
Extracting the Best Features of Two Tropos

Approaches for the Efficient Design of MAS

Maria Jocelia Silva1, Paulo Roberto Maciel1, Rosa Cândida Pinto1,

Fernanda Alencar2, Patrícia Tedesco1, Jaelson Castro1

1
Centro de Informática, Universidade Federal de Pernambuco, Caixa Postal

7851, Recife, PE, Brazil

{mjs2, prm, rccp, pcart, jbc}@cin.ufpe.br

2

Departamento de Eletrônica e Sistemas, Universidade Federal de

Pernambuco (UFPE), Caixa Postal 7146, Recife, PE, Brazil

fmra@ufpe.br

Abstract. Nowadays, there is an increasing demand for agent-oriented software

development methodologies. Tropos is one of the most complete. However, re-

searchers currently use two Tropos approaches. Some potential users feel diffi-

culties in applying the methodology due to the differences in the sequence of

activities and output artifacts generated by those two approaches. In this work

we analyze both approaches of Tropos to identify the similarities and differ-

ences between them. As result, we select a sequence of activities and common

output artifacts and extract the better points of each approach. The selected ac-

tivities are then applied to the xaADB (a multiagent system that monitors

DBMS) modeling to capture the fundamental concepts of the agents oriented

development paradigm: agents, organization, communication, negotiation and

coordination.

Keywords: agent oriented; methodology; multiagent systems; Tropos.

1 Introduction

The construction of a software product involves a series of often highly complex

activities, which is developed from the point of view of some people that have the

expertise on some part of the system. Such people can deeply know the product to be

generated or can have only a partial comprehension of its general context, but they

contribute with information and knowledge to attain the desired result. The use of

methods and standards allow a correct documentation in all phases of the software life

cycle. They ensure that all the information collected during the software development

process can be identified, analyzed correctly and justified by its contributors.

A methodology is a collection of methods covering and connecting different stages

in a process. Tropos [5, 6] is a software development methodology used for modeling

of multiagent systems. It borrows the abstractions and concepts from organizational

and social disciplines to understand, model, reason, analyze and design Multi-Agent

System (MAS) [19]. In fact these approaches provide a more flexible, higher-level set

of constructs to deal with a world operating more on social principles than on mecha-

nistic rules [20]. Currently, there are two versions of Tropos [5, 6]. There are differ-

ences in the sequence of activities and output artifacts generated.

The aim of this paper is analyses the main versions of Tropos methodologies [5,6].

At first, our goal is to develop the case study of multiagent software, the xaADB

multiagent system. So we have to choice one of the versions. Thus we decided to

identify the similarities and differences between them; to propose a hybrid sequence

of activities and commons output artifacts of these approaches; and finally, to apply

the selected sequence to the case study.

This paper is structured as follows. Section 2 presents the related works. Section 3

presents the two Tropos’ approaches. Section 4 introduces the selection of the com-

mons activities. The case study used to evaluate the use of the methodology is showed

in section 5. Section 6 presents the results of the application of the selected activities

in the case study. Finally section 7 presents the conclusions and the future works.

2 Related work

Sturn proposes in [17] an evaluation method for agent-oriented methodologies using a

feature-based analysis, a survey, and a structured analysis. He compares Gaia MaSe,

Tropos and OPM/MAs methodologies. Dam [10] introduces an evaluation framework

for performing a systematic and comprehensive evaluation of several agent-oriented

methodologies. Cernuzzi and Rossi in [8] propose a framework evaluate of the agent-

oriented analysis and design methodologies considering qualitative evaluation criteria

employing quantitative methods. They claim that their framework may be used by

agent-based systems designer as well as for authors of agent-oriented methodologies.

All of these works compare different methodologies. Our work presents a study of

different versions of the same methodology.

Multiple studies have been proposed for increase the modeling agent-oriented sys-

tems. Cernuzzi and Zambonelli [9] introduce AUML [1] as notation into Gaia Meth-

odology [21] for capture a very rich and expressive way the agent’s interaction proto-

cols. Bernon [2] tries joining the ADELFE, Gaia and PASSI methodology for unified

their meta-models showing the interoperability between agent-oriented methodolo-

gies. Juan [14] introduces a conceptual framework for creating and reusing modular

methodologies, their framework can modularize agent-oriented methodologies. None

of these works presents a clear process to development agent-oriented software.

