
Component Technology - What, Where, and How?

Clemens Szyperski
Microsoft Corporation

research.microsofl.com/-cszypers/

Abstract

Software components, if used properly, ofj~r many
software engineering benefits. Yet, they also pose
many original challenges starting fi'om quality
assurance and ranging to architectural embedding
and composability. In addition, the recent movement
towards services, as well as the established world of
objects, causes many to wonder what purpose
components might have.

This extended abstract summarizes the main
points of my Frontiers of Software Practice (FOSP)
talk at ICSE 2003. The topics covered aim to offbr an
end-to-end overview of what role components shouM
play, where they should be used, and how this can be
achieved Some key open problems are also pointed
out.

1. Why components?

1.1. Words ...

Composition is the act of applying a composition
operator (that forms part of a composition model and
theory) in a given context. Components are the
subjects of composition. Composites (also called
assemblies) are the results of composition. This about
as much as can be said ff we stay at the most abstract
level.

To move to meaningful discussion and
elaboration, we need to focus in on a particular domain
of composition, leading to families of composition
models and theories. In this paper, our focus is
component software and components are thus software
components [1,2]. To be sure: there are many

component domains in the larger space of software
engineering and software architecture. Most of them
are not software components, in the sense used here,
but that doesn't affect their value - merely their scope
of applicability.

Hence, instead of listing technically motivated
criteria that capture our domain of discourse, let's
explore the ultimate reasons for what software
components are meant to achieve. Then, we can work
our way backwards and establish useful technical
criteria.

1.2. Why c o m p o n e n t s ?

There are at least four 'tiers' of motivations for
using software components. The oldest tier is along
the lines of Make and Buy, grounded in the
observation that many ff not most organizations need
to own some edge on top of acquired baseline products.
Essentially, organizations need to strike a balance
between the promised flexibility and competitive
advantage of purpose-built software and the economic
advantage of standard software. This is the space of
traditional software reuse thinking and, often, it
suffices to focus at the level of source components.
Source components are components that are consumed
at software development time and include architectural,
design, and source code artifacts.

The second tier follows the line of reusing partial
design and implementation fragments across multiple
solutions or products. This is the space of software
product lines and product line engineering. Often, it
suffices to focus on build-time components,
components that are consumed when building
deliverable software out of multiple pieces. Like
source components, build-time components do not

0-7695-1877-X/03 $17.00 © 2003 IEEE 684

necessarily survive the build process as identifiable
parts of the deliverable. Traditional linkers are good
examples of build-time tools that fuse their input into a
single output.

The third tier assumes that components from
multiple sources are integrated on site, that is, not as
part of the software build process. Such customer-
driven integration is typically called deployment and
the matching components can be called deployable
components. Deployable components are 'real'
software components in the sense that they are units of
deployment that, as such, remain identifiable.
Deployment is usually distinguished from installation
as being the last step allowing for detailed
configuration or customization. Once deployed, a
component can then be installed on many systems. A
good example in this category is a web browser
incorporating downloaded components into the
functionality of an active web page. While the browser
performs automatic installation, it is the web developer
that deployed the component (and thus had an
opportunity to customize and test it in the context of
the particular web site).

The fourth tier is concerned with dynamic
servicing, upgrading, extension, and integration of
deployed systems. Varying degrees of redeployment
and automatic install and uninstall serve this space.
The desire grows to engineer solutions that - over
their lifetime time - can deal with new and evolving
contents, schemas, and services. This leads towards
requirements to enter tier four; a tier that is mostly the
realm of ongoing research.

1.3. Dynamic Upgrade and Extension

The most refined tier of applying software
components, that of dynamic upgrading, extending,
and integrating in nmning systems, is much at the
cutting edge of current technology and understanding.
Practical use of components today tends to end with
the third tier: deployment of components. The most
prominent example in this space are application
servers (mostly J2EE/EJB and .NET/COM+).

Truly dynamic changes to solutions build on
components are extremely challenging in terms of
correctness, robustness, and efficiency of the resulting
systems. However, even at tier three, most of the
problems already surface. It cannot be assumed that an

organization that deploys components is capable or
willing to perform deep end-to-end integration tests.
Even where such tests are performed (because, say, the
solution in question is mission critical), it cannot be
assumed that the deploying organization can do
anything but outright reject the use of a third-party
component that has serious problems. In particular, it
cannot be expected that such components will be
'fixed' before deployment proceeds.

