
3 2 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2 0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E

McDonald’s develop product lines. But soft-
ware product lines are a relatively new con-
cept. They are rapidly emerging as a practi-
cal and important software development
paradigm. A product line succeeds because
companies can exploit their software prod-
ucts’ commonalities to achieve economies of
production.

The Software Engineering Institute’s
(SEI) work has confirmed the benefits of
pursuing this approach; it also found that
doing so is both a technical and business de-
cision. To succeed with software product
lines, an organization must alter its techni-
cal practices, management practices, organi-
zational structure and personnel, and busi-
ness approach.

Software product lines
A software product line is a set of soft-

ware-intensive systems that share a com-

mon, managed feature set satisfying a par-
ticular market segment’s specific needs or
mission and that are developed from a com-
mon set of core assets in a prescribed way.

Core assets form the basis for the software
product line. Core assets often include, but
are not limited to, the architecture, reusable
software components, domain models, re-
quirements statements, documentation and
specifications, performance models, sched-
ules, budgets, test plans, test cases, work
plans, and process descriptions. The architec-
ture is key among the collection of core assets.

Each system in the product line is a prod-
uct in its own right. However, it is created
by taking applicable components from a
common asset base, tailoring them through
preplanned variation mechanisms, adding
new components as necessary, and assem-
bling the collection according to the rules of
a common, product-line-wide architecture.

focus
SEI’s Software Product
Line Tenets

Linda M. Northrop, Software Engineering Institute

Software product
lines are rapidly
emerging as a viable
and important
software
development
paradigm. The
Software
Engineering Institute
defines basic
concepts and the
activities and
practices that
ensure success.
The author shares
how-to’s, success
stories, and lessons
learned while
defining and
applying this
approach.

C
ompanies, such as Hewlett-Packard, Nokia, and Motorola, are
finding that using a product line approach for software can yield
remarkable quantitative improvements in productivity, time to
market, product quality, and customer satisfaction. This practice

of building sets of related systems from common assets can also efficiently
satisfy the current demand for mass customization of software. Product
lines are, of course, not new in manufacturing. Boeing, Ford, Dell, and even

initiating software product lines

Every software product line has a prede-
fined guide or plan that specifies the exact
product-building approach.

Development is a generic term used to de-
scribe how core assets (and products) come
to fruition. Software enters an organization
in one of three ways: the organization builds
it (from scratch or by mining legacy soft-
ware), purchases it (largely unchanged, off
the shelf), or commissions it (contracts with
someone else to develop it especially for
them). So, the term development might actu-
ally involve building, acquiring, purchasing,
retrofitting earlier work, or any combination
of these options.

Some practitioners use a different set of
terms to convey essentially the same mean-
ing. They might refer to a product line as a
product family,1 to the core asset set as a
platform,2 or to the products of the software
product line as customizations instead of
products. Others use the terms domain and
product line interchangeably. We distinguish
between the two. A domain is a specialized
body of knowledge, an area of expertise, or
a collection of related functionality. Core as-
set development is often referred to as do-
main engineering, and product development
as application engineering.

Regardless of terminology, software prod-
uct line practice involves strategic, large-
grained reuse, which means that software
product lines are as much about business prac-
tices as they are about technical practices. Us-
ing a common set of assets to build products
requires planning, investment, and strategic
thinking that looks beyond a single product.

Reuse, as a software strategy for decreas-
ing development costs and improving quality,
is not a new idea. However, past reuse agen-
das, which focused on reusing relatively small
pieces of code or opportunistically cloning
code designed for one system for use in an-
other, have not been profitable. In a software
product line approach, reuse is planned, en-
abled, and enforced. The reusable asset base
includes artifacts in software development
that are costly to develop from scratch.

Essential activities
Numerous organizations in various indus-

tries have reaped significant benefits using a
software product line approach for their sys-
tems. Despite this diversity, we at the SEI be-
lieve we have distilled universal and essential

software product line activities and practices.
At the highest level of generality are three es-
sential and highly iterative activities that
blend technology and business practices.
Fielding a product line involves core asset de-
velopment and product development using
the core assets under the aegis of technical
and organizational management. Figure 1 il-
lustrates this triad of essential activities.

