
5 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

two and a half years, our work group, which
met under the umbrella of the German Com-
puter Society (a sister organization of the
IEEE), has investigated and compared SPL
practices. The work group comprises members
from five organizations:

� Hewlett-Packard, a global IT vendor
� Robert Bosch GmbH, a leading supplier

of automotive electronics
� Software Construction Group, University

of Aachen, representing a large supplier of

industrial energy solutions
� MARKET MAKER Software, a small software

developer for online stock market infor-
mation management, represented by
Fraunhofer IESE

� sd&m (software design & management),
a renowned software house

Moreover, most work group members had ex-
perience from more than one product family
or business department, giving us a rather
broad overview of the state of SPL develop-
ment in industrial practice. (In the rest of the
article, we omit company references to pre-
serve the anonymity of sensitive information.)

An SPL is a set of software-intensive sys-
tems sharing a common, managed set of fea-
tures.1 These features satisfy a particular mar-
ket segment or mission’s specific needs and are

focus
Product Line Engineering:
The State of the Practice

S
oftware product lines can be very powerful for ensuring quality,
economic efficiency, and manageability of software system fami-
lies. SPLs are relevant to large industrial enterprises that want to
better manage their software-intensive systems’ development.

They can also provide small start-ups with unique and striking business
models. However, SPL technology can be challenging.

We aim to shed light on SPL practices in today’s software industry. Over

the state of the practice

Software product line technology can be difficult to implement
and maintain. A work group comprising five organizations has
investigated and compared SPL practices. The results detail the
state of SPL practice.

Andreas Birk, sd&m

Gerald Heller, Hewlett-Packard

Isabel John and Klaus Schmid, Fraunhofer Institute for Experimental Software Engineering

Thomas von der Maßen, University of Aachen

Klaus Müller, Robert Bosch GmbH

developed from a common set of core assets in
a prescribed way. Our work group set out to
better understand how software organizations
can successfully set up and manage SPLs. We
identified four key practice areas:

� Organization and support practices
� Practices that balance platform versus

client interests
� Requirements engineering practices
� Architectural practices

For each area, the work group identified
and compared the various practices their or-
ganizations employed. They also contrasted
them with published reports of SPL prac-
tices.1–3 The result, which we report here, de-
tails the state of SPL practice.

Organizational characteristics
Table 1 characterizes the five organizations

and their SPL projects. In addition to these
five projects, we accessed about 10 more proj-
ect contexts for comparison and refined our
observations and conclusions.4 This allowed
for a wide spectrum of detailed investigations.

The organizational context illustrates the
various product line situations the study cov-
ered. We characterize context in terms of these
factors:5

� Number of employees in the business unit
defines how many employees are in the
part of the organization that applies SPL
software development and includes cate-
gories 1 through 10, 11 through 250, and

251 through 1,000.
� Number of development sites involved in

SPL development includes the categories
1, 2 through 3, and 4 through 8.

� Market orientation defines whether the
organization targets a specific market seg-
ment without a specific customer in mind
or addresses individual customer projects.

� Hardware embedding is either an embed-
ded system or pure software.

� Core platform development indicates
whether reusable assets and the final
product are developed in different organi-
zational entities.

The product line characteristics describe
the product lines we studied in more detail:6

� Number of products expresses the average
number of different software products
that are developed from the SPL during
one year.

� Performance requirements describe whether
system performance has high priority for
development. They can be strict, if per-
formance is expected to be a high-priority
design and implementation constraint, or
loose if not.

� Stability describes the degree to which we
can expect the domains relevant to the
product line to change in the foreseeable
future.

� Architecture or implementation charac-
terizes how organizations use the imple-
mentation approach for the product line.
Possible values are component-based ap-

N o v e m b e r / D e c e m b e r 2 0 0 3 I E E E S O F T W A R E 5 3

Table 1
Factors for characterizing product line development organizations

Organization 1 Organization 2 Organization 3 Organization 4 Organization 5

Organizational characteristics
Employees in business unit 1,000 1,000 10 250 1,000
Number of development sites 8 3 1 3 8
Market orientation Market segment Customer projects Customer projects Customer projects Customer projects

and market segment
Hardware embedding Software only Embedded system Software only Embedded system Software only
Development of a core platform No Yes No Yes Yes
Product line characteristics
Number of products High Very high Medium High High
Performance requirements Strict Strict Loose Strict Strict
Stability Low High Medium High High
Architecture/implementation Components Framework/components Framework Framework Framework/components

proach, object-oriented framework, domain-
specific language, and other.

