
COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 47

T
here must be some truth
to the theory that soft-
ware development in
“Internet time,” much
like a dog’s life, actually
compresses seven years of

experience, effort, and activity into a
single year. It has been six years since
my organization, Castek, embarked
upon our voyage of component-
based application development. In
that time we have successfully deliv-
ered a series of large, enterprise-class
applications using component-based
development and related techniques.
These systems have encompassed
many parts of the financial services
application domain including bill
presentation and reconciliation, debt
management, transportation, and
insurance policy administration/
claims processing. We have used pre-
existing components in each of these
projects and have seen our practices,
development approaches, and tool
utilization improve with each
project. What follows is a set of
lessons we’ve learned over the years.

The terms component and compo-
nent-based development have become
overloaded—some might say con-
tentious—during the past few years. A
quick Internet search reveals a variety
of definitions including the following:

• A chip, package or other object to
which wires must be routed [2];

• A subsystem not bound to any
specific application, producing a
high-quality product that can be
customized and used in several
places [6];

• A unit of packaging, distribution,
or delivery that provides services
within a data integrity or encapsu-
lation boundary [4].

Since “component” means differ-
ent things to different people, for
clarity let me quickly define how I am
using the term for the duration of this
article:

A component is a language neutral,
independently implemented package of
software services, delivered in an
encapsulated and replaceable con-
tainer, accessed via one or more pub-
lished interfaces. While a component
may have the ability to modify a data-
base, it should not be expected to
maintain state information. A compo-
nent is not platform-constrained nor is
it application-bound. [5]

We have adopted a formal specifi-
cation approach that applies a clear
distinction between the specified view
of the behavior (what we plan to do)

Lessons Learned
through Six Years of

Component-based Development

�
Michael
Sparling

�

Adjusting to new

processes and

techniques is an

important

aspect of project

success.

F

as a separate form from the implementation of the
specification (how we plan to do it). Thus, we say “a
given component specification may be realized in one
or more implementation technologies,” meaning that
components implemented in Java or Visual Basic are
functionally equivalent if they implement the same
specification. This statement has been reasonably
simple to make given our historical development
tools, but it has become increasingly difficult to
adhere to as we have adopted newer implementation
tools and approaches.

Historically, we built solutions with 4GL-based
CASE tools. Our primary development tool has had
minimal to nonexistent support for components.
Through the use of naming standards, alternative
process approaches, a large amount of ingenuity,
and an organizational desire to succeed with com-
ponents, we have been successful in practicing com-
ponent-based development (CBD). The past year
has seen us transitioning from our traditional 4GL
tools to Enterprise JavaBeans (EJBs) and COM+.
Throughout this change in technologies we’ve bene-
fited immensely from the following lessons we’ve
learned in the creation and management of compo-
nent-based systems. These lessons apply to compo-
nent-based development in general, whether using
development tools and programming languages that
treat components and interfaces as first-class
elements or not.

Challenges are Associated with the
Adoption of CBD
The adoption of component-based development
brings with it many changes that touch beliefs and
ideas considered core to most organizations. These
adjustments, and the approaches taken to resolve con-
tention, can often be the difference between succeed-
ing and failing in a component-based undertaking.

Depending on the team size and the project time-
lines, incremental development can be difficult. While
detached subsystems may be analyzed, designed, and
developed incrementally you need a clear picture of
the end state before beginning to work on the compo-
nents, user interfaces, and collaborations used to meet
these goals. Some of the activities in a traditional
waterfall approach are difficult to execute, especially if
you are employing parallel development.

Lesson 1 is the importance of a component refer-
ence model, which serves as a guide through analysis
and development; Lesson 2 concerns things to watch
for in parallel development.

Component-based development changes the way
your project teams behave. There is a natural ten-
dency in most software developers to want to develop

software—that’s what they believe they’re paid for.
The component-based approach requires that devel-
opers accept the importance of working with the
components as encapsulated black boxes and not
attempt to repeatedly rebuild them. Conversely, the
developers building components have to balance the
desire to create reusable components with the realities
of the application requirements available at the time
the component is developed.

Lesson 3 examines the pros and cons of reuse,
while Lesson 4 discusses immutability as it relates to
components.

Database administrators can be some of the hard-
est people to sway to a component-based approach.
When you propose an application should not be
composed of a single integrated database but as a col-
lection of components, where each component may
implement an isolated data store, we’ve experienced
considerable pushback. Plan to spend extra time
working with the data management group to educate
them on the value of CBD and how a component
must be encapsulated at all levels, including any data
it may be required to persist in a database.

