
focus

0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 4 1

In 1995, the small Esprit project ARES
(Architectural Reasoning for Embedded Sys-
tems)1 began with a focus on architecture
support for developing product families. Near
the end of ARES, another Esprit consortium
started investigating family development
processes in the Praise project. When ARES
finished, both ARES and Praise forces began
to cooperate on a larger scale within the In-
formation Technology for European Ad-
vancement framework (www. itea-office.org).
Established in mid-1999, ITEA is an industry-
driven, multinational strategic research and
development program designed to promote
the development of embedded and distributed
software and related software engineering
technologies. Because ITEA projects last for
at most two years, there has been a sequence
of such efforts. The first, Esaps (Engineering
Software Architectures, Processes, and Plat-
forms for System Families), recently finished,
and the second, Café (Concepts to Applica-
tion in System-Family Engineering), has just
begun. The research in Café will extend the

Esaps results by providing methods and
processes that support independent life cycles
of products and of systems using these prod-
ucts. In short, Café will tie the separate con-
cepts of Esaps into a unified whole covering a
product family’s entire life cycle. A follow-up
project is already being planned.

Companies in the ITEA projects (see Fig-
ure 1) are working on a variety of embedded
systems, including medical imaging, mobile
phones, flight control, utility control, super-
vision and management, financial services,
and car electronics. Because they are still in-
troducing product family practices in their
organizations, not all conclusions are defi-
nite. The five major partners—Philips,
Nokia, Siemens, Thales, and Telvent—intro-
duced product family development in soft-
ware organizations of more than 100 peo-
ple. Several other companies and research
institutions are involved in parts of the pro-
gram: they introduce family development on
smaller scales, focus on special topics, or act
as consultants for other companies.

Software Product
Families in Europe:
The Esaps & Café Projects

Frank van der Linden, Philips Medical Systems

European companies
have been
cooperating for
seven years on
product family
development. The
size and scale
of the projects
have increased
dramatically, and
funding now comes
through the ITEA
framework from
local governments.
Here is an overview
of these projects,
their results, and
how they differ from
other product line
efforts.

T
he main drive for Europe’s industrial-cooperation projects on
product family development is business need. The participating
companies have realized that only through significant reuse could
they increase software productivity, and for reuse to happen, it

had to be planned and organized.

initiating software product lines

Product line, product family,
product population

You might notice that we use the term
product family or system family where oth-
ers use product line. This is because the US
and European communities in this field
worked independently until a first meeting
in Las Navas, Spain, in November 1996. By
that time, two sets of terminology were al-
ready established.

Moreover, certain European companies
use product line to indicate something differ-
ent—a set of related, commercial products
that appear similar to users but often are
built with different technologies. For exam-
ple, product lines in consumer electronics in-
clude televisions, VCRs, DVD players, audio
receivers, CD players, audio amplifiers, and
so on. These products have similar housings
and user interfaces (for instance, buttons, di-
als, and LEDs), but their internal technical
details might differ a lot. We use product
family to describe a collection of products

that are based on the same technology—for
instance, a collection of TVs based on the
same software architecture. Often products
in the same product line are in different prod-
uct families, and vice versa. Because good
communication between the architects and
the marketing department is important in
product family development, using product
family or system family is easier.

Rob van Ommering introduced the tech-
nical term product population.2 This term
denotes a collection of related systems based
on a similar technology but with many dif-
ferences. For instance, the complete set of
consumer electronics products mentioned
earlier can form a product population.

Family development concerns
Setting up product family development

means taking several concerns into account.
The acronym BAPO, introduced by Henk
Obbink of Phillips Research, covers the main
issues. BAPO stands for

4 2 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

Philips, AEC
Software Engineering Research Centre, E
Environmental and Energy Study Inst., E

Univ. of Groningen, EC

The Netherlands

Ericsson, E
Combitech, E

Blekinge Inst. of Tech., E

.

Sweden

Nokia, AEC
Helsinki Univ. of Technology, E

Univ. of Helsinki, C

Finland

Siemens, EC
Bosch, PEC

Market Maker, EC
Fraunhofer Inst. for Experimental Software Eng., EC

Univ. of Essen, EC

GermanyThales, PEC
Alcatel, E

French Nat'l Inst. for Research in
Computer Science and Control, EC

Ivorium, EC
Softeam, C

France

Telvent, EC
Unión Fenosa, E

Polytechnic Univ. of Madrid, AEC
European Software Inst., PEC

Spain

Omega Generation, C
Inst. of Information Research, C

Italy
Vienna Univ. of Technology, AC
Johannes Kepler Univ. of Linz, C

Austria

Imperial College, A

A: ARES
P: Praise
E: Esaps
C: Café

United Kingdom

Asea Brown Boveri, A
Information on Communication Tech. Norway, C

Norway

Figure 1. The companies and countries involved in ITEA projects. Each partner’s name is followed by a
code denoting its involvement in the projects.