Both the organizational and the SPL char-
acteristics show that the investigation covered
a heterogeneous set of samples that varied
considerably. This gave us a rich collection of
case studies for in-depth investigation. We dis-
cussed our organizations’ SPL practices in the
light of SPL’s perceived implementation diffi-
culties. We held more than 10 one-day meetings
over more than two years. Observing changes
and improvements during this time period gave
us another interesting opportunity to assess the
applied SPL practices’ effectiveness.

When comparing the five SPL projects’ char-
acteristics, we can see how much organizational
factors and business environment shape SPL
practices. For instance, one organization devel-
ops its product line concurrently at different
worldwide locations. It not only develops the
product line within the organization itself but
also uses a couple of subcontracted R&D or-
ganizations distributed around the globe. This
high distribution can aggravate communication
between developers, hindering effective develop-
ment of reusable components. In another or-
ganization, the organizational units for all prod-
uct line development are on the same site,
simplifying strong information exchange among
the complementary product lines’ contributors.
Owing to the organization’s small size, it can use
a simple organizational structure: a single or-
ganization manager is responsible for the prod-
uct line’s domain and application engineering.

Other factors that shape an R&D organiza-
tion’s SPL approach are technological environ-
ment and product-related factors. They can
cause issues that are different from those result-
ing from organizational and business-related
factors. For instance, in some organizations
with many products and relatively instable do-
mains, the following challenges became increas-
ingly apparent and motivated the need for a
solid product line approach: Products started to
overlap in functionality, customers who bought
more than one product faced consistency and
efficiency issues, and development and mainte-
nance costs increased.

Product line engineering practices
We identified the various factors related to

SPL development and used them to character-
ize our organizations and their product lines.

This initial investigation built a broad enough
common basis for comparing the different or-
ganizations and their SPL approaches. It let us
evaluate product line engineering practices and
identify experiences about SPL development.

Organization and support practices
Introducing product line development to an

organization significantly impacts the entire
organization. It can fundamentally change de-
velopment practices, organizational struc-
tures, and task assignments. These changes
can in turn impact team collaboration and
work satisfaction. So, organizations must plan
and manage them carefully, mitigating possi-
ble adverse effects.

You can organize SPL development in two
ways:

� Within product teams: The same developers
and teams who develop products on the ba-
sis of core assets are temporarily assigned to
developing or evolving these core assets.

� In a separate SPL team: One team devel-
ops the core assets while other teams de-
velop products. The SPL team can be per-
manent—being responsible for initial asset
development and later evolution—or it
can exist only until it develops the initial
collection of core assets. Product develop-
ers would then perform further platform
evolution.

When you assign SPL development as an
additional task to product development teams,
you risk spoiling the SPL core by focusing it
too strongly on the next product to come.
When you create a separate SPL team, the
reusable components might not sufficiently
address the current products’ needs or might
not be aligned with the current schedule.

In our work group’s investigation, only one
organization chose a permanent separation of
SPL and product development. Another devel-
oped core assets as a second product develop-
ment task. The other three developed their
reusable assets in temporarily specialized
teams, while doing further maintenance and
evolution in association with product develop-
ment. Organizational setup also changes as
the SPL matures. When you derive the SPL
from existing products, you might initially de-
velop some components of the product line in
product development teams. However, when

To support
product line
development

from an
organizational
viewpoint, we
found it key to
demonstrate a

convincing
business case.

5 4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

more and more products are using these com-
ponents, the teams might move to a different
organization.

