
Challenges of component-based development

Ivica Crnkovica,*, Magnus Larssonb

a Department of Computer Engineering, M€aalardalen University, Box 883, 721 23 V€aaster�aas, Sweden
b Research and Development, ABB Automation Products AB, 721 59 V€aaster�aas, Sweden

Received 1 March 2001; received in revised form 1 July 2001; accepted 1 September 2001

Abstract

It is generally understood that building software systems with components has many advantages but the difficulties of this

approach should not be ignored. System evolution, maintenance, migration and compatibilities are some of the challenges met with

when developing a component-based software system. Since most systems evolve over time, components must be maintained or

replaced. The evolution of requirements affects not only specific system functions and particular components but also component-

based architecture on all levels. Increased complexity is a consequence of different components and systems having different life

cycles. In component-based systems it is easier to replace part of system with a commercial component. This process is however not

straightforward and different factors such as requirements management, marketing issues, etc., must be taken into consideration. In

this paper we discuss the issues and challenges encountered when developing and using an evolving component-based software

system. An industrial control system has been used as a case study. � 2002 Elsevier Science Inc. All rights reserved.

Keywords: Reuse; Component-based development; Development environment; Architecture; Commercial components

1. Introduction

Systems that live over a longer period of time tend to
be updated and changed many times during this period.
Reuse and an open component-based architecture are
the key to the success of systems with a long life cycle.
Designing a system that supports this approach requires
more effort in the design phase and the time to market
might be longer, but in the long run, the reusable ar-
chitecture will prove profitable. The reuse concept can
be used on different levels: On a low level it is a reuse of
source-code, and small-size components. More reuse is
obtained with larger components encapsulating business
functions. Finally, the integration of complete products
in complex systems can be seen as the highest level of
reuse. On each level of reuse there are specific demands
on the reusable components, on the component man-
agement and on the integration process.

This paper describes important issues related to the
development and maintenance of reusable components

and as an example uses the ABB Advant industrial
process control system. In Section 2 we give an overview
of the Advant system design and the main characteris-
tics of Advant reusable components. Section 3 out-
lines all the development and maintenance aspects of a
component-based system which must comply with cus-
tomer requirements. During evolution of the system new
technologies were developed which resulted in the ap-
pearance on the market of many components with the
same functionality as the proprietary ones. The fact that
new components must be incorporated into the existing
systems introduces new demands on the system devel-
opment process. These new issues are discussed in Sec-
tion 4.

2. Case study of an industrial automation system

2.1. Overview

ABB is a global electrical engineering and technol-
ogy company, serving customers in power generation,
transmission and distribution, in industrial automation
products, etc. The ABB group is divided into compa-
nies, one of which, ABB Automation Products AB, is

The Journal of Systems and Software 61 (2002) 201–212

www.elsevier.com/locate/jss

* Corresponding author. Tel.: +46-21-103183; fax: +46-21-342666.

E-mail addresses: ivica.crnkovic@mdh.se (I. Crnkovic), mag-

nus.larsson@mdh.se (M. Larsson).

0164-1212/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0164-1212 (01 )00148-0



responsible for the development of industrial automa-
tion products. The automation products encompass
several families of industrial process-control systems
including both software and hardware.

The main characteristics of these products are reli-
ability, high quality and compatibility. These features
are the result of responses to the main customers re-
quirements: The customers require stable products,
running around the clock, year after year, which can be
easily upgraded without impact on the existing pro-
cess. To achieve this, ABB uses a component-based
system approach to design extendable and flexible sys-
tems.

The Advant open control system (OCS) (ABB, 2000)
is component-based to suit different industrial applica-
tions. The range includes systems for Power Utilities,
Power Plants and Infrastructure, Pulp and Paper, Met-
als and Minerals, Petroleum, Chemical and Consumer
Industries, Transportation systems, etc. An overview of
the Advant system is shown in Fig. 1.

Advant OCS performs process control and provides
business information by assembling a system of differ-
ent families of Advant products. Process information is
managed at the level of process controllers. The process
controllers are based on a real-time operating system
and execute the control loops. The operator station (OS)
and information management station (IMS) gather and
supervise product information, while the business sys-
tem provides analysis information for optimization of
the entire processes. Advant products use standard and
proprietary communication protocols to satisfy real-
time requirements.

Advant OCS therefore includes information man-
agement functions with real-time insight into all aspects
of the process controlled. Advant Information Man-
agement has an SQL-based relational database accessi-
ble to resident software and all connected computers.
Historical data acquisition reports, versatile calculation
packages and an application programming interface

(API) for proprietary and third-party applications are
examples of the functionality provided. Advant com-
ponents have access to process, production and quality
data from any process control unit in a plant or in an
Intranet domain.

2.2. Designing with reuse

Designing with reuse of existing components has
many advantages (Sommerville, 1996). The software
development time can be reduced and the reliability of
the products increased. These were important prereq-
uisites for the Advant OCS development.

Advant OCS products can be assembled in many
different configurations for use in various branches of
industry. Specific systems are designed with the reuse of
Advant OCS products and other external products. This
means customers get a tailor-made system that meets
their needs. External products and components can be
used together with the Advant OCS due to the openness
of the system. For example, a satellite communication
component, which is used to transmit data from the
offshore station to the supervision system inland, can be
integrated with the Advant OCS.

The Advant system architecture is designed for reuse.
Different products such as Operator and Information
Management Stations are used as system components in
assembling complete systems. The two operator station
versions, Master OS and MOD OS, are used in building
different types of operator applications.