These observations lead to a quality assurance
issue at the component supplier end: since components
can be combined into an endless variety of
compositions, there is no opportunity to perform any
final integration tests at the component supplier's end.
Component quality needs to be established in the
absence of a closed-world assumption! In other words,
component unit tests and other forms of quality
assurance, such as verification of component
properties, are of critical importance.

Truly dynamic contents and truly open sets of
services cannot be handled by closed software. The
resulting need to support tier four components grows
as standards in the space of XML and web services
lead to the broad availability of open contents and
dynamically located service functionality. To cope
with such situations, systems need to on-demand
locate, install, and integrate components - or remotely
use the dynamically discovered services.

A strong motivator to move into this technically
difficult area is the desire to integrate across
organizational boundaries. From enterprise appfication
integration (EAI), to business-to-consumer and
business-to-business (B2C and B2B) scenarios, to full
peer-to-peer (P2P), it gets ever less likely that
homogeneous schemas and protocols can be assumed.

1.4. Component maturity model

The multiple tiers of component concepts
explored in the previous section, coupled with the
observation that higher tiers require more refined
competencies, lead to a simple component maturity
model. (The familiarity of the resulting acronym is
entirely coincidental.) In order of increasing
organizational maturity requirements, the following
levels can be distinguished:

685

1. Maintainability: modular solutions
2. lnternal reuse: product lines
3.a.1 Closed composition: make and buy from

closed pool of organizations
3.a.2 Open composition: make and buy from

open market
3.b Dynamic upgrade
4. Open and dynamic

Somewhat depressingly, the state of the art of
many software solutions doesn't even embrace
modularity. Even advanced organizations are presently
concerned with mostly level 2 issues.

Level 3 forks into two parallel options that, in
combination, form level 4. The first fork opens
solutions for third-party contributions - in two steps
from select ('pooled') sources to open markets. The
second fork opens solutions for dynamic upgrade. It is
the combination of these two forks that leads to the
most demanding forms of component use.

1.5. Compositional reasoning

To climb up the maturity ladder towards
mastering systems that support open and dynamic
composition, effective compositional reasoning at all
levels is required. Compositional reasoning builds on
modular reasoning: the ability to reason within
confined scopes without needing to resort to any form
of global inspection or analysis. In a proper
compositional-reasoning framework, the results from
modular reasoning 'survive' application of useful
composition operators.

Some will say: 'Hey, it's just mathematics!'
However, there is much room for future work. For
instance, predictable assembly is a focus of current
research: how can important assembly properties be
predicted reliably, assuming just the known properties
of components used and the known inference rules of
a particular composition theory. Assembly properties
of interest span the range of both ffimcfional and extra-
functional properties.

2. What's a component?

2.1. What's a Software Component anyway?

The analysis of what it is that we would want
from software components (sketched in the previous

section), leads to a first approximation of what such
components have to be. In particular, a software
component has to be a unit of deployment.
Furthermore, to enable dynamic scenarios, it has to
also be a unit of versioning and replacement.

To be a unit of deployment, a software component
has to be an executable deliverable for a (virtual)
machine. To be machine executable, no human
intervention should be required to turn the
combination of a deployable component and a
deployment descriptor into an installable component,
ready for execution. This is because deployment is not
a development activity and does not happen at the
component supplier's site. While the deployment
process does provide extra information (captured in a
deployment descriptor), it shouldn't require a build
environment or the presence of a developer.

To be a unit of replacement and versioning, it is
important that a deployed software component remains
invadant as it gets installed onto possibly many
systems. That is, installed components should carry
any no observable state. Therefore, software
components live at the level of packages, modules, or
classes, and not at the level of objects or distributed
objects.

To fully explore the space of code and data, in
their co-packaging in a component, it is useful to view
software components as a collection of modules and
resources. Modules contain immutable code (for
instance, in the form of a set of classes). Resources
contain immutable data (for instance, in the form of
serialized objects). Immutable metadata can be
contained in both modules (describing code) and in
resources (describing data). In a deployed component
(that is, an installable component), deployment
information may have been folded into resources,
modules, or both. For instance, some application
server implementations meet requirements found in
deployment descriptors by generating modified code
from the code found in a deployable component.

