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the most effective reuse strategies. This is done with reuse metrics and models. In
this article we survey metrics and models of software reuse and reusability, and
provide a classification structure that will help users select them. Six types of
metrics and models are reviewed: cost-benefit models, maturity assessment models,
amount of reuse metrics, failure modes models, reusability assessment models, and
reuse library metrics.
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1. INTRODUCTION

Software reuse, the use of existing soft-
ware artifacts or knowledge to create
new software, is a key method for signif-
icantly improving software quality and
productivity. Reusability is the degree
to which a thing can be reused. To
achieve significant payoffs a reuse pro-
gram must be systematic [Frakes and

Isoda 1994]. Organizations implement-
ing systematic software reuse programs
must be able to measure their progress
and identify the most effective reuse
strategies.
In this article we survey metrics and

models of software reuse and reusabil-
ity. A metric is a quantitative indicator
of an attribute of a thing. A model spec-
ifies relationships among metrics. In
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Figure 1, reuse models and metrics are
categorized into types: (1) reuse cost-
benefits models, (2) maturity assess-
ment, (3) amount of reuse, (4) failure
modes, (5) reusability, and (6) reuse li-
brary metrics. Reuse cost-benefits models
include economic cost/benefit analysis as

well as quality and productivity payoff.
Maturity assessment models categorize
reuse programs by how advanced they
are in implementing systematic reuse.
Amount of reuse metrics are used to as-
sess and monitor a reuse improvement
effort by tracking percentages of reuse for
life cycle objects. Failure modes analysis
is used to identify and order the impedi-
ments to reuse in a given organization.
Reusability metrics indicate the likeli-
hood that an artifact is reusable. Reuse
library metrics are used to manage and
track usage of a reuse repository. Organi-
zations often encounter the need for
these metrics and models in the order
presented.
Software reuse can apply to any life

cycle product, not only to fragments of
source code. This means that developers
can pursue reuse of requirements docu-
ments, system specifications, design
structures, and any other development
artifact [Barnes and Bollinger 1991].
Jones [1993] identifies ten potentially
reusable aspects of software projects as
shown in Table 1.
In addition to these life cycle prod-

ucts, processes (such as the waterfall
model of software development and the

Figure 1. Categorization of reuse metrics and models.
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SEI capability maturity model), and
knowledge are also potentially reusable.

1.1 Types of Reuse

Clear definitions of types of reuse are
necessary prerequisites to measure-
ment. Table 2 provides a faceted classi-
fication of reuse definitions gathered
from the literature. Each column speci-
fies a facet, with the facet name in bold.
Below each facet are its corresponding
terms. (See Appendix 1 for detailed def-
initions of the terms in the table.)
Terms in parentheses are synonyms.
Development scope refers to whether the
reusable components are from a source
external or internal to a project. Modifi-
cation refers to how much a reusable
asset is changed. Approach refers to dif-
ferent technical methods for implement-
ing reuse. Domain scope refers to
whether reuse occurs within a family of
systems or between families of systems.
Management refers to the degree to
which reuse is done systematically. Re-
used entity refers to the type of the
reused object.
Reuse in an organization can be de-

fined by selecting appropriate facet-
term pairs from this table. For example,
an organization might choose to do both
internal and external code reuse, allow-
ing only black box modification as part
of a compositional approach. They
might choose to focus on reuse within
their domain (vertical) and to pursue a
systematic management approach.
The following sections discuss in detail

each of the six types of reuse metrics and
models.

2. COST BENEFIT ANALYSIS

As organizations contemplate system-
atic software reuse, the first question
that will arise will probably concern
costs and benefits. Organizations will
need to justify the cost and time in-
volved in systematic reuse by estimat-
ing these costs and potential payoffs.
Cost benefit analysis models include
economic cost-benefit models and qual-
ity and productivity payoff analyses.
Several reuse cost-benefit models

have been reported. None of these mod-
els are derived from data, nor have they
been validated with data. Instead, the
models allow a user to simulate the
tradeoffs between important economic
parameters such as cost and productiv-
ity. These are estimated by setting arbi-
trary values for cost and productivity
measures of systems without reuse, and
then estimating these parameters for
systems with reuse. There is consider-
able commonality among the models, as
described in the following.

2.1 Cost/Productivity Models

Gaffney and Durek [1989] propose two
cost and productivity models for soft-
ware reuse. The simple model shows the
cost of reusing software components. The
cost-of-development model builds upon
the simple model by representing the cost
of developing reusable components.
The simple model works as follows.

Let C be the cost of software develop-
ment for a given product relative to all
new code (for which C 5 1). R is the
proportion of reused code in the product

Table 1. Reusable Aspects of Software Projects
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(R # 1). (Note that R is a type of reuse
level; this topic is discussed in detail in
Section 4.) b is the cost relative to that
for all new code, of incorporating the
reused code into the new product ( b 5 1
for all new code). The relative cost for
software development is:

[(relative cost of all new code)

p ~proportion of new code !]

