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Abstract 

Software components, if used properly, ofj~r many 
software engineering benefits. Yet, they also pose 
many original challenges starting fi'om quality 
assurance and ranging to architectural embedding 
and composability. In addition, the recent movement 
towards services, as well as the established world of  
objects, causes many to wonder what purpose 
components might have. 

This extended abstract summarizes the main 
points of  my Frontiers of  Software Practice (FOSP) 
talk at ICSE 2003. The topics covered aim to offbr an 
end-to-end overview of  what role components shouM 
play, where they should be used, and how this can be 
achieved Some key open problems are also pointed 
out. 

1. Why components? 

1.1. Words  ... 

Composition is the act of applying a composition 
operator (that forms part of a composition model and 
theory) in a given context. Components are the 
subjects of composition. Composites (also called 
assemblies) are the results of composition. This about 
as much as can be said ff we stay at the most abstract 
level. 

To move to meaningful discussion and 
elaboration, we need to focus in on a particular domain 
of composition, leading to families of composition 
models and theories. In this paper, our focus is 
component software and components are thus software 
components [1,2]. To be sure: there are many 

component domains in the larger space of software 
engineering and software architecture. Most of them 
are not software components, in the sense used here, 
but that doesn't affect their value - merely their scope 
of applicability. 

Hence, instead of listing technically motivated 
criteria that capture our domain of discourse, let's 
explore the ultimate reasons for what software 
components are meant to achieve. Then, we can work 
our way backwards and establish useful technical 
criteria. 

1.2. Why  c o m p o n e n t s ?  

There are at least four 'tiers' of motivations for 
using software components. The oldest tier is along 
the lines of Make and Buy, grounded in the 
observation that many ff not most organizations need 
to own some edge on top of acquired baseline products. 
Essentially, organizations need to strike a balance 
between the promised flexibility and competitive 
advantage of purpose-built software and the economic 
advantage of standard software. This is the space of 
traditional software reuse thinking and, often, it 
suffices to focus at the level of source components. 
Source components are components that are consumed 
at software development time and include architectural, 
design, and source code artifacts. 

The second tier follows the line of reusing partial 
design and implementation fragments across multiple 
solutions or products. This is the space of software 
product lines and product line engineering. Often, it 
suffices to focus on build-time components, 
components that are consumed when building 
deliverable software out of multiple pieces. Like 
source components, build-time components do not 
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necessarily survive the build process as identifiable 
parts of the deliverable. Traditional linkers are good 
examples of build-time tools that fuse their input into a 
single output. 

The third tier assumes that components from 
multiple sources are integrated on site, that is, not as 
part of the software build process. Such customer- 
driven integration is typically called deployment and 
the matching components can be called deployable 
components. Deployable components are 'real' 
software components in the sense that they are units of 
deployment that, as such, remain identifiable. 
Deployment is usually distinguished from installation 
as being the last step allowing for detailed 
configuration or customization. Once deployed, a 
component can then be installed on many systems. A 
good example in this category is a web browser 
incorporating downloaded components into the 
functionality of an active web page. While the browser 
performs automatic installation, it is the web developer 
that deployed the component (and thus had an 
opportunity to customize and test it in the context of 
the particular web site). 

The fourth tier is concerned with dynamic 
servicing, upgrading, extension, and integration of 
deployed systems. Varying degrees of redeployment 
and automatic install and uninstall serve this space. 
The desire grows to engineer solutions that - over 
their lifetime time - can deal with new and evolving 
contents, schemas, and services. This leads towards 
requirements to enter tier four; a tier that is mostly the 
realm of ongoing research. 

1.3. Dynamic Upgrade and Extension 

The most refined tier of applying software 
components, that of dynamic upgrading, extending, 
and integrating in nmning systems, is much at the 
cutting edge of current technology and understanding. 
Practical use of components today tends to end with 
the third tier: deployment of components. The most 
prominent example in this space are application 
servers (mostly J2EE/EJB and .NET/COM+). 

