lliam B. Frakes and Christopher |. Fox

Sixteen Questions About
Ssoftware Reuse

oftware reuse is the use of existing soliware knowledge or
artifacts to build new software artfacts. Reuse is some-
times confused with porting. The two are distinguished
as follows: Reuse is using an asset in different systems;
porting is moving a system across environments or plat-
forms. For example, in Figure 1 a component in System
A is shown used again in System B; this is an example of
reuse. System A, developed for Environment 1, is shown
moved into Environment 2; this is an example of porting

Many organizations are implementing systematic reusc
programs and need answers to practical questions about
reuse. Little empirical data has previously been collected
to help answer these questions. In this article we answer
16 questions that, in our experience, are commonlh
asked about reuse, using survey data we collected recent
ly from organizations in the U.S. and Europe [5]. Ow
analysis supports some commonly held beliefs aboul
reuse and contradicts some others.

sSurvey Respondents
We surveyed software engineers, managers, educators,
and others in the software development and research

their atuwudes,
beliefs, and practices in reusing

about

community

code and other litecycle objects.

Survey respondents were drawn
arbitrarily from the software engi-
neering community. A total of 113
people from 28 U.S. organizations

and one European organization re-

sponded to the survey during "91-92.

The survey respondents do not
form a large random sample of the
software engincering community.
Nevertheless, indicators of the expe-
rience, education, and background
of the respondents suggest that they
are fairly representative of experi-
enced software engineers and man-
agers at high-technology companies
in the U.S. Seventyseven percent
of survey respondents are soft-
ware engineers or managers. Most
respondents have considerable soft-
ware engincering experience, with a
mean of 12.2 years of work experi-
ence on 9.2 projects in 3.3 organiza-

tions. Fifty percent of respondents
have degrees in computer and infor-
science. Most have bache-
master’s degrees in com-

mation
lor’s or
puter science, electrical engineer-
ing, or mathematics.

Of the 29 organizations repre-
sented in the survey, 18 are repre-
sented by a single respondent. Five
organizations have two respondents,
and six have three or more respon-
The maximum number of
respondents from a single organiza-
tion is 26. Six organizations in this
survey are universities. The rest are
high-technology research compa-
nies in scientific and technical fields
with significant software develop-
ment eflforts. Respondents work in
organizations spanning the range of

dents.

company, division, and project sizes,
with a median company
25.000. These individuals work for
companies with as few as 35 and
as many as 350,000 employees. This

size of

COMMUNICATIONS OF THME AckM |unc [995/Vol 38, No. &

helps ensure that our conclusions
are generalizable to companies of
various sizes.

Most respondents work for com-
panies at the cutting edge of sofi-
ware technelogy, particularly in
software and aercspace companies,
which account for 59% of the
respondents. The most frequenty
used language in respondents’ com-
panies is C, followed by Fortran,
Pascal, and Ada.

The Questions

The 16 questions we chose are some
we have found w0 be commonly
asked by organizations attempting
to implement systernatic reuse. The
answers 10 many of these questions
are often taken for granted in the
software engineering community,
but have not been verified empiri-
cally. Our answers to these questions
are based on analysis of survey data
and hence are empirically based.

75

software reuse

QUESTION 1: How widely reused
are common assets?

Software engineers have many reus-
able assets available to them, but do
they actually use them and find them
valuable? Our data says that the an-
swer is yes and no. Some assets, such
as those in the Unix environment, are
widely used and perceived to be valu-
able. Other assets, such as the Cosmic
collection from NASA, are not used
by many software engineers and are
not perceived to be very valuable by
their users. Most assets were per-
ceived, on average, to be at least
somewhat valuable by respondents
who had used them, suggesting that
these asset collections are generally
helpful to their user communities.

Table 1 shows the number of re-
spondents using each asset. This is
our measure of the amount of use;
table entries are ranked by this mea-
sure, with the most widely used assets
listed first. Respondents rated the as-
sets using a five-point scale, from |
(Not Valuable) through 3 (Somewhat
Valuable) to 5 (Very Valuable). The
median rating for each asset is our
measure of perceived value.

There are many possible reasons
for the variability in the use and per-

ceived value of these assets, including
lack of information and education,
asset quality, and ease of access to the
assets. The reasons why some asset
collections are more popular and
perceived as more valuable are not
known, but anecdotal evidence in
the reuse community suggests that
relevant functionality is an important
factor.

QUESTION 2: Does programming
language affect reuse?

