
COMMUNICATIONS OF THE ACM August 2003/Vol. 46, No. 8 67

A component is generally defined as a
piece of executable software with a pub-
lished interface [5]. Following the manufac-
turing principle of part fabrication and
assembly, CBSD proponents argue that
components provide significant quality and
productivity gains to the software industry
similar to those realized in the computer
hardware industry [3]. Practitioners identify
the following key CBSD advantages in
future software development efforts:

Reduced lead time. Building complete
business applications from an existing
pool of components;

Leveraged costs developing individual com-
ponents. Reusing them in multiple appli-
cations;

Enhanced quality. Components are reused
and tested in many different applica-
tions; and

Maintenance of component-based applica-
tions. Easy replacement of obsolete com-
ponents with new enhanced ones.

CBSD also involves significant challenges
to constructing software [1, 7]. Although
there’s plenty of anecdotal evidence of the
success of component-based systems, the
literature does not clearly identify the risks

RISKS AND
CHALLENGES
OF COMPONENT-BASED

SOFTWARE DEVELOPMENT

As more and more facets of the business enterprise become ingrained in
computer-based application systems, pressure increases on software
developers to construct quality systems quickly. Systems are no longer
built from scratch using archaic software development life-cycle method-
ologies. Following the success of the structured design and OO para-
digms, Component-Based Software Development (CBSD) has emerged
as the next revolution in software development.

Component developers, application assemblers, and customers
must all know CBSD advantages and disadvantages before developing

components and component-based applications.

By Padmal Vitharana

68 August 2003/Vol. 46, No. 8 COMMUNICATIONS OF THE ACM

for the various CBSD stakeholders. Here, I identify
key CBSD risks and challenges encountered by each
category of stakeholder. My aim is to provide insight
for software project managers concerning the new
paradigm before they embark on critical component
and CBSD projects.

Stakeholders
CBSD encompasses three primary types of stake-
holders (see Figure 1) [2]:

Component developers. Included are freelance devel-
opers, IS departments, and entire organizations
specializing in component fabrication;

Application assemblers. They locate suitable compo-
nents and assemble them in
integrated application systems
that satisfy customer require-
ments; and

Customers. They employ com-
ponent-based application sys-
tems to perform business
tasks. I assume the interests of
the people paying for the sys-
tem and the people using the
system coincide; hence I do
not attempt to distinguish
between them here.

A particular firm might func-
tion in two or even all three stakeholder capacities;
for example, an IS department could develop com-
ponents and assemble applications to be used by the
firm’s users.

Developers. A developer encounters certain risks
and challenges in developing components, managing
component-development projects, and subsequently
marketing the components. Developers generally fab-
ricate components under two scenarios: survey the
overall software industry and build components for
the mass market; or develop components for a specific
client or assembler. In pursuing a mass-market strat-
egy, developers must identify business areas or
domains that would generate enough yield to justify
component development. But deriving a set of com-
ponents encompassing the entire domain knowledge
and its related business processes is a challenge [3]. As
domains are rarely constant over time, developers
must adapt to changes in the domain once the com-
ponents are fabricated. After investing considerable
resources, a developer risks having its component
repositories become obsolete due to poor planning
or unfavorable industry trends. Moreover, if a devel-
oper carries legacy assets, leveraging them by adding

component “wrappers” around them might require
considerable additional effort.

Developers must also determine the optimal way
to fragment the domain into a cohesive set of com-
ponents. Because these components contain the
domain knowledge, the number of components, their
granularity, or size, and their dependencies play a vital
role in developing component-based applications [1,
8]. Developers face additional challenges in verifying
that the intended domain “knowledge” and “business
processes” in fact map to the components being
developed. In light of the CBSD emphasis on inter-
faces, deriving well-defined interfaces specifying how
components work, along with their inputs, outputs,
and exception-handling procedures, also poses a con-

siderable challenge. Conventional methods provide
little guidance in tackling these issues.

Due to the relative recency of CBSD compared to
life-cycle methodologies, formal approaches and
tools for component development are still emerging
[2]. Although successful methods (such as the Unified
Approach from Rational Software, www.rational.
com) have been reported, developers face a daunting
task in choosing suitable methodologies and tools for
constructing components. As CBSD tools require
enormous initial investment, their selection involves
considerable thought. Moreover, adoption of appro-
priate middleware (such as CORBA and DCOM)
needs to be aligned with the requirements of either
the client or the mass market.

In managing component-development projects, a
developer must monitor each component from incep-
tion to delivery. Because multiple versions of a com-
ponent may be developed (following bug fixes and
enhancements), versioning protocols take on added
significance, as components used in multiple applica-
tions need to be coordinated. Developers must also

Welcome to the
Payroll System

CustomerApplication AssemblerComponent Developer

Please enter your

Name:

SSN:

Password:

Figure 1. Stakeholders of the CBSD paradigm.