This distribution pattern matches our ob-
servations throughout industry. Few organi-
zations perform fundamental restructuring
into separated SPL and product organiza-
tions. Most want to avoid the risk of such
deep changes, although this could limit the
advantages of SPL development. One reason
to avoid these changes might be to maintain
proven work structures and organizational
culture. In some cases, a company’s business
model suggests avoiding permanent restruc-
turing—namely, when product customiza-
tion is the main business and the volume of
SPL maintenance doesn’t justify a separate
team.

Regardless of asset and product develop-
ment’s basic organization, you must ensure an
optimal fit of the SPL core with product devel-
opment needs. This requires a sophisticated
balance of SPL autonomy and consideration of
product concerns. You should not align the SPL
core too closely with individual product needs
but must ensure timely implementation of rele-
vant product features. The required measures
are equally important for every software organ-
ization that performs SPL development.

To support product line development from
an organizational viewpoint, we found it key
to demonstrate a convincing business case and
identify an appropriate organizational struc-
ture. In particular, if an organization estab-
lishes a separate SPL team, it must internally
justify the team’s platform continually.

Showing a convincing business case. What are
the essential launch conditions for a product
line initiative? We’ve observed two triggers in
practice: the set-up, based on the personal con-
viction of key personnel, or the more disci-
plined approach—the business case is system-
atically developed to introduce the technology.
Although the latter is preferable, in practice
we’ve observed that sufficient management
buy-in is a key quality to making a product line
successful. The latter trigger usually plays only
a secondary role. So far, we have yet to see a
product line development where the overall in-
troduction occurs on the basis of a thorough
cost-benefit analysis. However, in a long-
running product line development—where
protests against it might occur repeatedly—

justifying the product line approach through
cost-benefit analysis is particularly necessary.

Identifying an organizational structure. When
establishing an independent domain engineer-
ing unit, you always risk that it will “develop
a life of its own.” Will the assets you develop
still focus on future products down the line?
Will they be available in time for the products?
This is probably the most-often-reported
problem from product line development, espe-
cially in the case of divisional work split.
That’s because this kind of platform team is
usually quite distant from the customers, los-
ing the required understanding of customer
perspective.

Another direct consequence of creating a
platform team along with several project teams
is that the number of communications in-
creases. The platform team must confer with
the various project teams, a trade-off of the
project teams’ requirements must be made, and
so on. This might also easily lead to a situation
where people want to move away from a prod-
uct line approach. This kind of negotiation
usually starts when deciding which require-
ments should become core assets and which
ones should be product specific (see the section
on balancing platform versus client interests).

Justifying the platform team. The two prob-
lems just mentioned might lead to a situation
where the platform team itself is the problem.
In that case, you might perceive the team as
failing to serve the customer, creating delivery
problems, and generating overhead.

Depending on the overall criteria for intro-
ducing SPL development, the justification
might take different forms. If cost-benefit con-
siderations drive SPL development, the only
approach is to continuously monitor the cost
advantages that a platform can generate. Con-
sideration on the customer side can also gen-
erate platform development. For example, the
customer might want to have its various prod-
ucts based on a single platform to reduce total
ownership cost (for example, through mini-
mizing training and support costs).

While in the second case justifying SPL de-
velopment is relatively easy, the first case usu-
ally calls for repeated justification. This seems
straightforward if an adequate measurement
program is already in place. However, appro-
priate measurement systems are usually not

N o v e m b e r / D e c e m b e r 2 0 0 3 I E E E S O F T W A R E 5 5

Another direct
consequence of

creating a
platform team

along with
several project

teams is that
the number of

communications
increases.

available. So, most justification efforts must
rely on a combination of indirect cost-benefit
indicators and argumentation.

Balancing platform versus client interests
SPL platform development’s goals differ

from product development’s goals, which
client interests drive. While platform develop-
ment must provide a consistently high-quality
platform, product development must meet de-
livery dates and customer requirements. So,
with every SPL development you must decide
whether to integrate a given requirement into
the platform or into an individual product
only. The right date and order of requirements
implementation is essential to SPL develop-
ment’s effectiveness.