Many organizations believe that they
need to change their programming

Environment 1

language to promote reuse. How-
ever, opinion on the importance of
the choice of programming language
for reuse is divided. Some people
think that language is of little or no
importance for reuse, while the ad-
herents of languages such as Ada,
C++, Smalltalk, and Eiffel argue that
features of these languages (e.g., sup-
port for abstraction, inheritance,
strong typing) provide better reuse
support. Past analyses of the effects of
language on various aspects of the
development process have shown
that programming languagt‘ may not
be very important. For example,
Boehm's studies show that the rate of

System B
Reuse

Porting

Environment 2

System A

Table 1. Amount of use and perceived value of common assets

i

Figure 1. Reuse and porting

Percent Perceived
Assets Never used who used value
UNIX tools 70 31 69 4
Program 65 32 67 3
templates
Document 63 32 66 i
templates
FORTRAN 53 45 54 4
libraries
X widgets 15 53 16 4
Ada math 27 69 28 1
library
Booch 23 73 24 3
4 GL 20 74 2] 3.5
Grace 9 86 10 3
Cosmic 7 85 8 2

76

June 199

Vol 3% No. H COMMUNICATIONS OF THE ACM

production of source code statements
is relatively independent of language
and even language level [1].

We used our data to answer the

question of whether programming Language

Table 2. Choice of language and code reuse levels

Correlation: Language usage and

organizational code reuse

language affects reuse by correlating Jovial 0.00
the usage of 1l common program-
ming languages with levels of organi- Smalltalk 0.00
zatio‘nal code reuse. .Languagc usage Pascal 0.03
rankings were obtained by having
respondents rank order the lan- Cobol 0.09
guages used in their companies, from
1 for the most commonly used lan- ¢ 0.09
guage up to 11 for the least com- N 0.10
monly used language. To obtain
reuse levels, respondents were asked, Fortran 0.1%
“What percent of the lifecycle objects ; 3
your organization creates are typi- Cir e
cally composed of reusable parts?” Assernbler 0.25
The responses were used as the mea-
sure of organizational code reuse Lisp 0.28
level. Thus, each subject provided a -
. PL-1 0.69

usage ranking value (1 to 11) for each
language and an associated level of

Statistical Methods Used

uch of the analysis reported here is of correla- extreme outlier *
M tions between variables. We used the Spear-
man correlation, a nonparametric measure

that treats data as ranks [13]. Nonparametric statistics are :

often used because they require fewer assumptions about outliers

the data. There are several considerations in interpreting

correlations. First is the effect size, or magnitude, of the

correlation. In research outside the physical sciences, cor- top hinge

relations of 0.5 and above are often considered large,
those of 0.3 to 0.5 are considered medium, and those of
0.1 to 0.3 are considered small [2]. We follow this classifica-
tion in this article.

A related issue Is statistical significance, which addresses
whether an observed statistic might have occurred by

chance alone. Statistical significance is a function of sample

size, effect size, and the statistical measure used. We use a
significance level of 0.05 in this study, which means that
we regard a finding as real only if the probability that it Is
a statistical fluke is less than 0.05.

We also summarize data and compare groups using
boxplots [12], or graphical representations of the distribu-
tion of a set of data (See figure). The bottom of the box is
the 25th percentile and the top of the box the 75th per-
centile. Thus, half of the data points in the set fall within

the box. The difference between the 75th and 25th percen-

tiles is the midspread. The top hinge is the largest data
point 1.5 midspreads or less above the 75th percentile; the
bottom hinge is the smallest point 1.5 midspreads or less
below the 25th percentile. An outlier is any data point
above or below a hinge, but no more than 3 midspreads
above or below. An extreme outlier lies more than 3
midspreads from the hinge.

The line across the box is the median, or 50th percentile.

75th percentile

midspread medish

25th percentile

bottom hinge

The shaded area around the median is the 95% confidence
interval for the median. It is placed symmetrically around
the median according to the formula:

median + (1.57 x midspread +~ v/n
where n is the sample size.

Boxplots reveal much about the shapes of data distribu-
tions. The length of the box and the placement of hinges
and outliers shows the dispersion of the data, and the
median line shows its center. The placement of the median
line In the box and the distance of the hinges from the
box show how skewed the data is. Side-by-side boxplots il-
lustrate the relationships of these characteristics for two
or more distributions. The confidence bands around the
medians provide a test for the difference of medians: If
the bands don't overlap, then the medians are significantly
different [9].

COMMUNICATIONS OF THE ACM Juic 1995/ Vol 38, No. 6 77

software reuse

code reuse (0 1o 100).

Table 2 shows the Spearman corre-
lations between the usage of the 11
programming languages and the lev-
els of code reuse. Because languages
are ranked on a scale in which lower
numbers indicate more usage, a high
negative correlation between usage
ranking and code reuse would indi-
cate that a language promotes reuse.

Only one of these correlations—
for PL/I—is statistically significant at
the 0.05 level. This strong positive
correlation for PL/I suggests that
using PL/I may retard code reuse. On
the other hand, usage of languages
usually thought to promote reuse,
like Ada and C++, shows no signifi-
cant correlation with code reuse lev-
els. We also found that higher-level
languages are no more strongly cor-
related with high reuse levels than is
assembly language. Our conclusion is
that choice of programming language
does not affect code reuse levels. The
implication of this result is that, con-
trary to popular belief, efforts to in-
crease reuse levels should focus on
other factors besides programming
language.