2.3. Scalability

Advant OCS can be configured in a multitude
of ways, depending on the size and complexity of the
process. The initial investment can consist of stand-
alone process controllers and, optionally, local operator
stations for control and supervision of separate ma-
chines and process sections. Subsequently, several pro-
cess controllers can be interconnected and together with
central operator and information management stations
build up a control network. Several control networks
can be interconnected to give a complete plant network
which can share centrally located operator, information
and engineering workplaces.

2.4. Openness

The system is further strengthened by the flexibility to
add special hardware and software for specific applica-
tions such as weighing, fixed- and variable-speed motor
drives, safety systems and product quality measurements
and control in, for example, the paper industry. Second-
and third-party administrative, information, and control
can also be easily incorporated.

Fig. 1. An overview of the conceptual architecture of the Advant open

control system.

202 I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212



2.5. Cost-effectiveness

The step-by-step expansion capability of Advant
OCS allows users to add new functionality without
making existing equipment obsolete. The system’s self-
configuration capability eliminates the need for engi-
neers to enter or edit topology descriptions when new
stations are physically installed. New units can be added
while the system is in full operation. With Advant OCS,
system expansion is therefore easy and cost-effective.

2.6. Reusable components

The Advant OCS products are component-based to
minimize the cost of maintenance and development. Fig.
2 shows the component architecture of the operator
station assembled from components.

The operator station consists of a specific number of
functional components and a set of standard Advant
components. These components use the user interface
system (UIS) component. Object management facility
(OMF) is a component which handles the infrastructure
and data management. OMF is similar to CORBA
(OMG, 2000) in that it provides a distributed object
model with data, operation and event services. The
UxBase component provides drivers and other specific
operating system functions. Helper classes for strings,
lists, pointers, maps and other general-purpose classes
are available in the C++_complib library component.

The components are built upon operating systems, one,
a standard system (such as Unix or Windows), and the
other, a proprietary real-time system.

To illustrate different aspects of component-based
development and maintenance, we shall further look at
two components:

• OMF, a business type of component with a high level
of functionality and a complex internal structure.

• C++_complib is a basic and a very general library
component.

2.7. OMF

OMF (N€uubling et al., 1999) is object-oriented mid-
dleware for industrial process automation. It encapsu-
lates real-time process control entities of almost every
conceivable description into objects that can be accessed
from applications running on different platforms, for
example, Unix and Windows NT. Programming inter-
faces are available for many languages, such as C, C++,
Visual Basic, Java, Smalltalk and SQL while interfaces
to the IEC 1131-3 (IEC, 1992) process control languages
are under development. OMF is also adapted to Mi-
crosoft component object model (COM) via adapters
and another component called OMF COM aware. The
adapters for OPC (OLE for process control) (OPC,
1998) and OLE automation are also implemented.
Thanks to all these software interfaces, OMF makes
process and production data available to the majority of
computer programmers and users, i.e., even to those not
necessarily involved in the industrial control field. For
instance, it is easy to develop applications in Microsoft
Word, Excel and Access to access process informa-
tion. OMF has been developed for demanding real-time
applications, and incorporates features such as real-
time response, asynchronous communications, standing
queries and priority scheduling of data transfers. On
one side OMF provides industry-standard interfaces to
software applications, and on the other, it offers inter-
faces to many important communication protocols in
the field including MasterNet, MOD DCN, TCP/IP and
Fieldbus Foundation. These adapters make it possible
to build homogeneous control systems out of heteroge-
neous field equipment and disparate system nodes.

OMF reduces the time and cost of software devel-
opment by providing frameworks and tools for a wide
range of platforms and environments. These utilities are
well integrated into their respective surroundings, al-
lowing developers to retain the tools and utilities they
prefer to work with.

2.8. C++_complib

C++_complib is a class library that contains general-
purpose classes such as containers, string managementFig. 2. The operator station is assembled from components.

I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212 203



classes, file management classes, etc. The C++_complib
library was developed when no standard libraries, such
as STL (Austern, 1999), were available on the market.
The main purpose of this library was to improve the
efficiency and quality, and promote the uniform usage of
the basic functions.

C++_complib is not a component according to
the definition in Szyperski (1998), where a component
is a unit of composition deployed independently of
the product. However, in a development process
C++_complib is treated in a very similar way as binary
components with some restrictions such as dynamic
configuration.

2.9. Experience

The Advant system is a successful system and the
main reasons for its success are its component-based
architecture giving flexibility, robustness, stability and
compatibility, and effective build and integration pro-
cedures. This type of architecture is similar to product
line architectures (Bass et al., 1999). Some case studies
(Bosch, 1999) have shown that product-line architec-
tures are successfully applied in small- and medium-
sized enterprises although there exist a number of
problems and challenging issues (organization, training,
information distribution, product variants, etc.). The
Advant experience shows that applying of product-line
architectures can be successful for large organizations.

However, the cost of achieving these features has
been high. To suit the requirements of an open sys-
tem, new ABB products have always to be backward
compatible. It would have been easier to develop a new
system that did not require being compatible with the
previous systems. A guarantee that the system is back-
ward compatible is a warranty that an existing system
will work with new products and this makes the system
trustworthy.

Development with large components which are easy
to reuse increases the efficiency significantly as com-
pared with reusing a smaller component that could have
been developed in-house at the same cost as its purchase
price. Advant OCS products are examples of large
components which have been used to assemble process
automation systems.