Lesson 5 looks at how prototypes are an important
part of selling CBD to an organization and succeed-
ing with CBD projects. Often these prototypes are
instrumental in demonstrating how the partitioned
databases would look when the system is deployed
and why they are important.

Network architecture and hardware assumptions
may also be challenged. To be successful with CBD
we’ve found a company needs to think like an Internet
corporation rather than a traditional information
technology organization. For example, the Web site
Google.com runs its entire operation on a network of
4,000 servers, consisting of no-name PCs running the
Linux operating system. Google’s rationale for this
decision is that whatever it loses in functionality or
robustness can be made up in cost savings, program-
ming flexibility, economy of space, and ease of main-
tenance [7]. In a component-based system, scalability
and reliability predominantly come from clusters of
commodity hardware, not simply from hand-opti-
mized code. There is a limit to the payback companies
will get from working to engineer better code, when
that time could be spent designing the solution. Incor-
porating new ways of thinking about computer hard-
ware and application architecture is necessary to
succeed with CBD.

Lesson 6 describes our experience with error and
exception handling and how they may be different in
a networked solution, while the final lesson we’ve
learned, Lesson 7, looks at the changes to testing
strategies brought about by CBD.

48 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

Lesson 1. Base your development on a compo-
nent reference model. Requirements and scope
changes in an information technology project, when
managed correctly, are positive if they result in a solu-
tion that better satisfies the customer’s needs. Change
in the deployment targets or the technical standards
once the project is under way should be avoided. We
learned this lesson during our first full-scale CBD
project. This endeavor nearly failed, in part because
we kept evolving the principles of component-based
development as the project progressed. Refining com-
ponent modeling standards and incorporating new
analysis techniques pushed the project deadlines and
frustrated the project team.

An enterprise scale project—one that utilizes the
talents of many people—requires a stable set of prin-
ciples for the project. One of those principles is what
we call a component reference model. Our approach
to CBD involves a fairly rigorous specification and
design stage, as shown in the figure appearing here.

We believe this approach provides us with the abil-
ity to create multiple realizations of a given specifica-
tion, affording us a level of isolation from platform
and technology dependencies. This approach also
allows us to utilize the specification repeatedly, both in
the creation of component implementations and in
the assembly of solutions based on components. To
achieve this requires an accepted component vocabu-
lary and a set of design standards, which form key
deliverables of the component reference model. In
addition, we use an abstract method of describing
dependencies on the services provided by an EJB con-
tainer or a COM+ server within the implementation
technology. We do this so that our component speci-
fications are not bound to a particular code deploy-
ment environment.

Our component reference model is composed of:

• Descriptions of the goals of CBD;
• A set of design principles and modeling stan-

dards;
• A standard set of analysis, design, development

and testing tools; and
• A uniform set of documentation standards.

The component reference model has been our
most valuable resource across each of our successful
projects. Our initial CBD project was saved from dis-
aster by great project and departmental management,
yet its near failure taught us that the component ref-
erence model was the key to success with CBD.

We continue to update our reference model, even
when working with the “state of the art” development
technologies available today. While projects based on
CBD give us a certain degree of freedom that tradi-
tional design approaches do not, we now know we
must establish the guiding principles for the project
before work begins. This is communicated through
the component reference model, and then the project
teams resist change in techniques at all cost.

Lesson 2. Parallel development. One of the goals
we felt CBD would help us achieve was the ability to
split our project teams into multiple groups to work
in parallel on a given project. Our assumption was
that if the system works based on encapsulated com-
ponents, so can our development teams. Differences
between a traditional project life cycle and a compo-
nent-based approach are shown in the table here,
showing how parallel development may be used.

When using CBD, our expectation was that
because the entire solution is specified in the beginning,
each parallel task would then be able to deliver a com-
pleted, tested, and robust component meeting the spec-
ification. Likewise, the team responsible for the

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 49

Conceptual steps in a CBD/e project [3].

Specification

Realization

Analysis
– Requirements Analysis
– Use Cases

Design
– Interface Design
– Interface Interaction
– Operation Specification

Implementation
– Operation
 Implementation
– Coding/Consuming
– Testing

Design
– User Interface Design
– Operation Refactoring
– Operation Specification Refinement
– Component Design

 Traditional versus component life cycles [3].

