{

*» For long-term reuse

strategies to work, companies
must vealize shovt-term successes.
This French company improved
its time-to-market, productivity,
and quality by pursuing reuse in
two large industrial projects.

Large-Scale

Industrial Reuse |

|
|

to Reduce Cost ’

and Cycle Time

EMMANUEL HENRY AND BENOIT FALLER, Matra Cap Systemes

arious strategies have
been presented for an organization to
improve software reuse in its engineer-
ing practices,' including the ones
described in the box on p. 48. To
increase reuse within a software compa-
ny, most authors recommend signifi-
cant changes in the organization’s man-
agement, development methods, and
tools.”* All these changes — including
the required psychological shifts —
take time, delaying and sometimes wip-
ing out the return on investment.*’

We think that such long-term
strategies must be based on short-term
reuse successes. In other words, from
the beginning reuse must play a part in
an organization’s effort to improve
quality and reduce cost and time-to-
market. For this reason, Matra Cap

IEEE SOFTWARE

0740-7459/95/$04.00 © 1995 [EEE

! Systemes, a joint venture of Matra
Hachette and Cap Gemini Sogeti that

/ develops information, communication,
and imagery systems, founded its reuse
strategy on pragmatic, opportunistic
reuse-based projects. The box on p. 49
outlines the company’s reuse plan,
adopted in 1994,

In this article, we report the results
~ from two large industrial projects, in
| which project-based and Cross-organi-

zational reuse improved time-to-mar-
ket, productivity, and quality (as mea-
sured by error rates),

| REUSE PROGRAM
|

One major reuse program is the
development of Proto System C, a pro-

/

47

Navy product fine

ject-based Projedt-based
System A Pm':;st: System B w're"s: e Other systems
(off shore) -———————» (onshore) ————» under
400,000 lines C++ development

470,000 lines C++

\
N\

System C (Land Army) ~\\\(ru:vss-orgunimﬁnmﬂl reuse

)
Prot System (

Sysem (300 000 lnes C++ System (
definifion ~——————"———— realizafion
phase phose
1991 1992 1993 1994 1995

System C involved cross-organizational reuse.

Figure 1. History of the three (31 projects. The size of these systems ranges from
300,000 to 500,000 lines of C++, excluding automatically generated human-
computer-interface code. Systems A and B mnvolved project-based reuse; Proto

REUSE DEFINITIONS

There are several types of reuse, categorized either by whether they are
planned or unplanned or by their scope and relationship to the organization:!

¢ a posteriori: To reuse existing assets that were not explicitly designed nor
coded to be reusable. Also called accidental, opportunistic, or unplanned reuse.

¢ 4 priovi: To design, code, and manage assets explicitly for them to be
i reused (involves a cycle of investment and a return on that investment). Also
called planned, anticipated reuse.

¢ project-based: Reuse at the project level; project teams tend to perpetuate
their original solutions when asked to develop new systems or products, leading
to product families. It is usually a posteriori and involves the reuse of the system
architecture, software architecture, and much of the design and code; the pro-
ject organization, methods and development tools; and the competencies (peo-
ple). Also called product-line-oriented reuse.

¢ domain-based: Reuse at the technical-domain level; focused teams imple-
ment very specialized technical know-how (algorithms, models, and so on) in
reusable libraries, available for many systems or products. It is usually a priori
and involves the reuse of small, independent assets, in which client projects ask
the focused team for expertise, as well as for reusable code. Examples are
telecommunication and security (cipher, key-management) libraries.

¢ general-purpose: Reuse at the organization level; project teams exchange
existing solutions and assets as needed. It must deal with general-purpose assets
such as basic structural classes, or common applications (text editors, system
administration, and so on). It can be a posteriori or a priori and involves the
reuse of small assets or sets of related assets. It is easier if it is associated with
some transfer of people. Also called cross-arganizational reuse.