Our proposal outlines a guideline to help the software engineer to development

agent-oriented systems. In our work we join the two versions selecting what have

better in each one for apply in a case study of multiagent software.

3 The Two Tropos Approaches

Tropos was proposed in 2001 [7] to develop a framework for building agent software

systems. This project group authors from various universities in Brazil, Canada, Bel-

gium, Germany and Italy. Tropos adopts the concepts offered by i* [20], a modeling

framework based on concepts such as actor (actors can be agents, positions or roles),

and social dependencies among actors (goal, softgoal, task and resource). Tropos

spans four phases:

• Early requirements, concerned with the understanding of a problem by studying an

organizational setting.

• Late requirements, where the system-to-be is described within its operational envi-

ronment, along with relevant functions and qualities.

• Architectural design, where the system’s global architecture is defined in terms of

subsystems, interconnected through data, control and other dependencies.

• Detailed design, where behavior of each architectural component is defined in

further detail.

The initial ideas of Tropos [7] were evolved in what we call Tropos'01 [6], and

later in what we call Tropos'04, whose first studies were presented in [4], and soon

afterwards in [5]. In this paper we considerer the approaches presented in [6] (the

Toronto’s version) and [5] (the Italy’s version).

Based in [18], which propose a generic formalization of a spiral software develop-

ment process for MAS, we analyzed the two Tropos versions. We show the differ-

ences between Tropos’01 and Tropos’04 identifying the activities and output artifacts.

By the analyses of the Tropos’01, we identify that the activities are textually ex-

pressed. This makes hard the comprehension and increases the analyst’s work. There-

fore, we organize, In the Table 1, the Tropos’01 activities with its occurrence se-

quence and output artifacts. We organize the activities as four phases of the method-

ology, labeled as follow: the two first letters relate the phases of the methodology

(e.g., ER-Early Requirements, LR-Late Requirements, AD-Architectural design, DD-

Detailed Design); the two next letters relate to versions of Tropos (e.g. 01-Toronto);

and, finally the sequential number of the activity. Thus, ER.01.1 means the early

requirements phase (ER) of the Tropos’01 (01) and the activity one (1). The artifacts

are codified sequentially (A1..An). The activity ER.01.1 has A1 (Stakeholder List) as

its output artifact.

By the same way, we analyzed the Tropos’04 [5], and proposed the Table 2. Note

that this table has three columns instead two as in Table 1. The activities of the all

phases are grouped in modeling stages (actor modeling, dependency modeling, goal

modeling, plan modeling and capability modeling). We group the two first modeling

stages (Actor Modeling and Dependency Modeling), in the Requirements phases

(Early and Late), because the identification of actors and its dependencies are done

simultaneous in this phases. We join these modeling stages in only one called Actor

and Dependency Modeling. Besides this, the activities labels are changed in the field

related with the Tropos’ version (e.g. ER.04.01, means the early requirements phase

(ER) of the Tropos’04 (04) and the activity one (1) and belong to the Actor and De-

pendency Modeling stage).

Altogether, the activities of both versions are similar in early requirements and late

requirements. The architectural design and detailed design have some differences; in

general, the sequence of activities is different to attain similar artifacts and some dif-

ferent artifacts (e.g., capability diagrams in the Tropos’04 and the UML class diagram

in the Tropos’01.) are found. The next section discusses this similarities and differ-

ences and proposes a hybrid sequence of activity that will be applied in the case

study.

Table 1. Tropos’01 Activities and output artifacts.

Phase / Activities Output Artifacts

Early Requirements

ER.01.1. Identify the stakeholders who will be represented as (social) actors who

depend on each other for goals to be achieved, task to be performed and resource to be

furnished.

A1 - Stakeholder

List

ER.01.2. Produce a strategic dependency model (SD) for describing the network of

relationships among actors. A strategic dependency model is a graph involving actors

who have strategic dependencies among each other.

A2 - Strategic

Dependency

Model
ER.01.3. Once the relevant stakeholders and their goals have been identified, a strate-

gic rationale model determines through a means-ends analysis how these goals (includ-

ing softgoals) can actually be fulfilled through the contributions of other actors.