Truly dynamic changes to solutions build on 
components are extremely challenging in terms of 
correctness, robustness, and efficiency of the resulting 
systems. However, even at tier three, most of the 
problems already surface. It cannot be assumed that an 

organization that deploys components is capable or 
willing to perform deep end-to-end integration tests. 
Even where such tests are performed (because, say, the 
solution in question is mission critical), it cannot be 
assumed that the deploying organization can do 
anything but outright reject the use of a third-party 
component that has serious problems. In particular, it 
cannot be expected that such components will be 
'fixed' before deployment proceeds. 

These observations lead to a quality assurance 
issue at the component supplier end: since components 
can be combined into an endless variety of 
compositions, there is no opportunity to perform any 
final integration tests at the component supplier's end. 
Component quality needs to be established in the 
absence of a closed-world assumption! In other words, 
component unit tests and other forms of quality 
assurance, such as verification of component 
properties, are of critical importance. 

Truly dynamic contents and truly open sets of 
services cannot be handled by closed software. The 
resulting need to support tier four components grows 
as standards in the space of XML and web services 
lead to the broad availability of open contents and 
dynamically located service functionality. To cope 
with such situations, systems need to on-demand 
locate, install, and integrate components - or remotely 
use the dynamically discovered services. 

A strong motivator to move into this technically 
difficult area is the desire to integrate across 
organizational boundaries. From enterprise appfication 
integration (EAI), to business-to-consumer and 
business-to-business (B2C and B2B) scenarios, to full 
peer-to-peer (P2P), it gets ever less likely that 
homogeneous schemas and protocols can be assumed. 

1.4. Component maturity model 

The multiple tiers of component concepts 
explored in the previous section, coupled with the 
observation that higher tiers require more refined 
competencies, lead to a simple component maturity 
model. (The familiarity of the resulting acronym is 
entirely coincidental.) In order of increasing 
organizational maturity requirements, the following 
levels can be distinguished: 
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1. Maintainability: modular solutions 
2. lnternal reuse: product lines 
3.a.1 Closed composition: make and buy from 

closed pool of organizations 
3.a.2 Open composition: make and buy from 

open market 
3.b Dynamic upgrade 
4. Open and dynamic 

Somewhat depressingly, the state of the art of 
many software solutions doesn't even embrace 
modularity. Even advanced organizations are presently 
concerned with mostly level 2 issues. 

Level 3 forks into two parallel options that, in 
combination, form level 4. The first fork opens 
solutions for third-party contributions - in two steps 
from select ('pooled') sources to open markets. The 
second fork opens solutions for dynamic upgrade. It is 
the combination of these two forks that leads to the 
most demanding forms of component use. 

1.5. Compositional reasoning 

To climb up the maturity ladder towards 
mastering systems that support open and dynamic 
composition, effective compositional reasoning at all 
levels is required. Compositional reasoning builds on 
modular reasoning: the ability to reason within 
confined scopes without needing to resort to any form 
of global inspection or analysis. In a proper 
compositional-reasoning framework, the results from 
modular reasoning 'survive' application of useful 
composition operators. 

Some will say: 'Hey, it's just mathematics!' 
However, there is much room for future work. For 
instance, predictable assembly is a focus of current 
research: how can important assembly properties be 
predicted reliably, assuming just the known properties 
of components used and the known inference rules of 
a particular composition theory. Assembly properties 
of interest span the range of both ffimcfional and extra- 
functional properties. 

2. What's a component? 

2.1. What's a Software Component  anyway? 

The analysis of what it is that we would want 
from software components (sketched in the previous 

section), leads to a first approximation of what such 
components have to be. In particular, a software 
component has to be a unit of deployment. 
Furthermore, to enable dynamic scenarios, it has to 
also be a unit of versioning and replacement. 