COMMUNICATIONS OF THE ACM August 2003/Vol. 46, No. 8 69

assess how often to release components and how to
inform clients, or assemblers, of new versions. The
emerging literature on open-source software might
facilitate some aspects of CBSD project management,
including version control.

Developing quality components requires a compre-
hensive testing program [9]. Almost like an individual
application, though on a smaller scale, each compo-
nent must undergo verification and validation testing
throughout its development process. However, unlike
traditional applications, individual components can
be used by many assemblers for myriad uses in multi-
ple applications [8]. This complicates the testing
process, as the developer is forced to unit-test each
component without knowing exactly how it will be
used or who will ultimately use it.

As an emerging paradigm, CBSD requires a new
suite of metrics. Conventional measures of critical
indicators (such as reliability and productivity) may

not necessarily work well in the new paradigm. CBSD
also demands new personnel at both the technical and
the managerial levels [10]. Designing components
requires unique skills necessitating top management
apportion significant resources to retrain current per-
sonnel and/or hire new personnel.

Before embarking on component-development
projects, a developer must conduct cost-benefit analy-
ses to determine whether to accept a client, or assem-
bler, and contract or construct components for the
mass market [10]. The cost of component construc-
tion encompasses domain analysis, as well as identify-
ing, developing, and testing components. The key
benefit of component development is the sale of the
components; in the case of the mass market it’s to
multiple clients for multiple uses; in the case of spe-
cific clients, development costs must be estimated, so
the amount to charge the client is assessed. Though
component-specific cost models are not widely avail-
able, traditional cost models, especially those derived
from the OO paradigm might be adopted. In the
mass-market scenario, developers face additional
uncertainties as to future market demand, price, and
competition—all difficult to ascertain during the
early stages of component development. Moreover,
the possible interplay among them produces addi-

tional complexity in assessing the costs and benefits of
developing components for the mass market.

In the part-fabrication-assembly paradigm, the
quality of the parts directly influences the quality of
the assembled whole. Hence, a developer must
assume responsibility for the quality of the compo-
nents it constructs. As more components become
available from more and more vendors, certifying the
components and possibly the developers, too,
becomes crucial for establishing a sense of trust in the
component market [7]. Today, online component
seller www.flashline.com offers to certify components
and makes relevant documents available to potential
customers hoping to boost their confidence. As the
component market expands to include third-party
sellers and online auctioneers, assuring component
authenticity is vital to warding off unscrupulous par-
ties from offering counterfeit products. Moreover,
appropriate controls must be in place to prevent imi-

tators from reverse engineering and subsequently
reengineering the developer’s component code. Devel-
opers must also address security issues to alleviate
client concerns about possible hacker-prone, corrupt,
or virus-infected components.

In tailoring their components for the mass market,
developers often rely on other parties to sell them.
Online marketers, including www.componentsource.
com and www.flashline.com, offer search mechanisms
for retrieving components. However, only limited
research is available on effective component classifica-
tion, search, and retrieval. An effective classification
and coding scheme and corresponding retrieval sys-
tem are essential for enabling component seekers to
locate needed components [2]. Nevertheless, due to
the availability of a multitude of disparate component
repositories, developers frequently grapple with the
choice of a suitable online marketer to promote their
products.

Even though third parties market components,
developers still face other marketing issues. As com-
ponents involve numerous payment methods, includ-
ing outright purchase, pay-per-use, and time-expired
use, possibly limiting usage to a year, each developer
must determine which pricing option optimizes its
profits. Developers and third-party marketers must

AFTER INVESTING CONSIDERABLE RESOURCES,
developers risk having their component repositories become obsolete

due to poor planning or unfavorable industry trends.

devise suitable licensing contracts that document
“appropriate” usage and developer liability in case
components do not work according to the stated
specification. In the case of specific clients, the devel-
oper and the client, or assembler, should formally
agree who owns the components and other project
artifacts. In the mass-market scenario, component
developers encounter some of the same intellectual
property issues as developers of conventional applica-
tions [4].

Assemblers. Assembler risks and challenges primar-
ily concern the assembly of components in applica-
tions, the management of component-based
application assembly projects, and the uncertainties
of the component market.

Because the assemblers’ component search is likely
to be iterative, involving both broad and narrow
searches, its ability to find needed components
depends on the classification and retrieval mecha-
nisms provided by
online marketers. Like
developers, assemblers
work with an array of
disparate component
repositories to identify
and locate needed com-
ponents. Even when
components are found,
they might not perform
the specified functional-
ity or fail to interoperate
with one another, thus requiring some fine-tuning by
the assembler.