� Business: the way the resulting products
make a profit

� Architecture: the technology needed to
build the system

� Process: responsibilities and depend-
encies during software development

� Organization: the organization in which
the software is developed

Decisions made for one of these concerns af-
fect them all. Thus, such decisions must be
made carefully.

System family development started with
the implicit idea that a good family architec-
ture might benefit business. In other words,
by dealing with diversity in a managed way,
we might serve a larger, more predictable
market segment. If we are going to initiate
an architecture design and implementation,
we need a process to determine all the ac-
tions needed. We also need an organization
to implement the whole. Then we can ad-
dress the business consequences in light of
the results obtained.

The two main technical goals of the se-
quence of projects are to improve in both de-
velopment paradigms and reuse level. In the
case of our projects, the main architectural
improvements that will influence the designs
are developments in the computing plat-
forms, distribution and communication, the
development environments, and the soft-

ware development paradigms. In practice,
this means that we move toward compo-
nent-based development—that is, varying
products based on a single component-based
platform (see Figure 2). The platform is the
basis of the product family. Developers de-
sign, build, and test from a selection of the
platform’s assets. If they cannot obtain the
assets they need from the platform itself,
they must develop them. Later, the developer
might integrate these new, single-product as-
sets into the platform. The idea is simple but
the practice is hard, and this relates to all
BAPO concerns. The graph in Figure 3
shows the reuse-level terms introduced by
Ivar Jacobson, Martin Griss, and Patrik Jon-
sson.3 To move from bottom to top along
the y axis means that an increasing number

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 4 3

Component
base

Family:
varying products

Selection and construction

Platform

Figure 2. Component-based platform as the basis for a family.
Reusable assets might include interfaces, designs, patterns,
requirements, supporting infrastructure, and test cases.

Re
us

e
le

ve
l

Si
ng

le
 s

ys
te

m
s

m
ul

tip
le

 s
ys

te
m

 fa
m

ili
es

Development paradigms

Structured
programming

Object-oriented
development

Component-based
development

Agent-based
development ??

Domain-
pervasive

reuse

Architected
reuse

Managed
reuse

Planned
reuse

Informal
code reuse

No
reuse

Figure 3. Moving
from single systems
to multiple system
families.

of assets other than software—for example,
designs, patterns, requirements, test specifi-
cations, and test results—become reusable.
In addition, planning and design of reuse be-
come necessary. The product family ap-
proach deals with architected reuse.

Our sequence of projects addressed vari-
ous software development issues. The ARES
project considered mainly architecture con-
cerns for system families, and the Praise proj-
ect considered mainly process issues. Praise
introduced a reference process model that we
use in Esaps and Café. The Esaps project
concentrated on creating and managing fam-
ily assets but also did some work on the ar-
chitecture and the organization. Café also
has a strong process focus, but it spends
more effort than the previous projects on or-
ganization and business issues. Café takes
into account issues at the very early and later
stages of development related to require-
ments engineering and testing.

The companies working in the different
projects agreed to use a particular set of
best practices. Table 1 groups these prac-
tices according to the development issues
discussed later.

Business
We began the sequence of projects with an

intuition that family development was good
for business, but we didn’t address the first
business concern, scoping, until Esaps. Now,
business concerns are an important topic in
Café. The scope determines the product fam-
ily’s range, and scoping decisions have im-
portant business impact. If the scope is too
wide, development becomes too costly; if it is
too narrow, the product family cannot serve
the market demand. We must choose project
objectives and a domain focus that are ap-
propriately scoped and aligned with the
broader strategic needs of the market and the
stakeholder organization. Scoping is not an
initial activity, but it must be performed over
the course of the family’s lifetime, because
new market demands might give rise to new
scoping solutions.