QUESTION 3: Do CASE tools
promote reuse?

The large literature on reuse CASE
tools and their growing market show
that many organizations regard
CASE tools as a way to improve reuse.
To study this question, respondents
were asked whether they agreed with
the statement, “CASE tools have pro-
moted reuse across projects in our
organization.” The responses are
shown in Figure 2.

The data shows that respondents
generally feel that CASE tools have
not promoted reuse across projects in
their organizations; 75% of respon-
dents do not agree even somewhat
that CASE tools promoted
reuse.

We further explored this i1ssue by
running Spearman correlations be-
tween respondents’ degree of beliet
that CASE tools have promoted reuse
and their responses to the question,
“What percent of the lifecycle objects
your organization creates are typi-
cally composed of reusable parts?”

have

78

40
40]
30 |-
o
520
[e]
o

Responses 79
Mean 1.8
Median 1

Standard Deviation 1.0

]
Disagree Agree

Somewhat

19
13
6
t
0 | | I 1
2 3 4 5

CASE tools promoted reuse across projects in our organization.

Agree

Figure 2. CASE tools and promoting reuse

The lifecycle objects considered were
requirements, designs, code, test
plans, test cases, and user documen-
tation. We found no significant corre-
the 0.05
reuse levels of lifecycle objects are not
significantly higher in organizations
where CASE tools are thought to pro-
mote reuse than in organizations
where they are not thought to pro-
mote reuse, there is no evidence that
CASFE tools promote reuse.

We conclude that CASE tools are
not currently effective in promoting
reuse. There are at least three rea-
sons why this may be so: Reuse CASE
tools may not be used; they may not
be used correctly; or they may not be
effective in promoting reuse even
when they are used correctly. This
area needs further investigation.

lations at level. Because

QUESTION 4: Do developers prefer
to build from scratch or to reuse?

Many people believe that software
engineers prefer to build their own
software rather than reuse someone
else’s. This is often referred to as the
“Not Invented Here” (NIH) syn-
drome.

We investigated this question by
looking at respondents’ answers to
the statement, “It’s more fun to write

my own software than to Tl"y to

June 1995/Vol. 38, No._ COMMUNICATIONS OF THE ACM

reuse.” Responses are shown i Fig-
ure 3.

Most respondents (729 do not have
the NIH syndrome. We conclude that
most developers prefer to reuse
rather than build from scratch. This
result contradicts conventional wis-
dom in the software engineering com-
munity, but is in agreement with the
findings of another recent study [3].

QUESTION 5: Does perceived
economic feasibility influence
reuse?
Reuse may not be done if it is not be-
lieved to be economically feasible. We
examined whether perceived eco-
nomic feasibility influences reuse by
comparing levels of individual and
organizational code reuse with re-
spondents’ agreement with the state-
ment, “Reuse is economically feasible
in my organization.” We first ana-
lyzed the distributions of individual
and organizational code reuse levels
for each level of agreement that reuse
is economically feasible. Figure 4
summarizes these distributions with
boxplots. The boxplots show a clear
trend toward higher reuse as belief in
the economic feasibility of reuse in-
creases.

This trend was verified by correlat-
ing code reuse levels for individuals
and organizations with degree of be-

How to Improve Reuse

his figure summarizes the effects on systematic reuse of the factors
'we investigated. An organization trying to improve systematic reuse

should concentrate on education about reuse, developers' under-
standing of the economic feasibility of reuse, instituting a common develop-
ment process, and making high-quality assets available to developers. The
other factors, despite the conventional wisdom, do not seem to be important.
It should be understood, however, that these conclusions are based on data
gathered from across the industry—the factors salient for a particular organi-
zation may be different. The best course is to investigate the factors affecting
reuse in the target organization (through surveys, case studies, or other tech-
niques) and take action based on the results.

o §

Factors Affecting Reuse
Type of
Industry

I Perceived
Education Economic
Feasibility

-~

Common High
Software Quality
Process Assets

Factors Not Affecting Reuse

—

Programming Recognition Legal S
Language Experience N Problems Repositories

Organization Quality Reuse
Size Concerns Measurement

COMMUNICATIONS OF THE ACM |une 1995/Vol 38, No. 6 79

software reuse

lief'in the economic viability of reuse.
For both individuals and organiza-
tions we found that higher percep-
tions of economic viability correlated
significantly at the 0.05 level with
code reuse levels. The correlation be-
tween individual code reuse and per-
ceived economic viability was 0.35; the
correlation between organizational
code reuse and perceived economic
viability was 0.39. Both of these are
medium-strength correlations, so we
conclude that perceived economic
feasibility does influence reuse.