The rotating arrows in Figure 1 indicate
not only that companies use core assets to de-
velop products but also that revisions of ex-
isting core assets or even new core assets
might (and most often do) evolve out of
product development. In some contexts, or-
ganizations mine existing products for
generic assets—perhaps a requirements spec-
ification, an architecture, or software compo-
nents—that they then migrate into the prod-
uct line’s asset base. In other cases, the core
assets might be developed or procured for
later use in product production. There is a
strong feedback loop between the core assets
and the products. Core assets are refreshed as
organizations develop new products. They
then track asset use, and the results are fed
back to the asset development activity. Tech-
nical and organizational managers manage
this process carefully at all levels.

Core asset development
The core asset development activity’s

goal is to establish a production capability

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 3 3

Product line development

Core asset
development

Product
development

Management

Figure 1. Essential
product line
activities.

for products. Figure 2 illustrates this activ-
ity, its outputs, and necessary inputs. This
activity, like its counterparts, is iterative. Its
inputs and outputs affect each other. For ex-
ample, slightly expanding the product line
scope (an output) might admit new classes
of systems to examine as possible sources of
legacy assets (an input).

Inputs to core asset development include

� Product constraints: Commonalities
and variations among the products that
will constitute the product line, includ-
ing their behavioral features.

� Styles, patterns, and frameworks: Rele-
vant architectural building blocks that
architects can apply during architecture
definition toward meeting the product
and production constraints.

� Production constraints: Commercial,
military, or company-specific standards
and requirements that apply to the
products in the product line.

� Production strategy: The overall ap-
proach for realizing the core assets. This
can be top down (starting with a set of
core assets and spinning products off of
them), bottom up (starting with a set of
products and generalizing their compo-
nents to produce the product line as-
sets), or some of both.

� Inventory of preexisting assets: Soft-
ware and organizational assets available
at the outset of the product line effort
that can be included in the asset base.

Besides core assets, the outputs of core asset
development include a product line scope,
which describes the products that will con-
stitute the product line or that the product
line is capable of including, and a produc-
tion plan, which describes how products are
produced from the core assets. All three out-
puts must be present to ensure the produc-
tion capability of a software product line.

Product development
In addition to the three outputs, product

development activity depends on the re-
quirements for individual products. Figure 3
illustrates these relationships; the rotating
arrows indicate iteration. For example, the
existence and availability of a particular
product might affect a subsequent product’s
requirements. Creating products can have a
strong feedback effect on the product line
scope, core assets, production plan, and
even the requirements for specific products.
Product development can vary greatly de-
pending on the assets, production plan, and
organizational context.

Management
Management at the technical (or project)

and organizational (or enterprise) levels must
be strongly committed to the software prod-
uct line effort for the product line’s success.
Technical management oversees the core as-
set development and the product develop-

3 4 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

Core assessment development

Core asset
development

Management

Product constraints
Styles, patterns,

frameworks
Production constraints

Production strategy
Inventory of

pre-existing assets

Production line scope
 Core assets
 Production plan

Figure 2. Core asset
development.

Product development

Product
development

Management

Requirements
Product line scope
Core assets

Production plan
+ +

Products

Figure 3. Product
development.

ment activities, ensuring that the groups
building core assets and those building prod-
ucts engage in the required activities, follow
the processes defined for the product line,
and collect data sufficient to track progress.

Organizational management must set in
place the proper organizational structure
that makes sense for the enterprise and en-
sure that organizational units receive the
right resources (for example, well-trained
personnel) in sufficient amounts. Organiza-
tional management determines a funding
model that ensures core asset evolution and
then provides the funds accordingly. It also
orchestrates the technical activities in and it-
erations between core asset development
and product development.

Management should ensure that these op-
erations and the product line effort’s com-
munication paths are documented in an op-
erational concept. Management mitigates
risks at the organizational level that threaten
a product line’s success. Product lines tend to
engender different relationships with an or-
ganization’s customers and suppliers, and
these new relationships must be introduced,
nurtured, and strengthened. Management
must create an adoption plan that describes
the organization’s desired state (that is, rou-
tinely producing products in the product
lines) and a strategy for achieving that state.

Finally, someone should be designated as
the product line manager and either act as
or find and empower a product line cham-
pion. This champion must be a strong, vi-
sionary leader who can keep the organiza-
tion squarely pointed toward the product
line goals, especially when the going gets
rough in the early stages.