Integrating requirements into the common
platform. In a product line situation, many
projects simultaneously depend on the core as-
sets or the common platform. So, the sequence
in which you integrate requirements into the
platform becomes key. You must ensure that
the required functionality that a future prod-
uct will reuse is already part of the platform
by the time it’s needed.

When analyzing solutions to manage plat-
form requirements, you must

1. Establish a prioritization process in the or-
ganization that everybody adheres to

2. Find prioritization criteria that, if applied,
lead to optimizing the organizational benefit

As a prerequisite, you must establish a
process for identifying platform requirements
and for scheduling results for customer proj-
ects. The prioritization process deals mainly
with responsibility and acceptance. Either a sin-
gle key manager is responsible (for the various
products and the platform concurrently) or an
architectural board serves as a decision body.

To accept decisions concerning require-
ments integration, an organization’s members
must understand how decisions are made, and
the relevant stakeholders must be involved.
So, the product management team, the plat-
form team, and the various product develop-
ment teams must share a process for require-
ments prioritization in a product line context.
Typically, organizations can enforce commu-
nication using job rotation. This lets the plat-
form development stakeholders (developers

and managers) better understand the product
needs. Other approaches include discussion
forums, frequent meetings, or tool support
(current requirements status or accessible deci-
sion lists). Acceptance increases if an organi-
zation establishes measures to show benefits
and problems. Examples for measurements
are “number of products in which the func-
tionality and its solution appear,” “efforts for
realization and integration,” or “risk-versus-
benefit estimates.”

Measurements enforcing acceptance by
staff and management lead to the second type
of criteria. In the SPL context, introducing a
prioritization process involves the following:

� Product requirement prioritization: Which
requirements should you introduce into
which product?

� Platform requirement prioritization: Which
requirements should you introduce into
the platform and when?

� Product development planning and organ-
ization: In which sequence should you in-
tegrate requirements into the platform?
When should individual product develop-
ments reuse those requirements?

Various possible criteria exist. However, in
the context of product line development, we
should make some variations to these criteria
owing to the available reuse potential’s impact.7

Strong pilot client influence. Although a pilot
client is important to successfully establish SPL,
implementing its specific requirements might
conflict with the SPL development strategy. To
avoid letting the SPL focus too narrowly on the
pilot client, these tactics are useful:

� While working with the pilot client, never
lose sight of the overall domain. For in-
stance, perform domain analysis before or
during pilot-client-driven platform devel-
opment. We discovered that all the organ-
izations in the investigation performed
some kind of domain analysis in this way.
For large-scale industrial product develop-
ment, up-front SPL investments are not al-
ways possible. In these cases, you should
perform domain analysis in parallel with
platform development for the pilot client.
The analysis will then form the basis for
well-focused platform extensions in the

The
prioritization
process deals

mainly with
responsibility

and acceptance.

5 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

context of future product instances.
� If you design the platform on the basis of

the pilot client’s needs, walk through the
platform’s features and explicitly document
expected deviations other clients require.

� Develop a sound vision of the product line
and clearly communicate it throughout
the organization.

� Ensure that platform components are suf-
ficiently generic and well encapsulated.
This generally strengthens platform appli-
cability to future projects. However, don’t
make components too generic or complex.
For instance, avoid unnecessarily rich
component interfaces. Rather, extend the
interfaces later when needed.

Realization of platform requirements in prod-
ucts. Owing to the product team’s milestones,
it often cannot wait for the platform team to
implement all their requirements. So, product
teams must often implement platform require-
ments as product requirements. This means
that two products implement and maintain the
same requirement twice. Also, transferring
previously implemented product features into
the platform later will be expensive. We dis-
covered that most of the work group organi-
zations fought such problems with organiza-
tional measures:

� Minimize application engineering. Ensure
that feature teams perform as much devel-
opment as possible, while client-specific
teams derive the final products by inte-
grating platform components.

� Perform systematic product line scoping
to clarify which requirements you’ll im-
plement in the platform. On the basis of
this clarification, actively enforce imple-
menting these requirements in the SPL
platform only.

� Establish some mechanism of job rotation
between platform and product develop-
ment. This creates awareness among the
developers about where a requirement is
best implemented.