1 @~relative cost of reused software)

p~proportion of reused software!].

The equation for this is:

C 5 ~1!~1 2 R! 1 ~b!~R!

5 @~b 2 1!R# 1 1 ,

and the corresponding relative
productivity is,

P 5 1/C 5 1/~~b 2 1!R 1 1! .

b must be , 1 for reuse to be cost
effective. The size of b depends on the
life cycle phase of the reusable compo-
nent. If only the source code is reused,
then one must go through the require-
ments, design, and testing to complete
development of the reusable component.
In this case, Gaffney and Durek esti-
mate b 5 0.85. If requirements, design,
and code are reused as well, then only
the testing phase must be done and b is
estimated to be 0.08.

The cost of development model in-
cludes the cost of reusing software and
the cost of developing reusable compo-
nents as follows. Let E represent the
cost of developing a reusable component
relative to the cost of producing a com-
ponent that is not reusable. E is ex-
pected to be .1 because creating a com-
ponent for reuse generally requires
extra effort. Let n be the number of uses
over which the code development cost
will be amortized. The new value for C
(cost) incorporates these measures:

C 5 ~b 1 ~E/n! 2 1!R 1 1 .

Other models help a user estimate the
effect of reuse on software quality (num-
ber of errors) and on software develop-
ment schedules. Using reusable software
generally results in higher overall devel-
opment productivity; however, the costs
of building reusable components must be
recovered through many reuses. Some
empirical estimates of the relative cost of
producing reusable components and for
cost recovery via multiple reuses are dis-
cussed in the next section.
Applications of Cost/Productivity

Models. Margono and Rhoads [1993]
applied the cost of development model
to assess the economic benefits of a re-
use effort on a large-scale Ada project
(the United States Federal Aviation Ad-
ministration’s Advanced Automation
System (FAA/AAS)). They applied the
model to various types of software cate-

Table 2. Types of Software Reuse
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gorized by the source (local, commercial,
or public) and mode of reuse (reused
with or without change). The equation for
C in the reuse economics model was mod-
ified to reflect acquisition, development,
and integration costs. Results show that
the cost of developing for reuse is often
twice the cost of developing an equivalent
nonreusable component.
Favaro [1991] utilized the model from

Barnes et al. [1988] to analyze the eco-
nomics of reuse. (Note: the Barnes et al.
[1988] model is the same as that of
Gaffney and Durek [1989].) The rele-
vant variables and formulas are shown
in Table 3.
Favaro’s research team estimated the

quantities R and b for an Ada-based
development project. They found it diffi-
cult to estimate R because it was un-
clear whether to measure source code or
relative size of the load modules. The
parameter b was even more difficult
to estimate because it was unclear
whether cost should be measured as the
amount of real-time necessary to install
the component in the application and
whether the cost of learning should be
included.
Favaro classified the Booch compo-

nents according to their relative com-
plexity. The following categories are

listed in order of increasing complexity.
(The quoted definitions are from Booch
[1987].)

Monolithic:
“Denotes that the structure is always
treated as a single unit and that its
individual parts cannot be manipu-
lated. Monolithic components do not
permit structural sharing; stack,
string, queue, deque, ring, map, set,
and bag components are monolithic.”

Polylithic:
“Denotes that the structure is not
atomic and that its individual parts can
be manipulated. Polylithic components
permit structural sharing; lists, trees,
and graph components are polylithic.”

Graph:
“A collection of nodes and arcs (which
are ordered pairs of nodes).”

Menu, mask:
End-products of the project. They were
developed as generalized, reusable com-
ponents and so were included in the
study.

Table 4 shows values reported by Fa-
varo for E, the relative cost of creating a
reusable component, b, the integration
cost of a reusable component, and N0,
the payoff threshold value.

Table 3. Barnes’ and Bollinger’s economic investment model
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The overall costs of reusable compo-
nents relative to nonreusable compo-
nents is E 1 b. b is expected to be less
than 1.0, since it should be cheaper to
integrate a reusable component than to
create the component from scratch. E is
greater than or equal to 1.0, showing
costs of developing reusable components
are higher than costs of developing non-
reusable components. Favaro found that
the cost of reusability increased with
the complexity of the component. Mono-
lithic components were so simple there
was no extra cost to develop them as
reusable components. In contrast, the
cost of the mask component more than
doubled as it was generalized. The inte-
gration cost b was also high in complex
applications. The values for N0 show
that the monolithic and polylithic com-
ponent costs are amortized after only
two reuses. However, the graph compo-
nent must be used approximately five
times before its costs are recovered, and
the most complex form of the mask will
require thirteen reuses for amortiza-
tion. In summary, costs rise quickly
with component size and complexity.