REFERENCE

1 B. Bongard, B. Gronquist, and D. Ribot, “Impact of Reuse on Organizations,” Proc. Reuse 93,
TEEE Computer Society Press, Los Alamitos, Calif., 1993.

totype of an information system Matra
Cap is building for the French Land
Army. System C is a mobile system
that will be used in the field by Land
Army commanders. It displays tactical
information on digitized maps and
helps process orders and prepare and
follow tactical land operations.

The prototype has been deployed
on a limited basis into about 10
armored vehicles used in the field. Its
life expectancy is short; its deployment
is mainly for experimentation and to
demonstrate the validity of the produc-
tion System C, which will be deployed
between 1998 and 2000. However,
Proto System C is a fully operational
system comprising about 300,000 lines
of C++ code.

During the development of Proto
System C, we reused significant assets
(design, code, and tools) from System
B, an information system we had
developed for the French Navy.
System B, a permanent system for the
Navy headquarters on shore, manages
and displays information relative to a
naval region and communicates with
French or Allied Naval Forces, plus
several other systems. It mainly differs
from System C in that it is a perma-
nent (versus a mobile), regional, net-
work-oriented (versus a data-pro-
cessing) system, and because it is used
by Navy top commanders (versus Land
Army commanders).

System B was also a reuse project,
derived from System A, an offshore
system for Navy commanders
embarked on big warships (like aircraft
carriers). It manages and displays tacti-
cal information and helps users process
orders and prepare and follow naval
operations. Its scope is about the same
as System C’s, but for Navy Forces.

Figure 1 shows the history of these
three projects, which are all command,
control, communication, and informa-
tion systems. The size of these C3I
systems ranges from 300,000 to
500,000 lines of C++, excluding auto-
matically generated human-computer-
interface code.

Systems A and B involved project-

SEPTEMBER 19395

based reuse; Proto System C involved
cross-organizational reuse.

SYSTEM B REUSE

The Navy product line, of which
Systems A and B are a part, consists of
on- and offshore C31 systems for the
French Navy. These systems provide
comprehensive computer-aided deci-
sion-support functions to the Navy’s
top commanders. They communicate

among themselves and with third- :

party systems.

System A is an offshore system
developed between 1990 and 1992. It
was among the first significant projects
developed in C++ by Matra Cap.
Although delivery was delayed some-
what, System A was produced very
quickly for software of its size (400,000
lines of code): Version 1 took 18
months (a three-and-a-half-month
delay); version 2 was delivered three
months later (a two-month delay).
This was 30-percent faster than any

comparable Matra Cap C3T system at |

that time.’

System A is considered to be Matra
Cap’s standard for a C++ project.
During the development of System A,
Matra Cap won an open bid for the
System B project, a C3I onshore sys-
tem for Navy headquarters. Two
points made our bid especially attrac-
tive: Our technical credibility, which
was established in our ongoing devel-
opment of System A, and our ability to
save the Navy money by massively
reusing parts of System A. System B
(470,000 lines of code) was delivered in
20 months.

Although System A was not built
for reuse, Table 1 shows that the
unplanned reuse in the development of
System B was successful as far as costs
and quality are concerned. System B
also produced, on average, a 37-per-
cent improvement in productivity and
a 35-percent improvement in fault

- rates over System A development.”

These results may be surprising,
since unplanned reuse has been

TABLE 1

EFFECT OF PROJECT-BASED REUSE ON
PRODUCTIVITY AND QUALITY

System B

Size (lines of code) : 470,000
Amount of code reused from System A i 5% i
|
|

Increase in the average number of lines of code per day, | 37 %
per person over System A development
Decrease in the ratio of major errors to total - 135 %

recorded incidents at time of delivery below
System A development

IEEE SOFTWARE

REUSE PLAN

Matra Cap formally adopted a reuse strategy in 1994, based on pragmatic
and opportunistic reuse-based projects, and a midterm action plan. The plan
adoption was largely facilitated by System B development success and other
similar experience.

The Matra Cap reuse plan outlined four objectives:

1. Integrate development with reuse in our methodology and procedures by

4 supporting reuse-based projects,

¢ producing a “with reuse” development guide,

4 introducing reuse considerations in project-management procedures and
guides, and

¢ proposing organization adjustments that would make reuse easier.