This result implies that it is impor-
tant to convince software engineers
that reuse is economically justified.
Management must bear the responsi-
bility for educating software develop-
ment staff’ that reuse is a desirable
and economically viable practice.

QUESTION 6: Does reuse education
influence reuse?

We considered the mmfluence ol edu-
cation on reuse from two perspec-
tives. First we looked at respondents’
answers to the statement, "I was edu-
cated about software reuse in school”
compared to individual levels of
lifecycle object reuse. We found that
education does influence code and
design reuse levels, as shown in Fig-
ure 5. People who were educated
about reuse in school reported signif-
icantly higher median levels of code
and design reuse at the 0.05 level.

Despite the importance of reuse
education in school to reuse success,
we found that relatively few of our
respondents—only 13 (17%) of the
76 who responded to this question—
had been educated about
school.

Because most sottware engineers
working today were not educated
about reuse in school, it is up to mn-

reuse in

dustry to train them. We next exam-
ined respondents’ agreement with
the statement, “My organization has
an education program about software
reuse,” and compared this with orga-
nizational reuse levels of lifecycle ob-
jects. We found that organizations
with a corporate reuse education pro-
gram had significantly higher median
levels of code reuse at the 0.05 level,
as shown in Figure 6. This finding

50 —
44
40 |- Responses 104
Mean 2.0
31 Median 2
% 30 Standard Deviation 1.2
3
[$] 20 |- 19
10
7
3 | i
0 [I
1 2 3 4 5
Disagree Agree Agree
Somewhat
It's more fun to write my own software than to try to reuse.
Organizational Code Reuse Levels Individual Code Reuse Levels
80 |-
e
[}]
3
@ 60
o
@ \
<
S 40
©
<
g 20
qJ
a E
0
1 2 4 5 1 2 3 4 5
Disagree Agree Agree Disagree Agree Agree
Somewhat Somewhat
Figure 3. Software creation [Individual individual
versus reuse preferences Code Design

Figure 4. Perceived economic
feasibility versus code reuse
levels

Figure 5. Learning aboutreuse
in school and reuse level

btll)})()['l." [llﬁ iI]l[)()ll-’:l!l((. ()i (Ul'!)(ll'il[('
reuse education. Unfortunately, cor-
porate reuse education is also rare,
with only 15 (19%) of 78 respondents
reporting that their organization has
a reuse training program.

We conclude that education about
reuse, both in school and at work,
improves reuse and is a necessary
part of a reuse program, though re-
use education is still relatively rare in
both academia and industry. Man-

June 1995/Vol 35, No. 6 COMMUNICATIONS OF THE ACM

Reuse Level

1 &

Reuse Level

oo
o
T

o)
=]
I

Percent Reused
N By

o [=]

T T

o T

No Yes No Yes
(63) (13} (63) (13)

Learned about Reuse in School?

agement must again bear the respon-
sibility of ensuring that software de-
velopment staff is trained in reuse if
systematic reuse programs are to
succeed.

Organizational Code Reuse

80 [~

60 |-

Percent of Code Reused
3
I

No Yes
(63) (15)
Corporate Reuse Training?

QUESTION 7: Does software
engineering experience
influence reuse?

It is often thought that more expert-
enced software engineers are better
practitioners. To explore this ques-
tion with regard to reuse practice,
respondents were asked to report
their years of experience in software
engineering. The distribution of the
results 1s shown in Figure 7.
Respondents tend to be quite ex-

perienced in the field, with a mean of

12.2 years of experience. Half the re-

20

Counts
-
=)
T

Responses 111
Mean
Standard Deviation 6.7
Minimum 1
25th Percentile 8
Median 12
75th Percentile 15
Maximum 34

rr1 []

Years

24 36

100 94

Responses 110

0

Cash
Rewards

No Recognition
Rewards Rewards

Figure 6. Corporate reuse
training and reuse level

Figure 7. Respondents’ years of
experience

Figure 8. Rewards for reuse

spondents have between eight and 15
years’ experience. We ran Spearman
correlations between years of soft-
ware engineering experience and
personal reuse levels for lifecycle ob-

jects. We found no correlation be-

tween them at the 0.05 level.

We conclude from this that sofi-
ware engineering experience has no
effect on reuse of lifecyle objects. This
somewhat surprising result may be

attributable to the historical lack of
training in reuse (see discussion of

Question 6) and to the fact that sys-
tematic reuse has only recently be-
come a salient goal of many software
organizations.

QUESTION 8: Do recognition
rewards increase reuse?

Reuse incentives have been reported

to be necessary catalysts for reuse.
Two kinds of rewards have been
tried: recognition rewards and cash
rewards. GTE, for example, reported
using cash payments to producers of
reusable assets in building its success-
ful reuse effort [10]. Nippon Novel
pays software engineers several cents
per line of code registered in a reuse
repository and several cents per re-
used module [6]. Our respondents
said that rewards for reuse are rare.
No respondent reported cash bo-
nuses, and only a few (15%) report
any kind of recognition, as shown in
Figure 8.