To be a unit of deployment, a software component 
has to be an executable deliverable for a (virtual) 
machine. To be machine executable, no human 
intervention should be required to turn the 
combination of a deployable component and a 
deployment descriptor into an installable component, 
ready for execution. This is because deployment is not 
a development activity and does not happen at the 
component supplier's site. While the deployment 
process does provide extra information (captured in a 
deployment descriptor), it shouldn't require a build 
environment or the presence of a developer. 

To be a unit of replacement and versioning, it is 
important that a deployed software component remains 
invadant as it gets installed onto possibly many 
systems. That is, installed components should carry 
any no observable state. Therefore, software 
components live at the level of packages, modules, or 
classes, and not at the level of objects or distributed 
objects. 

To fully explore the space of code and data, in 
their co-packaging in a component, it is useful to view 
software components as a collection of modules and 
resources. Modules contain immutable code (for 
instance, in the form of a set of classes). Resources 
contain immutable data (for instance, in the form of 
serialized objects). Immutable metadata can be 
contained in both modules (describing code) and in 
resources (describing data). In a deployed component 
(that is, an installable component), deployment 
information may have been folded into resources, 
modules, or both. For instance, some application 
server implementations meet requirements found in 
deployment descriptors by generating modified code 
from the code found in a deployable component. 

2.2. What is Deployment? 

Acquisition is the process of o b t a ~ g  a software 
component; as discussed above, such a component 
arrives in deployable form. Deployment is the process 
of readying such a component for installation in a 
specific environment. The degrees of deployment 
freedom are typically captured in deployment 
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descriptors, where deployment corresponds to filling 
in parameters of a deployment descriptor. 

Installation is the process that follows deployment 
and that is often automated. Installation makes a 
component available on a particular host in a particular 
environment. 

Loading is the process of enabling an installed 
component in a particular rtmtime context, such as a 
process. If a component carries definitions for 'static' 
(or 'global') variables, then these are instantiated as a 
side effect of loading. Finer-grained instantiation in 
the object-oriented sense follows loading and operates 
over parts of a loaded component (typically classes). 
Where instances have persistent state, such state is not 
carried by a software component, but needs to be 
mapped into a specific external store. 

3. Components in Context 

A software component: 

• assumes architectural embedding; 
• presents functionality via interfaces (these are 

called 'incoming' or provides-interfaces); 
• has parametric dependencies via interfaces 

(called ' outgoing' or requires-interfaces); 
• has static dependencies; 
• targets specific component platform; 
• requires other components; and 
• requires per-instance context. 

Of these, provides-interfaces are the traditional 
focus as they seem to capture the abstraction 
implemented by a component. Ignoring the others 
leads to implementations that cannot be composed. For 
example, classes do not compose in general. 

To enable composition (and thus components that 
deserve their nalne), all significant dependencies and 
assumptions of a component's implementation also 
need to be captured. 

Architectural embedding and various forms of 
dependencies are discussed in more detail in the 
following subsections. Per instance contexts are not 
discussed in this paper; this categoly includes the 
process hosting an instance and the container (or 
context) enclosing it. 

3.1. Architectural embedding 

Specifications (and implementations!) need to be 
grounded in a framework of common understanding. 
At the root is a common ontology, ensuring agreed 
upon terminology and domain concepts. Equally 
important are accepted conventions and best practice. 
In combination, these allow separate parties to 
communicate and (importantly) silently share a 
substantial context of assumptions. 

Architecture contributes top-level factorings of 
quality responsibilities and reference models. Building 
on such reference models (or reference architecture), 
components can be designed that target specific niches. 
The result is that components do not fit into solutions 
by coincidence but by construction. Problems of 
component adaptation and impedance mismatch are 
reduced to exceptional situations. In other words, all 
good engineering minimizes the need for adapters. 

(Note that 'glue code' is misnamed if it includes 
adaptation logic. Glue, in the real world, works only if 
applied to surfaces that already match each other 
closely. Gluing is not an adaptation but a composition 
technology.) 