2.2. What is Deployment?

Acquisition is the process of o b t a ~ g a software
component; as discussed above, such a component
arrives in deployable form. Deployment is the process
of readying such a component for installation in a
specific environment. The degrees of deployment
freedom are typically captured in deployment

686

descriptors, where deployment corresponds to filling
in parameters of a deployment descriptor.

Installation is the process that follows deployment
and that is often automated. Installation makes a
component available on a particular host in a particular
environment.

Loading is the process of enabling an installed
component in a particular rtmtime context, such as a
process. If a component carries definitions for 'static'
(or 'global') variables, then these are instantiated as a
side effect of loading. Finer-grained instantiation in
the object-oriented sense follows loading and operates
over parts of a loaded component (typically classes).
Where instances have persistent state, such state is not
carried by a software component, but needs to be
mapped into a specific external store.

3. Components in Context

A software component:

• assumes architectural embedding;
• presents functionality via interfaces (these are

called 'incoming' or provides-interfaces);
• has parametric dependencies via interfaces

(called ' outgoing' or requires-interfaces);
• has static dependencies;
• targets specific component platform;
• requires other components; and
• requires per-instance context.

Of these, provides-interfaces are the traditional
focus as they seem to capture the abstraction
implemented by a component. Ignoring the others
leads to implementations that cannot be composed. For
example, classes do not compose in general.

To enable composition (and thus components that
deserve their nalne), all significant dependencies and
assumptions of a component's implementation also
need to be captured.

Architectural embedding and various forms of
dependencies are discussed in more detail in the
following subsections. Per instance contexts are not
discussed in this paper; this categoly includes the
process hosting an instance and the container (or
context) enclosing it.

3.1. Architectural embedding

Specifications (and implementations!) need to be
grounded in a framework of common understanding.
At the root is a common ontology, ensuring agreed
upon terminology and domain concepts. Equally
important are accepted conventions and best practice.
In combination, these allow separate parties to
communicate and (importantly) silently share a
substantial context of assumptions.

Architecture contributes top-level factorings of
quality responsibilities and reference models. Building
on such reference models (or reference architecture),
components can be designed that target specific niches.
The result is that components do not fit into solutions
by coincidence but by construction. Problems of
component adaptation and impedance mismatch are
reduced to exceptional situations. In other words, all
good engineering minimizes the need for adapters.

(Note that 'glue code' is misnamed if it includes
adaptation logic. Glue, in the real world, works only if
applied to surfaces that already match each other
closely. Gluing is not an adaptation but a composition
technology.)

3.2. Parametric dependencies

To enable the use of components in many
compositions, it is important that instance-level
dependencies can be configured. A requires-interface
is a means to this end: it states what an instance would
need to function. In its simplest incarnation, a
requires-interface is just the type of an instance
variable. Setting that variable to refer to some other
instance of appropriate type is then equivalent to
connecting the two instances. Requires-interfaces lead
to parametric dependencies because the dependency
on the interface type does not imply the use of any
particular (complete) implementation.

The concept of requires-interfaces can be
genemfized to requires-types. Exploring suitable type
and composition systems is the subject of ongoing
research. Examples include certain module systems,
units, mixin layers, and parametric contracts.

Parametric dependencies are usually preferred
over static component dependencies. However, not all
static dependencies can be eliminated (following
subsection). In addition, it is surprisingly possible to
model parametric dependencies as a special case of

687

static dependencies. The idea is to treat the type of the
requires-interface as a regular type that is packaged as
part of the metadata contained in some other
component. In the limit case, all static type
dependencies can be decoupled from implementation
choices by only allowing static dependencies on pure
metadata (pure types without any attached
implementation).

Components that contain no implementation but
only metadata are useful for reasons of reflection,
dynamic composition, and so on.

3.3. S tat ic dependencies

Static dependencies fall into three categories:
dependencies on the component platform,
dependencies on other components, and dependencies
on the deployment context.

Dependencies on the component pla~orm are
ultimately unavoidable since it isn't practical to aim to
parametefize everything. Examples of such
dependencies include:

• the deployment format; required to even
recognize a component as one - think
JAR/EAR files or .NET assemblies;

• the (virtual) machine model - including the
instruction set;

• mechanisms such as proof-carrying code for
various forms of verification;

• ways to access well-known services -
addressing the bootstrap problem (consider
directory service);

• the supported component model: what is a
component on this platform? What is the
security model? Or that for authentication,
trust, or certification?

