liating Soltware product lings..........................

The Economic Impact of
Product Line Adoption an
Evolution

When transitioning
to product line
development, an
organization must
consider the
adoption context and

should use product
line scoping
techniques to
optimize the
economic benefits.

Klaus Schmid, Fraunhofer Institute for Experimental Software Engineering

Martin Verlage, Marker Maker Software AG

oftware is increasingly turning into a commodity; thus, people in-
creasingly expect systems that are customized to their needs. This
situation is forcing nearly every software development organiza-
tion to develop multiple variants of their systems to serve the spe-

cific needs of different customers or market segments. Thus, many, if not

most, software development organizations are finding that they need to

build families of systems or product lines.

Experience shows that a company can
drastically improve its competitive advan-
tage if it optimizes how it develops these
product lines.!»? Using product line engineer-
ing, some organizations have reduced the
number of defects in their products and re-
duced costs and time to market by a factor
of 10 or more.">* However, many companies
don’t use a product line engineering ap-
proach when developing their product lines.
More often than not, they either start from a
single system, branching off new variants as
the need arises and ending up with com-
pletely independent code bases, or they start
with the different variants as independent
projects from the beginning.

Product line engineering focuses on de-
veloping multiple variants of systems
jointly, thus exploiting the commonality
among systems in the form of reuse.! The
key to successful product line engineering

50 IEEE SOFTWARE July/August 2002

approaches, such as Pulse* (a component-
based product line development approach
developed at the Fraunhofer Institute for
Experimental Software Engineering), is to
identify early on a reference architecture
that provides a blueprint for producing dif-
ferent variants. The structural similarity
among the variants, resulting from the com-
mon architecture, enables developers to
reuse components across a range of differ-
ent products in the product line. However,
when implementing product line engineer-
ing, a wealth of options exists, so compa-
nies must make wise decisions to optimize
their economic benefit. To exemplify this,
we discuss Market Maker Software AG’s?
Merger product line.

In theory, the optimal product line devel-
opment adoption scheme is to set up a com-

0740-7459/02/$17.00 © 2002 IEEE

-

—
development —
p S

AN

Big bang
product line
development

s Traditional 5
= development R b Incremental
Initial Product line L . product line
investment | development) et r
I,
-"l“ -
‘-""‘ I \ -
I Risk J
““‘ I -
‘ , Number of product
(a) Break even umber of products (b)

Number of products

Figure 1. Product line investment curves: (a) the big bang approach, including risks; (b) the big bang

pletely new product line by developing a reuse
infrastructure for the whole range of products
right from the start. We often call this the big
bang approach. You can use this infrastruc-
ture to develop new products, which could
drastically cut costs compared to traditional
stovepipe development. Of course, when first
planning a product line, predicting the spe-
cific investments and benefits is hard, so eco-
nomic results will contain some uncertainty.

Unfortunately, this ideal approach is
hardly ever adequate in practice. In principle,
strong upfront planning should let you de-
velop assets that support the full range of
functionality the product line requires, but
organizations often use a more incremental
approach. With an incremental approach,
you develop assets to support the next few
upcoming products, deliberately excluding
highly uncertain potential products. Over
time, you need to extend and adapt assets to
address further products. Usually, constraints
on available resources force this more incre-
mental approach, but it’s generally useful
even with unlimited resources because of the
intrinsic uncertainty of future products and
their requirements. Figure 1a shows the ideal
big bang pattern, and Figure 1b compares it
with the corresponding patterns for the in-
cremental approach.

Regardless of which approach you use, it
is best to first distinguish several basic situa-
tions from which product line adoption can
start. You can then link each situation to cor-
responding strategies (or adoption schemes)
and connect a different pattern of investment
and resulting benefits to each one.

We can distinguish four main types of situ-
ations for adopting product line engineering:

B [ndependent. The company starts a new
product line without any predecessor
products.

B Project-integrating. Existing systems are
already under development to address a
new market. As part of product line de-
velopment, the software engineers inte-
grate the systems so that they can derive
them from the same reuse infrastructure.

B Reengineering-driven. Legacy systems
already exist, but the engineers can’t use
them for product line development—
rather, they need to perform a nontrivial
reengineering effort.

B Leveraged. The company sets up a new
product line (to address a new market)
based on a product line that is already
in place.

In practice, these situations often overlap.