Software product line practice
areas

Beneath the surface of the three essential
activities are 29 practice areas that our ex-
perience shows must be mastered for a suc-
cessful product line. A practice area is a
body of work or a collection of activities.
They help make the three essential activities
more achievable by defining activities that
are smaller and more tractable than a broad
imperative such as “Develop core assets.”
Most practice areas describe activities that
are essential for any successful software de-
velopment, not just software product lines.
However, in a product line context, each

takes on particular significance or must be
carried out in a unique way. For example,
configuration management, an identified
practice area, is important for any software
development effort. However, configuration
management for product lines is more com-
plex than for single systems, those devel-
oped one at a time versus using a product
line approach. The core assets constitute a
configuration that needs to be managed;
each product in the product line constitutes
a configuration that must be managed, and
managing all of these configurations must
be coordinated under a single process.

We have created a conceptual framework
for software product line practice that pro-
vides a comprehensive description of each
practice area as it relates specifically to soft-
ware product line operations and the common
risks associated with each.3,4 We categorize
each practice area as software engineering,
technical management, or organizational
management, according to the skills required
to carry it out.

Software engineering practice areas
Software engineering practice areas are

those that are necessary for applying the ap-
propriate technology to create and evolve
core assets and products. They are

� Architecture Definition
� Architecture Evaluation
� Component Development
� COTS Utilization
� Mining Existing Assets
� Requirements Engineering
� Software System Integration
� Testing
� Understanding Relevant Domains

Figure 4 provides a sketch of how they re-
late to each other.

Domain understanding feeds require-
ments, which drive an architecture, which
specifies components. Components can be
made in-house, bought on the open market,
mined from legacy assets, or commissioned
under contract. This choice depends on the
availability of in-house talent and resources,
open-market components, an exploitable
legacy base, and able contractors. Their ex-
istence (or nonexistence) can affect the
product line’s requirements and architec-
ture. Once available, the components must

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 3 5

Software
engineering

practice areas
are those that
are necessary
for applying the

appropriate
technology to

create and
evolve core
assets and
products.

be integrated and, along with the system, be
tested. This description is a quick trip
through an iterative growth cycle. It greatly
oversimplifies reality but shows a good ap-
proximation of how software engineering
practice areas come into play.

Technical management practice areas
Technical management practices are

those that are necessary for engineering the
creation and evolution of core assets and
products. Technical management’s practice
areas are

� Configuration Management
� Data Collection, Metrics, and Tracking
� Make/Buy/Mine/Commission Analysis
� Process Definition
� Scoping
� Technical Planning
� Technical Risk Management
� Tool Support

These practices directly support and pave
the way for software development activities.
Scoping and Technical Planning delineate
what should be built and how. Data Collec-
tion, Metrics, and Tracking and Technical
Risk Management establish “health” meas-
ures for the software development efforts

and help assess their current conditions.
Make/Buy/Mine/Commission Analysis, Tool
Support, Configuration Management, and
Process Definition all contribute to a smooth
development effort.

Organizational management practice areas
Organizational management practices

are those that are necessary for orchestrat-
ing the entire product line effort. Practice
areas in organizational management are

� Building a Business Case
� Customer Interface Management
� Developing an Acquisition Strategy
� Funding
� Launching and Institutionalizing
� Market Analysis
� Operations
� Organizational Planning
� Organizational Risk Management
� Structuring the Organization
� Technology Forecasting
� Training

Some practices, such as Building a Busi-
ness Case and Funding, are required to ini-
tiate a product line approach and emphasize
the business investment and planning re-
quired. Others, such as Operations and Or-

3 6 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

Understanding Relevant Domains

Architecture Definition
Architecture Evaluation

specifies components
Make/Buy/Mine/Commission analysis

feeds

drives

Domain understanding

Requirements

Architecture

Components

Make Buy Mine Commission

Component
Development

COTS
Utilization

Market availability Legacy base

Software System Integration Testing

Mining
Existing Assets

(Developing an
acquisition strategy)

Existing
talent

Organizational
policy

Figure 4.
Relationship among
software engineering
practice areas.

ganizational Risk Management, apply to
ongoing product line efforts. Launching and
Institutionalizing is about an organization’s
systematic growth from a given state to a
higher state of product line sophistication. It
is actually a context-sensitive threading of
other organizational management practice
areas. The sheer number of organizational
management practice areas gives testament
to the significant business dimension of soft-
ware product lines.

Product line practice patterns
Although laying out all essential activi-

ties and practice areas has proven very help-
ful, an organization must still determine
how to put the practice areas into play. One
approach is to follow a divide-and-conquer
strategy. Fortunately, although no two situ-
ations are alike, we have found that similar
situations repeatedly occur. It is because of
these similarities that product line practice
patterns have emerged.3 Patterns are a way
of expressing common contexts and prob-
lem and solution pairs. They have been used
effectively in many disciplines including ar-
chitecture, economics, social science, and
software design. For software product line
practice patterns, the context is the organi-
zational situation. The problem is part of
the software product line effort that must be
accomplished. The solution is the grouping
of practice areas and their relations to ad-
dress the problem for that context.