Dependencies on other components serve many
purposes. Ultimately, at least one such dependency per
used component must exist somewhere or else that
component would not even be loaded. (In highly
configurable systems the single dependency might
exist in a configuration file. However, in a pure model,
that file would itself be the resource part of a
component.)

An extreme form of static inter-component
dependencies is a traditional Modula-2 or Ada style
module system. Every module carries a list of static

imports of other modules. There is no compositional
freedom - each module is added in exactly one way.

At the other end is an extreme approach of no
dependencies on other components at all. This could
be called the game machine approach, since gaming
machines (like Playstation, GameCube, or XBox)
traditionally assume close to no software pre-installed
on the machine and everything coming with the game.
Such a game can be modeled as one (huge) component
that has no dependencies on other components. The
result is that no integration is provided above hardware
primitives, ff the hardware layer opens any
communication channel, such as access to the Internet,
then any component that carries a network stack can
communicate with any other component that does so
as well. This is an example of entirely parametric
dependencies.

Dependencies on the deployment context are a
per-instance concept. Each instance created by a
component is placed in a context: an operating system
process, a COM apartment, a COM+ context, an EJB
container, a CLR AppDomains, and so on. Sometimes,
deployment contexts are 'woven' into a component at
(or before) deployment time or into instances. This
corresponds to techniques used for static and dynamic
aspect-oriented programming, respectively.

3. 4. Atomic vs. composite components

Atomic components are created 'from first
principles'. To make composition models generally
useful, they need to provide for hierarchical
composition means. Indeed, by simply treatmg
composites as components again, hierarchical
composition is a natural outcome.

A composite references the components over
which it composes and typically adds modules or
resources (or both) of its own that encapsulate the
actual composition operator applications. That is, a
module in a composite might contain the 'glue code'
that instantiates and connects the components.
Alternatively, a composite's resources could contain a
serialized graph of instances that represent a
composition prototype. Instantiating a composite
amounts to executing its glue code or deserializing its
prototype instance graph. (Since a composite is still
just a collection of modules and resources, no
extension of the general component characterization
above is needed.)

688

It is important to understand that composites do
not contain the components over which they compose.
That is, all components exist in a fiat universe. This is
an important property, as it allows servicing of
components without having to know all places where
that component has been used. (A practically
important example of servicing is the closing of a
security hole.)

4. Naming, versioning, side-by-side

The technical process leading to software
components is complex. The total number of
components that may coexist in a system is huge.
Component developers need to be able to name
components without risking collisions with other
developers. Components developers also need to be
able to release new versions of their components;
especially if they have been successful. Component
deployers need to rely on strong component naming to
ensure that the fight components come into play.
Component deployers also need to be able to affect
versioning resolution to maintain robust configurations.

4.1. Making a component

The making of a component involves a large
number of different inputs and typically involves a
complex process and likely many individuals. (The
latter is not true for fine-grained components.
However, the former remains as fine-grained
components are likely build in large sets, requiring
significant build systems for economies of scale.)

Inputs into the build system delivering a
deployable software component include:

• The collection of sources;
• all tools used, including compilers,

transformers, generaators, optimizers, linkers;
• referenced artifacts, such as other

components listed as static dependencies;
• the build system itself, including the settings

in the build environment.

4.2. Component versioning

Every input into the build process potentially
affects the built component. That is obviously and

intentionally the case for the sources. The impact of
the build environment is easily underestimated. Only
very careful build system setups or methods reduce
this impact. For instance, search paths are a wide-
spread evil. Referenced artifacts are expected to have
an impact at the level of exposed metadala, but unless
care is used, unexpected dependencies can sneak in.
An example is the unintended propagation of compiler
optimizations, such as offset calculations.

While it is generally understood that all involved
tools have an impact, it is difficult to fully account for
these dependencies. For instance, upgrading a
compiler to a newer version can easily lead to different
components, even if everything else is unchanged and
even if the old and new compiler versions are provably
equivalent. (The new component might have different
performance or footprint characteristics.)