2.2 Quality of Investment

Barnes and Bollinger [1991] examined
the cost and risk features of software
reuse and suggested an analytical ap-
proach for making good reuse invest-
ments. Reuse activities are divided into

producer activities and consumer activi-
ties. Producer activities are reuse invest-
ments, or costs incurred while making
one or more work products easier to reuse
by others. Consumer activities are reuse
benefits, or measures in dollars of how
much the earlier reuse investment helped
or hurt the effectiveness of an activity.
The total reuse benefit can then be found
by estimating the reuse benefit for all
subsequent activities that profit from the
reuse investment.
The quality of investment (Q) is the

ratio of reuse benefits (B) to reuse invest-
ments (R): Q 5 B/R. If Q is less than one
for a reuse effort, then that effort resulted
in a net financial loss. If Q is greater than
one, then the investment provided a good
return. Three major strategies are identi-
fied for increasing Q: increase the level of
reuse, reduce the average cost of reuse,
and reduce the investment needed to
achieve a given reuse benefit.

2.3 Business Reuse Metrics

Poulin et al. [1993] present a set of met-
rics used by IBM to estimate the effort
saved by reuse. The study weighs poten-
tial benefits against the expenditures of
time and resources required to identify
and integrate reusable software into a
product. Although the measures used are
similar to the Cost/Productivity Models
[Gaffney and Durek 1989] already dis-
cussed, metrics are named from a busi-

Table 4. Costs and payoff threshold values for reusable components [Favaro 1991]
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ness perspective, and they provide a finer
breakdown for some calculations. For ex-
ample, cost is broken down into develop-
ment costs and maintenance costs.
The metrics are derived from a set of

data elements defined in Table 5.
Given the preceding data, the follow-

ing metrics are defined:

—Reuse percent: reflects how much of
the product can be attributed to re-
use. (This is equivalent to R in the
Gaffney and Durek model.) Poulin et
al. distinguish the reuse percent of a
product, the reuse percent of a prod-
uct release, and the reuse percent for
the entire organization.

Product Reuse percent

5 RSI/(RSI 1 SSI) 3 100 percent .

—Reuse cost avoidance: measures re-
duced total product costs as a result of
reuse. (This is equivalent to 1 2 RC in
the Gaffney and Durek model.) Poulin
et al. estimate that the financial ben-
efit attributable to reuse during the
development phase is 80 percent of
the cost of developing new code, de-
rived from studies showing that the
cost of integrating an existing soft-
ware element is 20 percent of the cost
of new development (b in the Gaffney
and Durek model). This study also
acknowledges savings that are real-
ized in the maintenance phase as re-
used software generally contains
fewer errors; the total reuse cost

avoidance is calculated as the sum of
cost avoidance in the development
and maintenance activities.

Development cost avoidance

5 RSI 3 0.8 3 ~new code cost!

Service cost avoidance

5 RSI 3 ~error rate!

3 ~new code cost!

Reuse cost avoidance

5 Development cost avoidance

1 Service cost avoidance.

—Reuse value added: a productivity in-
dex that differs from the previous def-
initions of relative productivity by in-
cluding in the definition of reused
code source code that is reused within
the product and source code that is
reused by others. (This is quite simi-
lar to internal and external reuse,
discussed in Section 4.1.)

Reuse value added

5 ~SSI 1 RSI 1 SIRBO!/SSI .

—Additional development cost: in-
creased product costs as a result of
developing reusable software (same
as E in the Barnes and Bollinger mod-
el). This study estimates the cost of
additional effort at 50 percent of the
cost of new development.

Table 5. Observable Data [Poulin et al. 1993]
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Additional Development Cost

5 ~relative cost of reuse 2 1!

3 code written for reuse by others

3 new code cost .

Relative cost of writing for reuse is the
cost of writing reusable code relative to
the cost of writing code for 1-time use
(estimated at 1.5). Code written for re-
use by others is the kloc of code written
for reuse by the initiating project.

2.4 Relation of Reuse to Quality and
Productivity

Because systematic software reuse is
uncommon, empirical evidence relating
software reuse to quality and productiv-
ity is limited. However, several re-
searchers have accumulated and pub-
lished statistics that support the notion
that software reuse improves quality
and productivity.
Agresti and Evanco [1992] conducted

a study to predict defect density, a soft-
ware quality measurement, based on
characteristics of Ada designs. They
used 16 subsystems from the Software
Engineering Laboratory (SEL) of NASA
Goddard Space Flight Center. The SEL
project database provided data on the
extent of reuse and subsystem identifi-
cation for each compilation unit, and
reported defects and nondefect modifi-
cations. Collectively, approximately 149
KSLOC (kilo-source lines of code) were
analyzed. The project database showed
that the reuse ratios (fraction of compi-
lation units reused verbatim or with

slight modification, # 25% of lines
changed) were between 26% and 28%.
Defect densities were between 3.0 and
5.5 total defects per KSLOC. Table 6
shows four sample rows summarizing
the project characteristics of the sub-
systems showing that a high level of
reuse correlates with a low defect den-
sity (size is in KSLOC units).
The Reusability-Oriented Parallel pro-