� Install an architecture review board that
fulfills cross-sectional functions and medi-
ates across product and platform develop-
ment. The board should be responsible for
the overall architecture and decide how
and where to implement requirements.

� Enforce the development of explicit archi-
tectural models that include clear defini-
tions of their semantics.

Requirements engineering practices
A precise requirements engineering process—

a main driver for successful software develop-
ment—is even more important for product
line engineering. Usually, the product line’s
scope addresses various domains simultane-
ously. This makes requirements engineering
more complex. Furthermore, SPL develop-
ment involves more tasks than single-product
development. Many product line requirements
are complex, interlinked, and divided into
common and product-specific requirements.
So, several requirements engineering practices
are important specifically in SPL development:

� Domain identification and modeling, as
well as commonalities and variations
across product instances

� Separate specification and verification for
platform and product requirements

� Management of integrating future require-
ments into the platform and products

� Identification, modeling, and management
of requirement dependencies

The first two practices are specific to SPL
engineering. The latter two are common to
software development but have much higher
importance for SPLs.

Issues with performing these additional ac-
tivities can severely affect the product line’s
long-term success. During the investigation,
we found that most organizations today apply
organizational and procedural measures to
master these challenges. The applicability of
more formal requirements engineering tech-
niques and tools appeared rather limited,
partly because such techniques are not yet de-
signed to cope with product line develop-
ment’s inherent complexities. The investiga-
tion determined that the following three SPL
requirements engineering practices were most
important to SPL success.

Domain analysis and domain description. Be-
fore starting SPL development, organizations
should perform a thorough domain analysis.
A well-understood domain is a prerequisite
for defining a suitable scope for the product

N o v e m b e r / D e c e m b e r 2 0 0 3 I E E E S O F T W A R E 5 7

Many
product line

requirements
are complex,
interlinked,
and divided
into common
and product-

specific
requirements.

line. It’s the foundation for efficiently identi-
fying and distinguishing platform and prod-
uct requirements.

Among the five participants in our investi-
gation, three explicitly modeled the product
line requirements. The others used experi-
enced architects and domain experts to de-
velop the SPL core assets without extensive re-
quirements elicitation. Two organizations
from the first group established a continuous
requirements management that maintained
links between product line and product in-
stance requirements. The three other organiza-
tions managed their core assets’ evolution us-
ing change management procedures and
versioning concepts. Their business did not
force them to maintain more detailed links be-
tween the requirements on core assets and
product instances.

The impact of architectural decisions on re-
quirements negotiations. A stable but flexible
architecture is important for SPL develop-
ment. However, focusing SPL evolution too
much on architectural issues will lead to shal-
low or even incorrect specifications. It can
cause core assets to ignore important SPL re-
quirements so that the core assets lose rele-
vance for SPL development. Organizations
can avoid this problem by establishing clear
responsibilities for requirements management
in addition to architectural roles.

The work group participants reported that
a suitable organizational tool for balancing re-
quirements and architecture is roundtable
meetings in which requirements engineers,
lead architects, and marketing and sales per-
sonnel discuss SPL implementation. Also, inte-
grating the architects into customer negotia-
tions will solve many problems that can arise
from conflicting requirements. Another meas-
ure is to effectively document requirements
and architectural vision so that product mar-
keting and SPL architects can understand each
other and agree on implementation.

Effective tool support. We often discussed tool
support for SPL requirements engineering dur-
ing the investigation. Because requirements
engineering for SPL can become highly com-
plex, effective tool support is important. Ex-
isting tools don’t satisfactorily support aspects
such as variability management, version man-
agement for requirements collections, man-

agement of different views on requirements, or
dependency modeling and evolution. So, an
SPL organization must design custom solu-
tions for these issues. Specifically, the two par-
ticipants in the investigation that had estab-
lished continuous requirements management
had to maintain expensive customization and
support infrastructures for their tool environ-
ment. The other organizations tried to avoid
these costs by mitigating insufficient tool sup-
port through organizational measures such as
strict staging of the requirements specification.