2. Provide the company with access to a database about existing assets by

¢ developing and experimenting with the database (it uses the client-server
tools of the World Wide Web on the company, private network),

¢ populating the database with existing assets (code modules of different
granularity, ad hoc development tools, documents embedding important and
reusable know-how, such as design, documents or study reports), and

¢ deploying the system (a few servers and many Mosaic-type clients) into the
company.

3. Inform and convince people within the company of the value of reuse,
using articles in the company newspaper, memos, conferences, demos, training
sessions, and so on. -

4. Prepare “for-reuse™ (a priori reuse) efforts by

¢ preparing “for-reuse” business cases,

¢ supporting and following domain-analysis projects, and

defining reusability criteria and “for-reuse” qualification procedures.

We had identified these objectives in 1993 from a self-evaluation of the com-
pany reuse maturity, using the Reuse Capability Model.' The reuse plan was
implemented in 1994 by a dedicated team that was then dispatched in the begin-
ning of 1995 to the operational divisions to create a reuse network.

REFERENCE
1. T’ Davis, “The Reuse Capability Model: A Basis for Improving an Organization’s Reuse
Capability,” Reuse 4doption Guidebook. version 01.00.03, Software Produetivity Consortium Services
Corp., Herndon, Va,, 1992, pp. A3-A29. ! A

|

Best Copy Available

49

described as cost-ineffective. However,
several factors help account for our
success:

¢ System A’s object-oriented
design — the use of modularity and
information hiding — made its design
and code easier to reuse.*’

¢ The scope of System A and
System B were, in general, very similar.

4 System A’s organization and |
work force were massively reused |
{almost half of the System B develop-
ers had worked on System A).

This is a typical project-based reuse
experience. Matra Cap considers this
its standard for “with reuse” projects.

PROTO SYSTEM ¢

Figure 2 shows a typical Proto
System C installation. Each installation
includes several Unix workstations
connected by a local area network.
Installations communicate with each
other via a radio network. The work-

TABLE 2
COMPARISON OF PROTO SYSTEM C DATA-

PROCESSING SUBSYSTEM TO SYSTEM B

* Proto System C Similar Modified New
L rFunctinnuI Set o -
FS1, 47 functions l 43% 28% 29%
FS2, 52 functions ‘ 15% 46% 39%
Other functional sets } 0% - 0% 100%

it L
Deta-processing subsysiem

Databose

server

User
workstation

Figure 2. In a typical Proto System C installation, several Univ workstations
are connected by a local area network. Installations communicate
via a radio network. The Proto System C project comprised a data-processing
subsystem, radio-communication server, and integration of the system into vebi-
cles. Most of the reuse took place in the data-processing subsystem

50

Best Copy Available

with each other

stations comprising each system, which
are housed as a unit on each vehicle,
communicate among themselves
through a local area network, but the
communication among vehicles is done
through the radio network. As the fig-
ure illustrates, the Proto System C
project was divided into three subpro-
jects: :

I. A data-processing subsystem
(250,000 lines of C++ code).

2. A radio-communication server
(50,000 lines of code).

3. Integration of the system into
vehicles.

Most of the reuse took place in the
data-processing subsystem, which is
the focus of the rest of this article.

Data-processing subsystem architecture.
Like System B’s data-processing sub-
system, Proto System C’s is built on
Unix and uses an X Window and
OSF/Motif window manager, a 2D
graphical library, a relational database-
management system, and an Open

! Standard Interconnection message-

handling system (X400 standard). It

also uses commercial textual and

graphical editors and spreadsheets.
The architecture for Proto System

i ' C’s subsystem consists of seven func-

tional sets that exchange information
through a relational database:

¢ FS1: system exploitation (basic
mechanisms and system administra-
tion).

¢ FS2: message processing (the
treatment, preparation, and manage-
ment of operational messages, carrying
orders, reports, and so on).

¢ FS3 to FS5: specialized applica-
tions.