A3 - Strategic

Rationale Model

Late Requirements

LR.01.1. Identify the system ‘to-be’ who will be represented as one or more actors

who contribute to the fulfillment of stakeholder goals.

A4 - Strategic De-

pendency Model
LR.01.2. Integrate the actors representing the system’s environment and the system’s

functional and non-functional requirements in the Strategic Dependency Model.

A5 - Strategic

Rationale Model

LR.01.3. The system is decomposed into several sub-actors which take on some of
these responsibilities. This decomposition and responsibility assignment is realized

using the same kind of means-ends analysis along with the strategic rationale analysis.

A6 - Strategic
Rationale Model

Architectural Design

AD.01.1. The first task during architectural design is to select among alternative

architectural styles (e.g. hierarchical contracting, pyramid, joint-venture etc) [15][11]

using as criteria the desired qualities identified earlier.

A7 - Selected

Architectural

Style

AD.01.2. Include new actors in current models and assign system responsibilities to

included actors, based on the selected architectural style.

A8 - Strategic

Dependency

Model

AD.01.3. A further step in the architectural design consists in defining how the goals
assigned to each actor are fulfilled by agents with respect to social patterns [12] (e.g.

matchmaker, broker, mediator, wrapper, etc). For this end, designers can be guided by

a catalogue of agent patterns in which a set of pre-defined solutions are available in
Tropos, social patterns are used for solving a specific goal defined at the architectural

level through the identification of organizational styles and relevant quality attributes

(softgoals) as discussed previously.

A9 - Social
patterns, Strate-

gic Dependency

Model

AD.01.4. A detailed analysis of each social pattern allows defining a set of capabilities

associated with the agents involved. A capability states that an actor is able to act in
order to achieve a given goal. In particular, for each capability the actor has a set of

plans that may apply in different situations. A plan describes the sequence of actions to

perform and the conditions under which the plan is applicable.

A10 - Social

Pattern Capabili-
ties List

AD.01.5. Capabilities are collected in a catalogue and associated to the pattern. This

allows defining the actors’ role and capabilities suitable for a particular domain.

A11 - Social

Pattern Capabili-

ties List

AD.01.6. The goal is decomposed into different sub goals and solved with a combina-

tion of patterns

A12 - Strategic

Rationale Model.

Detailed Design

DD.01.1. Model a UML class diagram [3] focusing on that actor that will be imple-
mented. The target implementation model is the BDI model [16], an agent model

whose main concepts are Beliefs, Desires and Intentions.

A13 - UML class
diagram.

DD.01.2. Model events exchanged in the system, using extended AUML [1] sequence
diagrams and collaborations diagrams.

A14 - AUML
sequence dia-

gram.

DD.01.3. At the lowest level, use plan diagrams, to specify the internal processing of
atomic actors. Each identified plan is specified as a plan diagram. The plan graph is a

UML state transition diagram.

A15 - Plan
Diagram

Table 2. Tropos’04 activities and output artifacts.

Phases/

Modeling
Activities

Output Arti-

facts

Early Requirements

Actor and

Dependency

Modeling

ER.04.1. Identify and analyze the stakeholders and their intentions.

Stakeholders are modeled as social actors who depend on one another

for goals to be achieved, plans to be performed, and resources to be

furnished. Intentions are modeled as goals.

A1 - Stakeholder

List

ER.04.2. Through a goal-oriented analysis, goals are decomposed into

finer goals, which eventually can support evaluation of alternatives.

A2 - Actor

Diagram

ER.04.3. The rationale of each goal relative to the stakeholder who is

responsible for its fulfillment has to be analyzed. Goal decomposition

can be closed through a means-end analysis aimed at identifying plans,
resources and softgoals that provide means for achieving the goal.

Goal Model-

ing

ER.04.4. Inside the actor diagram, softgoal analysis is performed

identifying the goals that contribute positively or negatively to the
softgoal.

A3 - Goal Dia-

gram

Late Requirements

Actor and

Dependency
Modeling

LR.04.1. The system-to-be is represented as one actor which has a

number of dependencies with the other actors of the organization.
These dependencies define the system’s functional and non-functional

requirements.

A4 - Actor

Diagram for
system actor

LR.04.2. These goals are then analyzed from the point of view of the

actor.