gramming Environment (ROPE) [Browne
et al. 1990] is a software component
reuse system that helps a designer find
and understand components. ROPE is
integrated with a development environ-
ment called CODE (Computation-Orient-
ed Display Environment), which supports
construction of parallel programs using a
declarative and hierarchical graph model
of computation. ROPE supports reuse of
both design and code components, focus-
ing on the key issues of reusability: find-
ing components, then understanding,
modifying, and combining them. An ex-
periment was conducted to investigate
user productivity and software quality for
the CODE programming environment,
with and without ROPE.
The experimental design included

metrics such as fraction of code in a
program consisting of reused compo-
nents, development time, and error
rates. Reuse rates were reported as “ex-
tremely high” for the 43 programs writ-
ten using ROPE, with a mean reuse
rate for a total program (code and de-
sign) of 79%. The researchers used total
development time to measure the effect
of reusability on productivity. Table 7
shows the development time in hours

Table 6. Characteristics of SEL subsystems [Agresti and Evanco 1992]
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for subjects programming in the CODE
environment and those programming in
CODE and ROPE. The data reveal that
ROPE had a significant effect on devel-
opment time for all the experimental
programs.
Error rates were used to measure

quality. Compile errors, execution er-
rors, and logic errors were all counted.
The results are shown in Table 8. The
use of ROPE reduced error rates, but
the data are less clear than those for
productivity. The researchers attribute
this to the difficulty of collecting the
data and to the lack of distinction be-
tween design and code errors.
In summary, the CODE/ROPE exper-

iment showed a high correlation be-

tween the measures of reuse rate, devel-
opment time, and decreases in number
of errors.
Card et al. [1986] conducted an em-

pirical study of software design prac-
tices in a FORTRAN-based scientific
computing environment. The goals of
the analysis were to identify the types
of software that are reused and to quan-
tify the benefits of software reuse. The
results were as follows.

—The modules that were reused with-
out modification tended to be small
and simple, exhibiting a relatively
low decision rate.

—Extensively modified modules tended
to be the largest of all reused software

Table 7. Mean Development Time and [95% Confidence Intervals in Hours] [Browne et al. 1990]

Table 8. Mean Number of Errors and 95% Confidence Intervals [Browne et al. 1990]
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(rated from extensively modified to un-
changed) in terms of the number of
executable statements.

—98 percent of the modules reused
without modification were fault free
and 82 percent of them were in the
lowest cost per executable statement
category.

—These results were consistent with a
previous Software Engineering Labo-
ratory study [Card et al. 1982] which
showed that reusing a line of code
amounts to only 20 percent of the cost
of developing it new.

Matsumura [Frakes 1991] described
an implementation of a reuse program
at Toshiba. Results of the reuse pro-
gram showed a 60 percent ratio of re-
used components and a decrease in er-
rors by 20 to 30 percent. Managers felt
that the reuse program would be profit-
able if a component were reused at least
three times.
A study of reuse in the object-oriented

environment was conducted by Chen
and Lee [1993]. They developed an envi-
ronment, based on an object-oriented
approach, to design, manufacture, and
use reusable C11 components. A con-
trolled experiment was conducted to
substantiate the reuse approach in
terms of software productivity and qual-
ity. Results showed improvements in
software productivity of 30 to 90 percent
measured in lines of code developed per
hour (LOC/hr).
The Cost/Productivity Model by

Gaffney and Durek [1989] specified the
effect of reuse on software quality (num-
ber of errors) and on software develop-
ment schedules. Results suggested that
tradeoffs can occur between the propor-
tion of reuse and the costs of developing
and using reusable components. In a
study of the latent error content of a
software product, the relative error con-
tent decreased for each additional use of
the software but leveled off between
three and four uses. The models show
that the number of uses of the reus-
able software components directly cor-
relates to the development product

productivity. Gaffney and Durek be-
lieve that the costs of building reus-
able parts must be shared across many
users to achieve higher payoffs from
software reuse.

3. MATURITY ASSESSMENT

Reuse maturity models support an as-
sessment of how advanced reuse pro-
grams are in implementing systematic
reuse, using an ordinal scale of reuse
phases. They are similar to the Capabil-
ity Maturity Model developed at the
Software Engineering Institute (SEI) at
Carnegie Mellon University [Humphrey
1989]. A maturity model is at the core of
planned reuse, helping organizations
understand their past, current, and fu-
ture goals for reuse activities. Several
reuse maturity models have been devel-
oped and used, though they have not
been validated.