3.2. Parametric dependencies 

To enable the use of components in many 
compositions, it is important that instance-level 
dependencies can be configured. A requires-interface 
is a means to this end: it states what an instance would 
need to function. In its simplest incarnation, a 
requires-interface is just the type of an instance 
variable. Setting that variable to refer to some other 
instance of appropriate type is then equivalent to 
connecting the two instances. Requires-interfaces lead 
to parametric dependencies because the dependency 
on the interface type does not imply the use of any 
particular (complete) implementation. 

The concept of requires-interfaces can be 
genemfized to requires-types. Exploring suitable type 
and composition systems is the subject of ongoing 
research. Examples include certain module systems, 
units, mixin layers, and parametric contracts. 

Parametric dependencies are usually preferred 
over static component dependencies. However, not all 
static dependencies can be eliminated (following 
subsection). In addition, it is surprisingly possible to 
model parametric dependencies as a special case of 
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static dependencies. The idea is to treat the type of the 
requires-interface as a regular type that is packaged as 
part of the metadata contained in some other 
component. In the limit case, all static type 
dependencies can be decoupled from implementation 
choices by only allowing static dependencies on pure 
metadata (pure types without any attached 
implementation). 

Components that contain no implementation but 
only metadata are useful for reasons of reflection, 
dynamic composition, and so on. 

3.3. S tat ic  dependencies  

Static dependencies fall into three categories: 
dependencies on the component platform, 
dependencies on other components, and dependencies 
on the deployment context. 

Dependencies on the component pla~orm are 
ultimately unavoidable since it isn't practical to aim to 
parametefize everything. Examples of such 
dependencies include: 

• the deployment format; required to even 
recognize a component as one - think 
JAR/EAR files or .NET assemblies; 

• the (virtual) machine model - including the 
instruction set; 

• mechanisms such as proof-carrying code for 
various forms of verification; 

• ways to access well-known services - 
addressing the bootstrap problem (consider 
directory service); 

• the supported component model: what is a 
component on this platform? What is the 
security model? Or that for authentication, 
trust, or certification? 

Dependencies on other components serve many 
purposes. Ultimately, at least one such dependency per 
used component must exist somewhere or else that 
component would not even be loaded. (In highly 
configurable systems the single dependency might 
exist in a configuration file. However, in a pure model, 
that file would itself be the resource part of a 
component.) 

An extreme form of static inter-component 
dependencies is a traditional Modula-2 or Ada style 
module system. Every module carries a list of static 

imports of other modules. There is no compositional 
freedom - each module is added in exactly one way. 

At the other end is an extreme approach of no 
dependencies on other components at all. This could 
be called the game machine approach, since gaming 
machines (like Playstation, GameCube, or XBox) 
traditionally assume close to no software pre-installed 
on the machine and everything coming with the game. 
Such a game can be modeled as one (huge) component 
that has no dependencies on other components. The 
result is that no integration is provided above hardware 
primitives, ff  the hardware layer opens any 
communication channel, such as access to the Internet, 
then any component that carries a network stack can 
communicate with any other component that does so 
as well. This is an example of entirely parametric 
dependencies. 

Dependencies on the deployment context are a 
per-instance concept. Each instance created by a 
component is placed in a context: an operating system 
process, a COM apartment, a COM+ context, an EJB 
container, a CLR AppDomains, and so on. Sometimes, 
deployment contexts are 'woven' into a component at 
(or before) deployment time or into instances. This 
corresponds to techniques used for static and dynamic 
aspect-oriented programming, respectively. 

3. 4. Atomic vs. composite components 

Atomic components are created 'from first 
principles'. To make composition models generally 
useful, they need to provide for hierarchical 
composition means. Indeed, by simply treatmg 
composites as components again, hierarchical 
composition is a natural outcome. 

