developing products for emerging mar-
kets calls for innovation and standardization.
We had a dedicated advanced development
team that demonstrated new technologies
and provided information and ideas to the

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 7 7

Developing
products from a

product line
calls for solid
configuration
management.

other teams. The team also provided require-
ments and expertise on emerging standards
to the rest of the organization and worked
within standardization bodies, such as the
WAP forum, to drive standards.

Our XHTML browsing feature is a good
example of successful innovation and stan-
dardization. To the best of our knowledge,
our product line was the first to provide a
mobile XHTML browser with Cascading
Style Sheet and full WAP 1.x support. Our
advanced development team created the ba-
sic architecture and demonstrated an
XHTML browser for a phone at the end of
2000. The demo provided us with early cus-
tomer feedback and verified that the imple-
mentation was possible within the given
memory and computing restrictions. The
team also worked closely with the product
development that ramped up the XHTML
browser’s development and released the
Nokia Mobile Browser 3.0 in summer
2001. Finally, the team got the core of our
XHTML approach approved as the new
WML 2.0 standard.8

Benefits versus cost
A product line increases quality, shortens

time to market, and helps specify the
“right” product features. Strong process
structures help manage complexity and con-
flicts between the requirements of individ-
ual products and projects. Skilled architects
and architectural guidelines can mitigate
challenges in architectural development.

Benefits
We experienced increased efficiency

through reuse as well as accelerated product
implementation, lowered cost, and in-
creased quality. We could not have devel-
oped four different products and six annual
releases with our given resources without a
product line.

We analyzed requirements originating
from one product in the context of all other
products and used this accumulated domain
understanding to benefit the whole product
line. Such a process helped us identify new
requirements early and let one product bene-
fit from the requirements of others. This also
helped us detail feature sets and build com-
petitive products. Understanding the domain
helped us specify new products accurately.

The product line provided a clear focus

and set the management, processes, tools,
and other support elements, which attracted
and motivated high-quality personnel. Our
product line was highly rated in our annual
“Nokia Listening to You” questionnaires in
which employees rate their working condi-
tions. We also managed to retain our em-
ployees. In 1999 and 2000, when various
startup companies offered potentially larger
benefits than we did, we lost less than 3 per-
cent of our workforce. That we retained our
key experts and team leaders further in-
creased productivity and motivation.

The product line also increased our cred-
ibility and demonstrated our long-term com-
mitments. Showing different products devel-
oped from the same product line running on
different platforms provided a convincing
demonstration of our technology. Within
Nokia, we became not only the source of
browsers and tools but also a center of ex-
pertise on XML, XHTML, scripting, and
other related technologies.

Costs and risks
Compared to developing a single prod-

uct, the product line required extra re-
sources in process and tools development,
core development, and product manage-
ment. To minimize costs, we avoided devel-
oping core assets that we would not reuse.
For example, we considered a potentially
reusable library with no need for reuse as a
waste. It becomes an inventory that does
not benefit the product line and constrains
the organization’s throughput.9

We occasionally witnessed cases where
the creation of core assets significantly de-
layed the shipment of the first products to
customers. We considered this to be one of
the biggest risks and prioritized getting
products out quickly—even if such a move
delayed core asset creation. Therefore, we
first built product releases and then ex-
tracted components from them. Only when
a clear case for reuse became apparent did
we incorporate the asset into the core.

We had challenges in developing a coher-
ent product line architecture. Such architec-
ture cannot be optimized for a single product
but must support the conflicting require-
ments of many products. Our architecture
managed to accommodate different product
needs and integrate components originally
developed for different architectures. These

Our XHTML
browsing

feature is a
good example of

successful
innovation and

standardization.

7 8 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

sources provided us with a head start but
compromised the overall architecture by in-
troducing several different designs and cod-
ing styles within the product line. This was
visible in the context of our generic browser,
which we distributed as a source code prod-
uct. Our customers had to learn different
styles depending on the component they were
integrating or modifying.

Our product line supported four differ-
ent products by providing them with
reusable core assets, so modifying these as-
sets could potentially affect all products. We
managed such dependencies through con-
trolled requirements management, project
synchronization, configuration manage-
ment, and architecture development. We ex-
pected all teams to follow the documented
software development life cycle, which im-
plemented several milestones with approval
points. Our project board synchronized
projects, and our product board synchro-
nized product roadmaps and features. Our
architect was a gatekeeper, approving all
design and API changes. We also used
strict software configuration management
processes and tools. Changing plans, com-
ponents, or APIs required approvals to be
acquired and communicated appropriately.
All these practices aimed at good quality in
predictable product projects at the expense
of increased bureaucracy.

We also experienced some conflicts be-
tween project teams. Our employees re-
ceived incentives based on releasing their
products on time, yet their work depended
on the product line. We had cases in which
a project team felt that it didn’t get adequate
support from the product line, which made
blaming others for missed delivery dates
easy. We first handled these conflicts
through our project board; later, we added
product line maintenance into our bonus
schemes. However, we never quite managed
to solve conflicts between teams relying on
each other’s work. It seems such conflicts
are built into product lines.