More often, assemblers can’t find at least some of
the components they need on the open market [1].
They are thus compelled to either have a developer
construct custom components or request their cus-
tomers adjust or revise their requirements to corre-
spond with the components that are actually
available. In such a scenario, the assembler, in concert
with the customer, conducts a thorough cost-benefit
analysis to determine whether to custom-build com-
ponents, incurring greater cost, though specified
requirements are identically matched, or to adjust
requirements in order to acquire components at the
low mass-market price. Other crucial challenges in
assembling component-based applications that match
user requirements include:

Matching system requirement specifications. They are
typically documented in formal languages (such
as VDM and Z) with components in the reposi-
tory typically coded in some proprietary classifi-
cation scheme;

Demarcating the requirements document into smaller
subsets. Based on the availability of components
in the open market, demarcating the require-
ments into smaller subsets is a tedious process
involving many iterations; and

Confirming the overall selected component set. Does it
satisfy all the requirements of the planned appli-
cation system?

Although developers are expected to profess that
components are unit-tested and bug-proof, whenever
an assembler employs a component from a less-rep-
utable source, it has difficulty gauging the quality and
reliability of component-based applications. Assem-
blers might thus be forced to conduct additional unit
testing. Nevertheless, component-based applications
must undergo thorough integration testing. As com-
ponents selected for particular applications are likely
to come from multiple sources, assemblers must

devise comprehensive test
suites to ensure these com-
ponents work in unison [9].
Because assemblers might
use components in ways
not envisioned by their fab-
ricators, integration testing
thus plays a crucial role in
application success.

Even though the applica-
tion assembly life cycle
resembles the traditional
systems life cycle, corre-
sponding processes involve
markedly different tasks (see

Figure 2). For example, preliminary design entails
component specification, while detailed design con-
sists of component search and identification. For each
application developed, assemblers need to track all the
components used, along with their version informa-
tion. As assemblers themselves often release multiple
versions of an application, it’s crucial that they track
component versions used in applications.

Component-based application assembly requires
personnel with a different set of skills from those
employed in the traditional life-cycle methodologies.
Analysts need additional expertise in matching
solicited user requirements with components available
in the repository before assembling them into applica-
tions. Assemblers also need newer sets of metrics to
assess the effectiveness of the component assembly
process and its outcomes. Advanced tool support is
also needed because, as practiced today, component
assembly demands considerable effort; reliable visual
tools allowing easy assembly of components on assem-

70 August 2003/Vol. 46, No. 8 COMMUNICATIONS OF THE ACM

Requirements Analysis Systems Testing

Integration TestingePreliminary Designa

a Specify needed components.
b Search and identify components.
c Develop integration test strategy and assemble component-based application.
d No unit testing needed.
e Integration test the component-based application system.

Detailed Designb Unit Testingd

Implementationc

feedback

Figure 2. Component-based
application assembly life cycle.

blers’ desktops in minutes have not fully emerged.
Assemblers must also deal with the lack of visibility

into the component-development process. An assem-
bled application will exhibit the same shortcomings as
those of the components used to build it. Some cus-
tomers might demand assemblers provide details of
the components used to build their applications. If
industrywide standards for certifying components do
not emerge, assemblers might be inclined to work
with only a few select developers, thereby negating the
benefits of open-market component trading.

Moreover, relying on external developers for com-
ponents places assemblers at sig-
nificant risk due to the limited
control they have over the type of
components available, the release
schedule for subsequent versions,
and the necessary assurance that
new versions are compatible with
the old ones [7]. Being responsive
to customers requires assemblers
to fix errors promptly and
enhance application systems as
needed. Having to depend on a
developer offering components
in the mass market (and with
whom the assembler might not
have a long-term relationship)
presents clear risks.

Customers. Customers face both risks and chal-
lenges in using component-based applications to meet
their enterprise requirements, as well as in managing
their component-based and legacy application sys-
tems and in achieving and sustaining strategic com-
petitive advantage over their rivals.

One key risk involves whether a system is actually
capable of satisfying customer requirements. Due to
the market’s lack of suitable components, assemblers
might deliver systems that do not completely satisfy
customer requirements. Customers face additional
risks, as application quality (or lack of quality) based
on component quality hinders their ability to carry
out key business activities.

Each customer faces risks in managing its reper-
toire of component-based applications. For example,
when software does not function as intended, devel-
opers and assemblers might blame each other as to
what went wrong. As a result, customers have limited
control over when and if bugs are fixed and enhance-
ments are made [7]. Moreover, as customers often
have a set of legacy applications critical to running
their operations, they risk new component-based
applications not interoperating with their existing
legacy software.

Customers also face tough decisions in identifying,
evaluating, and using assemblers to build new appli-
cations. For customers, the ability to influence assem-
blers in their selection of developers and components
would be advantageous. With the ability to influence
the component market, customers could persuade
developers to incorporate their business practices into
the components being built.