Goal Model-

ing

LR.04.3. Softgoal contributions can be identified applying the same

kind of analysis described by the goal diagram.

Plan Model-

ing

LR.04.4. Decompose the plans to complement the goal modeling.

A5 - Goal Dia-

gram for system

actors

Dependency

Modeling

LR.04.5. Some dependencies in the actor diagram must be revised

upon the introduction of the system actor.

A4 - Actor

Diagram

Architectural Design

Actor Mod-

eling

AD.04.1. Inclusion of new actors and delegation of sub-goals to sub-

actors upon goal analysis of system’s goals.

A6 - Actor

Diagram for

Architecture

AD.04.2. Inclusion of new actors according to the choice of a specific

architectural style [11].

Dependency

Modeling
AD.04.3. Inclusion of actors contributing positively to the fulfillment

of some specific functional and non-functional requirement.

A7 - Extended

Actor Diagram

AD.04.4. This step consists in the identification of the capabilities
needed by the actors to fulfill their goals and plans. Capabilities are not

derived automatically but they can be easily identified by analyzing the

extended actor diagram.

A8 - Actor
Capabilities List

Capability
Modeling

AD.04.5. The last step consists of defining a set of agent types and

assigning each of them one or more different capabilities (agent as-

signment). Tropos suggests a set of pre-defined patterns recurrent in

multi-agent literature that can help the designer [12].

A9 - Agent

Types Capabili-

ties List

Detailed Design

DD.04.1. The UML activity diagram [3] allows us to model a capabil-

ity (or a set of correlated capabilities) from the point of view of a

specific agent.

A10 - Capability

Diagrams

DD.04.2. Each plan node of a capability diagram can be further speci-
fied by UML activity diagrams.

A11 - Plan
Diagrams

Capability

Modeling

DD.04.3. Here AUML sequence diagrams [1] can be exploited. In

AUML sequence diagrams, agents correspond to objects, whose life-

line is independent from the specific interaction to be modeled com-
munication acts between agents correspond to asynchronous message

arcs.

A12 - Agent

Interaction

Diagrams.

4 The Selected Sequence of Activities

The two Tropos versions [5, 6] were used to select the better sequence of activities

that allow the methodology users apply the best features of each approach. In this

section, these versions are analyzed and for each methodology phase a sequence of

activities are selected and presented in Table 3. Below, these analyses are split in

phase.

Early and Late requirements: Tropos’01 and Tropos’04 generate similar output

artifacts: Stakeholders List, Actor Diagram with Strategic Dependency Model and

Goal Diagram with Strategic Rationale Model. The difference between the two lies in

the proposed sequence of activities. In Tropos’01 the goals are fulfilled following the

original proposal of the i* [20]. Tropos’04 besides the means-end analysis offers more

types of decompositions (e.g., AND-decomposition and OR-decomposition). Thus,

Tropos’04 is a clearer method for creating the Actor diagram and Goal diagram. Fur-

thermore, models are constructed by analyzing each intentional element and applying

the follow modeling stages: actor modeling, dependency modeling, goal modeling

and plan modeling. This allows create diagrams easier to understand. Therefore, we

selected the Tropos’04 sequence of activities to the both phases (Table 3).

Table 3. Selected sequence of activities of Tropos

Selected Activities Artifacts

Early Requirements

ER.04.1 - Identify the stakeholders and their intentions.

ER.04.2 – Decompose goals through a goal-oriented analysis.

ER.04.3 - Analyze the rationale of each goal.

ER.04.4 - Identify goals that contribute positively or negatively to

softgoal.

A1 - Stakeholder List

A2 - Actor Diagram

A3 - Goal Diagram

Late Requirements

LR.04.1 - Identify the system ‘to-be’.
LR.04.2 – Analyze the goals from the point of view of the actor.

LR.04.3 – Identify softgoal contributions.

LR.04.4 – Decompose the plans.
LR.04.5 – Revise dependencies in the actor diagram.

A4 - Actor Diagram
A5 - Goal Diagram

Architectural Design

AD.04.1 - Include new actors and delegation of sub-goals to them.

AD.01.1 - Select among alternative architectural styles.
AD.01.2 - Include new actors based on the selected architectural style.

AD.01.3 - Define agents with respect to social patterns.

AD.01.4 - Define a set of capabilities associated with the agents
involved in the pattern.