Esaps participants distinguished three
kinds of scoping:

� Product family scoping: define the prod-
uct portfolio

� Domain scoping: identify the bound-
aries to relevant domains

4 4 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

Table 1
Project topics

Business Architecture Process Organization

ARES Dealing with variation Recovery from legacy systems
Architecture description
Resource management qualities

Praise Domain-specific architectures Family development practices
Family architecture Variability and commonality
Development tools Traceability between assets

Architectural decisions
Esaps Scoping Domain analysis Architecture assessment Platform and component

Aspect analysis Architecture recovery development
Family requirements Domain analysis
Architecture glossary Aspect analysis
Commonality and variability Family development process frameworks
Reference architecture Requirements modeling and traceability
Platform and components Change management

Evolution support
Variant configuration and derivation

Café Business and market Requirements engineering Asset management Asset management
analysis Heterogeneous platforms Traceability Validation and testing

Scoping COTS use Change management and impact analysis Product-line transition and adoption
Family development Design for quality Family transition and adoption Change management

transition and adoption Development tool support Configuration and version management Configuration and version
Test modeling Product derivation management
Validation Family evolution Product derivation

Test strategy and methodology
Validation

� Asset scoping: identify reusable elements

Esaps activities dealt only with the latter
two. Domain scoping is related to domain
modeling activities; asset scoping is related
to feature analysis, which determines a
product’s commercial features. We used an
initial tool prototype to help us make scop-
ing decisions.

The Café project must answer these im-
portant questions:

� From a market point of view, when is
defining a product line worthwhile?

� When and how should we introduce a
product family approach?

� How do we integrate existing processes
with the new ones derived from the
product family paradigm?

To evaluate these questions, we need an
economical analysis model. To make scop-
ing more effective, we want to relate it to
the business model. Finally, Café will deal
with the problems of introducing a family
development process into an organization.
Emphasis will be on which organizations
are suitable for product family develop-
ment, and how traditional organizations
can move toward product family processes.
The project will cover both lightweight and
heavyweight transitions.

Architecture
The ARES project focused on architec-

ture, as Figure 4 shows. One of the most
important results was a clear definition of
these architecture issues:

� Significant architecture requirements:
The architecture should make explicit
which requirements are significant for
the product family’s architecture. More-
over, it should be explicit whether a re-
quirement is functional or nonfunctional
(related to quality). The architecture
should relate all these requirements to
the design decisions made.

� Concepts: The architecture determines
concepts, which clarifies the system’s
organization.

� Structure: The architecture determines
the internal organization of the products.

� Texture: The architecture determines
the standard solutions for implementa-

tion problems. Developers can address
quality issues by using such standards.

ARES spent much effort on the architec-
ture description. Having the right descrip-
tion mechanisms eases the modeling of vari-
ability. This modeling continued in Esaps. As
a result, we recognize that variability should
be modeled through variation points,3 which
denote places at which the family’s assets
might vary. Esaps distinguished between
variability in time and in space. This distinc-
tion strongly influences how the variability
will eventually be implemented.

Esaps investigated the subject of variabil-
ity. Designing system families requires find-
ing a way of architecting both commonality
and variability to exploit them during the
tailoring process. The product family archi-
tecture, or reference architecture, defines
the components (mandatory, optional, and
alternative), component interrelationships,
constraints, and guidelines for use and evo-
lution in building systems in the product
family. Consequently, the reference architec-
ture must support common capabilities
identified in the specification, the common-
ality, and the potential variability within the
product family. We then use the reference
architecture to create an instance of a par-
ticular architecture for a new variant.

Product line architecture modeling in
Esaps resulted in separating the concepts
variability in the large and variability in the
long term. This is a useful separation, be-
cause it relates to the type of equipment and
to the market. Moreover, the variation pat-
terns used differ for these categories.

The Esaps project recognized the most
important reusable assets:

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 4 5

Architecturally significant requirements
• Functional
• Quality

• Layers
• Components
• Interfaces ...

Texture
• Patterns
• Coding standards ...

Concepts
• Client-server
• Resource manager ...

Structure

Figure 4. The ARES model of software architecture.