3. Different reuse challenges

3.1. Component generality and efficiency

Reuse principles place high demands on reusable
components. The components must be sufficiently gen-
eral to cover the different aspects of their use. At the
same time they must be concrete and simple enough to
serve a particular requirement in an efficient way. De-

veloping a reusable component requires three to four
times more resources than developing a component,
which serves a particular case (Szyperski, 1998). The fact
that the requirements of the components are usually
incomplete and not well understood (Sommerville, 1996)
brings additional level of complexity. In the case of
C++_complib, the situation was simpler, because the
functional requirements were clear. It was relatively easy
to define the interface, which was used by different
components in the same way. The situation was more
complicated with complex components such as OMF.
Although the basic concept of component functionality
was clear, the demands on the component interface and
behavior were different in different components and
products. Some components required a high level of
abstraction, while others required the interface to be on
a more detailed level. These different types of require-
ments have led to the creation of two levels of compo-
nents: OMF base, including all low-level functions, and
OMF framework, containing only a higher level of
functions and with more pre-defined behavior and less
flexibility. In general, requirements for generality and
efficiency at the same time lead to the implementation of
several variants of components which can be used on
a different abstraction level. In some specific cases, a
particular solution must be provided. This type of so-
lution is usually beyond the object-oriented mecha-
nisms, since such components are on the higher
abstraction level.

3.2. System evolution

Long-life products are most often affected by evolu-
tion of different kinds:

• Evolution of system requirements, functional and
non-functional. A consequence of a continually com-
petitive market situation is a demand for continually
improved system performance. The systems control-
ling and servicing business, industrial, and other pro-
cesses should permanently increase the efficiency of
these processes, improve the quality of the products,
minimize the production and maintenance costs, etc.

• Evolution of technology related to different domains.
The advance of technology in the different fields in
which software is used requires improved software.
The improvements may require a completely new ap-
proach to or new functions in software.

• Evolution of technology used in software products.
Evolution in computer hardware and software tech-
nology is so fast that an organization manufacturing
long-life and complex products must expect signifi-
cant technology changes during the product life cycle.
From the reliability and risk point of view, such orga-
nizations prefer not to use the latest technology, but
because of the demands of a highly competitive mar-

204 I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212



ket, are forced to adopt new technology as it appears.
The often unpredictable changes which must be made
in products cause delivery delays and increased pro-
duction costs.

• Evolution of technology used for the product develop-
ment. As in the case of products themselves, new tech-
nology and tools used in the development process
appear frequently on the market. Manufacturers are
faced with a dilemma – to adopt the new technology
and possibly improve the development process at the
risk of short-term higher costs (for training and mi-
gration) or to continue using the existing technology
and thereby miss an opportunity to lower develop-
ment costs in the long run.

• Evolution of society. Changes in society (for example,
environmental requirements or changes in the rela-
tions between countries – as in the EU) can have a
considerable impact on the demands on products
(for example, new standards, new currency, etc.) and
on the development process (relations between em-
ployers and employees, working hours, etc.).

• Business changes. We face changes in government
policies, business integration processes, deregulation,
etc. These changes have an impact on the nature of
business, resulting, for example, in a preference for
short-term planning rather than long-term planning
and more stringent time-to-market requirements.

• Organizational changes. Changes in society and busi-
ness have direct effect on business organizations. We
can see a globalization process, more abrupt changes
in business operations and a demand for more flexi-
ble structures and management procedures, ‘‘just-
in-time’’ deliveries of resources, services and skills.
These changes require another, fast and flexible ap-
proach to the development process.

All these changes have a direct or indirect impact on
the product life cycle. The ability to adapt to these
changes becomes the crucial factor in achieving business
success (Brown, 2000). In the following sections we
discuss some of these changes and their consequences in
the development process and product life cycle.

3.3. Evolution of functional requirements

The development of reusable components would be
easier if functional requirements did not evolve during
the time of development. As a result of new require-
ments for the products, new requirements for the com-
ponents will be defined. The more reusable a component
is, the more demands are placed on it. A number of
requirements coming from different products may be the
same or very similar, but this is not necessarily the case
for all requirements passed to the components. This
means that the number of requirements of reusable
components grows faster than that of particular prod-

ucts or of a non-reusable piece of software. The relation
between component requirements and the requirements
from the products is expressed with the following
equation:

RC ¼ RC0 þ
X

aiRpi
; 06 ai 6 1;

where RC0 denotes direct requirements of the compo-
nent, Rpi

requirements of the products Pi; ai impact
factors to the component and RC is the total number of
component requirements.

To satisfy these requirements the components must
be updated more rapidly and the new versions must be
released more frequently than the products using them.

The process of the change of components is more
dynamic in the early stage of the component lives. In
that stage the components are less general and cannot
respond to the new requirements of the products with-
out being changed. In later stages, their generality and
adaptability increase, and the impact of the product
requirements become less significant. In this period the
products benefit from combinatorial and synergy effects
of components reuse. In the last stage of its life, the
components are getting out-of-date, until they finally
become obsolete, because of different reasons: In-
troduction of new techniques, new development and
run-time platforms, new development paradigms, new
standards, etc. There is also a higher risk that the initial
component cohesion degenerates when adding many
changes, which in turn requires more efforts.

This process is illustrated in Fig. 3. The first graph
shows the growing number of requirements for cer-
tain products and for a component being used by these
products. The number of requirements of a common
component grows faster in the beginning, saturates in
the period ½t0 � t1�, and grows again when the compo-
nent features become inadequate. Some of the product
requirements are satisfied with new releases of products
and components, which are shown as steps on the sec-
ond graph. The component implements the require-
ments by its releases, which normally precede the
releases of the product if the requirements originated
from the product requirements.