Following the lead of the design patterns
community, we created a pattern template
and have used it to define the 22 patterns
(including variants) listed in Table 1.

These patterns, some of which have rela-
tionships between them, span various
ranges of abstraction, scale, and purpose.
For example, Factory is a composite pattern
that consists of eight other patterns, so it de-
scribes the entire product line organization.

Lessons learned defining the
approach

The SEI’s understanding of what is in-
volved in a software product line approach
has evolved considerably. Our ideas have ma-
tured, and no doubt will continue to mature,
owing to our direct involvement in software
product line efforts, our discussions with oth-
ers involved in product line work, and our
own (sometimes heated) internal debates.

Formulating the basic concepts

Our original thoughts were based on a do-
main engineering, followed by an application
engineering mind-set, which had an unrealistic
waterfall life-cycle mentality. We rarely en-
countered an organization that had the luxury
of developing assets from scratch and then
building products from those assets. In almost
all situations, some products or assets already
existed, and the asset base grew out of those.
In any case, each asset continues to evolve
over time. Core asset development and prod-
uct development activities are highly iterative,
and that iteration must be carefully managed.
This latter insight led us to include manage-
ment as the third essential activity.

In our original definition of software
product lines, we did not prescribe how
products were constructed. After much de-
bate, we concluded that our definition was
insufficiently discriminating. We added the
clause “that are developed from a common
set of core assets in a prescribed way.” Ex-
panding the definition proved to be an
epiphany that led to other refinements. We
agree with others5 that the product line ar-
chitecture plays a special role among the core
assets by providing the structural prescrip-
tion for products in the product lines. How-
ever, we discovered that the product line ar-
chitecture alone does not provide enough

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 3 7

Table 1
Product line practice patterns

Pattern Variants

Assembly Line
Cold Start Warm Start
Curriculum
Each Asset Each Asset Apprentice

Evolve Each Asset
Essentials Coverage
Factory
In Motion
Monitor
Process Process Improvement
Product Builder Product Generation
Product Parts Green Field

Barren Field
Plowed Field

What to Build Analysis
Forced March

prescription. Each core asset should have an
associated attached process that specifies
how to use it in product development. These
attached processes get folded into what be-
comes the product production plan.

Another debate in the product line com-
munity was whether releases and versions of
single products constituted a product line. Al-
though others still disagree, we decided that
they did not. We agree with Jan Bosch that a
product line evolves over time and space.5

Settling on the practice area set
Being true to our technical backgrounds,

we began with a greater proportion of prac-

tice areas in software engineering than in
management. However, we quickly recog-
nized the need for more management prac-
tices, and the set of technical and organiza-
tional management practices grew.

For some time, we maintained that Do-
main Analysis was a practice area, meaning
that a formal domain analysis was required.
However, CelsiusTech and other organiza-
tions with successful product lines did not
conduct a domain analysis. However, they did
have solid knowledge of their domains, which
helped them make good product decisions.
What was essential was understanding rele-
vant domains, so that became a practice area.

3 8 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

There is a great benefit in learning how others approached
their move to product lines. We have documented four com-
plete product line case studies.1

Our earliest report was a study of CelsiusTech Systems, a
Swedish defense contractor supplying international navies with
shipboard command and control systems.2 Using a product line
approach, they have delivered more than 50 systems from es-
sentially the same asset base. In doing so, they have shortened
delivery schedules by years, allowed a smaller staff to produce
more systems, and achieved software reuse levels into the 90
percent range.

Cummins, the world’s largest manufacturer of commercial
diesel engines with more than 50 horsepower, made a bold
move to a software product line approach for its engine control
software. The results are most compelling. It previously took Cum-
mins a year or more to bring new engine software to the test lab,
but now it takes less than a week. Moreover, the product line ap-
proach lets the company augment its command of the automotive
diesel engine market. It has expanded vigorously into the indus-
trial diesel market, where just 20 software builds provide the ba-
sis for more than a thousand separate engine products; it now
offers a mix of feature and platform flexibility that otherwise
would require almost four times their current staff.

The US National Reconnaissance Office took advantage of
commonality and built a product line asset base for its ground-
based spacecraft command and control software. They commis-
sioned Raytheon to build their asset base, the Control Channel
Toolkit. The new product line’s first system has seen, among other
benefits, a 50-percent decrease in overall cost and schedule, and
nearly tenfold reduction in development personnel and defects.