3.1 Koltun and Hudson Reuse Maturity
Model

Koltun and Hudson [1991] developed
the reuse maturity model shown in Table
9. Columns indicate phases of reuse ma-
turity, assumed to improve along an ordi-
nal scale from 1 (Initial/Chaotic) to 5
(Ingrained). Rows correspond to dimen-
sions of reuse maturity such as Motiva-
tion/Culture and Planning for Reuse. For
each of the ten dimensions of reuse, the
amount of organizational involvement
and commitment increases as an organi-
zation progresses from initial/chaotic re-
use to ingrained reuse. Ingrained reuse
incorporates fully automated support
tools and accurate reuse measurement to
track progress.
To use this model, an organization

will assess its reuse maturity before
beginning a reuse improvement pro-
gram by identifying its placement on
each dimension. (In our experience,
most organizations are between Initial/
Chaotic and Monitored at the start of
the program.) The organization will
then use the model to guide activities
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that must be performed to achieve
higher levels of reuse maturity. Once an
organization achieves Ingrained reuse,
reuse becomes part of the business rou-
tine and will no longer be recognized as
a distinct discipline.

3.2 SPC Reuse Capability Model

The reuse capability model developed by
the Software Productivity Consortium
[Davis 1993] has two components: an as-
sessment model and an implementation
model.
The assessment model consists of a

set of categorized critical success factors
(stated as goals) that an organization
can use to assess the present state of its
reuse practice. The factors are orga-
nized into four primary groups: man-
agement, application development, as-
set development, and process and
technology factors. For example, in the
group “Application Development Fac-
tors/Asset Awareness and Accessibility”
is the goal “Developers are aware of and
reuse assets that are specifically ac-
quired/developed for their application.”
The implementation model helps pri-

Table 9. Hudson and Koltun Reuse Maturity Model
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oritize goals and build successive stages
of implementation. The SPC identifies
four stages in the risk-reduction growth
implementation model:

(1) Opportunistic: The reuse strategy
is developed on the project level.
Specialized reuse tools are used and
reusable assets are identified.

(2) Integrated: A standard reuse
strategy is defined and integrated
into the corporation’s software de-
velopment process. The reuse pro-
gram is fully supported by manage-
ment and staff. Reuse assets are
categorized.

(3) Leveraged: The reuse strategy ex-
pands over the entire life cycle and is
specialized for each product line.
Reuse performance is measured and
weaknesses of the program identified.

(4) Anticipating: New business ven-
tures take advantage of the reuse
capabilities and reusable assets.
High payoff assets are identified.
The reuse technology is driven by
customers’ needs.

The SPC continues to evolve the model.
It has been used in pilot applications by
several organizations, but no formal
validation has been done.

4. AMOUNT OF REUSE

Amount of reuse metrics are used to
assess and monitor a reuse improve-
ment effort by tracking percentages of
reuse of life cycle objects over time. In
general, the metric is:

amount of life cycle object reused

total size of life cycle object
.

A common form of this metric is based
on lines of code as follows:

lines of reused code in system or module

total lines of code in system or module
.

Frakes [1990], Terry [1993], and Frakes
and Terry [1994] extend the basic
“amount of reuse” metric by defining

reuse level metrics that include factors
such as abstraction level of the life cycle
objects and formal definitions of inter-
nal and external reuse. Work is also
underway [Bieman and Karunanithi
1993; Chidamber and Kemerer 1994] to
define metrics specifically for object-ori-
ented systems. The following sections
discuss this work in detail. To date,
little work has been done on amount of
reuse metrics for generative reuse, al-
though Biggerstaff [1992] implicitly de-
fines such a metric by reporting a ratio
of generated source lines to specification
effort for the Genesis system—40
KSLOC for 30 minutes specification
effort.

4.1 Reuse Level

The basic dependent variable in soft-
ware reuse improvement efforts is the
level of reuse [Frakes 1993]. Reuse level
measurement assumes that a system is
composed of parts at different levels of
abstraction. The levels of abstraction
must be defined to measure reuse. For
example, a C-based system is composed
of modules (.c files) that contain func-
tions, and functions that contain lines of
code. The reuse level of a C-based system,
then, can be expressed in terms of mod-
ules, functions, or lines of code. A soft-
ware component (lower level item) may
be internal or external. An internal lower
level component is one developed for the
higher level component. An external
lower level component is used by the
higher level component, but was created
for a different item or for general use.
The following quantities can be calcu-

lated given a higher level item com-
posed of lower level items:

L 5 the total number of lower level
items in the higher level item.

E 5 the number of lower level items
from an external repository in
the higher level item.

I 5 the number of lower level items
in the higher level item that are
not from an external repository.
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M 5 the number of items not from an
external repository that are used
more than once.

These counts are of unique items
(types), not tokens (references).
Given these quantities, the following

reuse level metrics are defined [Frakes
1990]:

External Reuse Level:

Internal Reuse Level:

Total Reuse Level:

E/L

M/L

External Reuse Level

1 Internal Reuse Level.

Internal, external, and total reuse lev-
els will assume values between 0 and 1.
More reuse occurs as the reuse level
value approaches 1. A reuse level of 0
indicates no reuse.
The user must provide information to

calculate these reuse measures. The user
must define the abstraction hierarchy, a
definition of external repositories, and a
definition of the “uses” relationship. For
each part in the parts-based approach, we
must know the name of the part, source
of the part (internal or external), level of
abstraction, and amount of usage.
Terry [1993] extended this formal

model by adding a variable reuse
threshold level that had been arbitrarily
set to one in the original model. The
variables and reuse level metrics are:

ITL 5 internal threshold level, the
maximum number of times an
internal item can be used
before it is reused.