A composite references the components over 
which it composes and typically adds modules or 
resources (or both) of its own that encapsulate the 
actual composition operator applications. That is, a 
module in a composite might contain the 'glue code' 
that instantiates and connects the components. 
Alternatively, a composite's resources could contain a 
serialized graph of instances that represent a 
composition prototype. Instantiating a composite 
amounts to executing its glue code or deserializing its 
prototype instance graph. (Since a composite is still 
just a collection of modules and resources, no 
extension of the general component characterization 
above is needed.) 
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It is important to understand that composites do 
not contain the components over which they compose. 
That is, all components exist in a fiat universe. This is 
an important property, as it allows servicing of 
components without having to know all places where 
that component has been used. (A practically 
important example of servicing is the closing of a 
security hole.) 

4. Naming, versioning, side-by-side 

The technical process leading to software 
components is complex. The total number of 
components that may coexist in a system is huge. 
Component developers need to be able to name 
components without risking collisions with other 
developers. Components developers also need to be 
able to release new versions of their components; 
especially if  they have been successful. Component 
deployers need to rely on strong component naming to 
ensure that the fight components come into play. 
Component deployers also need to be able to affect 
versioning resolution to maintain robust configurations. 

4.1. Making a component 

The making of a component involves a large 
number of different inputs and typically involves a 
complex process and likely many individuals. (The 
latter is not true for fine-grained components. 
However, the former remains as fine-grained 
components are likely build in large sets, requiring 
significant build systems for economies of scale.) 

Inputs into the build system delivering a 
deployable software component include: 

• The collection of sources; 
• all tools used, including compilers, 

transformers, generaators, optimizers, linkers; 
• referenced artifacts, such as other 

components listed as static dependencies; 
• the build system itself, including the settings 

in the build environment. 

4.2. Component versioning 

Every input into the build process potentially 
affects the built component. That is obviously and 

intentionally the case for the sources. The impact of 
the build environment is easily underestimated. Only 
very careful build system setups or methods reduce 
this impact. For instance, search paths are a wide- 
spread evil. Referenced artifacts are expected to have 
an impact at the level of exposed metadala, but unless 
care is used, unexpected dependencies can sneak in. 
An example is the unintended propagation of compiler 
optimizations, such as offset calculations. 

While it is generally understood that all involved 
tools have an impact, it is difficult to fully account for 
these dependencies. For instance, upgrading a 
compiler to a newer version can easily lead to different 
components, even if everything else is unchanged and 
even if the old and new compiler versions are provably 
equivalent. (The new component might have different 
performance or footprint characteristics.) 

Thus, unless the resulting bits are one-for-one 
identical, it has to be assumed that a new version has 
been produced. This is a conservative rule, but moving 
to a more precise one requires great semantic care: 
Functional and extra-functional refinement need to be 
demonstrated, which is definitely hard in the general 
case. 

4.3. Versioning and side-by-side 

Version changes have transitive hnpact. Consider 
a component A that the makers of a component B used 
in its version 1. The makers of a component C used A 
as well, but in its version 2. A problem arises ff 
another party is interested in using B and C in the 
same context. That is, if that latter party wishes to 
build a component D that depends on B and C, then 
loading D requires transitive loading of A - but in two 
different versions. 

There are two fundamental strategies: either A is 
loaded only once (forcing B to roll forward to version 
2 of A) or each version of A is loaded (forcing A and 
all its clients to tolerate the side-by-side existence of 
two versions in the same context). 

In order to treat this situation soundly, 
components need to ship with an unambiguous name, 
which needs to include their version designation. Also, 
dependencies on other components need to be 
recorded explicitly, completely, and in a version- 
precise way. Finally, a component needs to indicate 
whether it can be loaded side-by-side in multiple 
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versions or whether it should be rolled forward to the 
latest version available. 

Then, as a design discipline, side-by-side 
components need to be factored from non-side-by-side 
ones. Deployed configurations need to allow for the 
coexistence of side-by-sideable versions and need to 
bind to the correct versions. 