Successful product lines are also possible in small organiza-
tions, such as in Market Maker Software of Kaiserslautern, Ger-
many, producer of Europe’s most popular stock market soft-
ware. Market Maker adopted a product line approach to

produce an Internet version of its software. This version, which
they market to other companies, must integrate with other data-
bases and content-producing software (which run on a variety
of computing platforms and servers); satisfy human-user per-
formance requirements; and be tailored to show the exact kind
of data, in exactly the kind of charts, in exactly the kind of form
each customer’s Web site requires. Using their software product
line, it takes Market Maker as few as three days to install a tai-
lored system for individual customers.

Others have also reported success stories: Alcatel,3 Hewlett
Packard,4 Philips,5 the Boeing Company,6 and Robert Bosch
GmBh7 presented their experiences at the 2000 Software Prod-
uct Line Conference (SPLC1 00).

References
1. P. Clements and L. Northrop, Software Product Lines: Practices and Patterns,

Addison-Wesley, Boston, 2001.
2. L. Brownsword and P. Clements, A Case Study in Successful Product Line

Development, tech. report CMU/SEI-96-TR-016, Software Eng. Inst.,
Carnegie Mellon Univ., Pittsburgh, 1996; www.sei.cmu.edu/publications/
documents/96.reports/96.tr.016.html.

3. M. Coriat et al., “The SPLIT Method,” Proc. 1st Software Product Line Conf.
(SPLC1 00), Kluwer Academic Publishers, Boston, 2000, pp. 147–166.

4. P. Toft et al., “A Cooperative Model for Cross-Divisional Product Develop-
ment for a Software Product Line,” Proc. 1st Software Product Line Conf.
(SPLC1 00), Kluwer Academic Publishers, Boston, 2000, pp. 111–132.

5. P. America et al., “CoPAM: A Component-Oriented Platform Architecting
Method Family for Product Family Engineering,” Proc. 1st Software Product
Line Conf. (SPLC1 00), Kluwer Academic Publishers, Boston, 2000, pp.
167–180.

6. D. Sharp, “Component-Based Product Line Development of Avionics Soft-
ware,” Proc. 1st Software Product Line Conf. (SPLC1 00), Kluwer Academic
Publishers, Boston, 2000, pp. 353–369.

7. S. Thiel and F. Peruzzi, “Starting a Product Line Approach for an Envi-
sioned Market,” Proc. 1st Software Product Line Conf. (SPLC1 00), Kluwer
Academic Publishers, Boston, 2000, pp. 495–512.

Product Line Success Stories

Also, early on we considered understand-
ing relevant domains, requirements engineer-
ing, and scoping as one practice area. How-
ever, we gradually found that although there
were dependencies among the three, they in-
volved different activities and players.

Determining the practice areas’ contents
Experts draft individual practice area de-

scriptions for the framework, so overlap
continues to require monitoring. In reality,
there are no clear boundaries between the
practice areas; we could slice the effort in
many different ways, but a balance, how-
ever arbitrary in some cases, is important to
assert.

Some of our early ideas about software
product lines were simply naïve. For exam-
ple, we originally believed that the organi-
zational structure must have two units: one
to build the core assets and one to build
products. Colleagues from Nokia and
Hewlett-Packard, among others, pointed
out that all product line development can
be concentrated in a single unit, where each
member is expected to be a jack-of-all-
trades in the product line, doing domain
engineering tasks or application engineer-
ing tasks when appropriate. Later, Bosch
described four separate organizational
models.5

Beyond practice areas
The practice area framework was (and is)

an encyclopedia of software product lines,4

but we fell short in offering concrete guid-
ance on using that encyclopedia. There were
many fits and starts about how and what to
provide. We settled on product line practice
patterns and have been encouraged by early
positive feedback.

We have also been encouraged to connect
the product line practice framework with
software development standards, most espe-
cially with the Capability Maturity Model
framework. We have compared the frame-
work with the Capability Maturity Model
Integration for Systems Engineering/Soft-
ware Engineering V1.1.4. Although process
discipline is essential for product line suc-
cess, there is not one-to-one mapping be-
tween these standards. The process areas in
the CMMI framework do not address 12
product line practice areas, and even for
those that do cover similar subjects, the em-

phasis is different. More fundamentally, the
product line practice framework is not a
maturity model.