� Requirements, with variation points: stat-
ing stable and variable (planned) product
properties for all family members

� Domain model: describing all the enti-
ties that are important for all systems in
the family

� Architectures: determining how to config-
ure different software assets to build sys-
tems that satisfy the quality requirements

� Patterns: used in solving quality and vari-
ability issues during product development

� Design decision model: used in deter-
mining how to derive a product based
on specific requirements

� Software components: implementing the
functionality

� Interfaces between components: pro-
viding more stability than using the
components directly; often enabling
different implementations of the same
functionality

� Test cases, with variation points: used in
testing products in the family

� Product documentation: used by the
system’s end users

To build systems right, we must develop
our platforms and components carefully.
In many cases, we build the platform itself
from components. In the Esaps project, we
addressed component management, in-
cluding identifying and retrieving assets
and designing, implementing, and deliver-
ing components. We also investigated com-
ponent configuration support; we found
that in a product family context, each com-
ponent must carry much more information
than traditional software packages. The
Café project continued this work, empha-
sizing the independence of the underlying
commercially bought platform and the use
of commercial off-the-shelf (COTS) soft-
ware in the families.

In ARES, Esaps, and Café, attention to
designing for quality was an important is-
sue. In a product family context, designing
for quality has specific challenges, because
the developers must make quality predic-
tions for all the products in the family. In
ARES, we addressed traditional qualities,
mainly those dealing with resource issues.

In Esaps, we gave specific attention to as-
pect analysis to deal with special system
views for various quality concerns. Aspect
analysis is inspired by the Building Blocks

practices4 in Philips Kommunikations Indus-
trie in the 1980s and early 1990s. PKI had
to survive in a niche market and therefore
needed to be very flexible. This architecture
was the basis for one of the first product
families in Philips. The developers consid-
ered three design dimensions independ-
ently—structure, aspects, and behavior—
and then assigned each piece of
functionality a place in each dimension. The
structure dimension determines the compo-
nent and layer where the functionality re-
sides. The behavior dimension determines
the threads in which the functionality is ex-
ecuted. The aspect dimension does a high-
level functional decomposition of the sys-
tem. Each piece of functionality was
assigned to a single aspect—for example,
operational behavior, logging, initialization
and termination, test management, process
management, and resource management.
Each component, called Building Block by
PKI, implemented all aspects. Sometimes
with the support of automatic code genera-
tion, we created a global design for each as-
pect. Esaps developers took up this idea to
see whether it would apply to more general
situations. Some investigated how this re-
lates to aspect-oriented programming. In
Café, attention is on using architectural
styles and patterns to address quality issues
at the architecture level.

Esaps developers did a lot of work on re-
quirements modeling for product families.
Within product families, requirements come
in several sorts. Some requirements hold for
the complete family, but others hold for
only one or a few systems. Requirements
might have variation points for different
family members. To be able to deal effi-
ciently with the requirements, it should be
clear what kinds of requirements are neces-
sary and useful in the family. Traceability is
related to this. Requirements must be traced
to family assets. In this way, we can deter-
mine which assets are necessary for which
set of product requirements.

Praise and Esaps did a lot of work on
traceability modeling. Esaps came with a
distinction between pre- and post-traceabil-
ity, determining whether traceability is re-
lated to assets in an earlier or a later stage
than requirements modeling. In addition,
the developers distinguished between hori-
zontal and vertical traceability and whether

In a product
family context,

each component
must carry
much more
information

than traditional
software
packages.

4 6 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

traceability remains at the same abstraction
level. This work continues in Café.

We studied ways (methods and tools) to
support the process of determining which
variants should be selected at each variation
point; this is an important step in deriving the
products. Esaps determined a framework for
the technology and the concepts related to
variability. The framework helps the devel-
opers recognize where and when variability is
needed and led to patterns often related to
variability. A crucial factor here is the right
choice of variable-point representation.

Process
The typical software development

process involves separate development for
each product; instead, we wanted to intro-
duce a development process incorporating
all of a family’s products. Moreover, the
process had to take into account asset reuse.
The advantage of this setup is that the total
development cost decreases after several
systems are built. The Praise project deliv-
ered an abstract reference family develop-
ment process (see Figure 5) that we carried
over into all activities in Esaps and Café.

There is a simple application develop-
ment process for developing single systems
involving

� Application requirements: determining
what the product should be

� Application design: selecting compo-
nents to make the product

� Application coding: combining compo-
nents using the infrastructure and possi-
bly additional product-specific code

The domain development process produces
family assets that the product development
process will reuse. This process involves

� Domain analysis: determining what the
family is about

� Domain design: deciding which plat-
form components are needed

� Domain implementation: building and
buying components and supporting in-
frastructure

Two important product family issues
dealt with at this point are traceability and
change management, which enable develop-
ers to plan and produce systems efficiently.
Traceability is connected to configuration
and version management. At any moment,
many system configurations are available in
the field. For maintenance reasons, we need
to know which versions of which assets are
used in which systems. The feedback loop is
essential for getting a manageable process.