Basic Project Process

Understand the requirements
Complete analysis and design

Code
Test
Fix bugs
Retest

Deploy

Component-based Approach

Understand the requirements
Specify the components and
their interactions
Parallel design
Parallel coding
Test each component in isolation
Integrate components with
application workflow
Application testing
Deployment

application user interface, collaborations, and work-
flow could build to the component specifications, and
thus should be able to develop and deliver a complete
solution without extensive integration testing. Our
early estimates were that this approach could save as
much as 25% of the development effort by streamlin-
ing the process. If only it was that simple.

The good news is parallel development, facilitated
by component-based development, works. However,
it becomes increasingly important to ensure the work
conducted in parallel is valuable to the project at inte-
gration time. Each team must understand their role
and contribution to the entire project and how
important it is they conform to the specifications. In
short, once the architecture and
specifications are set, there is not
much room for unexpected innova-
tion or project scope creep.

The architecture group has most
of the responsibility for ensuring
parallel development occurs. After
designing the solution, based on the
user requirements, they follow
through as the custodians of the
project direction. They are instru-
mental in developing the project
testing plans, since they understand
how the application is expected to
operate. As well, technical archi-
tects must become the educators and cheerleaders for
each of the development teams working in parallel. As
educators they ensure team members understand the
importance of implementing the specification. They
become cheerleaders because as a large part of the
project team loses contact with the users and business
subject matter experts, the architects must provide a
coherent picture of the overall project.

Another challenge parallel development imposes is
in the changing roles people play during the develop-
ment process. A parallel development stream means
that many jobs, such as developing code, user inter-
faces, or collaborations, are based on specifications
prepared by a team separate from the developers. We
found this process was a different experience for most
of the staff, familiar with the traditional waterfall
approach, and created a feeling of disconnect from
the project goals. One solution we tried was to rotate
most people through different roles, while maintain-
ing a project structure that could ensure success. As a
result, a business analyst started in the architecture
group, moved to the testing team, and finished in the
assembly group. Likewise, a programmer gained bet-
ter project perspective when he was transferred to the
testing team. Another solution was to try and shift

more of the design work down to the respective teams
and away from a central group. While this created a
greater feeling of project participation within the par-
allel development groups, it created the danger of
designed specification incompatibility, which
required significant attention from the application
architects during the integration phase.

Ultimately we expect that as our repository of
components increases in size, we will experience less
new component development and will instead spend
more of the project time engineering user interfaces
and component collaborations. This effort can occur
much closer to the users, granting the project teams
more exposure to the business experts.

Lesson 3. Pros and cons of reuse. While reuse of
software assets is only one of the goals of a compo-
nent-based approach, it is often a key selling point.
The idea that an organization could utilize existing
software when creating a new solution is understand-
ably appealing. However, the “designing for reuse”
syndrome, the creation of disincentives to reusing
preexisting code, deters many organizations from suc-
cessfully reusing enterprise class components. I have
found that most developers view building a compo-
nent as much more glamorous than using one which
already exists. The traditional “lines of code” measure
of productivity reinforces the syndrome. Prolific pro-
grammers can write 10,000 lines of code to develop a
new component, while it may require less than 10
lines of code to incorporate a reusable component.
One developer is achieving a more reliable result
faster, while the other is generating more code.

Another popular reuse fallacy is that every compo-
nent should be engineered to be reusable, regardless
of whether or not an organization can identify what
the future requirements of the component will be.
Suddenly a great deal of effort is directed into the
design and development of components that have no
business driver to validate the effort. In these cases,

50 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

Component-based

development

changes the way

your project

teams behave.

the 80/20 rule often applies: 80% of the utilization of
a component is based on 20% of the component’s
operations. Thus it is important to pay attention to
any time where you are tempted to spend extra effort
designing and constructing additional functionality,
beyond the current application’s needs. That extra
effort probably falls victim to the same ratio, resulting
in an even less appealing return on the investment.

To ensure that appropriate reuse occurs, a compo-
nent has to be locatable, consumable, and extensible.
As a result, a component must have a complete spec-
ification, combined with some assurances that it com-
plies with the specification. Ideally, an existing
component will come with some metrics and design
criteria, so a designer can get an idea of the compo-
nent’s applicability to a task. This type of supporting
documentation becomes important when the compo-
nent is sourced from beyond the current project team.