A product line can also cause conflicts
between customers. They do not always
welcome the idea of our developing a prod-
uct line instead of just their product. As an
example, a major customer approved a re-
quirements specification for the next release
of its browser product. Later, we showed
the client a functional specification and

project plans that allocated work to product
line components. The client questioned our
approach, because it wanted us to concen-
trate on its product only. Explaining a prod-
uct line’s benefits to a customer of a single
product was sometimes difficult.

Moreover, testing a product line is more
complex than testing a single software prod-
uct. We must test the product line in its vari-
ous configurations, which easily multiplies
the number of test cases. To manage this
complexity, we system tested individual prod-
uct releases instead of testing the whole prod-
uct line. This kept testing simple and guaran-
teed the quality of product releases. However,
we did not build a pool of tested core assets
ready for integration, which probably in-
creased the need to test each product release.
We had approximately 25 percent of the
product line personnel working on testing
teams, so the testing phase took approxi-
mately 30 percent of the entire time of devel-
oping a software product release.

F or Nokia, the product line ap-
proach’s benefits clearly outnum-
bered its costs. We reused our core

assets extensively, and we succeeded in serv-
ing a diverse customer base, from content
developers to device manufacturers and
software companies. Such experiences are
motivating us to launch new product lines
and convert existing activities to use the
product line approach. An important future
challenge—not just for Nokia—is to learn
to reengineer existing product lines to ac-
commodate new business, technical, and
customer requirements.

The product line increased costs in vari-
ous support functions, architectural work,
and management. We therefore suggest that
an organization consider initiating a prod-
uct line only when it both aims at systematic
reuse and serves a heterogeneous customer
base with a common domain. Based on our
experiences, you can achieve fairly high lev-
els of reuse without developing and main-
taining an entire product line—for example,
by using independent code components.5

You might better serve a homogeneous cus-
tomer base by adapting a single product for
different purposes. Moreover, without a
common domain, the pool of core assets

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 7 9

Testing a
product line is
more complex
than testing a

single software
product.

might not grow big enough to be beneficial.
We believe that a software development

organization should resemble the develop-
ment view to the software architecture.6,10

The processes and organizational structures
must support the product line architecture.
Components must have owners, deliver-
ables must be allocated to teams and proj-
ects to develop them, and the interaction be-
tween teams must resemble the interaction
of the software components in a product
line. Thus, coupling the product line and the
organization is important. They need to de-
velop hand in hand.

Building a product line is a long-term ef-
fort in which the benefits come through reuse,
which can only come after several product re-
leases. We believe that building a few prod-
ucts first is the right way to initiate a product
line. Early products provide customer feed-
back and prevent the construction of useless
assets. A product line needs a long-term man-
agement commitment together with skills to
build it step by step. It is an investment that
can be made if business conditions call for a
long-term commitment to deliver several
products sharing a common domain.

Acknowledgments
I thank my colleagues Raouf Bortcosh, Greg Car-

penter, and Konstantinos Kalabokis at Nokia for
building and managing the product line with me and
helping me write this article. I also thank Ilkka
Haikala and Kai Koskimies at Tampere University of
Technology for their valuable feedback.

References
1. L. Bass et al., Product Line Practice Workshop Report,

CMU/SEI-97-TR-003, Software Eng. Inst., Carnegie
Mellon Univ., Pittsburgh, 1997; www.sei.cmu.edu/
publications/documents/97.reports/97tr003/97tr003abstract.
html.

2. P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, Addison-Wesley, Reading,
Mass., 2002.

3. Wireless Application Forum, Official Wireless Applica-
tion Protocol: The Complete Standard, John Wiley &
Sons, New York, 1999.

4. World Wide Web Consortium, XHTML 1.0: The Ex-
tensible HyperText Markup Language, 2000; www.w3.
org/TR/xhtml1.

5. M. Laitkorpi and A. Jaaksi, “Extending the Object-Ori-
ented Software Process with Component-Oriented De-
sign,” J. Object-Oriented Programming, vol. 12, no. 1,
Mar./Apr. 1999, pp. 41–50.

6. A. Jaaksi et al., “Tried & True Object Development,”
Industry-Proven Approaches with UML, Cambridge
Univ. Press, Cambridge, UK, 1999.

7. S. McConnell, Rapid Development: Taming Wild Soft-
ware Schedules, Microsoft Press, Redmond, Wash.,
1996.

8. WAP Forum, Wireless Application Protocol, WAP 2.0:
Technical White Paper, Jan. 2002; www.wapforum.
org/what/WAPWhite_Paper1.pdf.

9. E. Goldratt, The Goal—A Process of Ongoing Im-
provement, North River Press, Great Barrington, Mass.,
1992.

10. P.B. Kruchten, “The 4+1 View Model of Architecture,”
IEEE Software, vol. 12, no. 6, Nov./Dec. 1995, pp.
42–50.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

8 0 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

About the Author

Ari Jaaksi heads the Nokia Mobile Phones software and protocols research organization in
Finland. His research interests include development methodologies, architectures, and software
development organizations. He received his PhD in software engineering from Tampere Uni-
versity of Technology. Contact him at Nokia Mobile Phones, PO Box 1000, 33721 Tampere,
Finland; ari.jaaksi@nokia.com.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