To investigate the question of
whether recognition rewards increase
reuse, we compared boxplots of the
levels of organizational reuse of
lifecycle objects for groups of respon-
dents reporting no rewards and rec-
ognition rewards. We found no sig-
nificant differences between them.
The results (for code) in Figure 9 are
typical of the analysis, showing no sig-
nificant difference at the 0.05 level
between the no-reward and recogni-
tion groups.

Organizational Code Reuse
80 -
o
oS
S 60 |—
@
o
@
3
G 40 -
©
I=
820+
i
0 L
No Recognition
Rewards Rewards
(94) (16)

Figure 9. Code reuse levels and
recognition rewards

We ran the same analysis for indi-
vidual reuse levels and also found
that recognition rewards made no
significant difference. Our results
contradict the common belief that
recognition is a sufficient reward for
reuse. It may be that only monetary

rewards are sufficient motivators.

COMMUNICATIONS OF THE ACM |unc 1995/ Vol 35, No. b 8‘

software reuse

This is in line with the GTE experi-
ence that money is a needed reuse
motivator. Unfortunately, the lack of
respondents in organizations with
cash rewards made it impossible to
investigate this question in our study.

QUESTION 9: Does a common
software process promote reuse?

Study and improvement of the soft-
ware process has been a popular topic
in the software engineering commu-
nity in recent years as a consequence
of work at the Software Engineering
Institute [8], prompting the question
whether the software process affects

software reuse. We asked respon-
dents whether they agreed with the
statement, “A common software de-
velopment process has promoted
TEUSE across projects in our organiza-
tion.” The responses are shown in
Figure 10.

The data shows that respondents
generally do not agree that common
software processes have promoted
reuse across projects in their organi-
zation. This might mean either that
their organizations do not have a de-
fined process or that the process has
failed to support reuse. Recent stud-
ies of software process capability show
that most organizations have imma-
ture processes (level 1 on the Soft-

Figure 10. A common software process and reuse levels

40 38
Responses 94
30 - Mean 2.3
Median 2
@ 21 Standard Deviation 1.3
520
3 17
@]
10 + g 9
0
1 2 3 4 5
Disagree Agree Agree
Somewhat
A common software development process has promoted reuse
across projects in our organization.

Table 3. Organizational reuse levels and a common software process

Organizational reuse level

Correlation between reuse
levels and agreement that a
common software process
promotes reuse across projects

Requirements 0.24
Design 0.40
Code 0.24
Test plans 0.31
Test cases 0.34
User documentation 0.15

June 1995 /Vol. 38, No. 6 COMMUNICATIONS OF THE ACM

ware Engineering Institute [SEI] pro-
cess maturity scale), supporting the
view that organizations typically lack
a defined process.

To investigate question 9 further,
we ran Spearman correlations be-
tween the degree to which respon-
dents agreed that a common process
promoted reuse and their organiza-
tional reuse levels. These correlations
were significant at the 0.05 level and
are shown in Table 3.

The correlations shown in Table 3
range in strength from weak (for re-
quirements, code, and user docu-
mentation) to moderate (for designs,
test plans, and test cases). These cor-
relations demonstrate that there is
more reuse in organizations with a
common software process that pro-
motes reuse. We thus conclude that a
defined software process that pro-
motes affect software
reuse levels. The consequence of this
conclusion is that gains in process
maturity can translate into gains in
software reuse.

reuse does

QUESTION 10: Do legal problems
inhibit reuse?

Legal problems are thought to be a
serious impediment to reuse. Legal
issues regarding contracting, owner-
ship, and liability for reusable compo-
nents are still unresolved. To test
whether these legal problems affec
reuse, respondents asked
whether they are inhibited by possi-
ble legal problems. Responses are
shown in Figure 11.

Legal problems do not appear o
be an impediment for most survey
respondents, 68% of whom agree less
than somewhat that they are inhib-
ited by legal problems.

Spearman correlations were run
between levels of reuse of lifecycle
objects for individuals and organiza-
tions and reported inhibition by legal
problems. We found no significant
correlations other than a weak nega-
tive correlation with levels of reuse of
user documentation. Hence it ap-
pears that people are not inhibited in
their reuse practices by fears of legal
problems. Today most reuse goes on

were

within companies, so legal issues are
of less concern. This may change as

45

40

20

Counts

20 18

Responses

Mean

Median

Standard Deviation

1 2 3
Disagree Agree
Somewhat

3 4
. (1M
4 5

Agree

I'm inhibited by possible legal problems.

92
2.0

1.2

Figure 11. Reuse and legal problems

reusable assets are increasingly mar-
keted outside companies.

QUESTION 11: Does having a reuse
repository improve code reuse?