Finally, moving from traditional to component-
based application development, customers must care-
fully assess which projects are more suitable for
CBSD. A low-risk strategy might be to first pursue

component-based solutions for routine and non-
strategic software projects.

Employing component-based enterprise solutions,
customers face considerable challenges trying to
achieve strategic advantage through their component-
based systems. If a customer’s information systems use
prefabricated commodity components available on
the open market, wouldn’t its ability to achieve and
sustain competitive advantage from its information
systems be hindered? Achieving competitive advan-
tage might depend on its ability to mix-and-match
components available in the open market with those
that are custom-built, either in-house or on a contract
basis, as in conventional outsourcing arrangements.

As assemblers increasingly depend on components
developed by developers and customers depend on
applications assembled by assemblers, these risks and
challenges propagate from one stakeholder to another.
The table here outlines the key risks and challenges
facing each stakeholder, as well as the cascading effect
of risks/challenges among all stakeholders; for
instance, component versioning by developers affects

COMMUNICATIONS OF THE ACM August 2003/Vol. 46, No. 8 71

Domain modelingR,C

Component featuresC (such as size)

Developer

Component Development

Assembler Customer

Satisfy requirementsR,C(buy vs. build)

Disparate component repositoriesC

Application Assembly Application Use

Requirements satisfactionR

Quality concernsR

Component versioningC

Component (unit) testingC

Tools and methodologiesR,C

New metricsR,C

New personnelC

Project Management

Application versioningC

Application (integration) testingC

Quality/certification/authenticityR,C

New metricsR,C

New personnelC

Project Management Application Management

Limited controlR

New relationshipsR,C

Fit with legacy systemsR,C

Identifying suitable assemblersC

Identifying projects for CBSDC

Multitude of component repositoriesC

Quality/certification/authenticityC

Specific-client vs. mass-marketR,C

Ownerships/licensingR,C

Marketing

Key: RRisks; CChallenges; CBoth Risks and Challenges

Vendor relationshipsR,C

Ownerships/licensingR,C

Marketing Strategic Competitive Advantage

Achieving strategic advantageC

Ownerships/licensingR,C

Key CBSD stakeholder risks and challenges and their
cascading effects.

assemblers’ application versioning tasks. Conse-
quently, risks faced by one stakeholder are transferred
to the next, ultimately constraining each customer’s
ability to leverage component technology in develop-
ing its application systems.

Conclusion
Since 1997 when Bill Gates said, “It has been a long
time in coming, but the industrial revolution of soft-
ware is finally upon us,” the number of components
and component-based applications has skyrocketed.
While CBSD helps overcome inadequacies in tradi-
tional development, it also poses risks to the prof-
itability and even long-term survival of each of its
stakeholders. From uncertainties in leveraging exist-
ing legacy code to the inability to find needed com-
ponents, they confront challenges in constructing
component solutions that address their evolving
enterprise requirements. Hence, before embarking on
component-based development projects, each stake-
holder must assess its risks and devise sound strategies
to address them.

References
1. Brereton, P. and Budgen, D. Component-based systems: A classifica-

tion of issues. Comput. 33, 11 (Nov. 2000), 54–62.

2. Brown, A. Large-scale Component-based Development. Prentice Hall,
Upper Saddle River, NJ, 2000.

3. Brown, A. From component infrastructure to component-based devel-
opment. In Proceedings of the International Workshop on Component-
Based Software Engineering (Kyoto, Japan, 1998).

4. Chavez, A., Tornabene, C., and Wiederhold, G. Software component
licensing: A primer. IEEE Software (Sept./Oct. 1998), 47–53.

5. Hopkins, J. Component primer. Commun. ACM 43, 10 (Oct. 2000), 27–30.
6. Levitt, J. One-stop software component shop. InformationWeek (Oct.

28, 2000), 146.
7. Stafford, J. and Wallnau, K. Is third-party certification necessary? In

Proceedings of the International Workshop on Component-Based Software
Engineering (Toronto, Canada, 2001).

8. Szyperski, C. Component Software: Beyond Object-Oriented Program-
ming. ACM Press, New York, 1998.

9. Weyuker, E. Testing component-based software: A cautionary tale.
IEEE Software (Sept./Oct. 1998), 54–59.

10. Woodhouse, C. Principles of adopting component-based software
engineering. In Proceedings of the International Workshop on Compo-
nent-Based Software Engineering (Los Angeles, 1999).

Padmal Vitharana (padmal@syr.edu) is an assistant professor
of information systems in the School of Management at Syracuse
University.

Michael Sparling of Castek Corp. contributed to this article.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2003 ACM 0002-0782/03/0800 $5.00

c

72 August 2003/Vol. 46, No. 8 COMMUNICATIONS OF THE ACM