Architectural practices
The decision to develop an SPL often arises

from the expected benefit of the platform,
which should provide a common architecture
for all the product line’s members. All prod-
ucts should fit into the provided architecture
and benefit from it. Unfortunately, the com-
mon architecture’s functionality, interfaces,
and constraints are usually abstract and com-
plex. Not all the development organization’s
members or teams will understand them well.

Not knowing the SPL architecture’s capa-
bilities inevitably leads to the architecture not
being fully used. So, requirements that devel-
opers have already implemented into the plat-
form might be reimplemented for various
products. The multiple implementation of a
requirement leads first to an overhead—which
is linked to avoidable, possibly high costs—
and then to a useless platform because its ca-
pabilities are not exploited.

A major problem arises if the multi-
implemented requirements are constrained
by other requirements so that the SPL archi-
tecture becomes unstable. Again, implement-
ing (original) platform requirements in prod-
ucts will erode the platform and reduce its
advantages.

Ensuring that a product line adequately
uses architectural advantages requires that
three capabilities be in place.

Required capabilities. First, you should explic-
itly define and document the architecture.
Good documentation of architecture, platform
features, and generic interfaces is important for
the product teams to understand the reusable
assets. From the participants’ experience, or-
ganizations must complement measures for ar-
chitecture documentation with organizational
methods, such as establishing an architectural

Not knowing
the SPL

architecture’s
capabilities

inevitably leads
to the

architecture
not being fully

used.

5 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

role that is responsible for defining, communi-
cating, and maintaining the architecture.

You should describe architecture using
well-established notations such as the Unified
Modeling Language, and the architecture de-
scription should cover all relevant architec-
tural views and use clearly defined semantics.
You should supplement it with architectural
scenarios that present the architecture from a
system use perspective. Often, use cases and
textual descriptions serve that purpose.

Second, you should communicate the archi-
tecture to stakeholders. Simply defining and
documenting the architecture is insufficient; you
must properly and adequately communicate it
as well. Actively disseminating this information
is key. You must address the various stakeholder
needs and give them the necessary information.
You must also find an adequate notation to
communicate this information to stakeholders
such as marketing or sales personnel who are
not apt at reading technical notations.

Third, you must enforce exploitation of the
available architecture. To enforce the architec-
tural principles, you must install responsible
roles. This can be a lead architect or a whole
architecture review board. This process must
start early; when new projects are under nego-
tiation, you must ensure that they’re compati-
ble with the existing architecture.

Architectural roles. We concluded that you can
support all three success factors when you de-
fine and deploy explicit architectural roles with
clear responsibilities in the organization. The
following four roles match the experiences of
most of the work group participants:

� Product architect
� Product line architect
� Domain architect
� Component architect

Each architect has a clear idea of what to
document. For instance, the product line ar-
chitect concentrates on architectural style and
principles and describes the boundary between
framework and product. The component ar-
chitect describes component capabilities and
the component’s relationship to other relevant
components. The architects are responsible for
traceability between (product) requirements
and architecture solutions. They should also
communicate the architecture to the various

stakeholders and inform them about architec-
tural changes.

During our investigations, it became clear
that certain practices are more common
and widespread across the industry than

others. For example, organizations tend to avoid
dedicated organizational restructuring toward
separate product line organizations. Rather,
most organizations prefer to develop an SPL core

N o v e m b e r / D e c e m b e r 2 0 0 3 I E E E S O F T W A R E 5 9

About the Authors

Andreas Birk is a consultant and software engineering professional at sd&m (software
design and management). His special interests include software engineering methods, knowl-
edge management, and requirements engineering. He received his Dr.-Ing. in software engi-
neering and his Dipl.-Inform. in computer science and economics from the University of Kaiser-
slautern. He’s a member of the IEEE Computer Society, the ACM, and the German Computer
Society. Contact him at sd&m AG, Löffelstraße 46, D-70597 Stuttgart, Germany; andreas.
birk@sdm.de.