A reuse repository is a collection of

reusable assets, along with a search-
img mechanism for locating assets
meeting development needs. The
importance of a repository for pro-

moting reuse has been the subject of

debate. Many organizations have
considered a repository central to their
reuse efforts, and many kinds of re-
pository mechanisms have been re-
ported [7]. On the other hand, Tracz
has argued that repositories are not
of critical importance for reuse [11].

We examined the impact of having
a repository on organizational code
reuse levels, with the results shown in
Figure 12. We found organizations
with a repository have median code
reuse levels 10 percent higher than
organizations that do not have reuse
repositories, but this difference is not
statistically significant at the 0.05
level. Our analysis does not take into
account what type of repository or
what type of indexing was used.

We conclude that having reuse
repositories does not improve levels
of code reuse. Organizations trying to
improve systematic should
probably not focus on repositories in

reuse

60 |-

40 |-

20 |

Percent of Code Reused

No
(45)
Organization has reuse repositories?

Yes
(47)

their improvement efforts, at least
initially.

QUESTION 12: Is reuse more
common in certain industries?

Respondents were asked to classity
their companies by primary business.
The results are shown in Figure 13.

Most of the respondents work for
companies in high-technology indus-
tries such as software (34%), aero-
space (25%), manufacturing (14%j,
and telecommunications (6%). Some
of the software systems these compa-
nies build push the limits of available
technology. The “Other” category
(21%) includes university respon-
dents and respondents from compa-
nies in electronic instrumentation
and equipment manufacturing and in
telemetry collection and management.

The boxplots in Figure 14 show
that there are significant differences
in the reuse of lifecycle objects be-
tween different industries. In particu-
lar, the telecommunications industry
has significantly higher levels of reuse
in several cases, and the aerospace
industry tends to have significantly
lower levels in several cases.

We conclude that there are signifi-
cant differences in reuse levels of var-
ious lifecycle objects in different in-
dustries, with telecommunications
leading in reuse and aerospace trail-
ing. The reasons for these results are

40 - 38
30 - 28 Responses 111
23
(2]
So0f
8 15
10 |
7
0
Software Aero- Other Manu- Telecom-
space facturing munication
Figure 12. Reuse repositories and code reuse levels
Figure 13. Distribution of respondents across industries

COMMUNICATIONS OF THE ACM junc 1995,/ Vol 38, Nu. 6

Requirements Reuse Levels Design Reuse Levels
85
80
75 o] O -1 o]
=
]
3 60
o
c
S 45
g
30
15
0
Aerospace Manu- Software Telecom- Other Aerospace Manu- Software Telecom- Other
facturing munication facturing munication
Code Reuse Levels Test Plan Reuse Levels
o] o] o]
80
o] O
*
60
g C
w
>
L]
@
= 40
(]
o @]
[}
o
20
0
Aerospace Manu- Software Telecom- Other Aerospace Manu- Software Telecom- Other
facturing munication facturing munication
Test Case Reuse Levels User Documentation Reuse Levels
o]] O
80
O
- 60
(]
w
>
[
T 40
c
]
e
[0}]
o 20
0
Aerospace Software Other Aerospace Software Other
Manu- Telecom- Manu- Telecom-
facturing munication facturing munication

Figure 14. Reuse levelsin various industries

not currently known, but they sug-
gest a course of action for lagging
industries: Industries with low reuse
levels might benefit from studying
and adopting reuse practices in in-
dustries that lead in software reuse.

QUESTION 13: Are company,
division, or project sizes
predictive of organizational
reuse?

Small organizations sometimes won-
der whether systematic reuse is a real-
istic goal, given the scope of their
domains and limits on their re-
sources. On the other hand, large
organizations sometimes feel that in-
stituting systematic reuse is unrealis-
tic because of the large investments of
resources and time required. We con-
sidered this issue by examining the
question of whether organization size
is predictive of amount of reuse.

Survey respondents come from
companies that run the gamut from
those with a few employees to one
with over 350,000 employees. Similar
variations are observed for division
and project sizes. Because the distri-
butions are very skewed (not symmet-
ric around the mean), the median is a
better summary of typical values. The
median number of employees in re-
spondents’ companies is 25,000. The
median division size is 350, and the
median project size is seven.

We tested the hypothesis that com-
pany, division, and project sizes influ-
ence organizational reuse levels by
running Spearman correlations be-
tween reported organization sizes
and reuse levels for all lifecycle ob-
jects. No significant correlations were
found. We concluded that company,
division, and project sizes are not
predictive of reuse levels. This sug-
gests that organizations of any size
may succeed (or fail) to institute sys-
tematic reuse.

QUESTION 14: Are quality concerns
inhibiting reuse?

