
COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 103

Multi-agent systems (MASs) are gaining wide acceptance in both industry
and academia as a powerful new paradigm for designing and developing
software systems [11]. Along with this growth, new methodologies, model-
ing languages, development platforms, tools, and programming languages
are being proposed. Agent-based systems require techniques to help explore
their benefits and special characteristics. However, the various MAS
methodologies, languages, and platforms involve distinct and varied sets of
abstractions. It is often quite difficult for software engineers to understand
the definition of each abstraction and the relationship between any two of
them. In this context, there is a need for a conceptual framework that
defines the abstractions, along with their relationships and behavior.

MODELING MULTI-AGENT SYSTEMS

By VIVIANE TORRES DA SILVA and CARLOS J.P. DE LUCENA

Emerging from a
paradigm different from
objects, the modeling of
agents requires its own
conceptual frameworks,
modeling languages,
and methodologies.

74 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 105104 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

each abstraction, the metarela-
tionships with other abstrac-
tions, and the graphical
representation of the abstraction
in models.

Several proposed modeling
languages that extend UML do
not clearly describe the exten-
sions applied to the UML meta-
model. Although they describe
extensions to UML diagrams,
such languages usually do not
describe how the UML meta-
model was extended in order to
model new abstractions. The
modeling languages describe the
graphical representation of the
new abstractions but do not
clearly describe their semantics
or the relationships among them.

The modeling languages [4,
10] that describe the extensions
applied to the UML metamodel
use stereotypes based on the
metaclass Class (representing object classes) to define
agents. Since agents and objects do not share proper-
ties and relationships, agents should not be described
based on objects.

A MAS modeling language should describe struc-
tural diagrams to model the structural aspects of
MASs. The set of structural diagrams must be capa-
ble of modeling: the entities usually defined in MASs;
the properties of these entities by associating the
properties with the entities; and the relationships
between the entities. The modeling languages pro-
posed in the literature do not model a number of
MAS entities (such as role, organization, and envi-
ronment) so do not define the relationships between
agents and these entities.

In order to model MAS entities, properties, and
relationships, UML structural diagrams must be
extended. Different diagram elements1 can be created
to represent MAS entities, properties, and relation-
ships. Different diagram elements facilitate the visual-
ization and modeling of these abstractions. If the
modeling language defines more than one structural
diagram, each diagram must then describe the set of
entities, properties, and relationships that can be
modeled. It is also important to specify if the dia-
grams define different views of the same abstractions
or model different sets of abstractions.

MAS modeling languages must define dynamic

MAS diagrams to model the dynamic aspects of these
systems. The dynamic diagrams must be capable of
modeling the interactions between the entities
defined in the structural diagrams, as well as the inter-
nal execution of the entities. MAS dynamic diagrams
can be defined by extending UML dynamic diagrams
while defining the interactions and intra-actions of
MAS entity instances.

Different types of interactions must be modeled in
MAS dynamic diagrams. The different entities in
MASs interact in different ways. The MAS dynamic
diagrams must also model the internal behavior of the
MAS entities. Moreover, different diagram elements
must be created to represent the MAS entity
instances.

A number of proposed modeling languages do not
represent the different types of interactions related to
objects and agent-related abstractions. Moreover,
many of them also do not model the internal execu-
tion of the agent-related abstractions.

Developing ways to implement agent-based sys-
tems is a key issue in getting agent technology into
the software development mainstream. In order to
implement MASs designed through a MAS modeling
language, MAS design models must be transformed
into code. MAS design models are high-level models
consisting of agent-related abstractions. To transform
MAS models into code, agent-related abstractions
must be mapped into abstractions defined in the pro-
gramming language.

TAO CONCEPTUAL FRAMEWORK

The goal of the Taming Agents and Objects, or
TAO, conceptual framework [8] is to define a core

With any new software engineering paradigm, suc-
cessful MAS deployment requires modeling lan-
guages, along with other agent-based software
technologies, to explore the use of agent-related
abstractions and promote traceability, from design
model to code. Modeling languages must represent
the structural (or static) and dynamic aspects of MASs
by expressing the characteristics of their essential enti-
ties (such as agent, role, organization, and environ-
ment). Structural aspects are the definitions of the
entities, as well as their properties and relationships.
The dynamic aspects are related to the behavior of the
entities [9].