¢ FS6: situation management and
display (tactical information onto a
digitized map).

4 FS7: interface to the radio-com-
munication server.

Extent of reuse. During the specifica-
tion phase, we realized that we could
reuse only two of System B’s function-
al sets, FS1 and FS2, as Table 2 shows:

4 FS1 basic mechanisms, because

SEPTEMBER 1995

they were independent of the applica-

tion domain;

¢ FS2 message processing, because
message formats conform to a com-
mon military standard.

This reveals that the two systems
are significantly different in scope.

Furthermore, only 11 percent of the
people (three of 27) who worked on |
this subsystem had worked on Systems

A or B. These are characteristics of
cross-organizational reuse.
As for design reuse, as we have

mentioned we did reuse general con-
cepts (the hardware and software '

architecture). Table 3 shows the extent
of design-element reuse between
System B and Proto System C’s data-
processing subsystems. (In our
methodology, a design element is a
large-grained object, implemented by
five to 20 C++ classes.) This result was
achieved thanks to good design and
modularity of System B.

To measure code reuse, we con-
ducted an analytical and mechanical
comparison between System B and
Proto System C using the Unix com-
mands diff and awk. Table 4 shows the
result: 34 percent of Proto System C’s
code was reused from System B. This
figure is roughly the same as System
A’s code reuse in System B. However,
the two reuse experiences were quite
different in that System B reused most
of System A’s functional sets (project-

based reuse), whereas Proto System C

concentrated its reuse on two function-
al sets that formed the basic mecha-
nisms used by the different applica-
tions (cross-organizational reuse).

EFFECTS OF REUSE

To ready Proto System C for field
tests during the last quarter of 1994,
we were limited to three iterations.
Figure 3 shows the development

timeline for the three versions of

Proto System C.
Version 1 consisted of the base

" software (FSI, FS2, and FS7) and two

out of four applications (FS3 and |

| Proto System C
Functional Set

FS1, 39 design elements

FS2, 25 design elements

Other functional sets,
63 design elements

Total, 127 design elements

TABLE 3
EXTENT OF DESIGN REUSE IN PROTO SYSTEM C
(VERSION 1) DATA-PROCESSING SUBSYSTEM

Reused Modified New
51% 33% 16%
28% 56% 16%
none none 100%
21% 21% 58%

Specification . P
2,2, ond V3) e s

q

Design
Production
Infegration
Acceptance

V2

1 Design
Production
Infegration
Acceptonce

v3:
Design
Production
Infegration
Acceptance

A Deloy

vy FEZEFI3E

Jany

&

Jon

EEEFEEE332

Figure 3. Development timeline for the three versions o‘f Proto System C.

FS6). Our goal was to quickly pro-
duce a minimal system to anticipate
potential integration problems. This
first version was delivered in June
1994.

Version 2 consisted of version 1,
complements to FS3 and FS6, and
application FS4. This version was
delivered in September 1994, and was
experimented on in the field by regu-
lar soldiers during a training exercise.

IEEE SOFTWARE

Best Copy Available

The results largely validated System
C concepts, and they led to some lim-
ited redefinitions of Proto System C
version 3 user interface, but they
were mainly used to finalize System
C definition.

Version 3 consisted of version 2,
complements to FS2, FS4, and FS6,
and application FS5 — and thus filled
all requirements. It was delivered in
January: 1995,

51

Reuse and cycle time. The effect of

TABLE 4 reuse on cycle time was especially sig-
EXTENT OF CODE REUSE IN PROTO SYSTEM C || e e ;
(VERSION 1) DATA-PROCESSING SUBSYSTEM nificant for version 1, which was deliv

Modified

ered in only 13 months — a 25-per-
cent improvement compared to ver-
. sion | of System A.

i Moreover, as Figure 3 shows, this

Reused “New

Proto System (
Functional Set

FS1, 56,000 lines of C++ L T6% 3% 1% l ! 13-month cycle time is somewhat
‘ overstated because the initial nine-
month specification phase was com-

FS2, 54,000 lines of C++ } 35% tl 8% i 57%
L hone 100% || mon to all three versions. In light of
| | | this, we consider version 1 specifica-

‘ ‘ ,‘ { | tion to represent no more than six
J 34% , 3% P 63% J months of this initial phase. The cor-

d - -) —— - rected cycle time for version 1 is thus

10 months — a 44-percent improve-

ment over System A version 1, which

in itself showed a 30-percent faster
delivery time than any comparable

Other functional sets, ' none
70,000 lines of C++ !