Indeed this was the case with both components we are
analyzing here: New functions and classes were required
from C++_complib, and new adapters and protocol
support were required from OMF. The development
time for these components was significantly shorter than
for products: While new versions of a product are typ-
ically released every six months, new versions of com-
ponents are released as least twice as often. After several
years of intensive development and improvement, the
components became more stable and required less effort
for new changes. In that period the frequency of the
releases has been lowered, and especially the effort has
been significantly lower.

I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212 205



New efforts for further development of compo-
nents appeared with migration of products on different
platforms and newer platform versions. Although the
functions of the products and components did not
change significantly a considerable amount of work was
done on the component level.

3.4. Migration between different platforms

During their several years of development, Advant
products have been ported to different platforms. The
reasons for this were the customer requirement that the
products should run on specific platforms, and general
trends in the growing popularity of certain operating
systems. Of course, at the same time, new versions and
variants of the platform already used appeared, sup-
porting new, better and cheaper hardware. The Advant
products have migrated through different platforms:
Starting on Unix HP-UX 8.x and continuing through
new releases (HP-UX 9.x, 10.x), they have been ported
to other Unix platforms such as Digital Unix, and also
to completely different platforms such as Open VMS
and Windows NT family (NT 3.5, NT 4.0 and Windows
2000). The products have been developed and main-
tained in parallel. The challenge with this multi-platform
development was to keep the compatibility between the

different variants of the products, and to maintain and
improve them with the minimal efforts.

As an important part of the reuse concept was to keep
the high-level components unchanged as far as possible
it was decided to encapsulate the differences between
operating systems in low-level components. This con-
cept works, however, only to some extent. The minimal
activity required for each platform is to rebuild the
system for that platform. To make it possible to rebuild
the software on every platform, standard-programming
languages C and C++ have been used. Unfortunately,
different implementations of the C++ standard in dif-
ferent compilers caused problems in the code interpre-
tation and required the rewriting of certain parts of
the code. To ensure that standard system services are
available on all platforms, the POSIX standard has been
used. POSIX worked quite well on different Unix plat-
forms, but much less so on Windows NT. The second
level of compatibility problem was graphical user in-
terface (GUI). The main dilemma was whether to use
exactly the same GUI on every platform or to use the
standard ‘‘look and feel’’ GUI for each platform. This
question applied particularly on NT in relation to Unix
platforms. Experience has shown that it is not possi-
ble to give a definitive answer. In some cases it was
possible to use the same GUI and the same graphical
packages, but in general, different GUIs were imple-
mented.

The main work regarding the reuse of code on dif-
ferent platforms was performed on low-level com-
ponents such as UxBase and OMF. While UxBase
provides different low-level packages for every platform
(for example, different drivers), OMF capsulated the
differences directly in the code using conditional com-
pilation. OMF itself is designed in such a way that it was
possible to divide the code into two layers. One layer is
specific for each operating system, and the other layer,
with the business logic, is implemented for all of the
supported platforms. Reuse issues on different platforms
for C++_complib were easier, strictly the package con-
tains general algorithms, which are not depending on
specific operating system. Some problems appeared,
however, related to different characteristics of compilers
on different platforms.

3.5. Compatibility

One of the most important factors for successful re-
usability is the compatibility between different versions
of the components. A component can be replaced easily
or added to new parts of a system if it is compatible with
its previous version. The compatibility requirements are
essential for Advant products, since smooth upgrading
of systems, running for many years, is required. Com-
patibility issues are relatively simple when changes
introduced in the products are of maintenance and

Fig. 3. To satisfy the requirements the reusable component must be

modified more often in the beginning of their life.

206 I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212



improvement nature only. Using appropriate test plans,
including regression tests, functional compatibility can
be tested to a reasonable extent. More complicated
problems occur when new changes introduced in a re-
usable component eliminate the compatibility. In such a
case, additional software, which can manage both ver-
sions, must be written.

A typical example of such an incompatible change is
a change in the communication protocol between OMF
clients and servers. All different versions of OMF must
be able to talk to each other to make the system flexible
and open. It is possible to have different combinations
of operating systems and versions of OMF and it still
works. This has been solved with an algorithm that
ensures the transmission of correct data format. If two
OMF nodes have the same version, they talk in their
native protocol.

If an old OMF node talks with a new, the new OMF
is responsible for converting the data to the new format,
this being designated RMIR (‘‘receiver makes it right’’).
If a new OMF sends data to an older, the older OMF
cannot convert the data since it is unaware of the new
protocol. In this case the newer OMF must send in the
old protocol format, SMIR (‘‘sender makes it right’’).
This algorithm builds on that fact all machines know
about each other and that they also know what protocol
they talk. However, if an OMF-based node does not
know of the other node then it can always send in a pre-
defined protocol referred to as ‘‘well known format’’. All
nodes do recognize this protocol and can translate from
it. This algorithm minimizes the number of data con-
versions between the nodes.

In the case of C++_complib the problems with
compatibility were somewhat different. New demands
on the same classes and functions appeared because of
new standards and technology. One example is the use
of C++ templates. When the template technology be-
came sufficiently mature, the new requirements were
placed for C++_complib: All the classes were to be re-
implemented as template classes. The reason for this was
the requirement for using basic classes in a more general
and efficient way. Another example is Unicode support
in addition to ASCII-support. These new functions were
added by new member-functions in the existing classes
and by adding new classes using the inheritance mech-
anism for reusing the already existing classes. The in-
troduction of the same functions in different formats
have led to additional efforts in reusing them. In most
of the cases the old format has been replaced by the
new one, with the help of simple tools built just for
this purpose. In some other cases, due to non-proper
planning and prioritizing the time-to-market require-
ments, both old and new formats have been used in the
same source modules which have led to lower main-
tainability and to some extent to lower quality of the
products.