To reduce risk when adopting a new technology it
is convenient to present it as an incremental extension
of known and trusted methods and provide explicit
engineering tools that support industry-accepted

standard methods of technology deployment [4]. A
modeling language for a MAS should be an incre-
mental extension of a known and trusted standard
modeling language.

Since agents and objects coexist in MASs, the
UML modeling language [9] can be used as a basis for
developing MAS modeling languages. The UML
modeling language is a de facto standard for object-
oriented modeling. UML is used in industry and
academia for modeling object-oriented systems. Nev-
ertheless, the original form of UML (version 2.0) pro-
vides insufficient support for modeling MASs. The
UML metamodel lacks support for modeling agents,
organizations, and agent roles.

After an exhaustive review of theories, methodolo-
gies, and methods for MASs, we saw the need for a
conceptual framework to define the commonly used
abstractions found in MASs. The few conceptual
frameworks proposed in the literature for describing
MAS concepts [2, 12] do not define a number of
structural and dynamic aspects (such as role and the
ability to play it) commonly described in MASs.

A variety of agent-based techniques describe MASs
based on different types of entities. Each technique
describes a different set of properties and associates
different relationships with each entity. Thus, there is
a need to define the structural aspects of MASs by
describing the properties and behavior of the entities
frequently found in these systems. When describing

the entities, the properties associated with them and
their relationships must be defined. The relationships
between properties must also be described.

The dynamic aspects are characterized by the inter-
nal execution of the entities (intra-actions) and by the
interactions between entities. Different entities may
execute and interact in different ways. Since MASs are
composed of different entities, their dynamic aspects
must be described.

The intra-actions of an entity are related to the
behavioral properties the entity defines. For instance,
the intra-actions of objects are related to the execution
of methods, and the intra-actions of agents are related
to the execution of actions and plans. The interac-
tions between any two entities are influenced by the
relationships linking them. Although agents interact
by sending and receiving messages, the sequence and

content of messages sent and received by agents are
influenced by their relationships. Therefore, there is a
need for describing the interactions between the enti-
ties based on the relationships that link them.

MAS MODELING LANGUAGES

Several proposed modeling languages for MASs
extend the UML metamodel [1, 4, 10]. However, a
modeling language should still be able to do the fol-
lowing: describe agent-related concepts as first-class
abstractions; be based on an explicit description of a
MAS metamodel; model the structural and dynamic
aspects frequently described in MASs; and provide
traceability from design model to code.

MAS modeling languages should be able to define
MAS entities as first-class abstractions. All proposed
modeling languages describe agents as first-class
abstractions. However, entities (such as role, organiza-
tion, and environment) are not defined as such in
many of them. Due to this limitation, these languages
cannot be used to model a number of structural and
dynamic aspects of MASs (such as agents playing roles
in different organizations). It is also not possible to
model the relationships and interactions between
agents, objects, and other MAS entities.

A metamodel defines a language for specifying
models by describing the semantics of a set of abstrac-
tions and defining how these abstractions are instan-
tiated [9]. The metamodel describes the semantics of

MAS-ML EXTENDS UML BY PRESERVING ALL OBJECT-RELATED
CONCEPTS IN THE UML METAMODEL, EVEN AS IT INCLUDES

THE AGENT-RELATED CONCEPTS IN TAO.
da Silva table 1 (5/07)

ENTITIES

PROPERTIES

Environment
Class

Object Class

Agent Class

Organization
Class

Agent Role
Class

Object Role
Class

Environment
Class

inhabit

inhabit

inhabit

specialization
association

attribute
method or
goal belief
action plan

Object
Role Class

association
play

ownership

dependency
association

specialization
association
aggregation
dependency

attribute
method

Agent
Role Class

association

play

ownership
play

specialization
control
association
aggregation
dependency

dependency
association

goal belief
duty right
protocol

Organization
Class

association

specialization

ownership
play

ownership

inhabit

goal belief
action plan
axiom

Agent
Class

association

specialization
aggregation
dependency

play

inhabit

goal belief
action plan

Object
Class

specialization
association
aggregation
dependency

association

association

association

association
play

inhabit

attribute
method

R
E
L
A
T
I
O
N
S
H
I
P
S

Table 1. TAO
entities, properties,

and relationships.