Total, 180,000 lines of C++

TABLE SMBER OF LINES OF | Matra Cap C3I system at the time.

EFCFSCDTE ?’:OADVECREAbG;E.I.luDAY PER PERSON Figure 3 also shows integration

phases of three to four months, a 25-

' | to 50-percent improvement over

FS1 FS2 th,ef | Total System A versions, and almost no

| UnSmtgm delivery delay (zero to 13 days), com-

| ¢ ared to System A’s 56- to 107-day

| . ‘ p oy ¥
¢ System B versus System A . | delay.

| Amount of code reuse bo25% 35% 37% 33% ‘ We achieved these short integra-

Productivity improvement 3 30% 63% 30% ek 1 tion times because of the reused

objects, which were in large part basic

System C versus System A . 34% technical mechanisms that applica-

%m?iuntp.fccl)dc reuse 171631; ;ZZ’ n:::;e; 18‘; tions need to be initiated, to access

roductivity improvement o o | % ® 1| data, to send and receive data, to com-

- ’ - T Inunicate Wlth Other applicatiOnS, and
* This figure is not shocking. because ‘S:w{.n‘rc’m .| [er/urt.iz'lr‘v was /.‘I;L{/.'t‘l' than averige and because so on. Because they were reused,
Proto System C better mastered C, leading to more concise and effective cod.

these mechanisms were readily avail-
able to applications developers, allow-
ing them to concentrate on high-level
tunctionality. Moreover, they could
develop and test their applications in a

ABLE 6 - - :
EFFECT ON RATIO OF MAJOR ERRORS TO preintegrated environment, which
TOTAL RECORDED FAULTS, AT TIME OF DELIVERY ‘fnade system integration easier and
aster.

i FS1 FS2 Other Total .
. Functional Reuse and productivity. As Table 5
o Sets shows, the average productivity of
System B versus System A developers on Proto System C was
i j\m()unr of code 'rcuxc 25 354 37 33% 18-percent higher than that of Syst(?m
Change in faults rate 2274, 2T St 3T A developers. However, productivity

was lower on Proto System C than it
Proto System C versus System A E | ‘ - was on System B. This increas.ed

| Amount of code reuse, 6% | 35% none | 34% expense resulted from the peed to sig-
Change in faults rate L 17% L AT% | 3% -33% nificantly adapt the function, design,

< i i | and code of the FS2 message-process-

SEPTEMBER 1895

ing function. This adaptation was
anticipated during the specification
phase: Table 2 points out that about
50 percent of FS2 functions were
identified as reusable from System B,
but with modifications. The need for
adaptation was then confirmed during
the design phase, as Table 4 shows.
Nevertheless, our cross-organ-
izational reuse was extremely cost-
effective on other parts of the system:
We improved productivity on FS1 by
113 percent compared with System A.

Reuse and quality. Table 6 shows
that the average fault rate during
Proto System C development was 33-
percent lower than System A — an
improvement comparable to the 37-
percent fault decrease in the develop-

ment of System B compared with
System A. Other projects report simi-
lar quality improvements due to soft-
ware reuse, but do not specify if it
deals with project-based or cross-
organizational reuse.'

Ithough the overall improvement
in quality and time-to-market and
the reduction in cost were not as strik-
ing in the development of Proto
System C as in the product-line reuse
on System B, we did achieve significant
improvements. These positive results
can be attributed to both reuse and the
iterative nature of the development
process.
The Proto System C project con-
firmed the interest of cross-organiza-

ACKNOWLEDGMENT

(SEFT).