Consider Market Maker’s Merger product
line. Market Maker started in 1990 as a one-
person company with a single product: a
DOS-based system for tracking stock infor-
mation. It has since grown to 60 employees,
but to optimize its limited resources, Market
Maker has always used a product line ap-
proach. Even in the DOS version, various
modules were available to address specific
data-processing needs, and customers could
independently bring in other modules. (How-
ever, the implementation level only had a sin-
gle variant and certain menu entries enabled,
based on the given license key.)

As the company created new software
platforms, it found it had to develop more
sophisticated approaches to address increas-
ingly complex variability needs. In 1995, it
started developing a new software system
aimed at supplanting the original DOS-
based product and transferring its potential
to the Windows-based age. Like the original
product, the new system supported the mod-
ule concept. However, over time, the com-
pany created additional implementation-
level variants (for special applications) and

July/August 2002

IEEE SOFTWARE

51

m Market segment 1
m Market segment 2

[Market segment 3

w
|

(a)

Qtr. 2 |
2000

Qtr. 1 Qtr. 3

Qtr. 4

e

HTTP
(b)

JDBC/0DBC
RMI

Banks
intranet

External
applications

M
TP Netscape

Figure 2. The Merger product line: (a) systems delivered over time and (b) the product line architecture.

52

entry-level mass-market variants. These vari-
ants constituted the Market Maker product
line—the company produced them from a
single, common code base.

In 1999, the company decided to enter
the market of Internet-based stock-market
information systems. It thus created the
Merger product line, which was based on a
completely new infrastructure developed in
Java (Martin Verlage managed the Merger
product line’s setup and evolution). Cur-
rently, this product line includes about 15
variants addressing three different market
segments (see Figure 2a). When developing
Merger, the company decided not to repli-
cate functionality that already existed in the
Market Maker product line—such as the
MM98 and MM live variants that address
the historical data feed and the real-time
data feed, respectively. So, it created specific
variants of the Market Maker product line
and used them as data servers in the Merger
installations (see “MM98” in Figure 2b).

When adopting and evolving its product
line approach for these two product lines,
Market Maker applied the schemes we dis-
cuss here with huge success.

Product line entry and exploitation
potential

Depending on the specific situation in
which you start product line development,
you usually find different patterns of how the
company incrementally develops the product
line and, similarly, different patterns of in-
vestment and return on investment. In partic-
ular, you need to determine whether the in-

IEEE SOFTWARE July/August 2002

crement originates by successively extending
and adapting the reuse infrastructure for ad-
ditional products, or whether the company
extends it by successively adding assets cov-
ering additional functionality.

Independent adoption

The independent product line adoption
scenario is the prototypical product line situ-
ation (see Figure 1a). Because no products ex-
ist yet, the company can plan in detail and
optimize its product portfolio. Compared to
the product line’s overall setup time, the plan-
ning time would be rather low, so it wouldn’t
significantly increase the time to market.

However, starting a completely new
product line means venturing into the com-
pletely unknown. Thus, technical feasibility
studies and detailed market analyses are
necessary to control the overall uncertainty.
Furthermore, even if you use these meas-
ures, you usually still have significant un-
certainty, because, for example, some prod-
ucts could become more or less important as
product development progresses.

In the context of the Merger product line,
the company made a detailed analysis of po-
tential portfolios, identifying major market
segments, key requirements, and so forth.
Additionally, it performed technical feasibil-
ity studies and competitor surveys. Al-
though these analyses were rather thorough,
plans still required adjustment. For exam-
ple, the company addressed some market
segments later than anticipated or not at all,
because more products than expected could
be delivered to the customer in the initial

market segments. Despite these deviations,
it is clear in retrospect that the initial efforts
were not wasted. Rather, they played a key
role in focusing the reuse infrastructure’s de-
velopment, so now Market Maker can effi-
ciently develop new variants.

Project-integrating adoption

From our experience in industrial prac-
tice, we’ve found that the independent situa-
tion is rather uncommon. Usually, several
products exist in a company that have some
commonalities but were more or less inde-
pendently developed. There is continuous
pressure to bring to market new products, so
it is impossible to put product development
on hold to focus on developing an integrated
product line infrastructure. Rather, an incre-
mental approach is required, where key
components are successively generalized into
common, reusable components.