AD.04.5 - Define a set of agent types (social patterns).

A6 - Actor Diagram for

System Architecture
A7 - Selected Architectural

Styles

A8 - Actor Diagram
A9 - Goal Diagram

A10 - Actor Capabilities List

A11 - Selected social pat-

terns

Detailed Design

DD.01.1 - Model a UML class diagram.

DD.04.1 - Model a capability.

DD.04.2 – Specify each plan node of a capability diagram by UML
activity diagrams.

DD.01.2 - Model events using extended AUML sequence diagrams

and collaborations diagrams.

A12 - UML class diagram

A13 - Capability Diagram

A14 - Plan Diagrams
A15 - Agent Interaction

Diagrams

Architectural design: the global architecture of the system is defined in term of

subsystems represented by new actors. Tropos’01 first defines the architectural styles.

From the selected style, new actors are inserted and its system goals are attributed.

The goals are filled with respect to the social patterns by analyzing their capacities.

The Tropos’04 defines the actors from the analysis of the goals, selects the style

architectural and includes new actors who contribute to fill the functional and non-

functional requirements. It identifies the capacities of for each actor and classifies the

types of agents who fulfill the goals using the social patterns. The results of both

approaches are the same, but we choose a sequence that emphasizes system goals

instead of the architectural styles and social patterns. The selected activities (Table 3)

are: AD.04.1 from Tropos’04; AD.01.1, AD.01.2, AD.01.3, AD.01.4 from Tropos’01,

and AD.04.5, again from the Tropos’04). These activities improve the using of the

methodology in our study case.

Detailed design: following the same process logic of the later phase, the activities

chosen for this phase also come from both Tropos’01 and Tropos’04. The first

activity is to implement a class diagram of each agent (DD.01.1). After this, the

diagram of capacities (DD.04.1) and each plan (DD.04.2) that composes this diagram

are further detailed. Finally, the protocols of communication of the agents are

specified through the sequence diagram from AUML (DD.01.2). It is observed that

the sequence of activities is the same, with addition of class model, that has the

advantage to express a more complete agents modeling.

The summary of the sequence of activities selected for our case study is showed in

Table 3. As explained, these activities are collected from Tropos’01 (see Table 1) and

Tropos’04 (see Table 2). The codification of the labels is the same described above.

Table 3 shows that all activities in the Early and Late Requirements were selected

from Tropos’04. In architectural design some activities was selected from Tropos’01

(AD.01.1, AD.01.2, AD.01.3, AD.01.4) and Tropos’04 (AD.04.1, AD.04.5). In De-

tailed design also was selected activities from Tropos’01 (DD.01.2, DD.01.1) and

Tropos’04 (DD.04.1, DD.04.2).

The next section presents concepts of the system xaADB, which is the case study

of this work.

5 Case Study

To get a deeper understanding of the Tropos methodology, a system architectural

specification was developed. In order to make the case study as complete as possible,

we have modeled the XAADB (eXternal Architecture for Autonomous Database

administration), a multi-agent system that aims at providing autonomy to Database

Management Systems (DBMS). This system is presented as an architectural frame-

work, for autonomous fault resolution components development for traditional

DBMS. The XAADB is being developed as part of a Master’s research at the Infor-

matics Center, Federal University of Pernambuco, Brazil.

Acting as an electronic Database Administrator, the xaADB involves catalogued

fault resolution, fail alerts, bad settings alerts and performance trouble resolution.

Some implementation requirements also should be followed (e.g. using of intelligent

agents, software developed as an external layer from DBMS software, using of ma-

chine learning techniques as well as closely following the autonomic computing prin-

ciples [13]). This case study has a special characteristic of being predominantly a

computational system (not only an information system) which brings the specification

of non-functional requirements to the forefront. Database administration is a well

known activity in informatics, thus making it easier to evaluate the case study with

respect to the concepts described in this paper.

6 Applying the Selected Sequence

We apply the Tropos sequence suggested in section 3 on the system xaADB. The

models were drawn to represent xaADB system components.

5.1 Early Requirements: in this phase, stakeholders and their intentions are

modeled. The xaADB is a “computational” system that aims at helping a data base

administrator to solve specific problems in DBMS. This phase justify the need of this

system to the DBA and the organization where the DBA is working for. The artifacts

produced by the activities below represent who are the stakeholders and their needs.