Thus, unless the resulting bits are one-for-one
identical, it has to be assumed that a new version has
been produced. This is a conservative rule, but moving
to a more precise one requires great semantic care:
Functional and extra-functional refinement need to be
demonstrated, which is definitely hard in the general
case.

4.3. Versioning and side-by-side

Version changes have transitive hnpact. Consider
a component A that the makers of a component B used
in its version 1. The makers of a component C used A
as well, but in its version 2. A problem arises ff
another party is interested in using B and C in the
same context. That is, if that latter party wishes to
build a component D that depends on B and C, then
loading D requires transitive loading of A - but in two
different versions.

There are two fundamental strategies: either A is
loaded only once (forcing B to roll forward to version
2 of A) or each version of A is loaded (forcing A and
all its clients to tolerate the side-by-side existence of
two versions in the same context).

In order to treat this situation soundly,
components need to ship with an unambiguous name,
which needs to include their version designation. Also,
dependencies on other components need to be
recorded explicitly, completely, and in a version-
precise way. Finally, a component needs to indicate
whether it can be loaded side-by-side in multiple

689

versions or whether it should be rolled forward to the
latest version available.

Then, as a design discipline, side-by-side
components need to be factored from non-side-by-side
ones. Deployed configurations need to allow for the
coexistence of side-by-sideable versions and need to
bind to the correct versions.

4.4. Side-by-side challenges

Fully supporting side-by-side installation of the
majority of components promises the greatest degree
of isolation and thus system robustness in the presence
of component versioning. At the other end, in-place
upgrading of components guarantees the occurrence of
the phenomenon known as 'DLL hell'.

The problem with side-by-side support is its
interference with cross-component integration. The
degree of coupling between any two components
determines how feasible side-by-side installations are.
The most lightweight form of coupling is through
shared pure types and contracts, the most heavyweight
through dependencies on implementation detail.

To enable side-by-side integration for at least the
most lightweight coupling, it is important to support at
least the side-by-side existence of type versions and
the simultaneous use of multiple versions of a type
within a single component. For instance, ff a class
implements an interface in multiple versions, then the
methods on those interfaces should not be 'folded' into
a single implementation - a common mechanism in
several popular object-oriented languages.

Enabling proper side-by-side coupling through
other dependencies is increasingly harder. The case of
side-by-side implementation inheritance is known to
the surgeon general to lead to serious health risks.

5. What's a service?

Software services, especially in the specific shape
of XML web services, are promising new levels of
software integration and interoperability.
Understanding how they relate to software
components is critically important to benefit from the
distinct properties of services without losing the
separate advantages of components.

To put it simply, a service is an instantiated
configured system that is run by a providing
organization. That is, a service is fully grounded.

Ultimately, it includes the power supply to the server
machines as well as the organization that somehow
manages to pay the power bill.

The service-providing organization installs, runs,
maintains, and evolves hardware and software
infrastructure and components. It provides physical
and organizational means, including functions like
client management, accounting, and so on.

5.1. Service-level agreements

Since a service is fully grounded and backed by a
provider, it can be held to the standards of a service-
level agreement (SLA) or a service contract. For
instance, a service client signing such a contract with a
provider might pay for the service, while the provider
guarantees properties such as minimal up-time,
performance, or capacity.

It is possible to abstract from the service instance
to a suitable service type. At that level, services
behave much like objects and service types like classes.
External composition of services is just as limited as it
is for objects and classes. However, the granularity is
very different: viable services are much heavier than
typical objects. Therefore, there is a trade-off between
the strong guarantees and the limited composability
that a service can offer.

Component properties, in contrast, are captured in
technical contract between component and client
implementers. Such contracts cannot offer service
levels, but can (and should) offer parametric means to
establish service levels when using a component to
build a service. For example, while a component
cannot guarantee performance or up-time, it can
express its performance or redundancy needs relative
to its parametric dependencies.

5.2. Contracts galore

Services, through the possible service-level
agreements, offer per-use value in ways that
components do not. It is thus justified (and common
practice in other industries) to charge for services on a
per-use or subscription basis. Such income offsets the
real cost of providing a service, leading to plausible
business models.

The offering of services under service-level
agreements cannot be performed with absolute
reliability. This is a standard aspect of any business

690

and established mechanisms such as auditing and
insurance can be used to mitigate the business risk.