3.6. Development environment

When developing reusable components several di-
mensions of the development process must be consid-
ered:

• Support for development of components on different
platforms.

• Support for development of different variants of com-
ponents for different products.

• Support for development and maintenance of differ-
ent versions of components for different product ver-
sions.

• Independent development of components and prod-
ucts.

To cope with these types of problems, it is not suffi-
cient to have appropriate product architecture and
component design. Development environment support
is also essential. The development environment must
permit an efficient work in the project – editing, com-
piling, building, debugging and testing. Parallel and
distributed development must also be supported, be-
cause the same components are to be developed and
maintained at the same time on different platforms. This
requires the use of a powerful configuration manage-
ment (CM) tool, and definition of an advanced CM
process.

The CM process support exists on two levels. First on
the source-code level, where source-code files are under
version management and binary files are built. The
second level is the product integration phase. The prod-
uct built must contain a consistent set of component
versions. For example, Fig. 4 shows an inconsistent set
of components. The product version P1-V2 uses the
component versions C1-V2 and C2-V2. At the same
time the component version C1-V2 uses the component
version C2-V1, an older version. Integrating different

Fig. 4. An example of inconsistent component integration.

I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212 207



versions of the same component may cause unpredict-
able behavior of the product.

Another important aspect of CM in developing re-
usable components is change management. Change
management keeps track of changes on the logical level,
for example, error reports, and manages their relations
with implemented physical changes (i.e., changes of
documentation, source code, etc.). Because change re-
quests (for example, functional requirements or error
reports) come from different products, it is important to
register information about the source of change re-
quests. It is also important to relate a change request
from one product to other products. The following
questions must be answered: What impact can the im-
plemented change have on other products? If an error
appears in one product, does it appear in other prod-
ucts? Possible implications must be investigated, and if
necessary, the users of the products concerned must be
informed.

The development environment designated Software
Development Environment (SDE) (Crnkovic, 1997) is
used in developing Advant products. It is an internally
built program package which encapsulates different
tools, and provides support for parallel development.
The CM tool, based on RCS (Tichy, 1985), provides
support for all CM disciplines such as change manage-
ment, works pace management, build management, etc.
SDE runs on different platforms with slightly modified
functions. For example, the build process is based on
Makefiles and autoconf on Unix platforms, while Mi-
crosoft Developer Studio with additional Project Set-
tings is used on Windows NT. The main objective of
SDE is to keep the source-code in one place under
version control. Different versions of components are
managed using baselines, and change requests. Change
requests are also under version control, which gives a
possibility of acquiring information useful for project
follow-up, for every change from registration to imple-
mentation and release (Crnkovic and Willf€oor, 1998).

3.7. Independent component development

Component development independent of the prod-
ucts gives several advantages. The functions are broken
down into smaller entities that are easier to construct,
develop and maintain. The independent component de-
velopment facilitates distributed development, which is
common in large enterprises. Development of compo-
nents independently of product or other component
development also introduces a number of problems. The
component and product test become more difficult. On
the component level, a proper test environment must
be built, which often must include a number of other
components or even maybe the entire product.

Another problem is the integration and configuration
problem. A situation shown in Fig. 4 must be avoided.

When it is about complex products, it is impossible to
manually track dependencies between the components,
but a tool support for checking consistency must exist.

In the Advant development the components were
treated as separate products even if they were developed
within the enterprise. To have this approach helped
when third-party components were used they were all
managed in a uniform way. Every component contained
a file called import file that included a specification of all
component versions used to build the component. When
the final product was assembled from the components,
the import file has been used for integration and check-
ing if the consistent sets of the components have been
selected. The development environment, based on make,
was set up to use the import files and the common
product structure. All released components were stored
in the product structure for availability to others. An-
other structure was used during development of a com-
ponent. The component was exported to the product
structure when the development was finished. Using this
approach it was shown that the architecture design plays
a crucial role. A good architecture with clear and dis-
tinguished relations between components facilitates the
development process.

The whole development process is complex and re-
quires organized and planned support, which is essen-
tial for efficient and successful development of reusable
components and of applications using these.

3.8. The maintenance process

The maintenance process is also complex, because it
must be handled on different levels: On the system level,
where customers report their problems, on the product
level, where errors detected in a specific product version
are reported, and finally on the component level, where
the fault is located. The modification of the component
can have an impact on other components and other
products, which can lead to an explosion of new ver-
sions of different products which already exist in several
versions. To minimize this cumbersome process, ABB
adopted a policy of avoiding the generation of and
supply of specific patches to selected customers. In-
stead, revised products incorporating sets of patches
were generated and delivered to all customers with
maintenance contracts, to keep customer installations
consistent.

The relations between components, products and
systems must be carefully registered to make possible the
tracing of errors on all levels. A systematic use of soft-
ware configuration management has a crucial role in the
maintenance process.

To support the maintenance process, Advant prod-
ucts and component specifications together with error
reports are stored in several classes of repositories (see
Fig. 5).

