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efficiency, while security systems protect the
car from unauthorized manipulation. 

An automotive system typically consists of
dedicated processors, software, and inter-
faces that let the system measure, manipu-
late, and otherwise interact with its external
environment. Designers optimize such sys-
tems to reflect specific application character-
istics. Apart from a system’s desired func-
tionality, automotive system designers must
consider many possibly conflicting qualities
and constraints. Developing an automotive
system can thus involve hundreds or thou-
sands of variants, adding to the existing engi-
neering complexity. Whereas variability has
typically been addressed on a case-by-case
basis in late development phases, designers
now need a managed, systematic approach to
the ever-increasing number of variants. 

Product lines provide this systematic ap-
proach, along with a special focus on vari-

ability among related products. As we dis-
cuss here, systematic planning and continu-
ous variability management is a prerequisite
for effective product lines. We’ve developed
an approach to modeling and utilizing vari-
ability to support the efficient creation of
product variants. Our approach is based on
experiences with several industrial case
studies at Bosch. Before describing them, we
explain how product line development
meets the major design challenges in the au-
tomotive system domain.

Product line development
Automotive systems typically have thou-

sands of requirements, but some are espe-
cially important. Many automotive systems
are real-time systems with strict temporal
requirements that result from the internal
control loops. Thus, a computation’s cor-
rectness depends, in part, on its timeliness.
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A
utomotive systems provide a broad spectrum of services that fun-
damentally improve passenger comfort, safety, economy, and se-
curity. Parking assistance or adaptive cruise control systems make
it easier to operate a car in various driving situations, thus reduc-

ing drivers’ workload and increasing their comfort. Safety-related systems,
such as automatic stability or airbag control, help drivers avoid or reduce the
impact of accidents. Fuel economy systems lower emissions and increase fuel 
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Furthermore, designers must guarantee the
safety and reliability of the automotive sys-
tem software and embedded computer, even
under harsh conditions including excessive
heat or cold, vibration, shock, power supply
fluctuations, water, and corrosion. Another
essential quality of automotive systems is
their availability, or readiness for use. Main-
tainability might also be important. Legacy
software, for example, might have to run on
replacement hardware. Finally, security is
critical: Developers must be able to guaran-
tee that the system software cannot be eas-
ily manipulated.

Although many of these challenges in-
volve comprehensive research and analysis,
most have been solved by technical means.
However, providing such solutions in a way
that is both cost-effective and allows a short
time-to-market remains challenging for both
traditional and platform-based development. 

Traditional development
Today’s automobiles use many automo-

tive systems. Luxury cars, for example, can
include more than 80 electronic control
units that operate as single, partly net-
worked systems. In these systems, the soft-
ware portion is often highly adapted to the
underlying hardware and implements fixed,
very specific functions (such as adjusting
seats or lifting windows). 

Although companies might have consid-
ered the development of unifunctional entities
cost-effective in the past, it is hardly so when
we consider the total functionality of the car’s
automotive systems. The disproportionate
hardware costs, along with excessive software
development and maintenance costs for the
various automotive systems, make the conven-
tional “one at a time” approach singularly un-
attractive. Moreover, the restricted reusability
that results from binding software functional-
ity to dedicated hardware—as well as the ad-
ditional packaging, power consumption, and
electromagnetic interference—now make it
difficult to profitably engineer automotive sys-
tems in the traditional way. 

Platform-based development
To overcome these problems, the industry

recently began integrating automotive func-
tions on powerful multipurpose platforms
that replace mechanical and electronic com-
ponents with intelligent software solutions.

For example, companies now use a common
platform for infotainment systems (includ-
ing, for example, a radio, CD player, and
navigation system1) and safety systems (in-
cluding parking assistance and precrash de-
tection2). Although adopting a platform-ori-
ented development permits additional
services, more flexibility, and shared hard-
ware use, cost-effectiveness and time-to-
market have still not been addressed. Conse-
quently, the effort required to develop more
complex platform software is not fully com-
pensated by the hardware cost savings.

The product line approach
Despite their high volume, automotive

systems nonetheless have numerous varia-
tions due to differences among customers,
price, and technology. Therefore, a strategic
reuse approach that guarantees economies of
scope is indispensable. We can achieve this
strategic reuse by adopting a product line ap-
proach to platform-based development.

A software product line is a set of software-
intensive products that share a common, man-
aged feature set that satisfies the specific needs
of a particular market segment. Product line
development proceeds from a common set of
core assets in a prescribed way.3

Economies of scope imply a mass-cus-
tomization ability,4 which in turn requires 
a systematic consideration of variability
throughout product line development. Para-
doxically, the latter is often dismissed as sec-
ondary. Nonetheless, as we now describe,
this variability is crucial to achieving effec-
tive product lines.