Lesson 4. Immutability and components.
Immutability is one of the most contentious topics I
have encountered. The issue can be stated as: “When
is a component or interface considered published and,
thus, must be considered immutable and when can
we allow it to be change without versioning the com-
ponent or interface?”

At some point a component implementation is
released. Provided the implementation has been tested
and certified to implement the specification, a con-
sumer should be assured that neither the specification
nor the implementation would change without some
form of notification. If a change is made to a compo-
nent operation, modifying its behavior, it is difficult
to argue against versioning the interface. We’ve faced
a question though when we’ve extended an interface,
through the addition of operations. Should you ver-
sion the interface? Versioning would prevent a con-
sumer of the previous interface from receiving an
interface different to their expectation. But managing
multiple versions of an interface is complex and time-
consuming.

We’ve settled on a managed process that offers a
project freedom when working on new components,
or extensions to existing components that will result
in new versions. At a point determined by the project
manager, a statement to the effect that “this specifica-
tion is frozen” is made, and from that point forward
changes that impact an interface require a new version
to be created. Any project dependent upon the exist-
ing implementation is notified when a new version is
made available, and it is up to the project to choose to
accept the new version. If the notification is for a revi-
sion, the project team is expected to initiate a regres-
sion test of their work to ensure that the new revision
remains compatible with their needs. We call this

approach “modify and notify.”
Current implementation technologies such as

COM+ and EJB, while simplifying the marshalling
and data passing, have done little to address the dan-
ger of misinterpretation of the specification. These
misinterpretations are what continuously drew us into
complex debugging sessions. Our solution was to
adopt checksums into the signatures, not to ensure
the data marshalling was correct, but to guarantee the
provider/sender contract was valid and enforced.

Lesson 5. Prototype early and often. If you look
at most current application development tools, you
see how visual components have helped user interface
designers. You can open Visual Basic, drag compo-
nents from the tool palette onto a form, and construct
a basic user interface. This example is one of my
favorite demonstrations of the power of CBD and
prototyping. Each of those visual controls is a lan-
guage-independent package of software services: a
component.

Our experience to date has shown us that proto-
typing, especially the sort of active prototypes that can
be built when you have a collection of components at
your disposal, helps to ease the adoption of a compo-
nent-based approach. Since the specification and real-
ization steps are formal, developing the ideas in an
experimental stage helps set the requirements for
development. Prototypes have many advantages,
including the following:

• Establishing the application’s goals and
component boundaries before we have
committed a large numbers of developers.

• Acting as powerful demonstration tools, especially
when selling CBD to a new organization.

• They show how distributed components help
solve some traditional application problems,
such as load balancing, data distribution, and
replication.

• They often point out potential problems in the
component collaborations.

It is worth noting that not all prototypes exist as
programs or program shells. Some of our best suc-
cesses with prototypes have come through story-
boards. When you can storyboard the flow of the
application, and its related information, on a white-
board or a collection of index cards, then you proba-
bly have a realistic chance of implementing these same
collaborations in software.

Lesson 6. Err on the side of too much informa-
tion. All components eventually have to communi-
cate something other than a successful result back to a
consumer. When considering an approach to error

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 51

handling for component-based systems, we’ve found
it has been important to consider more than just the
needs of a single application.

There is a delicate balance between errors that
relate to the component’s business logic, such as the
nonexistence of a customer record, and errors that
relate to the infrastructure hosting the component. As
a result we’ve had a running debate about the merits
of separating these two types of error messages and
more contentiously the use of the native exception
handling model for the environment and infrastruc-
ture errors, while using a generic error message pass-
ing scheme for the business logic errors.

We’ve found that through the establishment of a
two-tier error message structure, using a return code
to indicate the cause of the error and a reason code to
refine the generic message of the return code, we were
able to assign every condition—be it an error, warn-
ing, or confirmation—to a set of basic return codes.
These return codes gave us the ability to broadly
define how any component reacts to a given scenario.
The component designer augments the error return
code with additional information to make it more
appropriate and recoverable for the components con-
sumers. This further information takes the form of a
reason code, context string, and message text, all as
optional parameters of the error.

We have debated the merits of encouraging a con-
sumer to test and make decisions based on only the
return code. Doing so guarantees any component
that can return the list of general error return codes
we have defined will be compatible. Using the infor-
mation found in the reason code further helps refine
a programmatic response to the error. We’ve used the
additional information—the reason code, context
string and message text—simply as supplemental
information placed into an error message dialogue or
program log to aid a developer in debugging the
problem.