Reuse is likely to occur only if poten-
tial reusers are confident of the qual-
ity of reusable assets. It is commonly
thought that software engineers dis-

trust assets developed outside their
immediate environment, and thus
are less likely to reuse assets from out-
side their organization. This is an-
other aspect of the NIH syndrome.
We considered several responses in
investigating this issue. Respondents
were asked to rate their agreement
with the statement, “Software devel-
oped elsewhere meets our stan-
dards,” and were also asked, “What
percentage of the parts you reuse are
from external sources?”” A Spearman
correlation between these variables
showed no relationship, suggesting
that quality concerns were not related
to amount of external reuse.

Respondents were also asked to
rate their agreement with the state-
ment, “I've had good experience with
the quality of reusable software.” Re-
sponses to this question are summa-
rized in Figure 15, which shows that
experiences have generally been fa-
vorable, with 67 respondents (69%)
agreeing at least somewhat that their
experiences have been good.

Spearman correlations between
the responses shown in Figure 15 and
the respondents’ reported personal
levels of reuse showed no relation-
ship, except for a weak correlation
with reuse of requirements.

These results suggest that satisfac-
tion with the quality of reusable assets
has no influence on reuse levels. This
result does not mean that asset quality

is unimportant, but that the assets
encountered by respondents have
generally been of sufficient quality to
meet their needs. This situation may
not persist if asset quality declines or
if user expectations increase.

QUESTION 15: Are organizations
measuring reuse, quality, and
productivity?

Reuse measurement is crucial for de-
termining if a reuse program is suc-
ceeding [4], but we found that few
organizations currently are measur-
ing reuse. We asked respondents if
their organization has a program in
place to measure level of reuse. The
respondents’ answers are shown in
Figure 16. Only 16 respondents
(14%) said their organization is cur-
rently measuring reuse, and 12 re-
spondents (11%) did not know if their
organization is measuring reuse.
Thus, at most 25% of respondents are
in organizations that measure reuse.

Respondents were also asked
whether their organization has a pro-
gram in place to measure software
quality. Responses to this question
are shown in Figure 17.

Quality is more widely measured
than reuse: Fully 47 respondents
(42%) said that their organizations
have programs in place to measure
software quality.

Figure 15. Experiences with the quality of reusable software

40
E Responses 97
Mean 3.0
30 Median 3
Standard Deviation 1.2
w
£ 20
g 20 19 —
© 14
11 12
10 |
2
0 —
1 2 3 4 5 M N
Disagree Agree Agree
Somewhat
I've had good experiences with the quality of reusable software.

COMMUNICATIONS OF THE ACM |unc [995/Vol, 38, No, 6

CE R

GannE e gl e e

S

software veuse

A
il .

Finally, respondents were asked
whether their organizations have
programs in place to measure sofi-
ware productivity. Figure 18 shows
the results of this question.

Respondents report that produc-
tivity measurement is relatively rare.
Only 32% of respondents report pro-
ductivity measurement programs in
place, and only 12% report that one is
planned.

We conclude that measurement of
reuse levels, software quality, and
software productivity are not done in
most organizations, and thus that
these organizations cannot be prop-
erly managing their software pro-
cesses and products, including reuse.

QUESTION 16: Does reuse
measurement influence reuse?
Many people have claimed that mea-
suring an activity will tend to increase
it. This is reflected in the common
saying, “If you aren’t measuring it,
it's getting worse.” We examined this
question by looking at the differences
between median levels of organiza-
tional reuse for various lifecycle ob-
jects for respondents whose organiza-
tions are and are not measuring
reuse. While reuse measurement is
needed to manage a systematic reuse
program, according to our data it 1s
not correlated with reuse levels of any
organizationally created lifecycle ob-
jects. In other words, it appears that
organizations that measure reuse are
not using these measurements to
improve reuse levels. We found no
significant differences at the 0.05
level in median levels of reuse be-
tween organizations that do and
those that do not measure reuse.

Figure 16. Respondent
organizations measuring
reuse

Figure 17. Respondent
organizations measuring
quality

Figure 18. Respondent
organizations measuring
productivity

Lt s s e

40r- 73
- Responses
30 112
=2
S20f-
o
[&]
10~ 16
11 12
0 | |

Yes

No Planning Don't
One Know

My organization has a program in
place to measure level of reuse.

S0 47
Responses 112
401~
36
——
@« 30
c
3
20
o0l
| l 9
10 l—l
0
Yes No Planning Don't

One Know

My organization has a program in
place to measure software quality.

50
50 —
401 36 Responses
—_— 111
» 30
c
32
(=]
O 20}
13 i2
10
0
Yes No Planning Don't

One Know

My organization has a program
in place to measure software
productivity.

86 June 1995/ Vol 35, No. b COMMUNICATIONS OF THE ACM

summary

Table 4 summarizes our answers Lo
the 16 questions about reuse based on
the reuse survey. We found that while
some common reusable assets, such
as the Unix tools, are widely used and
highly regarded by softiware engi-
neers, others, such as the Cosmic col-
lection, are not. We also found that
most software engineers would prefer
to reuse software rather than build it
from scratch, contradicting the com-
mon wisdom that software engineers
prefer building things themselves
rather than reusing.