208 I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212



On the highest level, the repository managing cus-
tomer reports (CCRP) makes it possible for service
personnel to provide customers with prompt support.
Information saved on this level is customer- and prod-
uct-oriented. Reports indicating a product problem are
registered in the product maintenance report repository
(PMR) where all known problems related to products
and components are filed. Also, product structure in-
formation is stored on this level. The product structure,
showing dependencies between products and compo-
nents, provides product and component developers with
assistance in relating error reports to the source of the
problem on both product and component levels. A
similar error management process is defined for prod-
ucts in the beta phase, i.e., not yet released. All of
the problems identified in this phase (typically by test
groups) are registered in the form of pre-release problem
reports (PPR). These problems are either solved before
the product is released or are reclassified as product
error reports and saved in PMR. Any change applied in
code or documentation is under change control, and
each change is initiated by a change request. If a change
required comes from an error report, a change request
will be generated from a PMR. When a change made in
a component is tested and verified, the action descrip-
tion is exported to the correlating PMR, propagated to
the products involved and finally returned to the cus-
tomer via the CCRP repository.

This procedure is not unique to component-based
development. It is a means of managing complex prod-
ucts and of maintaining many products. What is spe-
cific to the component-based approach is the mapping
between products and components and the management
of error reports on product and component level, the
most difficult part of the management. In this case the
entire procedure is localized on the PMR level, i.e.,
product level. On the customer side, information with

the highest priority is related to products and customers.
On the development level, all changes registered are re-
lated primarily to components. Information about both
products and components is stored on the development
level. Error management on this level is the most com-
plex. An error may be detected in a specific product
version, but may also be present in other products and
other product versions. The error may be discovered in
one component, but it can be present in different ver-
sions of that component. The problem can be solved in
one component version, but it also may be necessary to
solve it in several. The revised component versions are
eventually subsequently integrated into new versions of
one or several products. This multi-dimensional prob-
lem (many error reports, impact on different versions of
components and products, the solution included in dif-
ferent components and product versions) is only par-
tially managed automatically, as many steps in the
process require direct human decisions (for example, a
decision if a solution to a problem will or will not
be included in the next product release). Although the
whole procedure is carefully designed and rigorously
followed, it has happened on occasions that unexpected
changes have been included, and that changes intended
for inclusion were absent from new product releases.
For more details of the entire maintenance process see
Kajko-Mattson (1999a) and Kajko-Mattson (1999b).

Another important subject is the maintenance of ex-
ternal components. It has been shown that external
components must be treated in the same way as internal
components. All known errors and the complete error
management process for internal and external compo-
nents are treated in a similar way. The list of known, and
corrected errors in external components is important
for developers, product managers and service people.
The cost of maintaining components, even those main-
tained by others, must be taken into consideration.

4. Integrating standard components

In recent years the demands of customers on systems
have changed. Customers require integration with
standard technologies and the use of standard applica-
tions in the products they buy. This is a definite trend on
the market but there is little awareness of the possible
problems involved. An improper use of standard com-
ponents can cause severe problems, especially in dis-
tributed real-time and safety-critical systems, with
long-period guarantees. In addition to these new re-
quirements, time-to-market demands have become a
very important factor.

These factors and other changes in software and
hardware technology (Aoyama, 1998) have introduced a
new paradigm in the development process. The devel-
opment process is now focused on the use of standard

Fig. 5. Different levels of error report management.

I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212 209



and de facto standard components, outsourcing, COTS
and the production of components. At the same time,
final products are no longer closed, monolith systems,
but are instead component-based products that can be
integrated with other products available on the market.

This new paradigm in the development process and
marketing strategy has introduced new problems and
raised new questions (McKinney, 1999):

• The development process has been changed. Devel-
opers are now not only designers and programmers,
they are also integrators and marketing investigators.
Are the new development methods established? Are
the developers properly educated?

• What are the criteria for the selection of a compo-
nent? How can we guarantee that a standard compo-
nent fulfills the product requirements?

• What are the maintenance aspects? Who is responsi-
ble for the maintenance? What can be expected of the
updating and upgrading of components? How can we
satisfy the compatibility and reliability requirements?

• What is the trend on the market? What can we expect
to buy not only today but also on the day we begin
delivering our product?

• When developing a component, how can we guaran-
tee that the ‘‘proper’’ standard is used? Which stan-
dard will be valid in 5, 10 years?

All these questions must be considered before be-
ginning a component-based development project. Jose-
fsson (1999) presents certain recommendations to the
component integrator for use as guidelines: Test the
imported component in the environment where it is to
run and limit the practical number of component sup-
pliers to minimize the compatibility problems. Make
sure that the supplier is evaluated before a long-term
agreement is signed.

The focus of development environment support
should be transferred from the ‘‘edit-build-test’’ cycle to
the ‘‘component integration-test’’ cycle. Configuration
management must give more consideration to run-time
phase (Larsson and Crnkovic, 1999).

4.1. Replacing internal components with standard compo-
nents

In the middle of 1980s, ABB Advant products were
completely proprietary systems with internally devel-
oped hardware, basic and application software. In the
beginning of 1990s, standard hardware components and
software platforms were purchased while the real-time
additions and application software were developed in-
ternally. The system is now developed further using
components based on new, standard technologies.

During this development, further new components
become available on the market. ABB faced this issue

more than once. At one point in time, it was necessary to
abandon the existing solutions in favor of new solutions
based on existing components and technologies. To il-
lustrate the migration process we discuss the possibility
of replacing OMF and C++_complib with standard
components.

Experience from these examples showed that it is
easier to replace a component if the replacement process
is made in small incremental steps. Allowing the new
component to coexist with the old one makes it easier to
be backward compatible and the change will be smooth.

4.2. Replacing OMF with DCOM

Moving from a UNIX-based system to a system
based on Windows NT had serious effect on the system
architecture. Microsoft components using a new object
model were available, namely COM/DCOM (Box,
1998). DCOM has functionality similar to that of OMF
and this became a new issue when DCOM was released.
Should ABB continue to develop its proprietary OMF
or change to a new standard component? The problem
was that DCOM did not have all the functionality of
OMF and vice versa. The domains overlap only par-
tially.