4.4. Side-by-side challenges 

Fully supporting side-by-side installation of the 
majority of components promises the greatest degree 
of isolation and thus system robustness in the presence 
of component versioning. At the other end, in-place 
upgrading of components guarantees the occurrence of 
the phenomenon known as 'DLL hell'. 

The problem with side-by-side support is its 
interference with cross-component integration. The 
degree of coupling between any two components 
determines how feasible side-by-side installations are. 
The most lightweight form of coupling is through 
shared pure types and contracts, the most heavyweight 
through dependencies on implementation detail. 

To enable side-by-side integration for at least the 
most lightweight coupling, it is important to support at 
least the side-by-side existence of type versions and 
the simultaneous use of multiple versions of a type 
within a single component. For instance, ff a class 
implements an interface in multiple versions, then the 
methods on those interfaces should not be 'folded' into 
a single implementation - a common mechanism in 
several popular object-oriented languages. 

Enabling proper side-by-side coupling through 
other dependencies is increasingly harder. The case of 
side-by-side implementation inheritance is known to 
the surgeon general to lead to serious health risks. 

5. What's  a service? 

Software services, especially in the specific shape 
of XML web services, are promising new levels of 
software integration and interoperability. 
Understanding how they relate to software 
components is critically important to benefit from the 
distinct properties of services without losing the 
separate advantages of components. 

To put it simply, a service is an instantiated 
configured system that is run by a providing 
organization. That is, a service is fully grounded. 

Ultimately, it includes the power supply to the server 
machines as well as the organization that somehow 
manages to pay the power bill. 

The service-providing organization installs, runs, 
maintains, and evolves hardware and software 
infrastructure and components. It provides physical 
and organizational means, including functions like 
client management, accounting, and so on. 

5.1. Service-level agreements 

Since a service is fully grounded and backed by a 
provider, it can be held to the standards of a service- 
level agreement (SLA) or a service contract. For 
instance, a service client signing such a contract with a 
provider might pay for the service, while the provider 
guarantees properties such as minimal up-time, 
performance, or capacity. 

It is possible to abstract from the service instance 
to a suitable service type. At that level, services 
behave much like objects and service types like classes. 
External composition of services is just as limited as it 
is for objects and classes. However, the granularity is 
very different: viable services are much heavier than 
typical objects. Therefore, there is a trade-off between 
the strong guarantees and the limited composability 
that a service can offer. 

Component properties, in contrast, are captured in 
technical contract between component and client 
implementers. Such contracts cannot offer service 
levels, but can (and should) offer parametric means to 
establish service levels when using a component to 
build a service. For example, while a component 
cannot guarantee performance or up-time, it can 
express its performance or redundancy needs relative 
to its parametric dependencies. 

5.2. Contracts galore 

Services, through the possible service-level 
agreements, offer per-use value in ways that 
components do not. It is thus justified (and common 
practice in other industries) to charge for services on a 
per-use or subscription basis. Such income offsets the 
real cost of providing a service, leading to plausible 
business models. 

The offering of services under service-level 
agreements cannot be performed with absolute 
reliability. This is a standard aspect of any business 
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and established mechanisms such as auditing and 
insurance can be used to mitigate the business risk. 

The corresponding mechanisms in the component 
space are very different: components can be verified 
and certified to meet their specifications (contracts). In 
the ideal case of total verification, this is a once-and- 
for-all activity. Once published, a component remains 
an immutable artifact. Auditing a component, for 
example, is only meaningful when deployed into a full 
system, which makes it only a part of the larger 
activity of auditing a service. 

6. Component specification and test 

Compositions tend to exhibit a weakest link 
phenomenon: many compositions are as strong as the 
weakest component they compose over. Composites 
can be made stronger than that by applying error 
containing and handling mechanisms that ultimately 
rely on various forms of redundancy. 