ETL 5 external threshold level, the
maximum number of times an
external item can be used
before it is reused.

IU 5 number of internal lower level
items that are used more than
ITL.

EU 5 number of external lower level
items that are used more than
ETL.

T 5 total number of lower level
items in the higher level item,
both internal and external.

Internal Reuse Level:

External Reuse Level:

Total Reuse Level:

IU/T

EU/T

(IU 1 EU)/T.

The reuse frequency metric is based on
references (tokens) to reused components
rather than counting components only
once as was done for reuse level. The
variables and reuse frequency metrics
are:

IUF 5 number of references in the
higher level item to reused
internal lower level items.

EUF 5 number of references in the
higher level item to reused
external lower level items.

TF 5 total number of references to
lower level items in the higher
level item, both internal and
external.

Internal Reuse Frequency:

External Reuse Frquency:

Total Reuse Frequency:

IUF/TF

EUF/TF

(IUF 1 EUF)/TF.

Program size is often used as a mea-
sure of complexity. The complexity
weighting for internal reuse is the sum
of the sizes of all reused internal lower
level items divided by the sum of the
sizes of all internal lower level items
within the higher level item. An exam-
ple size weighting for internal reuse in
a C system is the ratio of the size (cal-
culated in number of lines of noncom-
mentary source code) of reused internal
functions to the size of all internal func-
tions in the system.
The software tool rl calculates reuse

level and frequency for C code. Given a
set of C files, rl reports the following
information:

(1) internal reuse level;
(2) external reuse level;
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(3) total reuse level;
(4) internal reuse frequency;
(5) external reuse frequency;
(6) total reuse frequency;
(7) complexity (size) weighting for

internal functions.

The user may specify an internal and
external threshold level. The software
allows multiple definitions of higher
level and lower level abstractions. The
allowed higher level abstractions are
system, file, or function. The lower
level abstractions are function and
NCSL (Non-Commentary Source Lines
of code).

4.2 Reuse Metrics for Object-Oriented
Systems

Bieman [1992] and Bieman and Karu-
nanithi [1993] have proposed reuse met-
rics for object-oriented systems. Bieman
[1992] identifies three perspectives from
which to view reuse: server, client, and
system. The server perspective is the
perspective of the library or a particular
library component. The analysis focuses
on how the entity is reused by the cli-
ents. From the client perspective, the
goal is knowing how a particular pro-
gram entity reuses other program enti-
ties. The system perspective is a view of
reuse in the overall system, including
servers and clients.
The server reuse profile of a class

characterizes how the class is reused by
the client classes. The verbatim server
reuse in an object-oriented system is
basically the same as in procedural sys-
tems, using object-oriented terminology.
Leveraged server reuse is supported
through inheritance. A client can reuse
the server either by extension, adding
methods to the server, or by overload,
redefining methods. (Note that McGre-
gor and Sykes [1992] offer good defini-
tions of the object-oriented terminology
used in this section.)
The client reuse profile characterizes

how a new class reuses existing library
classes. It too can be verbatim or lever-

aged, with similar definitions to the
server perspective.
Measurable system reuse attributes

include:

—% of new system source text imported
from the library;

—% of new system classes imported ver-
batim from the library;

—% of new system classes derived
from library classes and the average
% of the leveraged classes that are
imported;

—average number of verbatim and
leveraged clients for servers, and
servers for clients;

—average number of verbatim and le-
veraged indirect clients for servers,
and indirect servers for clients;

—average length and number of paths
between indirect servers and clients
for verbatim and leveraged reuse.

Bieman and Karunanithi [1993] de-
scribe a prototype tool that is under
development to collect the proposed
measures from Ada programs. This
work recognizes the differences between
object-oriented systems and procedural
systems, and exploits those differences
through unique measurements.
Chidamber and Kemerer [1994] pro-

pose a metrics suite for object-oriented
design. The paper defines the following
metrics based on measurement theory:

(1) Weighted methods per class;
(2) Depth of inheritance tree;
(3) Number of children;
(4) Coupling between object classes;

and
(5) Responses for a class.