The corresponding mechanisms in the component
space are very different: components can be verified
and certified to meet their specifications (contracts). In
the ideal case of total verification, this is a once-and-
for-all activity. Once published, a component remains
an immutable artifact. Auditing a component, for
example, is only meaningful when deployed into a full
system, which makes it only a part of the larger
activity of auditing a service.

6. Component specification and test

Compositions tend to exhibit a weakest link
phenomenon: many compositions are as strong as the
weakest component they compose over. Composites
can be made stronger than that by applying error
containing and handling mechanisms that ultimately
rely on various forms of redundancy.

Even in the presence of such measures it is
usually effective to aim for a higher reliability of the
used components. Reliability of software is a curious
notion: in a sense, a correct component is 100%
reliable and a component that has the slightest defect
is actually incorrect and thus 100% unreliable. In
practice, defects do not show in all configurations and
not under all load profiles. Therefore, reliability
becomes an interesting measure, one asking for a
careful foundation, though.

Instead of pursuing this thought further, the
following subsections focus on ways to get
components closer to correctness.

6.1. Component contracts

As explained earlier, interfaces play a crucial role
in any world of components. Assuming that each
interface has an attached specification (contract), there
are two correlations over sets of interfaces that can be
considered. Both turn out to be important in practice,
though most approaches (including the one discussed
in the following subsections) only focus on the former.

The first correlation is among all requires and
provides-interfaces of a single component. One way to
look at such a correlation is to view it as a set of
invafiants that couple model variables (specification
variables) of the involved interfaces. For example,
consider a component that has a provides-interface

that delivers values that are the result of applying a
transformation over values acquired through a
requires-interface. The per-interface contract of the
provides-interface should not mention the requires-
interface (or its contract). Instead, it will contain a
model variable referring to the abstract stream of.
incoming values. Likewise, the requires-interface
introduces a model variable for the abstract stream of
received values. The component-level invariant
correlates the two by stating that these two model
variables are always of equal value.

The second correlation is sort of dual to the first:
it considers interfaces occurring on multiple
components and how they need to be correlated to
enable useful protocols. The only example known to
the author of such inter-component interface
correlations are Hans Jonkers' interaction
specifications.

Such fine factoring of interfaces and their
specifications is itself an interesting challenge. One
way to even achieve at interfaces rather than classes is
to use role-based modeling. That is, instead of
following the path of entity-based or object-oriented
modeling, roles are identified and fleshed out. Atomic
roles lead to interfaces. Combined roles turn into
multiply-derived interfaces that derive without adding
any new features. The contracts of such combining
interfaces are non-trivial as they correlate model
variables introduced by the combined interfaces. (In a
sense, such combining interfaces represent a third
form of interface contract correlation.)

Once fmely factored interfaces are identified,
entities or objects that combine multiple interfaces can
then be introduced in endless variations. However, the
questions of how to specify contracts at this level, how
to capture, validate, verify, or test remain.

6.2. One concrete approach: AsmL

There are many specification languages and
approaches that support componentization to varying
degrees. An example is the abstract state-machine
language (AsmL) that is based on the theory of
abstract state machines (formerly called evolving
algebras). AsmL is being developed by the
Foundations of Software Engineering (FSE) team at
Microsoft Research in Redmond. The language
definition, tutorials, and tools are freely available from
their site: http://research.microsoft.com/fse/.

691

AsmL is used as an example here because it is
now being used by some Microsoft product groups,
leading to a practical refinement of the toolset.
Nevertheless, AsmL is work in progress. Also, no
claim is made that AsmL will ultimately be the one
and only such tool and approach.

At the heart of ASM is the intention to capture
operational semantics at a level of abstraction natural
to the modeled process. Concretely, AsmL supports
executable model classes and, inspired by the needs of
component technology, rich interfaces. Originally
targeting COM, the AsmL tools have been retargeted
and extended such that AsmL is now a first-class
CLR-hosted language. Rich interfaces combine all
information required to generate full CLR interfaces
with model-level specifications. Models can be a
combination of declarative specifications (pre- and
postconditions, assertions, invariants) and executable
specifications (model programs). Atomic transactions,
non-determinism, and mathematical types (such as sets,
maps and sequences) help preventing
overspecification: the single biggest danger when
using operational semantics.