A subscription of data with various capabilities can
be made in OMF, and this subscription functionality is
not supported by DOCM. On the other hand, DCOM
can create objects when they are required and not like
OMF where objects are created before the actual use of
them. Both technologies support object communication
and in this area it is easier to replace OMF with DCOM.

If the decision was made to continue with OMF, all
the new components that run on top of COM could not
be used, which would drastically reduce the possibilities
of integration with other, third-party components. On
the other hand, it would require considerable work to
make the current system run on top of COM. This was
the dilemma of COM versus OMF.

To begin with, OMF was adapted to COM with an
adapter designated OMF COM aware. This function-
ality helped COM developers access OMF objects and
vice versa. However, this solution to the problem using
two different object models was not optimal since it
added overhead in the communication. Nor was it
possible to match the data types one to one, which made
the solution limited. A decision was taken to build the
new system on COM technologies with proprietary ex-
tensions adding the functions missing from COM. All
the communication with the current system was to be
made through the OMF COM. This solution made it
easy to remove the old OMF and replace it with COM in
small steps over time. Adapters are very useful when a
new component is to used in parallel with an existing
one (Rine et al., 1999). More adapters to other systems
such as Orbix(CORBA) and Fieldbus Foundation were

210 I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212



constructed. If the external systems have similar data
types it is fairly straightforward to build a framework
for adapters where the parts that take care of the pro-
prietary system can be reused. New systems can be ac-
cessed by adding a server and client stub to the adapter
framework. To be able to build functional adapters
between two middleware components it is important to
have the capability to create remote calls dynamically.
For instance the dynamic invocation interface (DII) in
CORBA can be used. If the middleware does not have
this possibility it might be possible to generate code
automatically that takes care of the different types of
calls which are going to be placed through the adapter to
the other system.

4.3. Replacing C++_complib with STL

To switch from C++_complib to STL (Austern, 1999)
was much easier because STL covers almost all the
C++_complib functions and provides additional func-
tionality. Still, much work reminded to be done, since
all the codes using C++_complib had to be changed to
be able to use STL instead. The decision was taken
to continue using both components and to use STL
whenever a new functionality was added. After a time
the use of old components was reduced and the inter-
nal maintenance cost reduced. In some cases in the
same components both libraries were used, which gave
some disadvantages, especially in the maintenance pro-
cess.

4.4. Managing evolution of standard components

Use of standard components implies less control on
them (Larsson and Crnkovic, 1999, 2000; Cook and
Dage, 1999), especially if the components are updated at
run-time. A system of components is usually configured
once only during the build-time when known and tested
versions of components are used. Later, when the sys-
tem evolves with new versions of components, the sys-
tem itself has no mechanism to detect if new components
have been installed. There might be a check that the
version of replacement component is at least the same as
or newer than the original version. This approach pre-
vents the system from using old components, but it does
not guarantee its functionality when new components
are installed. Applying ideas from configuration man-
agement, such as version and change management, in
managing components is an approach which can be used
to solve some of the problems.

A certain level of configuration control will be
achieved when it is possible to identify components with
their versions and dependencies on other components.
Information about a system can be placed under version
control for later retrieval. This makes it possible to
compare different baselines of a system configuration.

To manage dependencies, a graphic representation of
the configuration is introduced. The graphs are then
placed under version control. This information can be
used to predict which components will be affected by a
replacement or installation of a new component.

It is generally difficult to identify components during
run-time and to obtain their version information. When
the components are identified it is possible to build
graphs of dependencies, which can be represented in
various ways and placed under configuration control
(Larsson, 2000).

To improve the control of external components, they
can be placed under change management to permit the
monitoring of changes and bugs. Instead of attaching
source code files to change requests, which is common in
change management, the name and version of the com-
ponent can be used to track changes. When a problem
report is analyzed, the outcome can be a change request
for each component involved. Each such change request
can contain a list of all the changed source files or a
description of the patches if the component is external.
Patches from the component vendor must be stored to
permit recreation of the same configuration later. In
cases where the high quality of products must be as-
sured, the enterprise developing products must have
special, well-defined relations to the component vendors
for the support and maintenance.

5. Conclusion

We have presented the ABB Advant control systems
(OCS) as a successful example of the development of a
component-based system. The success of these systems
on the market has been primarily the result of appro-
priate functionality and quality. Success in development,
maintenance and continued improvement of the systems
has been achieved by a careful architecture design,
where the main principle is the reuse of components.
The reuse orientation provides many advantages, but it
also requires systematic approach in design planning,
extensive development, support of a more complex
maintenance process, and in general more consider-
ation being given to components. It is not certain that
an otherwise successful development organization can
succeed in the development of reusable components or
products based on reusable components. The more a
reusable component is developed, the more complex is
the development process, and more support is required
from the organization.

Even when all these requirements are satisfied, it can
happen that there are unpredictable extra costs. One
example illustrate this: In the early stage of the ABB
Advant OCS development, insufficient consideration
was given to Windows NT and ABB had to pay the
price for this oversight when it suddenly became clear

I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212 211



that Windows NT would be the next operating plat-
form. The new product versions on the new platform
have been developed by porting the software from the
old platform, but the costs were significantly greater
than if the design had been done more independent of
the first platform.

Another problem we have addressed is the question
of moving to new technologies which require the re-
creation of the components or the inclusion of standard
components available on the market. In both cases it
can be difficult to keep or achieve the same functionality
as the original components had. However, it seems that
the process of replacing proprietary components by
standard components available from third parties is
inevitable and then it is important to have a proper
strategy for migrating from old components to the new
ones.