Lessons learned applying the
approach

Besides the explicit changes in our ap-
proach, we learned these lessons:

� Product line business practices cannot
be affected without explicit manage-
ment commitment and involvement. We
have seen too many product line efforts
fail for lack of sponsorship and commit-
ment from someone above the technical
ranks.

� Organization size doesn’t matter. Our
original experiences were all with large
organizations. Many small organiza-
tions, such as Market Maker (see the
“Product Line Success Stories” sidebar),
have demonstrated that they can suc-
ceed with product lines.

� Reuse has a bad reputation in many or-
ganizations owing to the failure of ear-
lier small-grained reuse initiatives. It
takes highly proactive advocacy and
marketing to introduce software prod-
uct lines into such cultures.

� Organizations often want an evaluation
of their product line efforts. (This led us
to develop the Product Line Technical
Probe, a diagnostic method for examin-
ing an organization’s readiness to adopt,
or ability to succeed with, a software
product line approach, described else-
where.)3

� The lack of either an architecture focus
or architecture talent can kill an other-
wise promising product line effort.

� Process discipline is critical. Processes
can be according to the CMM frame-
work, Extreme Programming, or some
Agile method, but they must be defined
and followed. On one of our collabora-
tions, we mistakenly introduced process
improvement and software product
lines simultaneously. The product line
effort languished.

� The community needs more quantita-
tive data to support software product
line adoption. Moving to product lines
is an investment, and decision makers
want hard numbers in their business
cases.

J u l y / A u g u s t 2 0 0 2 I E E E S O F T W A R E 3 9

Organizations
can benefit

tremendously
through product

lines.

S oftware product lines epitomize the concept of
strategic, planned reuse, and differ from the
opportunistic reuse of the past that has been

largely discredited. Organizations can benefit tremen-
dously through product lines. A number of global soft-
ware trends make product lines more doable today
than in the past, such as rapidly maturing and increas-
ingly sophisticated software development technolo-
gies, mature object technology, vendor-available com-
ponents with tremendous functional capability,
increased realization of the importance of architecture,
universal recognition of the need for process disci-
pline, product line case studies, workshops, and edu-
cation programs. Nevertheless, there are needs in
many areas. For example, better product line tool sup-
port and more supportive business models and data
are imperative. However, the industry trend toward
software product lines seems indisputable. The SEI be-
lieves that software product lines are here to stay.

Acknowledgments
Many people have contributed to the SEI’s product line work,

both inside and outside the SEI. Although Paul Clements and I
have led the charge, the entire SEI Product Line Practice Initiative
team has contributed to the basic concept evolution, to the focus-
ing of the key ideas, and to the work’s conceptual integrity. Much
of the information that the SEI has assimilated has come from soft-
ware community members who have built software product lines,
sometimes with our help. They have graciously participated in our
conference and software product line workshops and shared with
us their knowledge and experience.

References
1. P. America et al., “CoPAM: A Component-Oriented Platform Archi-

tecting Method Family for Product Family Engineering,” Proc. 1st
Software Product Line Conf. (SPLC1 00), Kluwer Academic Publish-
ers, Boston, 2000, pp. 167–180.

2. P. Toft et al., “A Cooperative Model for Cross-Divisional Product De-
velopment for a Software Product Line,” Proc. 1st Software Product
Line Conf. (SPLC1 00), Kluwer Academic Publishers, Boston, 2000,
pp. 111–132.

3. P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, Addison-Wesley, Boston, 2001.

4. P. Clements and L. Northrop, “A Framework for Software Product
Line Practice,” 2000; www.sei.cmu.edu/plp/framework.html.

5. J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach, Addison-Wesley, Boston, 2000.

Linda M. Northrop’s biography appears on page 27.

For more information on this or any other computing topic, please visit our Digital Library at
http://computer.org/publications/dlib.

4 0 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 2

How to
Reach Us

Writers
For detailed information on submitting articles, write for our Edi-
torial Guidelines (software@ computer.org) or access
http://computer.org/
software/author.htm.

Letters to the Editor
Send letters to

Editor, IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or daytime phone number
with your letter.

On the Web
Access http://computer.org/software for information about
IEEE Software.

Subscribe
Visit http://computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine subscriptions to
address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE and Computer Society
membership to member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received a damaged copy,
contact help@computer.org.

Reprints of Articles
For price information or to order reprints, send email to
software@computer.org or fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article, contact William
Hagen, IEEE Copyrights and Trademarks Manager, at
whagen@ieee.org.

How to
Reach Us

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