The connection between implementations and
model specifications is established through abstraction
functions. Test harnesses can use these functions to
observe implementation state and test that it meets
predicted model state. Declarative aspects of the
specification can be injected into implementations to
run-time check invariants, pre- and postconditions.

The overall emphasis of AsmL is on specification
capture, validation, and implementation test, including
automated test case generation. Clear opportunities for
verification, checking, and correctness by construction
(such as formal refinement) are present, but presently
not exploited.

6.3. Example

Below is an example of a simple interface
(System.Collections.IEnumerator, part of the .NET
Framework).

interface IEnumerator
{

object Current { get; }
bool MoveNext O;
void Reset 0;

}

One possible informal specification is captured in
the following paragraph:

Initially, the enumerator is positioned before the
first dement in the collection. Reset also brings
the enumerator back to this position. At this
position, calling Current throws an exception.
Therefore, you must call MoveNext to advance
the enumerator to the first element of the
collection before reading the value of Current.
Current returns the same object until either
MoveNext or Reset is called. MoveNext sets
Current to the next element.

A formal AsmL specification of the same
interface takes the following shape:

public interface IEnumerator
public vat visited as Set of Object
public vat unvisited as Set of Object
public var current as Object

Here, visited is the set of elements 'handed out',
unvisited is the rest of the elements, and current is a
distinguished element. The specification of Reset is:

public Reset()
e n s l l r e

resulting current = null
and

resulting visited = {}
and

resulting unvisited = unvisited + visited

The clause ensure states a postcondition, where
the modifier resulting refers to the after state of that
variable and where the + operator denotes set union. A
possible implementation of Reset might look like:

pubfic class MyEnumerator:
System.CoUections.lEnumerator
{

private object[] myElements;
private hat myIndex = -1;

public void Reset()
{

myIndex = O;
}

}

//ERROR: shouM be -1

692

6. 4. Abstraction Funct ions

An abstraction fimction is now used to connect
the Reset implementation to its specification. For
example, it establishes that current is null ff myIndex
has the value -1 and that it has the value stored at
myElements[myIndex] otherwise.

Since the range of abstraction functions covers
AsmL types and since AsmL supports the full set of
CLS and most of CTS types, it is possible to define
abstraction functions in AsmL. (CLS and CTS are the
common language specification and the common type
system specification accompanying the CLR. The CTS
is the union of all CLR-supported type concepts. The
CLS is the CTS subset that is used to enable inter-
language interoperabifity.)

Special so-called shadow fields in AsmL
specifications grant access to private implementation
fields. Here is the abstraction fimction for the model
variable unvisited:

public property unvisited as Set of Object
get
return { myElements(i)

[i in [myIndex+l..myElements.Length-1] }

6. 5. Test o f Implementat ion

Unit tests are performed simply by using the test
subject in a number of test cases. There is no need to
write a test oracle, since the specification can be
evaluated to determine whether results are as specified
or not. In the above running example, the following
simple test (written in AsmL) will spot the error in
Reset:

MyEnumerator e = new MyEnumerator0;
while (e.MoveNext0)

Console.WfiteLine(" {0} ", e.Current);

e.ResetO; //implementation error caught here
while (e.MoveNext0)

Console.WriteLine(" {0}", e.Current);

6. 6. CIL Weaving on C L R

The AsmL weaver is a tool that lakes compiled
AsmL and a compiled test subject and weaves them
into a single CLR assembly. AsmL itself is

implemented as a first-class CLR-hosted language.
Thus, the weaver operates over two CLR assemblies,
essentially merging condition checking code generated
from the specification into the implementation code of
the test subject. This approach enables the use of
AsmL for specification and test of code implemented
in any language hosted on the CLR.

7. Acknowledgements

I 'd like to thank Mike Barnett, of the Microsoft
Research FSE team, for providing the running AsmL
example used in section 6.

8. References

Instead of providing a necessarily insufficient,
incomplete, and in many ways unfair selection of
references, I simply point to two recent books of mine
that provide much deeper coverage and references.

[1] D.G. Messersctunitt and C. Szyperski, Software
Ecosystem - Understanding an Indispensable lndustry
and Technology, MIT Press, 2003. (To appear.)

[2] C. Szyperski, Component Software- Beyond
Object-Oriented Programming, second edition,
Addison-Wesley, Harlow, England, 2002. (First
edition, 1998.)

693