The Esaps companies have implemented
this process in many different forms. The
development process distinguishes family as-
set development (domain engineering) from
product development (application engineer-
ing). The asset base is the repository of fam-
ily assets produced by domain engineering
and used by application engineering.

We can map Jacobson, Griss, and Jons-
son’s process classification3 to this model as
well. Their AFE (application family engi-
neering) is related to the activities in the
top-left hand block of Figure 5, CSE (com-
ponent system engineering) is related to the
other blocks in the top row, and ASE (ap-

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 4 7

Requirements Components

Family
asset
repository

Application
engineering

Application
requirements

Application
design

Application
coding

New
requirements

Domain
engineering

Domain
analysis

Legacy code
Domain
expertise Domain

implementation
Domain
design

TraceabilityTraceability

Domain terminology
Reference requirements
...

Reference architecture Reusable components

Feedback / adaptations /
reverse architecting

Figure 5. The Praise
reference process.

plication system engineering) comprises the
bottom row.

Esaps presented all the process frame-
works used in the participating companies
in the same template, so we could compare
the different frameworks. We found room
for improvement in all the frameworks.
Esaps determined a clear set of necessary ac-
tivities and work products. In all cases, do-
main engineering and application engineer-
ing had separate processes. Because no
existing framework exhibited all the impor-
tant activities, we concluded that none were
sufficient for product family development.

All Esaps partners already had a collec-
tion of systems in the field that should be-
long to the family and that need to be main-
tained for several more years. Moreover,
these systems contained assets that could be
transformed into family assets, to be
reusable in future family members. We be-
gan to define a process and tool support for
incorporating the already existing (legacy)
systems into the family domain, and we be-
gan to treat them as family members hence-
forward. Café continues on this track and
has introduced the incorporation of third-
party software and COTS into the family.

The Café project is based on the same
Praise reference process, with a focus on the
very early and late subprocesses and the ma-
jor activities shown in Figure 5. The Café pro-
ject’s results have the form of structural rules
for assets, methods, procedures, and organi-
zational structures. We will use these results
to build new applications in the families and
to provide requirements for tool vendors.

Change management lets us predict the
properties of variants and new family assets
before building them. The Esaps project did
some initial investigation of change manage-
ment, and these efforts are continuing in
Café. Changes in one asset of a family might
affect many products in several ways, so we
must be careful with changes. Guidelines
and automated support are essential for
identifying and supporting required changes
caused by the modification of a given soft-
ware artifact. These guidelines might be ac-
complished by specifying specific tradeoffs
or constraints on specific products or prod-
uct parts. Moreover, it is necessary to be
able to select the requirements for a single
member of the family and then to quickly
select the assets needed to build that mem-

ber. Esaps proposed a decision model, based
on a requirement hierarchy, for deriving
family members.

Depending on the specific functional or
quality requirements, the architect selects
the product variants to be delivered and
then builds the executable system based on
that selection. Esaps investigated how to
manage family assets so that developers can
find what they need. The project built meta-
models to improve asset classification and
introduced methods for effectively selecting
components and interfaces in an asset base.

ARES started the first investigation of ar-
chitecture assessment, the process of measur-
ing system properties based on an architec-
ture description. The project performed a
small assessment related to timing behavior
and proposed tool support for analyzing the
timing behavior. A more complete assessment
case study within Esaps resulted in some ad-
ditions to traditional architecture assessment.
However, we did not find much difference
from traditional architecture assessment.

Domain analysis is one of the basic activ-
ities in product family development. All sys-
tems in the family belong to the same do-
main or a small set of domains, and the
result of the domain analysis, the domain
model, is usable for all these systems. The
domain model is crucial for the family ar-
chitecture, because the complete family
architecture is based on the domain. Only
when the developer knows the domain’s
boundaries can he or she efficiently deter-
mine the domain model.

ARES experimented with and had some
success in recovering architecturally useful
information from existing assets, informal
documentation, and interviews. Esaps con-
tinued this work in the automatic verifica-
tion of conformance to architectural rules
during development, and the work con-
tinues in Café.