Even in the presence of such measures it is 
usually effective to aim for a higher reliability of the 
used components. Reliability of software is a curious 
notion: in a sense, a correct component is 100% 
reliable and a component that has the slightest defect 
is actually incorrect and thus 100% unreliable. In 
practice, defects do not show in all configurations and 
not under all load profiles. Therefore, reliability 
becomes an interesting measure, one asking for a 
careful foundation, though. 

Instead of pursuing this thought further, the 
following subsections focus on ways to get 
components closer to correctness. 

6.1. Component contracts 

As explained earlier, interfaces play a crucial role 
in any world of components. Assuming that each 
interface has an attached specification (contract), there 
are two correlations over sets of interfaces that can be 
considered. Both turn out to be important in practice, 
though most approaches (including the one discussed 
in the following subsections) only focus on the former. 

The first correlation is among all requires and 
provides-interfaces of a single component. One way to 
look at such a correlation is to view it as a set of 
invafiants that couple model variables (specification 
variables) of the involved interfaces. For example, 
consider a component that has a provides-interface 

that delivers values that are the result of applying a 
transformation over values acquired through a 
requires-interface. The per-interface contract of the 
provides-interface should not mention the requires- 
interface (or its contract). Instead, it will contain a 
model variable referring to the abstract stream of. 
incoming values. Likewise, the requires-interface 
introduces a model variable for the abstract stream of 
received values. The component-level invariant 
correlates the two by stating that these two model 
variables are always of equal value. 

The second correlation is sort of dual to the first: 
it considers interfaces occurring on multiple 
components and how they need to be correlated to 
enable useful protocols. The only example known to 
the author of such inter-component interface 
correlations are Hans Jonkers' interaction 
specifications. 

Such fine factoring of interfaces and their 
specifications is itself an interesting challenge. One 
way to even achieve at interfaces rather than classes is 
to use role-based modeling. That is, instead of 
following the path of entity-based or object-oriented 
modeling, roles are identified and fleshed out. Atomic 
roles lead to interfaces. Combined roles turn into 
multiply-derived interfaces that derive without adding 
any new features. The contracts of such combining 
interfaces are non-trivial as they correlate model 
variables introduced by the combined interfaces. (In a 
sense, such combining interfaces represent a third 
form of interface contract correlation.) 

Once fmely factored interfaces are identified, 
entities or objects that combine multiple interfaces can 
then be introduced in endless variations. However, the 
questions of how to specify contracts at this level, how 
to capture, validate, verify, or test remain. 

6.2. One concrete approach: AsmL 

There are many specification languages and 
approaches that support componentization to varying 
degrees. An example is the abstract state-machine 
language (AsmL) that is based on the theory of 
abstract state machines (formerly called evolving 
algebras). AsmL is being developed by the 
Foundations of Software Engineering (FSE) team at 
Microsoft Research in Redmond. The language 
definition, tutorials, and tools are freely available from 
their site: http://research.microsoft.com/fse/. 
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AsmL is used as an example here because it is 
now being used by some Microsoft product groups, 
leading to a practical refinement of the toolset. 
Nevertheless, AsmL is work in progress. Also, no 
claim is made that AsmL will ultimately be the one 
and only such tool and approach. 

At the heart of ASM is the intention to capture 
operational semantics at a level of abstraction natural 
to the modeled process. Concretely, AsmL supports 
executable model classes and, inspired by the needs of 
component technology, rich interfaces. Originally 
targeting COM, the AsmL tools have been retargeted 
and extended such that AsmL is now a first-class 
CLR-hosted language. Rich interfaces combine all 
information required to generate full CLR interfaces 
with model-level specifications. Models can be a 
combination of  declarative specifications (pre- and 
postconditions, assertions, invariants) and executable 
specifications (model programs). Atomic transactions, 
non-determinism, and mathematical types (such as sets, 
maps and sequences) help preventing 
overspecification: the single biggest danger when 
using operational semantics. 