1
Diagram elements help to graphically represent abstractions in diagrams.

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 105104 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

each abstraction, the metarela-
tionships with other abstrac-
tions, and the graphical
representation of the abstraction
in models.

Several proposed modeling
languages that extend UML do
not clearly describe the exten-
sions applied to the UML meta-
model. Although they describe
extensions to UML diagrams,
such languages usually do not
describe how the UML meta-
model was extended in order to
model new abstractions. The
modeling languages describe the
graphical representation of the
new abstractions but do not
clearly describe their semantics
or the relationships among them.

The modeling languages [4,
10] that describe the extensions
applied to the UML metamodel
use stereotypes based on the
metaclass Class (representing object classes) to define
agents. Since agents and objects do not share proper-
ties and relationships, agents should not be described
based on objects.

A MAS modeling language should describe struc-
tural diagrams to model the structural aspects of
MASs. The set of structural diagrams must be capa-
ble of modeling: the entities usually defined in MASs;
the properties of these entities by associating the
properties with the entities; and the relationships
between the entities. The modeling languages pro-
posed in the literature do not model a number of
MAS entities (such as role, organization, and envi-
ronment) so do not define the relationships between
agents and these entities.

In order to model MAS entities, properties, and
relationships, UML structural diagrams must be
extended. Different diagram elements1 can be created
to represent MAS entities, properties, and relation-
ships. Different diagram elements facilitate the visual-
ization and modeling of these abstractions. If the
modeling language defines more than one structural
diagram, each diagram must then describe the set of
entities, properties, and relationships that can be
modeled. It is also important to specify if the dia-
grams define different views of the same abstractions
or model different sets of abstractions.

MAS modeling languages must define dynamic

MAS diagrams to model the dynamic aspects of these
systems. The dynamic diagrams must be capable of
modeling the interactions between the entities
defined in the structural diagrams, as well as the inter-
nal execution of the entities. MAS dynamic diagrams
can be defined by extending UML dynamic diagrams
while defining the interactions and intra-actions of
MAS entity instances.

Different types of interactions must be modeled in
MAS dynamic diagrams. The different entities in
MASs interact in different ways. The MAS dynamic
diagrams must also model the internal behavior of the
MAS entities. Moreover, different diagram elements
must be created to represent the MAS entity
instances.

A number of proposed modeling languages do not
represent the different types of interactions related to
objects and agent-related abstractions. Moreover,
many of them also do not model the internal execu-
tion of the agent-related abstractions.

Developing ways to implement agent-based sys-
tems is a key issue in getting agent technology into
the software development mainstream. In order to
implement MASs designed through a MAS modeling
language, MAS design models must be transformed
into code. MAS design models are high-level models
consisting of agent-related abstractions. To transform
MAS models into code, agent-related abstractions
must be mapped into abstractions defined in the pro-
gramming language.

TAO CONCEPTUAL FRAMEWORK

The goal of the Taming Agents and Objects, or
TAO, conceptual framework [8] is to define a core

With any new software engineering paradigm, suc-
cessful MAS deployment requires modeling lan-
guages, along with other agent-based software
technologies, to explore the use of agent-related
abstractions and promote traceability, from design
model to code. Modeling languages must represent
the structural (or static) and dynamic aspects of MASs
by expressing the characteristics of their essential enti-
ties (such as agent, role, organization, and environ-
ment). Structural aspects are the definitions of the
entities, as well as their properties and relationships.
The dynamic aspects are related to the behavior of the
entities [9].

To reduce risk when adopting a new technology it
is convenient to present it as an incremental extension
of known and trusted methods and provide explicit
engineering tools that support industry-accepted

standard methods of technology deployment [4]. A
modeling language for a MAS should be an incre-
mental extension of a known and trusted standard
modeling language.