Modeling product line variability
Developing product line products differs

from developing single products in that
variability is an inherent part of the model-
ing. This does not mean that common soft-
ware engineering practices are obsolete.
Rather, we must both extend these practices
and develop new ones.5

Variability affects all product line artifacts,
from requirements to code. Clearly, we need
specific solutions to support the specific cus-
tomer needs that motivated the variation.
However, in current practice, designers often
give variability incidental treatment. They
typically introduce it during late design or im-
plementation and express it, for example,
through myriad compiler switches. Moreover,
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designers often introduce a variation point
based on heuristics or expert knowledge. The
documentation of variable requirements ad-
dressed by a variation point is often implicit,
making the variation’s rationale hard to iden-
tify. With such an approach, product cus-
tomization—and especially the integration of
new features—is complex and error-prone.
Therefore, handling variability late in devel-
opment eliminates the company’s ability to
achieve significant economies of scope.

Our approach addresses these problems by
systematically and continuously incorporating
variability throughout product line engineer-
ing. We must introduce and refine variability

during core asset development and reflect vari-
ability in the production artifacts.6 Figure 1
shows a representative set of processes and ar-
tifacts; a more comprehensive overview is
available in the literature.3

Feature model
The feature model is an essential result of

product line requirements analysis.7–10 It
captures product line members’ functional
and nonfunctional capabilities, as well as
their commonalities and variabilities. It also
provides various stakeholders with a valu-
able view of the product line. For example,
customers can use the feature model to gain
an understanding of the product line’s func-
tionality, while system architects and prod-
uct engineers use it to drive the development
of product variants.

Figure 2 shows a simplified example of a
feature model for a car periphery supervision
product line. CPS systems provide passenger
comfort and safety functions based on sensors
that detect objects in the vehicle environment.

The feature model structures CPS prod-
uct line capabilities into a tree that shows
designers which variants to create and a
constraint network that coordinates their
combination. For clarity, we’ve omitted the
constraints network in Figure 2, which
shows only the tree structure:
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� The application branch is concerned with
the intended CPS system functionality.

� The sensor equipment branch shows the
hardware variants required to realize
the sensor platform on which the func-
tionality is based.

As Figure 2 illustrates, a CPS system in-
cludes at least one of two applications:
parking support and precrash detection.
Parking support basically consists of rear-
distance indication; we can enhance it with
front-distance indication and steering assis-
tance. We can define sensor equipment for
the car’s front or rear, applying either a low-
or high-end variant for each.

Product line architecture
Architecture is the first design artifact that

places requirements into the solution space.
Designers typically organize the architecture
description into multiple architectural views.
Each view represents the target system from
a particular perspective while addressing one
or more stakeholder concerns. 

With a product line, the architecture must
also capture design element variability.3,6,11

Architectural variability represents alternative
design options that could not be bound dur-
ing architectural modeling. Designers often
express this variability as a set of architectural
variation points that show (part of) the archi-
tectural solution to variable features.

A feature model does not, however, im-
ply a specific design; rather, it hints about
where designers must pay special attention
to structuring an architecture—for example,
with respect to configurability.11 Neverthe-
less, configurability is unlikely to be the
only attribute a designer must consider dur-
ing architecture design. In the automotive
context, performance, safety, and reliability
also play important roles, as mentioned ear-
lier. The final architecture must consider all
functional and nonfunctional requirements,
including qualities and design constraints.

Figure 3a and b shows the variability in
the logical and the physical views of the CPS
product line architecture. At the architec-
tural level, we introduce variation points to
satisfy the variability among the require-
ments in Figure 2. We characterize each
variation point by specifying how and when
a variation point applies. As the solid lines
between them show, variation points might
depend on each other to define consistent
component configurations.

The logical view contains four variation
points. As the arrows indicate, variation point
1 affects a logical component, steering assis-
tance, and two component groups. Variation
points 2, 3, and 4 affect only individual logi-
cal components (distance indication, sensor
control, and measurement coordination, re-
spectively). Additionally, there are dependen-
cies between variation points 1 and 3, 1 and
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4, and 2 and 5. Variation point 2 parameter-
izes the indication range software, whereas
variation points 5 (supervision range) and 6
(sensor type) map the corresponding elements
to the hardware platform. Thus, variation
points 5 and 6 are part of the CPS’s physical
view, describing the sensor equipment that the
specified functionality requires.

Variability also affects other architectural
views, including the process and deploy-
ment views, which we discuss elsewhere.11

Other work products
The feature model and architecture docu-

mentation represent only a portion of the
work products required for product line de-
velopment. The feature model represents
product line members’ particular capabili-
ties, while the product line architecture of-
fers the overall structure for realizing these
capabilities. To create product line members,
designers must consistently refine design so-
lutions for realizing both the common and
variable features during detailed design and
implementation.