REFERENCES

1 Alamitos, Calif., 1993.

™~

Society Press, Los Alamitos, Calif., 1987.

s

+

w

- B.H. Barnes and 'T".B. Bolling
IEEE Software, Jan. 1991, pp. 1

>

Herndon, Va,, 1992, pp. A3-A29.

Cambridge, Mass., May 1993, pp. 41-76.

bt

Sofrware, Mar. 1987, pp. 50-64.

1

These projects were conducted under contract for the French
Service Technique des Systémes Navals (STSN) and the French
Service d’Etude et de Fabrication des Télécommunications

1. B. Bongard, B. Gronquist, and D. Ribot, “Impact of Reuse on
Organizations,” Proc. Rease *93, IEEE Computer Society Press, Los

Y.A. Matsumoto, “A Software Factory: An Overs
ware Production,” Tutorial: Software Rensability, IEEF. Computer

- MA. Cusumano, Fapan’s Software Fuctories - A Challenge to US
Management, Oxtord University Press, Cary, N.C., [991.

Reuse Adoption Guidebook, version 01.00.03, Software Productivity
Consortium Services Corp., Herndon, Va., 1992.

“Making Reuse Cost-Effective,”

. T Davis, “The Reuse Capability Model: A Basis for Improving an
Organization’s Reuse Capability,” Reuse Adoption Guidebook, version
01.00.03, Software Productivity Consortium Services Corp.,

- E.C. Henry, The lmpact of Reuse on Productivity and Quality in Software
Development. master’s thesis, Massachusetts Institute of Technology,

B. Meyer, “Reusability: The Case for Object-Oriented Design,” IEEE

9. D.L. Parnas, P.C. Clements, and D.M. Weiss, “Fnhancing
Reusability with Information Hiding,” Tutoria
IEEE Computer Society Press, Los Alamitos, Calif., 1987.

Software Reusability,

. R.W. Selby, “Empirically Based Analysis of Failures in Software
! Systems,” IEEE Transuctions on Reliability, Oct. 1990,

Approach to Soft-

— ms2i.fr.

I tional reuse for Matra Cap. As a matter
of fact, we record more and more pro-
jects reusing large parts of existing sys-
tems, although they come from differ-
ent departments in the company. This
process is now facilitated, since we
produced a reuse guide that draws on
our experience with Proto System C
and similar systems.

We now face another interesting
consequence of our opportunistic
reuse policy: several versions of similar
modules, whose maintenance could be
expensive if managed by different
groups. For this reason, we are in the
process of centralizing the mainte-
nance of common code, like FS1 or
FS2 functions. We believe that this
new internal products policy will make
a priori reuse easier in the long run. ®

Emmanuel Henry is the reuse manager in the
Defense Systems Division of Matra Cap Systemes,
Paris, where he has been in charge of the company’s
reuse-adoption program since 1993. He is also in
charge of the company’s private World Wide Web
knowledge server. He has been a team leader in the
C*1 Department of Cap Sesa Defense, Paris, where
he was in charge of computer-security analysis, design,
and implementation.

Henry received a BS in acronautics and space
engineering and an MS in automation from I’Ecole

Nationale Superieure de P'Aeronautique et de I'Espace, Toulouse, and an MS
in technology management from the Massachusetts Institute of Technology.

Benoit Faller is the manager of the Software-Engin-
eering Department of Matra Cap Systemes' Research
and Development Division, which deals with object
orientation, distribution, prototyping, and reuse. He
has been a project leader for Cap Sesa Defense, in the
domain of war games and simulation systems. He has
also worked as a researcher in artificial intelligence
and object orientation at CNRS, the French National
Scientific Research Center.

Faller received a PhID in computer science from
I'Ecole Normale Superieure, Paris. He is a member of

the French Association for Artificial Intelligence.

Address questions about this article to Henry at Matra Cap Systems, 6 Rue
Dewoitine-BP14 Velizy Villacoublay, 78142 Cedex, France; henry@matra-

|EEE SOFTWARE

53