A special case of the project-integrating
situation exists when two product line in-
frastructures must merge. Such a situation is
currently occurring at Market Maker—the
company is integrating the original Market
Maker and Merger product lines into a sin-
gle product line architecture. Although
companies can usually avoid project-inte-
gration by replicating functionality among
the two product lines, at times profound
differences in the nonfunctional require-
ments make it necessary. In this situation,
the company integrates the reuse infrastruc-
tures, focusing on integrating the replicated
components. Because the company must
continually derive new products and re-
leases from the product lines, it can only
perform an incremental, component-wise
integration of the reuse infrastructures—
similar to the incremental pattern Figure 1b
shows. However, if compared to the initial
situation, the entrance barrier (the effort re-
quired before you can derive the first prod-
ucts from the resulting infrastructure) is
usually lower, whereas the number of steps
(effort to extend the product line infrastruc-
ture) will be higher. Also, the company gen-
erally must expect more problems with the
degradation of the reference architecture.

This is the general adoption pattern for
project-integrating product line develop-
ment—create a common infrastructure by
integrating technical areas in a component-
wise manner. This leads to an incremental

approach, similar to the one in Figure 1b. _

However, compared to the initial situation,
the entrance barrier (effort required until
the first products can be derived from the
resulting infrastructure) will usually be
lower, while the steps (effort to extend the
product line infrastructure) will usually be
higher. Also, more problems generally occur
with the degradation of the reference archi-
tecture over time.

Reengineering-driven adoption

A company usually undertakes reengi-
neering-driven adoption if it finds that its
software development is bound to hit a wall.
This can manifest itself in many ways—for
example, if the cost of product development
grows too high or if it becomes impossible to
derive new, envisioned products based on the
available systems. Companies typically will
tolerate a certain level of pain before making
the investments associated with performing a
major reengineering effort. However, when
they do undergo such reengineering, it’s then
fairly easy to introduce the additional effort
required to plan a product portfolio. Reengi-
neering can either focus on packaging the ex-
isting legacy system as a whole or it can aim
at a component-wise approach.

This situation is similar to independent
adoption and its economic patterns. If the
company packages the legacy as a whole, it
incurs rather large investments in the begin-
ning but significantly reduced costs for devel-
oping future systems (see Figure 1a). If the
company performs component-wise packag-
ing, an incremental pattern (see Figure 2b)
will result, but reengineering generally re-
quires a large initial investment compared to
typical project-integrating situations.

A good example of the component-wise
approach to reengineering-driven adoption
is the Ramsis kernel redesign project that
Fraunhofer IESE performed with a small
company. This project focused on a reengi-
neering-driven product line design for a
large legacy system of ergonomy simula-
tions.’ It started with a significant reengi-
neering effort for identifying components in
the existing system and packaging them to
turn the system into an appropriate basis
for further product line development.

Developing the Merger product line also
mirrors this situation, because, as discussed
earlier, the company reused Market Maker

July/August 2002

There IS
continuous
pressure
to bring to
market new

products, so It
IS Impossible to

put product
development

on hold to focus
on developing
an integrated

product line

Infrastructure.

IEEE SOFTWARE

53

_ functionality as servers, and prior to that, it

From an
economic
viewpoint,

d leveraged
product line
adoption entails
d revolution,
because the
company can
address a
completely new
market segment
with low costs
and few risks.

had to add specific interfaces to these
servers. However, for Merger, packaging
only required augmenting the existing sys-
tems with appropriate interfaces using
COM. Also, the Merger product line was
built on top of the existing one, which is
why it’s more appropriately characterized as
leveraged product line adoption.

Leveraged adoption

Leveraged product line development is
perhaps the most sophisticated approach to
product line adoption. As opposed to the
other patterns, it requires an existing product
line and is characterized by a shift to a new
market (system type). Examples of such a
shift are Cummins Engines, which expanded
its original product line for car and truck
diesel engines to arbitrary industrial diesel
engines, and CelsiusTech, which leveraged its
product line of battle ship control systems by
entering the market of civil air-control sys-
tems.® In these cases, the existing product line
infrastructures provided leverage for entering
the new market, giving the company a com-
petitive advantage right from the start.

The Merger product line is clearly a case
of a leveraged product line. The existing
Market Maker product line offers leverage
by providing data gathering, data manage-
ment, and aggregation services, while the
Merger infrastructure mainly focuses on
data transformation and online presenta-
tion tasks. Market Maker packaged its orig-
inal product line’s functionality into Merger
in the form of servers. This partitioning of
the reuse infrastructure also benefits Merger
products through ongoing development on
the Market Maker product line.