The connection between implementations and 
model specifications is established through abstraction 
functions. Test harnesses can use these functions to 
observe implementation state and test that it meets 
predicted model state. Declarative aspects of the 
specification can be injected into implementations to 
run-time check invariants, pre- and postconditions. 

The overall emphasis of AsmL is on specification 
capture, validation, and implementation test, including 
automated test case generation. Clear opportunities for 
verification, checking, and correctness by construction 
(such as formal refinement) are present, but presently 
not exploited. 

6.3. Example 

Below is an example of a simple interface 
(System.Collections.IEnumerator, part of the .NET 
Framework). 

interface IEnumerator 
{ 

object Current { get; } 
bool MoveNext O; 
void Reset 0; 

} 

One possible informal specification is captured in 
the following paragraph: 

Initially, the enumerator is positioned before the 
first dement in the collection. Reset also brings 
the enumerator back to this position. At this 
position, calling Current throws an exception. 
Therefore, you must call MoveNext to advance 
the enumerator to the first element of the 
collection before reading the value of Current. 
Current returns the same object until either 
MoveNext or Reset is called. MoveNext sets 
Current to the next element. 

A formal AsmL specification of the same 
interface takes the following shape: 

public interface IEnumerator 
public vat visited as Set of Object 
public vat unvisited as Set of Object 
public var current as Object 

Here, visited is the set of elements 'handed out', 
unvisited is the rest of the elements, and current is a 
distinguished element. The specification of Reset is: 

public Reset() 
e n s l l r e  

resulting current = null 
and 

resulting visited = {} 
and 

resulting unvisited = unvisited + visited 

The clause ensure states a postcondition, where 
the modifier resulting refers to the after state of that 
variable and where the + operator denotes set union. A 
possible implementation of Reset might look like: 

pubfic class MyEnumerator: 
System.CoUections.lEnumerator 
{ 

private object[] myElements; 
private hat myIndex = -1; 

public void Reset() 
{ 

myIndex = O; 
} 

} 

//ERROR: shouM be -1 
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6. 4. Abstraction Funct ions  

An abstraction fimction is now used to connect 
the Reset implementation to its specification. For 
example, it establishes that current is null ff myIndex 
has the value -1 and that it has the value stored at 
myElements[myIndex] otherwise. 

Since the range of abstraction functions covers 
AsmL types and since AsmL supports the full set of 
CLS and most of CTS types, it is possible to define 
abstraction functions in AsmL. (CLS and CTS are the 
common language specification and the common type 
system specification accompanying the CLR. The CTS 
is the union of all CLR-supported type concepts. The 
CLS is the CTS subset that is used to enable inter- 
language interoperabifity.) 

Special so-called shadow fields in AsmL 
specifications grant access to private implementation 
fields. Here is the abstraction fimction for the model 
variable unvisited: 

public property unvisited as Set of Object 
get 
return { myElements(i) 

[i in [myIndex+l..myElements.Length-1 ] } 

6. 5. Test o f  Implementat ion 

Unit tests are performed simply by using the test 
subject in a number of test cases. There is no need to 
write a test oracle, since the specification can be 
evaluated to determine whether results are as specified 
or not. In the above running example, the following 
simple test (written in AsmL) will spot the error in 
Reset: 

MyEnumerator e = new MyEnumerator0; 
while (e.MoveNext0) 

Console.WfiteLine(" {0} ", e.Current); 

e.ResetO; //implementation error caught here 
while (e.MoveNext0) 

Console.WriteLine(" {0}", e.Current); 

6. 6. CIL Weaving on C L R  

The AsmL weaver is a tool that lakes compiled 
AsmL and a compiled test subject and weaves them 
into a single CLR assembly. AsmL itself is 

implemented as a first-class CLR-hosted language. 
Thus, the weaver operates over two CLR assemblies, 
essentially merging condition checking code generated 
from the specification into the implementation code of 
the test subject. This approach enables the use of 
AsmL for specification and test of code implemented 
in any language hosted on the CLR. 
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