Among these, the most significant to re-
use is the metric depth of inheritance tree.
This metric calculates the length of inher-
itance hierarchies. Shallow hierarchies
forsake reusability for the simplicity of
understanding, thus reducing the extent
of method reuse within an application.
Chidamber and Kemerer assert that this
metrics suite can help manage reuse op-
portunities by measuring inheritance.
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4.3 Reuse Predictions for Life Cycle
Objects

Frakes and Fox [1995] present models
that allow the prediction of reuse levels
for one life cycle object based on reuse
levels for other life cycle objects. Such
models can be used to estimate reuse
levels of later life cycle objects such as
code from earlier ones such as require-
ments. The authors define both temporal
and nontemporal models, and discuss
methods for tailoring the models for a
specific organization. The models are
based on reuse data collected from 113
respondents from 29 organizations, pri-
marily in the US. The study found that
there were significant correlations be-
tween the reuse levels of life cycle objects,
and that prediction models improved as
data from more life cycle objects were
added to the models.

5. SOFTWARE REUSE FAILURE MODES
MODEL

Implementing systematic reuse is diffi-
cult, involving both technical and non-
technical factors. Failure modes analysis
provides an approach to measuring and
improving a reuse process based on a
model of the ways a reuse process can
fail. The reuse failure modes model re-
ported by Frakes and Fox [1996] can be
used to evaluate the quality of a system-
atic reuse program, to determine reuse
impediments in an organization and to
devise an improvement strategy for a sys-
tematic reuse program.
Given the many factors that may af-

fect reuse success, how does an organi-
zation decide which ones to address in
its reuse improvement program? This
question can be answered by finding out
why reuse is not taking place in the
organization. This can be done by con-
sidering reuse failure modes—that is,
the ways that reuse can fail.
The reuse failure modes model has

seven failure modes corresponding to
the steps a software engineer will need
to complete in order to reuse a compo-
nent. The failure modes are:

No Attempt to Reuse
Part Does Not Exist
Part Is Not Available
Part Is Not Found
Part Is Not Understood
Part Is Not Valid
Part Can Not Be Integrated

Each failure mode has failure causes
associated with it. “No Attempt to Re-
use,” has among its failure causes, for
example, resource constraints, no incen-
tive to reuse, and lack of education. To
use the model, an organization gathers
data on reuse failure modes and causes,
and then uses this information to prior-
itize its reuse improvement activities.

6. REUSABILITY ASSESSMENT

Another important reuse measurement
area concerns the estimation of reus-
ability for a component. Such metrics
are potentially useful in two key areas
of reuse: reuse design and reengineer-
ing for reuse. The essential question is,
are there measurable attributes of a
component that indicate its potential
reusability? If so, then these attributes
will be goals for reuse design and re-
engineering. One of the difficulties in
this area is that attributes of reusabil-
ity are often specific to given types of
reusable components, and to the lan-
guages in which they are implemented.
In this section we review work in this
area.
In a study of NASA software, Selby

[1989] identified several module at-
tributes that distinguished black-box
reuse modules from others in his sam-
ple. The attributes included:

—Fewer module calls per source line;
—Fewer I/O parameters per source line;
—Fewer read/write statements per line;
—Higher comment to code ratios;
—More utility function calls per source
line;

—Fewer source lines.
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This data suggest that modules possess-
ing these attributes will be more reus-
able.
Basili et al. [1990] reported on two

reuse studies of systems written in Ada.
The first study defined measures of data
bindings to characterize and identify re-
usable components. Data binding is the
sharing of global data between program
elements [Hutchins and Basili 1985].
Basili et al. [1990] proposed a method to
identify data bindings within a pro-
gram. After identification of the bind-
ings, a cluster analysis computes and
weights coupling strengths. A coupling
is based on references to variables and
parameters (data bindings). Aliasing, or
referencing, is not taken into account;
only one level of data bindings is consid-
ered. The cluster analysis identifies
which modules are strongly coupled and
may not be good candidates for reuse,
and which modules are found to be inde-
pendent of others and are potentially
reusable. A similar use of module cou-
pling information to identify potential
objects in C code has been reported by
Dunn and Knight [1991].
The second study defines an abstract

measurement of reusability of Ada com-

ponents. Potentially reusable software
is identified, and a method to measure
distances from that ideal is defined. By
measuring the amount of change neces-
sary to convert an existing program into
one composed of maximally reusable
components, an indication of the reus-
ability of the program can be obtained.

7. REUSE LIBRARY METRICS

As can be seen in Figure 2, a reuse
library is a repository for storing reus-
able assets, plus an interface for search-
ing the repository. Library assets can be
obtained from existing systems through
reengineering, designed and built from
scratch, or purchased. Components then
are usually certified, a process for as-
suring that they have desired attributes
such as testing of a certain type.
The components are then classified so
that users can effectively search for
them. The most common classification
schemes are enumerated, faceted, and
free text indexing [Frakes and Gandel
1990]. The evaluation criteria for index-
ing schemes of reuse libraries are: costs,
searching effectiveness, support for un-
derstanding, and efficiency.