From an economic viewpoint, a leveraged
product line adoption entails a revolution,
because the company can address a com-
pletely new market segment with low costs
and few risks by building on an existing
product line infrastructure. However, as in
other situations—in particular, the independ-
ent situation—the company must perform a
detailed product portfolio analysis, technol-
ogy studies, and risk analysis. Similarly,
leveraged adoption usually requires an initial
investment and then shows a steady growth
in the number of systems (see Figure 1a). For
Merger, the leveraged approach proved to be
highly successful. However, Figure 2a shows

54 |EEE SOFTWARE July/August 2002

a slightly different pattern of nearly expo-
nential growth. The reason for this is that the
Merger reuse infrastructure itself grew over
time. Thus, later systems could be built with
more reuse.

The main factor determining how a
product line evolves is how much deviation
the organization allows before reunifying
the infrastructure. We can distinguish three
basic situations for product line evolution
(not taking into account replacing the infra-
structure’s parts over time).

In the first situation, infrastructure-based
evolution, new product requirements that
might be reusable immediately lead to a gen-
eralization of the product line infrastructure.
Thus, the organization can avoid the prob-
lem of multiple implementations of the same
requirement. However, this usually results in
many changes to the product line infrastruc-
ture. A specific product (the first one in need
of a new requirement) triggers each change,
which is implemented in a way adapted to
the next few products (see Table 1). Market
Maker took this approach with its Merger
product line. If it hadn’t, the simultaneous
demands for many new variants would have
created a strong dispersion into variants of
the product line infrastructure. The advan-
tage is that for the second product requiring
the functionality, it is already reusable. This
can lead to the superlinear increase that Fig-
ure 2a shows.

The second situation, branch-and-unite, is
common in industrial practice. Here, the or-
ganization creates a new version branch for a
new variant and then reunifies this branch
with the original infrastructure after releas-
ing the product. In this case, the organization
typically considers only a single product, al-
though more experienced organizations also
consider requirements for future products
when determining an adequate implementa-
tion. Market Maker successfully pursued this
approach with its first product line. The
main reason for applying this approach is
that new variants are rather infrequent and
thus usually nonoverlapping. This wasn’t the
case with the Merger product line.

Some organizations end up in a bulk situ-
ation, which allows larger branching of the
reuse infrastructure. Then, at certain inter-
vals, the organization reintegrates the prod-

Situation type Product line planning look-ahead Approach
Adoption Independent Broad portfolio of future systems Big bang
Project-integrating Medium-size portfolio of future products Incremental, by functional area or component
Reengineering-driven Broad portfolio of future products and Incremental, by functional area or component, or
legacy products big bang, by packaging existing legacy as a whole
Leveraged Broad portfolio of future products Big bang
Evolution Infrastructure-based A small number of products Incremental, by product

Branch-and-unite Single product

Incremental, by product

Bulk A small number of products
(perhaps a market segment)

Incremental, by product group

Scoping techniques and their relation to product line adoption

Mode of product line Portfolio definition

extension

Partial big bang and
evolution by product group

Very important

Domain-potential analysis

Recommended, but

mainly for risk analysis architecture definition

Reuse infrastructure scoping

Recommended to support

By (single) product Not necessary

Only needed if the extension
requires restructuring

Only needed if the extension
requires restructuring

By component or
functional area

Should be performed

Key for identifying the next
component for product line
extension

architecture definition

Should be applied to support

uct line infrastructure. Larger organizations
usually apply this approach, but it’s best to
avoid it as much as possible. It not only leads
to major reintegration efforts (mapping to
big jumps in the economic curve in Figure
1b), but it also usually entails significant syn-
chronization efforts and quality problems.

The different patterns of product line
evolution we’ve identified have different re-
quirements in terms of look-ahead planning
and the number of products simultaneously
integrated into the product line infrastruc-
ture (see Table 1).

Product line planning techniques

How an organization performs product
line adoption and evolution strongly influ-
ences its product line’s overall economic re-
sults. However, even if it selects a specific
adoption approach, it still must decide
which products to consider when develop-
ing or extending the product line infrastruc-
ture, which technical areas to integrate next
into its product line infrastructure, and
which requirements reusable assets will di-
rectly support. Just as the basic adoption

and evolution steps determine the product
line development’s basic economic pattern,
answers to these questions help fine-tune
product line development and its economic
characteristics. Restrictions for answering
the questions depend on the specific adop-
tion or evolution situation (see Table 2).
Based on the types of decisions that must
be made, we can distinguish the following
three levels of decision making—or scoping—
in the context of product line engineering:”

B Product portfolio scoping: Which prod-
ucts shall be part of the product line?