Gerald Heller is a senior software engineering consultant at Hewlett-Packard in Ger-
many. He has worldwide responsibility for the requirements engineering process at HP’s
largest software organization. His research interests include collaborative, component-based
development. He received his PhD in computer science from Friedrich Alexander University of
Erlangen in Germany. Contact him at Hewlett Packard GmbH, Schickardstraße 25, D-71034
Böblingen, Germany; gerald.heller@hp.com.

Isabel John is a researcher and consultant in software product lines at the Fraunhofer In-
stitute for Experimental Software Engineering. Her main interests include requirements engi-
neering for product lines, scoping, and legacy integration into product lines. She received her
Diplom, in computer science from the University of Kaiserslautern. Contact her at the Fraun-
hofer Inst. for Experimental Software Eng., Sauerwiesen 6, D-67661 Kaiserslautern, Germany;
isabel.john@iese.fraunhofer.de.

Thomas von der Maßen is a member of the Software Construction Group and a
PhD student at the University of Aachen. His research interests include requirements engineer-
ing for software product lines, especially the modeling of variability and tool support. He re-
ceived his Diplom in computer science from the University of Aachen. Contact him at Research
Group Software Construction, RWTH Aachen, Ahornstraße 55, D-52074 Aachen, Germany;
vdmass@cs.rwth-aachen.de.

Klaus Müller is an internal consultant for requirements engineering and organizes
the knowledge transfer between business units for corporate research and development at
Robert Bosch, Stuttgart. His research interests include self-assessment methods and master-
ing process improvement. He received his PhD from the Technical University of Aachen.
Contact him at Robert Bosch GmbH, Robert-Bosch Straße 2, D-71701 Schwieberdingen,
Germany; klaush.mueller@de.bosch.com.

Klaus Schmid is the department head for requirements and usability engineering at
the Fraunhofer Institute for Experimental Software Engineering, where he has worked on sev-
eral projects that transferred product line engineering concepts to industrial environments. His
research interests include requirements engineering and product line development and institu-
tionalization. He received his PhD in computer science from the University of Kaiserslautern.
Contact him at the Fraunhofer Inst. for Experimental Software Eng., Sauerwiesen 6, D-67661
Kaiserslautern, Germany; klaus.schmid@iese.fraunhofer.de.

in a task-force effort. Later, they attempt to
evolve their core SPL assets in the context of
their product- or customer-specific projects.

It also became clear that SPL practices de-
pend on each other and on contextual factors,
such as the development organization’s struc-
ture, product characteristics, and business
models. Selecting one practice raises the need
for others to achieve leverage effects or com-
pensate for that practice’s drawbacks.

Overall, we observed a clear trend toward
SPL adoption. SPLs are appearing more and
more frequently throughout industry, and
they’re growing more and more complex. Prod-
uct line engineering is a key strategic technology
for software organizations to attain and main-
tain unique competitive positions. However, it
also became clear during the investigations that
we must overcome many obstacles before effec-
tive SPL engineering becomes wide-spread. Fur-
ther systematic collection and provision of SPL
experience is necessary.

References

1. P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002.

2. J. Bosch, Design and Use of Software Architectures,
Addison-Wesley, 2000.

3. D.M. Dikel, D. Kane, and J.R. Wilson, Software Archi-
tecture: Organizational Principles and Patterns, Prentice
Hall, 2000.

4. A. Birk, “Three Case Studies on Initiating Product
Lines: Enablers and Obstacles,” Proc. PLEES 2002
Product Line Engineering Workshop,” Frauenhofer
IESE, 2002, pp. 19–25.

5. K. Schmid and C. Gacek, “Implementation Issues in
Product Line Scoping,” Software Reuse: Advances in
Software Reusability, LNCS 1844, Springer-Verlag,
2000, pp. 170–189.

6. J. Bayer et al., “PuLSE: A Methodology to Develop
Software Product Lines,” Proc. Symp. Software
Reusability (SSR 99), ACM Press, 1999, pp. 122–131.

7. K. Schmid, “A Comprehensive Product Line Scoping Ap-
proach and its Validation,” Proc. 24th Int’l Conf. Soft-
ware Eng. (ICSE 02), ACM Press, 2002, pp. 593–603.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

6 0 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