ER.04.1 - Identify the stakeholders and their intentions: There are two main

stakeholders in the system xaADB. The actor Client is the organization that decides

on about the software acquisition. The actor DBA is the database administrator that

works in the organization. The stakeholders and the list of their needs are showed in

table 4.

Table 4. Stakeholder List

 Stakeholder Objectives

1 DBA 1. To liberate him/herself of routine tasks;

2. To have resources allow him/her to improve the work quality;

3. To use more time for strategical tasks.

2 Client /

Company

1. More efficient administration of data to a lesser cost;

2. To improve the allocation of human resources in the company.

3. To guarantee the continuity of services.

Figure 1 show the stakeholders needs, in a graphical notation using i* model [20].

Actor Client has two main goals, which are obtain the “Data management improved”

and the “Cost reduced”. It depends on actor DBA to fulfill the goal “Database man-

agement performed”. The Client expects “Efficiency in data management provided”

and the “Service continuity insured”. The DBA expects the Client to achieve better

work conditions. To do his/her job, the DBA uses the services provided by the Op-

erational System (OS) and Database management system (DBMS). They are repre-

sented as system actors.

Fig. 1. Artifact actor diagram or Strategic dependency model

ER.04.2 – Decompose goals through a goal-oriented analysis: The Client has as

main goals the “Data management improved” and “Betters work condition achieved”.

DBA has a one goal which is “Data management performed”. In this case, there are

no goal decompositions.

ER.04.3 - Analyze the rationale of each goal: Client can acquire a new solution that

contributes positively to obtain his goal. To acquire a new solution, the Client

performs the plan “Evaluate Solutions”. S/He has three ways to evaluate. S/He can

“Develop a tool” or “Buy a tool” or “Use a free tool”. The actor DBA has the goal

“Database management performed”. S/He can perform two plans to obtain this goal.

S/He either continues the “Use of traditional administration” or “Automate task using

a SMA”. The multiagent system which realizes this task is the xaADB system. Figure

2 shows the goal diagram to DBA and Client actor.

Fig. 2. Artifact goal diagram or Strategic rationale model (SR) for the actor Client.

ER.04.4 - Identify the goals that contribute positively or negatively to the
softgoal: Among the Client evaluated alternatives to acquire a new solution the plan

“Use a free tool” contributes positively to obtain “cost reduced”. The other options

contribute negatively. Use a tool with requirements of a SMA contributes positively

to achieve the Client soft goal “Efficiency in Data management provided”.

Traditional administration also contributes to obtain this soft goal, but with a minor

pound of efficiency. Plan “Use automated task using a SMA” contributes positively to

softgoal “Service continuity insured”. The figure 2 shows this analysis.

5.2 Late Requirements: This phase focus on actor’s dependencies on system and

analyze the goals to identify non-functional and functional requirements. The main

goal that generates the software is analyzed and decomposed in sub-goals and plans.

These represent the software functionality. The following activities compose the Late

Requirement phase in xaADB software.

LR.04.1 - Identify the ‘system-to-be’: in this activity, the xaADB system is

introduced in the model and its dependencies on others actors are identified. The actor

DBA depends on xaADB system to fulfill the goal “Autonomous fault resolution

performed”. The expected quality attributes from xaADB are represented as softgoals.

These are “High performance”, “Usable system”, “Trustful system”, “Supportable

system” and “Secure system”. xaADB uses the services provided by Operational

system and the DBMS. Figure 3 shows the Actor diagram with xaADB system.

LR.04.2 – Analyze the goals from the actor’s point of view: The system main goal

is “Autonomous fault resolution performed”. It is decomposed in sub-goals that

represent different classes of problems that will be solved by the system. The system

monitors the DBMS and operational system status. When a fault is detected, a

resolution method must be applied to solve the detected problem. Figure 4 shows the

decomposed sub-goals in the area marked with label LR.04.2.

Fig. 3. Artifact Actor diagram or Strategic dependence model (SR).

LR.04.3 – Identify softgoal contributions: To satisfy the DBA quality expectation,

new goals are included in the model. “Users authenticated” contribute to achieve the

softgoal “Secure System provided”. “Information and knowledge managed” and

“Events notified” are included to fulfill the softgoal “Usable system provided” and

“Trustful system provided”. Figure 4 shows the softgoal contribution delimited by the

area labeled LR.04.3.