B Domain-based scoping: Which technical
areas (domains) provide good opportu-
nities for product line reuse?

B Reuse infrastructure scoping: Which
functionalities should the reuse infra-
structure support?

Affluency in these three scoping techniques
will help you make the right decision when
adopting and evolving a product line.
Product portfolio scoping helps establish
a detailed vision of the products and their

July/August 2002 1EEE SOFTWARE

55

About the Authors

Klaus Schmid is compefence manager for value-based product line development at
Fraunhofer IESE, where he has been involved in several projecis that have transferred product
line engineering concepts to indusirial environments. He was also a member of the Pulse de-
velopment team. His main research interests are the economic aspects of product line develop-
ment and approaches for introducing and institutionalizing product line development in indus-
try. He received an MS in computer science from the University of Kaiserslautern. Contact him
at Fraunhofer Inst. for Experimental Software Eng., Saverwiesen 6, D-67661 Kaiserslautern,
Germany; klaus.schmid@iese.fhg.de.

Martin Verlage is direcior of the Online Products business area af Market Maker Soft-
ware AG. His main software development interests are in the area of component-based soft-
ware engineering, especially architecting and testing. He received an MS and PhD in computer
science from the University of Kaiserslautern. He is a member of the Gesellschaft fir Infor-
matik e.V. Contact him at Market Maker Software GmbH, Karl-Marxstr. 13, D-67655 Kaiser-
slautern, Germany; m.verlage@market-maker.de.

requirements. First, you identify the general
market potential based on market analyses,
taking into account the market structure,
potential customers, end-user needs, and the
positioning of competitors. Then, you iden-
tify the market segments that fit the com-
pany background. This usually happens in a
workshop representing the most relevant
stakeholder groups. While coming up with
an integrated definition of the product port-
folio, it is important to address questions
such as, “Will the products compete with
each other on the market?” and “How
much will it cost to develop these prod-
ucts?” It helps even if you just informally
ask these questions.

While setting up the Merger product line,
Market Maker performed a detailed product
portfolio scoping. It analyzed markets and
competitors, developing a first vision of po-
tential market segments and products. This
provided the necessary input for technical
feasibility studies. At the same time, it re-
fined the initial vision of the portfolio in sev-
eral iterations. This actually led to rather se-
vere changes, such as introducing additional
market segments in the product line vision.
You only need to perform this full-size ap-
proach if you develop a new product portfo-
lio. Otherwise, just identify changes to the
product portfolio—technical feasibility and
market studies are usually not so important.

Based on a product portfolio definition,
you can perform domain-based scoping.
With this approach, you identify the main
technical domains relevant to the product
line and analyze their reuse potential. Differ-
ent technical domains, even within the same
product line, can vary considerably in terms
of their potential benefit and inherent risks
for product line engineering. Market Maker

56 IEEE SOFTWARE July/August 2002

applied this approach to domain-potential
analysis, which is part of the Pulse-Eco
method,? for the Merger product line. In this
case, Market Maker observed variations
from “extremely well suited for product line
reuse” to “not suited at all.” In particular,
domain-based scoping identifies areas where
a reuse investment is particularly meaning-
ful, which is especially important if the prod-
uct line infrastructure is built in an incre-
mental manner (for example, in a
project-integrating adoption situation). Fur-
thermore, it can help you decide what func-
tionality to integrate next into the product
line. In a situation such as the one with the
Merger product line, where the organization
basically built a full product line infrastruc-
ture with the first product, this approach is
typically used only to inform the develop-
ment of potential reuse risks (see Table 2).
Once you identify the key areas for prod-
uct line reuse, the important question is
which functionalities should be made
reusable in the context of the specific prod-
uct line, which involves reuse infrastructure
scoping. The Pulse-Eco approach supports
this activity in a quantitative manner. With
reuse infrastructure scoping, you develop
quantitative models to capture the desired
product line benefits. You then use these
models to identify functionalities that will
provide the highest economic benefit if made
reusable. This provides economic input for
the architecture definition. Because of this
focus on guiding the product line’s imple-
mentation, this form of scoping is particu-
larly useful when large parts of the product
line infrastructure are built for the first time.
This is the case if whole product groups or
new functional areas must be integrated into
the product line infrastructure. Market
Maker applied this approach when extend-
ing certain functional areas for its Market
Maker product line. In this case, the ap-
proach provided valuable input for making
the most appropriate functionality reusable.”