References

ABB, ABB Automation Products, Advant. Available from http://

www.advantocs.com.

Aoyama, M., 1998. New age of software development: How compo-

nent-based software engineering changes the way of software

development. In: Proceedings of the 1st workshop on Component

Based Software Engineering.

Austern, M., 1999. Generic Programming and STL. Addison-Wesley,

Reading, MA.

Bass, L., Campbell, G., Clements, P., Northrop, L., Smith, D., 1999.

Third product line practice report, Technical Report, CMU/SEI-

99-TR.003, Software Engineering Institute.

Bosch, J., 1999. Product-line architectures in industry: A case study.

In: Proceedings of 21st International Conference on Software

Engineering. ACM Press, New York.

Box, D., 1998. Essential COM. Addison-Wesley, Reading, MA.

Brown, A., 2000. Large-scale Component-based Development. Pren-

tice-Hall, Englewood Cliffs, NJ.

Cook, J.E., Dage, J.A., 1999. Highly reliable upgrading of com-

ponents. In: Proceedings of 21st International Conference on

Software Engineering. ACM Press, New York.

Crnkovic, I., 1997. Experience with Change-oriented SCM Tools. In:

Proceedings of the 7th Symposium on Software Configuration

Management. Lecture Notes in Computer Science, vol. 1235.

Springer, Berlin.

Crnkovic, I., Willf€oor, P., 1998. Change measurements in an SCM

Process. In: Proceedings of the 8th Symposium on Software

Configuration Management. Lecture Notes in Computer Science.

Springer, Berlin.

IEC, 1992. Programmable Controllers Part 3, Programming Lan-

guages, IEC 1131.-3, IEC, Geneva.

Josefsson, M., 1999. Program varukomponenter i praktiken -attk€oopa

tid och prestera mer, Report V0400.78, Sveriges Verkstadsindus-

trier.

Kajko-Mattson, M., 1999a. Maintenance at ABB (I): Software prob-

lem administration processes (the state of practice). In: Proceedings

of IEEE International Conference on Software Maintenance.

ACM Press, New York.

Kajko-Mattson, M., 1999b. Maintenance at ABB (II): Change

execution processes (the state of practice). In: Proceedings of IEEE

International Conference on Software Maintenance. ACM Press,

New York.

Larsson, M., 2000. Applying configuration management techniques to

component-based systems, Licentiate Thesis Dissertation 2000-007,

Department of Information Technology, Uppsala University.

Larsson, M., Crnkovic, I., 1999. New challenges for configuration

management. In: Proceedings of the 9th Symposium on System

Configuration Management. Lecture Notes in Computer Science,

vol. 1675. Springer, New York.

Larsson, M., Crnkovic, I., 2000. Component configuration manage-

ment. In: Proceedings of the 5th Workshop on Component

Oriented Programming.

McKinney, D., 1999. Impact of commercial off-the-shelf (COTS)

software on the interface between systems and software engineer-

ing. In: Proceedings of the 21st International Conference on

Software Engineering. ACM Press, New York.

N€uubling, M., Popp, C., Zeidler, C., 1999. OMF – an object request

broker for the process control application domain. In: Proceedings

of the 3rd International Conference on Enterprise Distributed

Object Computing EDOC. IEEE Computer Society, Silver Spring.

OMG, 2000. The common object request broker: Architecture and

specification, Report v2.4, OMG Standards Collection, OMG.

OPC, 1998. OLE for process control, Report v1.0, OPC Standards

Collection, OPC Foundation.

Rine, D., Nada, N., Jaber, K., 1999. Using adapters to reduce

interaction complexity in reusable component-based software

development. In: Proceedings of the 5th Symposium on Software

Reusability. ACM Press, New York.

Sommerville, I., 1996. Software Engineering. Addison-Wesley, New

York.

Szyperski, C., 1998. Component Software Beyond Object-Oriented

Programming. Addison-Wesley, New York.

Tichy, W., 1985. RCS – A system for version control. IEEE Software

and Practice Experiance 15 (7).

Ivica Crnkovic is a professor of Industrial Software Engineering at the
M€aalardalen University, Sweden. He received an M.Sc. in Computer
Science 1979, an M.Sc. in Theoretical Physics 1984, and a Ph.D. in
Computer Science 1991, all at the University of Zagreb, Croatia. He
worked at ABB during 1985–1997, where he was responsible for
software development environments. He was a project leader and
manager of a group which developed Software Development Envi-
ronment tools and methods for distributed development and mainte-
nance of real-time systems. He is the Computer Science Laboratory
leader at the M€aalardalen University and he leads the Industrial IT
research group at M€aalardalen University. He is the co-organizer and a
member of the program committee of several workshops related to
Software Engineering and Configuration Management. His main re-
search interests are Software Configuration Management, Component-
based Development and in general Software Engineering.

Magnus Larsson is an industrial Ph.D. student employed by ABB
Automation Products at the research and development department
since 1993. He received a B.Sc. at M€aalardalen University 1993 and an
M.Sc. in computer science at Uppsala University 1995. He is interested
in Component-based development, Software Configuration Manage-
ment and real-time systems. He is a member of the Configuration
Management group at the association of Swedish Engineering Indus-
tries. He presented the licentiate thesis ‘‘Applying Configuration
Management Techniques to Component-based Systems’’ in December
2000.

212 I. Crnkovic, M. Larsson / The Journal of Systems and Software 61 (2002) 201–212