LR.04.4 – Decompose the plans: The analysis of xaADB system is finished by the

identification of plans that will be executed to achieve the goals. To demonstrate this

activity, a means-end analysis of the goal “Database logical objects faults monitored

and solved” was made. The system monitors the DBMS status. If a failure is detected,

it chooses between correcting the failure or suggesting a solution to the DBA. The

failure resolution can be decomposed in many sub-plans to solve the detected

different problems. The area marked with the label LR.04.4 in the figure 4, shows the

plan decomposition. Each goal is analyzed during the late requirements. The final

result is the complete goal diagram shown in figure 4.

LR.04.5 – Revise dependencies in the actor diagram: when the analysis of goals

and plans is complete, new dependencies between the xaADB and others actors can

be identified. For the sake of space, this analysis will not be shown here.

Fig. 4. Artifact goal diagram or Strategic rationale model (SR) for the actor xaADB

5.3 Architectural design: In this phase, the actor xaADB is analyzed and new actors

are identified. The goals are delegated to new actors. First, roles assumed by the actor

are analyzed; next roles are broken in agents with special capabilities.

AD.04.1 - Include new actors and delegation of sub-goals to them: The system

goals were grouped in “Monitor and solve faults”, “Manage information and

knowledge” and “Register and notify events”. Actors “Fault solver”, “Information

and knowledge manager” and “Report Manager” were created to achieve these goals,

respectively. “Fault Solver” is a role which can be played by others actors, depending

on the fault to be solved. Actors “Connectivity Manager” and “O.S. Manager” are

agents who monitor and solve connectivity and O.S. failures. Figure 5 shows the actor

diagram for system architecture.

Fig. 5. Artifact Actor Diagram for System Architecture

AD.01.1 - Select among alternative architectural styles: Tropos uses the

organizational styles proposed in [11][15]:pyramid, joint venture, structure in 5 and

more. An architectural organization is defined coming from the system quality

attributes, presented as softgoals. Using these criterions to select organizational

structure, two possibilities were found: Joint Venture and Pyramid. Joint-venture

organization style is more decentralized, which permits greater autonomy to local

actors. So Joint Venture style was chosen for xaADB system.

AD.01.2 - Include new actors based on the selected architectural style: Following

the Joint venture style, the actor Coordinator was inserted into model. Actor “Fault

Solver” delegate global plans execution control to actor Coordinator. Actor

“Information and knowledge manager” provide information to other actors. Both

“Coordinator” and “Fault Solver” can send information to system user about

performed actions to “Report manager” actor. Figure 6 shows the new actors in

selected architectural style.

AD.01.3 - Define agents with respect to social patterns: After select the

architectural style, the plans and objectives are analyzed and new actors are inserted

from agents’ social patterns mappings [12]. Due to space limitation, we will end the

xaADB analysis at this point. In future work, the analysis of social patterns’ use and

detailed design phase will be presented.

Fig. 6. Selected Architectural Styles

7 Conclusions and future work

This paper focuses on the identification of activities that capture the best points of two

approaches of the Tropos development methodology. To achieve this, the four Tro-

pos’ phases were analyzed for the both approaches. As a result, a common sequence

of activities and output artifacts was generated. The selected activities were applied to

a multiagent system that monitors distributed DBMS: the xaADB system. In this

work, some activities of the phases Early Requirements, Late Requirements and Ar-

chitectural Design were modeled. The objective was to present how the selected ac-

tivities’ sequence could help us to use the Tropos methodology.

For future work, we plan to analyze deeply the detailed design phase and model the

xaADB system. For this, we will compare Tropos with GAIA [21]. The goal will be

to evaluate which methodology is more adequate to detailed design. Tropos is more

complete for Early Requirements and Late Requirements. We also plan to develop a

process to guide the use of Tropos to Multi-agent system’s modeling and allow trace-

ability in the methodology phases.

References

1. Bauer, B., Muller, J. and Odell, J.: Agent UML: A formalism for specifying multiagent

interaction. In Proc. of the 1st Int. Workshop on Agent-Oriented Software Engineering,

AOSE’00, pages 91–104, Limerick, Ireland (2001).