Figure 2. Reuse library system.
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Indexing costs include the cost of cre-
ating a classification scheme, maintain-
ing the classification scheme, and up-
dating the database for the scheme.
These concerns are negligible for a
small collection, but become more im-
portant as the collection grows. Each of
these costs can be measured in terms of
dollars or effort. These costs can be nor-
malized by dividing total costs by the
number of components handled by the
library.
Searching effectiveness addresses

how well the classification methods help
users locate reusable components, and
is usually measured with recall and pre-
cision. Recall is the number of relevant
items retrieved divided by the number
of relevant items in the database. The
denominator is generally not known and
must be estimated using sampling
methods. Precision is the number of rel-
evant items retrieved divided by the
total of items retrieved. Another effec-
tiveness measure is overlap, which re-
ports the percentage of relevant docu-
ments retrieved jointly by two methods.
Frakes and Pole [1994], in a study of
representation methods for reusable
software, reported no statistically sig-
nificant difference in terms of recall and
precision between enumerated, faceted,
free text keyword, and attribute value
classification schemes. They reported
high overlap measures ranging from .72
to .85 for all pairs of the classification
methods.
To reuse a component, a software en-

gineer must not only find it, but also
understand it. Understanding metrics
measure how well a classification
method helps users understand reus-
able components. Frakes and Pole
[1994] used a 7-point ordinal scale (7 5
best) to measure support for under-
standing. They reported no significant
difference between the classification
methods using this metric.
In order to be useful, a reuse library

must also be efficient. Library efficiency
deals with nonfunctional requirements
such as memory usage, indexing file
size, and retrieval speed. Memory usage

can be measured by the number of bytes
needed to store the collection. Indexing
overhead ratios can be calculated by
dividing the sum of the size of the raw
data, and indexing files by the size of
the indexing files. Retrieval speed is
usually calculated by measuring the time
it takes the system to execute a search of
a given query on a given database.
Quality of assets is another important

aspect of a reuse library. There is con-
siderable anecdotal evidence that this is
the most important factor in determin-
ing successful use of a reuse library.
Frakes and Nejmeh [1987] proposed the
following metrics as indicators of the
quality of assets in a reuse library.

—Time in Use: the module should have
been used in one or more systems that
have been released to the field for a
period of three months.

—Reuse Statistics: the extent to which
the module has been successfully re-
used by others is perhaps the best
indicator of module quality.

—Reuse Reviews: favorable reviews
from those that have used the module
are a good indication that the module
is of higher quality.

—Complexity: overly complex modules
may not be easy to modify or main-
tain.

—Inspection: the module should have
been inspected.

—Testing: the modules should have
been thoroughly tested at the unit
level with statement coverage of 100
percent and branch coverage of at
least 80 percent.

Another class of reuse library metrics is
used to measure usage of a reuse library
system. The following list was supplied
by the ASSET system, an on-line com-
mercial reuse library system.

—Time on-line (system availability):
this is a measure of the number of
hours the system is available for use.

—Account demographics: assigns users
to the following categories: Govern-
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Table 10. Summary of Software Reuse Metrics and Models
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Table A1. Definitions of Reuse Types
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ment/contractor, commercial, aca-
demia, NonUS;

—Type of library function performed:
searches, browses, extracts;

—Asset distribution: whether electronic
or via a human librarian;

—Number of subscriber accounts;
—Available assets by type: interopera-
tion, supplier listings, local compo-
nents;

—Number of extractions by collection:
number of assets extracted by collec-
tion, number of assets extracted by
evaluation level;

—Listing of assets by domain;
—Request for services by: Telnet Log-
ins, modem Logins, FTP, World Wide
Web.

These metrics can provide good man-
agement information for a library sys-
tem. They can be used to demonstrate
the value of the library to management
as well as to provide information for
continuous quality improvement.

8. SUMMARY

A reuse program must be planned, delib-
erate, and systematic if it is to give large
payoffs. As organizations implement sys-
tematic software reuse programs in an
effort to improve productivity and qual-
ity, they must be able to measure their
progress and identify the most effective
reuse strategies. In this article we sur-
veyed metrics and models of software re-
use. A metric is a quantitative indicator
of an attribute. A model specifies relation-
ships between metrics.
Table 10 presents a summary of the

reuse metrics and models discussed. As
is typical in an emerging discipline such
as systematic software reuse, many of
these metrics and models still lack for-
mal validation. Despite this, they are
being used and are being found useful
in industrial practice.

Appendix 1: Definitions of Types of Reuse

The terms in Table A1 describe various
reuse issues. Some terms in the table

overlap in meaning. For example, the ta-
ble terms public and external both de-
scribe the part of a product that was
constructed externally; private and inter-
nal describe the part of a product that
was not constructed externally but was
developed and reused within a single
product. The terms verbatim and black-
box both describe reuse without modifica-
tion; leveraged and white-box describe re-
use with modification. The final four
terms in the table describe levels of reuse
that can occur in the object-oriented par-
adigm. (References in descriptions in Ta-
ble A1 are provided for further informa-
tion. They do not necessarily indicate first
use of the term.)
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