roduct line development is about to
change how we perceive and per-
form software development. This
transition is similar to the one made from
craftsmanship to industrial production. Al-
though this transition is strongly based on
the increased understanding of software ar-

chitectures, it is also changing how organiza- References

. . . : 1. P. Toft, D. Coleman, and J. Ohta, “A Cooperative Model
tions go about their software business. Durlng for Cross-Divisional Product Development for a Software

the industrial revolution, becoming a modern Product Line,” Proc. 1st Software Product Line Conf.
company involved more than just addmg an (151P1L(13§)2, Kluwer, Dordrecht, Netherlands, 2000, pp.
agsembly line to the factory floor. le?WISe, 1t 2.]J.C. Dager, “Cummin’s Experience in Developing a Software
will not be sufficient for organizations to Product Line Architecture for Real-Time Embedded Diesel
switch to product line development in an ar- Engine Controls,” Proc. 1st Software Product Line Conf.

X (SPLC1), Kluwer, Dordrecht, Netherlands, 2000, pp. 23-46.
bltrary way. Rather’ a company must ade- 3. L. Northrop and P. Clements, Software Product Lines,
quately adopt such an approach, and the ap- Addison-Wesley, Reading, Mass., 2001.

proach must evolve from the perspective of 4. J. Bayer et al., “PuLSE: A Methodology to Develop Soft-
ware Product Lines,” Proc. 5th Symp. Software Reusability

potential economic benefits. To successfully (SSR?99), ACM Press, New York, 1999, pp.122-131.
reap these benefits, companies will have to 5. J. Bayer et al., “Transitioning Legacy Assets to a Product

1 n in- h understanding of or Line Architecture,” Proc. 7th European Software Eng.
deve opa dept understand g0 P oduct Conf. (ESEC’99), Springer Verlag, New York, 1999, pp.

line development’s economic implications and 446-463.
how these implications relate to the possible 6. P. Clements, “On the Importance of Product Line Scop-

: : : ~ ing,” Proc. 4th Workshop Product Family Eng. (PFE’4),
product line adoption and evolution mecha Snringer Verlag, New York, 2001. pp. 70,78

nisms. @ 7. K. Schmid, “Scoping Software Product Lines: An Analysis
of an Emerging Technology,” Proc. 1st Software Product
Line Conf. (SPLC1), Kluwer, Dordrecht, Netherlands,
Acknowledgments 2000, pp. 513-532. _ } ‘
The Eureka 2023 Programme, ITEA (Information 8. K. Schmid, “A Comprehensive Product Line Scoping Ap-

proach and Its Validation,” Proc. 24th Int’l Conf. Soft-

Technology for European Advancement) projects
ware Eng. (ICSE’02), ACM Press, New York, 2002, pp.

ip00004 and 99005, Café (from concepts to application

in system-family engineering), and ESAPS (Engineering 393-603.

Software Architectures, Processes, and Platforms for

Systems-Families) partially supported the work pre- For more information on this or any other computing topic, please visit our
sented in this article. Digital Library at http://computer.org/publications/dlib.

NEW FOR 2002

the IEEE Computer & Communications Societies present
IEEE PERVASIVE COMPUTING

The exploding popularity of mobile Internet access, third-generation wireless
communication, and wearable and handheld devices have made pervasive
computing a reality. New mobile computing architectures, algorithms,
environments, support services, hardware, and applications are coming online
faster than ever. To help you keep pace, the IEEE Computer Society and IEEE
Communications Society are proud to announce IEEE Pervasive Computing.

This new quarterly magazine aims to advance mobile and ubiquitous
computing by bringing together its various disciplines, including peer-reviewed
articles on

o Hardware technologies

o Software infrastructure

e Real-world sensing and interaction
e Human—computer interaction
Security, scalability, and privacy

Editor in Chief

CS¥
SOLYIER

M. Satyanarayanan
Carnegie Mellon Univ. and Intel Research Pittsburgh

Associate EICs SUBSCRIBE NOW!

Roy Want, Intel Research; Tim Kindberg, HP Labs;
Deborah Estrin, UCLA; Gregory Abowd, Georgia Tech.;
Nigel Davies, Lancaster University and Arizona University

http://computer.org/pervasive

July/August 2002 1EEE SOFTWARE 57

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