2. Bernon, C., Cossentino, M., Gleizes, M., Turci, P., and Zambonelli, F. “A Study of Some

Multi-Agent Meta-Models”, in Odell, J., Giorgini, P., and Muller, J., editors, Agent-

oriented Software Engineering V, AOSE 2004, volume 3382 of LNCS, pages 62–77.

Springer-Verlag, Berlin, Heidelberg. (2004).

3. Booch, G., Rumbaugh, J. and Jacobson, I.: The Unified Modeling Language: User Guide.

Addison-Wesley (1999).

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Towards an Agent

Oriented approach to Software Engineering. In the Workshop Dagli oggetti agli agenti:

tendenze evolutive dei sistemi software (2001).

5. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A.: Tropos: An

Agent-Oriented Software Development Methodology. Autonomous Agents and Multi-

Agent Systems, 8(3):203–236, (2004).

6. Castro, J., Kolp, M. and Mylopoulos, J.: Towards Requirements-Driven Information Sys-

tems Engineering: The Tropos Project. Information Systems Journal, Elsevier, Vol 27: 365-

89 (2002).

7. Castro, J., Kolp ,M., Mylopoulos, J.: UML for Agent-Oriented Software Development: the

Tropos Proposal. In International Conference on the Unified Modeling Language (2001).

8. Cernuzzi, L. and Rossi, G. “On the Evaluation of Agent Oriented Methodologies”, Proceed-

ings of the Workshop on Agent Oriented Methodology (OOPSLA’02). Pages: 21-32.

COTAR, (2002).

9. Cernuzzi , L. and Zambonelli, F. “Experiencing AUML in the Gaia Methodology “, in 5th

International Conference on Enterprise Information Systems. Angers - France April 2003.

10. Dam, K. H. and Winikoff, M. “Comparing Agent-oriented Methodologies”, in Giorgini, P.,

Henderson-Sellers, B., and Winikoff, M., editors, Agent-Oriented Information Systems: 5th

International Bi-Conference Workshop, volume 3030 of LNAI, pages 78–93. Springer-

Verlag, Berlin, Germany. (2003).

11. Fuxman, A., Giorgini, P., Kolp, M. and Mylopoulos, J.: Information systems as social

structures. In Proc. of the 2nd Int. Conf. on Formal Ontologies for Information Systems,

FOIS’01, Ogunquit, USA (2001).

12. Hayden, S., Carrick, C. and Yang, Q.: Architectural design patterns for multiagent coordi-

nation. In Proc. of the 3rd Int. Conf. on Autonomous Agents, Agents’99, Seattle (1999).

13. Horn, P.: Autonomic Computing: IBM's Perspective on The State of Information Technol-

ogy - IBM Corporation. <http://www.research.ibm.com/autonomic>, last access Jan 2007.

14. Juan, T., Sterling, L., Martelli, M., and Mascardi, V. “Customizing AOSE Methodologies

by Reusing AOSE Features”, in Proceedings of the 2nd Iinternational Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS’03), pages 113–120, New York,

USA. ACM Press. (2003).

15. Kolp, M., Castro, J. and Mylopoulos, J.: A social organization perspective on software

architectures. In Proc. of the 1st Int. Workshop From Software Requirements to Architec-

tures, STRAW’01, pages 5–12, Toronto, Canada (2001).

16. Rao, A., and Georgeff, M.: Decision procedures for BDIlogics. Journal of Logic and Com-

putation 8(3):293–344 (1998).

17. Sturm A., Dori, D. & Shehory O.: Comparative Evaluation of Agent-Oriented Methodolo-

gies, in Methodologies and Software Engineering for Agent Systems, Kluwer, pp. 127-149

(2004).

18. Wautelet Y., Kolp M. and Achbany Y.: S-Tropos, An Iterative SPEM-Centric Software

Project Management Process, Working Paper IAG (2005).

19. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and sons, LTD,

Chichester, England (2002).

20. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis, Univer-

sity of Toronto, Department of Computer Science (1995).

21. Zambonelli, F., Jennings, N. R., Wooldridge, M.: Developing Multiagent Systems: The

Gaia Methodology. ACM Transactions on Software Engineering Methodology, v. 12, n. 3,

p. 317-370 (2003).