The advantage we gain through this separation of

environment from business logic is
a simplified distinction between the
types of errors. We’re able to trap
environmental exceptions using the
native exception handling model—
typically a try/catch/finally
approach—while writing code
within the protected block to han-
dle any conditions that may be
raised by the component. While
this multiplicity of error handling
may seem redundant, it has assisted
us in creating a simpler approach to
the development of multi-applica-

tion components, though not without leaving a lot of
nagging questions about the approach. While our
components can operate without regard to the imple-
mentation technology they are operating in, be it
COM+, J2EE, or our 4GL CASE tool, they have this
portability at a cost, the application errors are not
being handled in the native format, which causes a
problem for many developers. This remains an open
question.

Lesson 7. Testing strategies change. When devel-
oping a component-based solution, traditional testing
strategies are altered to support the changes that CBD
makes to the project life cycle. Testing of a compo-
nent-based solution is best viewed as two distinct
activities: the testing of the components, and the test-
ing of the assembled solution.

Because a component is an independently imple-
mented module of software, this suggests it can be
tested as a standalone unit. This assumption led to a
problem on our earlier projects. We spent as much
time building a user interface to test the compo-
nent—often called a test-harness—as we did develop-
ing the component. Unlike the semiconductor
industry, we lacked a test bench that allowed a test
plan to be executed against a nonvisual component.
We struggled to find a way to test these server-side
components in the absence of a user interface. We
wound up performing minimal testing on the com-
ponent, and instead concentrated more effort on test-
ing the application. Each component was tested based
on the roles it was performing within the application.
There was significant overhead in this approach, espe-
cially if a component implementation was changed
during development. Any component used in multi-
ple roles within the application required that each
usage had to be tested to ensure that a change in a
components implementation was not going to cause
dependency problems within the applications. This is
not what we would have hoped for.

Today we use both discrete component-level test-

52 October 2000/Vol. 43, No. 10 COMMUNICATIONS OF THE ACM

Prototyping helps to

ease the adoption of a

component-based

approach.

ing, based on test plans prepared by the component
architects, and regressive application testing, based on
scenarios prepared by the application architects. The
rise in recent years of more robust component imple-
mentation models has brought with it a richer, more
integrated circuit-like approach to testing. Now soft-
ware-testing products deliver a “virtual test bench”
where components and interfaces may be exercised in
the absence of a user interface. These types of tools
will help us with our future applications and compo-
nent delivery projects, as testing is the least appealing
task for most developers and yet is one of the most
important activities for a successful project.

Conclusion
I hope this article does not give the impression that
we have had bad experiences with CBD. In fact, the
exact opposite is true. Castek has achieved mile-
stones through the use of CBD that would otherwise
have been impossible using traditional software
development techniques. Our track record speaks for
itself: on-time and within-budget delivery, with
scope that exceeded the original customer expecta-
tions. Our success is due to the gains in quality, pro-
ductivity, and functionality we have experienced

with components. With each project, and through
the lessons outlined here, we have improved our
behaviors and process to get better with each pass,
and we know we can continue that cycle.

References
1. Burg et al. Exploring a Comprehensive CBD method: Use of CBD/e in

practice; www.sei.cmu.edu/cbs/cbse2000/papers/03/03.html
2. Darnauer, J. Component definitions; www.cse.ucsc.edu/research/

surf/users-manual/node94.html
3. McInnis, K. An introduction to CBD/e; www.cbd-hq.com/arti-

cles/1999/991115km_overviewcbde.asp
4. Microsoft Corporation. Definition of the term component;

msdn.microsoft.com/repository/OIM/resdkdefinitionoftheterm-
component.asp

5. Sparling, M. Is there a component market?; www.cbd-hq.com/arti-
cles/2000/000606ms_cmarket.asp

6. Sutherland, J. Healthcare technologies futures; www.jeffsutherland.org/
papers/MSHUG_hctf.htm

7. Wagner, M. Google bets farm on Linux; www.techweb.com

Michael Sparling (mikesparling@acm.org) is Chief
Technology Officer at Castek in Toronto, Canada.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2000 ACM 0002-0782/00/1000 $5.00

c

COMMUNICATIONS OF THE ACM October 2000/Vol. 43, No. 10 53