Not all variable features will inevitably
affect the architecture’s overall organization.
Rather, designers encapsulate some variabil-
ity from the architectural viewpoint, and it
first appears at a more detailed level. In au-
tomotive systems in particular, there are

problems (and variations among them) that
designers can adequately address through
component design or code constructs. Ex-
amples include algorithmic conversions of
feedback control activities, software code
encryption to prevent unauthorized tuning,
or runtime data and instruction compression
for optimizing memory efficiency.

As designers refine the architecture dur-
ing design and implementation, the number
of variation points usually increases because
the mechanisms must ultimately be realized
through constructs at a lower abstraction
level. Nevertheless, the concrete solutions
we use to implement a variation point must
conform to the conventions defined in the
architecture. To control this process, estab-
lishing adequate traceability links—which
reveal the rationale behind a code-level vari-
ation—is vital.

Using product line variability
As we mentioned earlier, work products

created during product line development do
not exist in isolation. Rather, they relate to
each other as designers refine and realize re-
quirements stepwise from analysis to code.
Stepwise refinement includes the variability
identified first in the feature model, then im-
plemented in architectural variation points.
Designers should explicitly map features to
the corresponding architectural variation
points. In principle, this mapping shows
how the architecture’s variability mecha-
nisms contribute to the realization of the fea-
ture model’s variability.

In Figure 3, we denote this mapping us-
ing feature identifiers attached to the archi-
tectural variation points. For example, the
options associated with the application fea-
ture (F1) affect the architectural variation
point 1. This point is associated with the
corresponding logical components in the
product line architecture. Variation points 3
and 4 are only indirectly affected by feature
variants (through their relationship to vari-
ation point 1). Variation point 6 depends on
both the feature specification of the front
(F5) and rear (F6) sensor equipment. This
example raises two major points:

� The correspondence between features
and architectural variation points is
rarely 1:1 (F5 and F6 both map to vari-
ation point 6, for example).
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� The architectural variation points do not
introduce new variability; rather, they
realize the feature model’s variability.
Variation points 3 and 4 do not contra-
dict this statement; they simply support
variation point 1 and F1, respectively.

The traces between the features and the
architecture not only help stakeholders un-
derstand how designers have realized prod-
uct line variability, but also can be effectively
used for product derivation. We therefore
propose an extension to the concept of fea-
ture modeling to support the development of
product line members, starting from their
feature specifications.8,12 The basic idea is to
choose among the different feature options
and resolve the variability according to cus-
tomer needs.

For example, we might specify a low-end
parking support that displays distances to
rear obstacles by selecting the features F3
and F11 (see Figure 2). Such selections must
be consistent with the relationships among
features. Following feature selection, a
product developer can use a configuration
tool to propagate the selections to the archi-
tecture. Figure 4 shows how the feature and
architecture models work together.

The product line’s feature model serves
as a starting point for deriving a product. In
the feature configuration process, we use
the feature model to specify products in
terms of features. Then, in the architecture
configuration process, we use the specified
product features to bind the corresponding

variation points in the product line architec-
ture by using the traceability between the
product line feature model and architecture.
The result is a derived architecture that con-
forms to the product features. The architec-
ture also serves as the basis for potential
customizations in the architecture-adapta-
tion process, which yields the actual prod-
uct architecture. 

To support product architecture mainte-
nance, product developers should preserve
the traces between the derived architecture
and the corresponding product features. The
reason for this is that product developers
eventually must adapt an architecture to add
features specific to only a few products. The
decision about what is built “inside” and
“outside” a product line is based on business
considerations that shape the product line’s
scope. In practice, new features that are not
directly supported by the current product
line architecture still must be included to sat-
isfy all customer requirements. However,
slight adaptations are acceptable as long as
those features require only small, local
changes to the architecture and don’t nega-
tively affect the overall architectural quality.
Generally, management must make an ex-
plicit decision about whether to include such
“extra features” at the product or product
line level.

Figure 5 shows the product features, the
corresponding variation points in the logical
view, and the derived physical architecture.
Because we selected F3 and F11, we must se-
lect other features as well. F7 and F14, for
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example, are mandatory parts in every park-
ing-support application (see Figure 2, for ex-
ample). The derived logical view consistently
excludes steering assistance and precrash de-
tection but still contains variation points
that must be resolved as part of the product
architecture design. The derived physical
view contains no variability after resolving
variation points 5 and 6 according to the
feature selections, so we can use it as direct
input to the product architecture.

W e are currently working on con-
cepts and techniques to extend
and improve variability modeling

and management for industrial applications.
Our research areas include representation is-
sues and modeling and traceability guide-
lines for different development phases, as
well as tools that exploit variation points to
support efficient product creation. In addi-
tion to these topics, we are working to refine
our system-engineering processes to make
product line development more effective.
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