Tool support is crucial. Product family
development needs tool support to manage
the assets, model the domain, support trace-
ability, and help the architects and develop-
ers easily do the right things. In addition,
the (semi)automatic derivation of products
from specific product requirements would
be very helpful. No good tool support exists
for this. In ARES’ focus on techniques for
product family architecture, it found that a
simple language works best. However, most

All Esaps
partners

already had
a collection of
systems in the

field that should
belong to the

family and that
need to be

maintained for
several more

years.

4 8 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

commercial tools support complex lan-
guages that divert the attention of architects
to issues that are important only in later
stages of development. Esaps produced a
collection of tool requirements. Café will
get a more complete picture of requirements
for tool support.

Organization
The projects have not done much work

on organization yet, but Café will investigate
this aspect. During Esaps, we investigated
only briefly the organizational consequences
of a product family development approach.
We concluded that separate development
groups should work on family engineering
and product engineering. In fact, division
into three development organizations might
be a good idea.3 However, we found that
good experiences also occur when we com-
bine all responsibilities and split the depart-
ments orthogonally to the process categories.
So, we concluded that it is still not clear
when and why a development organization
should be separated into family and product
development departments.

W hile the European movement to-
ward product family engineering
took place, researches in the US

founded the SEI Product Line Initiative.5

This initiative had the same objectives: im-
proving and introducing product families
(product lines) into industrial organiza-
tions. Apart from this, we know of no other
large-scale product family engineering ef-
forts. In contrast to the SEI initiative, the
companies involved initiated the European
projects. This was based on their own ex-
periences and their own economic need for
product families. The European movements
joined forces to learn from each other. The
founding companies selected research insti-
tutes according to their added value for the
initiative.

The SEI initiative gives general guidelines
on best practices for many areas. It puts a
lot of work into the management process,
which the European projects only partially
address. In the European projects, we found
many cultural differences among organi-
zations, which led to different emphases on
different management issues. Moreover, we

are acting in a bottom-up way. We try to
learn from each other and adopt each
other’s best practices. We do not want to
force the participants to take over practices
that do not fit their culture. This means that
the European projects came up with a large
variety of solutions to the same problem, in
contrast to the SEI initiative, which pro-
motes a single framework.

To bring the rest of the world into the
discussion, we have been running a se-
quence of workshops on product family en-
gineering.6–8 During the first workshop, we
came in contact with the SEI Initiative par-
ticipants; now, we meet each other several
times a year at conferences and workshops
and exchange ideas for improvement. We
feel we benefit from this contact, so we will
continue to present our workshops.

References
1. M. Jazayeri, A. Ran, and F. van der Linden, Software

Architecture for Product Families, Addison-Wesley,
Reading, Mass., 2001.

2. R. van Ommering, “Beyond Product Families: Building
a Product Population?” Proc. Software Architectures
for Product Families, Lecture Notes in Computer Sci-
ence 1951, Springer-Verlag, Berlin, 2000, pp. 187–198.

3. I. Jacobson, M. Griss, and P. Jonsson, Software Reuse,
Addison-Wesley, Reading, Mass., 1997, p. 21.

4. F.J. van der Linden and J.K. Müller, “Creating Architec-
tures with Building Blocks,” IEEE Software, vol. 12,
no. 6, Nov. 1995, pp. 51–60.

5. P. Clements and L. Northrop, Software Product Lines,
Addison-Wesley, Reading, Mass., 2001.

6. Proc. Development and Evolution of Software Architec-
tures for Product Families, F. van der Linden, ed., Lec-
ture Notes in Computer Science no. 1429, Springer-Ver-
lag, New York, 1998.

7. Proc. Product Family Engineering, F. van der Linden,
ed., Lecture Notes in Computer Science no. 2290,
Springer-Verlag, New York, 2002.

8. Proc. Software Architectures for Product Families, Lec-
ture Notes in Computer Science 1951, Springer-Verlag,
Berlin, 2000.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 4 9

About the Author

Frank van der Linden is an international project leader at Philips Medical Systems,
where he coordinates international-cooperation projects in software engineering for product
families. He is also project manager for the ITEA projects Esaps and Café and was Philips’ proj-
ect leader of ARES (Architectural Reasoning for Embedded Systems). His main interests are in
software engineering and architecture, with an emphasis on process and organization, and
quality issues. He received a PhD in pure mathematics from the University of Amsterdam. He
is a member of the Dutch Mathematical Society and of the Dutch Association for Theoretical
Computer Science. Contact him at Philips Medical Systems, Veenpluis 4-6 5684 PC Best, Nether-
lands; frank.van.der.linden@philips.com.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