Though adherents ot a given pro-
gramming language otten claim that
one language supports reuse better
than others do, we found no evidence
for this, nor for claims that CASE
tools or software repositories pro-
mote reuse. On the other hand, ow
data shows that reuse education, both
academic and industrial, is important
for improving reuse, as is the percep-
tion that reuse is economically viable.
The belief that a common software
process promotes reuse also improves
reuse.

We did not find that software reuse
increases with more software engi-
neering experience, nor that legal
problems are a serious reuse impedi-
ment. We found that reuse levels
were significantly higher for some
lifecyle objects in telecommunications
than in other fields, especially aero-
space. We found no relationship be-
tween organization size and level of
reuse. Our respondents were not in-
fluenced in their reuse efforts by con-
cerns about asset quality. Few organi-
zations measure reuse, quality, and
productivity, but measurement of
reuse is not correlated with reuse lev-
els, though of course reuse measure-
ment is needed to manage a system-
atic reuse program.

Acknowledgments

We wish to thank Steven Waruk and
Gloria Hasslacher for careful reviews
and many suggestions for improve-
ment. We would also like to thank the
Commumications reviewers who made
comments that helped us improve
this article. 3

References
1. Boehm, B. Software fngimeermg beo-

Table4. Answers to the sixteen questions

Questions Answers Notes
1. How widely reused are common assets? Varies Some (e.g., the Unix tools)
are widely reused others (e.g.,
Cosmic) are not.
2. Does programming language affect reuse? No
3. Do CASE tools promote reuse? No
4. Do developers prefer to build from scratch Prefer to
or to reuse? reuse
5. Does perceived economic feasibility Yes
influence reuse?
6. Does reuse education influence reuse? Yes Corporate training is
especially helpful.
7. Does software engineering experience No
influence reuse?
8. Do recognition rewards increase reuse? No
9. Does a common software process promote Probably Respondents say no, but reuse
reuse’ levels suggest belief in the efficacy
of a common process helps.
10. Do legal problems inhibit reuse? No May change in the future.
11. Does having a reuse repository improve code No
reuse?
12. Is reuse more common in certain Yes More common in
industries? telecommunications, less in
aerospace.
13. Are company, division, or project sizes No
predictive of organizational reuse?
14. Are quality concerns inhibiting reuse? No May change in the future.
15. Are organizations measuring reuse, Mostly no
quality, and productivity?
16. Does reuse measurement influence reuse? No Measurements probably not
being used.

nomics. Prentice-Hall,
Cliffs, N.J., 1981.

. Cohen, J., and Cohen, P. Applied Mul-
tiple Regression/Correlation Analysis for
the Behavioral Sciences. Erlbaum, Hills-
dale, N.J., 1975.

. Favaro, J. What price reusabilityr A
case study. Ada Letts. 11, 3 (1991},
115-124.

. Frakes, W.B. Software reuse as indus-
trial experiment. Am. Program. 6, 9
(1993), 27-33.

. Frakes, W.B., and Fox, C.]. Software
Reuse Survey Report. Software Engi-
neering Guild, Sterling, Va., 1993.

. Frakes, W.B., and Isoda, S. Success
factors of systematic reuse. [EEE

Englewood

10.

I1.

Softw. 11, 5, (May 1994), 15-19.

. Frakes, W.B., and Pole, T. An empiri-

cal study of representation methods
for reusable software components.
IEEE Trans. Softw. Eng. SE20, 8 (Aug
1994), 617-630.

. Humphrey, W. Managing the Software

Process. Addison-Wesley,
Mass., 1989.

Reading,

. McGill, R., Tukey, J.W., and Larson,

W.A. Variations of box plots. Am. Stat
32 (1978), 12-16.

Prieto-Diaz, R. Implementing faceted
classification for software reuse. Com-
mun. ACM 34, 5 (May 1991), 88-97.
Tracz, W. Software reuse myths. In
Software Reuse: Emerging Technology,

13.

W. Tracz, Ed. IEEE Computer Society
Press, Washington, D.C., 1988.

. Tukey, J.W. P.;xp.’aratr)ry Data Analysis

Addison-Wesley, New York, 1977.
Welkowitz, ., Ewen, R., and Cohen, J.
Introductory Statistics for the Behavioral
Seiences. 2d ed. Academic Press, New
York, 1976.

About the Authors:

WILLIAM B. FRAKES is an associale pro-
fessor and director of the computer sci-
ence program at Virginia Tech, and presi-
dent of the Software Engineering Guild.
Previously, he was manager of the Soft-

Continued on page 112

COMMUNICATIONS OF THE ACM juic 1995/ Vol 3K No. 6 81