Since agents and objects coexist in MASs, the
UML modeling language [9] can be used as a basis for
developing MAS modeling languages. The UML
modeling language is a de facto standard for object-
oriented modeling. UML is used in industry and
academia for modeling object-oriented systems. Nev-
ertheless, the original form of UML (version 2.0) pro-
vides insufficient support for modeling MASs. The
UML metamodel lacks support for modeling agents,
organizations, and agent roles.

After an exhaustive review of theories, methodolo-
gies, and methods for MASs, we saw the need for a
conceptual framework to define the commonly used
abstractions found in MASs. The few conceptual
frameworks proposed in the literature for describing
MAS concepts [2, 12] do not define a number of
structural and dynamic aspects (such as role and the
ability to play it) commonly described in MASs.

A variety of agent-based techniques describe MASs
based on different types of entities. Each technique
describes a different set of properties and associates
different relationships with each entity. Thus, there is
a need to define the structural aspects of MASs by
describing the properties and behavior of the entities
frequently found in these systems. When describing

the entities, the properties associated with them and
their relationships must be defined. The relationships
between properties must also be described.

The dynamic aspects are characterized by the inter-
nal execution of the entities (intra-actions) and by the
interactions between entities. Different entities may
execute and interact in different ways. Since MASs are
composed of different entities, their dynamic aspects
must be described.

The intra-actions of an entity are related to the
behavioral properties the entity defines. For instance,
the intra-actions of objects are related to the execution
of methods, and the intra-actions of agents are related
to the execution of actions and plans. The interac-
tions between any two entities are influenced by the
relationships linking them. Although agents interact
by sending and receiving messages, the sequence and

content of messages sent and received by agents are
influenced by their relationships. Therefore, there is a
need for describing the interactions between the enti-
ties based on the relationships that link them.

MAS MODELING LANGUAGES

Several proposed modeling languages for MASs
extend the UML metamodel [1, 4, 10]. However, a
modeling language should still be able to do the fol-
lowing: describe agent-related concepts as first-class
abstractions; be based on an explicit description of a
MAS metamodel; model the structural and dynamic
aspects frequently described in MASs; and provide
traceability from design model to code.

MAS modeling languages should be able to define
MAS entities as first-class abstractions. All proposed
modeling languages describe agents as first-class
abstractions. However, entities (such as role, organiza-
tion, and environment) are not defined as such in
many of them. Due to this limitation, these languages
cannot be used to model a number of structural and
dynamic aspects of MASs (such as agents playing roles
in different organizations). It is also not possible to
model the relationships and interactions between
agents, objects, and other MAS entities.

A metamodel defines a language for specifying
models by describing the semantics of a set of abstrac-
tions and defining how these abstractions are instan-
tiated [9]. The metamodel describes the semantics of

MAS-ML EXTENDS UML BY PRESERVING ALL OBJECT-RELATED
CONCEPTS IN THE UML METAMODEL, EVEN AS IT INCLUDES

THE AGENT-RELATED CONCEPTS IN TAO.
da Silva table 1 (5/07)

ENTITIES

PROPERTIES

Environment
Class

Object Class

Agent Class

Organization
Class

Agent Role
Class

Object Role
Class

Environment
Class

inhabit

inhabit

inhabit

specialization
association

attribute
method or
goal belief
action plan

Object
Role Class

association
play

ownership

dependency
association

specialization
association
aggregation
dependency

attribute
method

Agent
Role Class

association

play

ownership
play

specialization
control
association
aggregation
dependency

dependency
association

goal belief
duty right
protocol

Organization
Class

association

specialization

ownership
play

ownership

inhabit

goal belief
action plan
axiom

Agent
Class

association

specialization
aggregation
dependency

play

inhabit

goal belief
action plan

Object
Class

specialization
association
aggregation
dependency

association

association

association

association
play

inhabit

attribute
method

R
E
L
A
T
I
O
N
S
H
I
P
S

Table 1. TAO
entities, properties,

and relationships.

1
Diagram elements help to graphically represent abstractions in diagrams.

diagrams to focus on the extension aspects to be cov-
ered by the resulting MAS-ML. The structural dia-
grams in MAS-ML are the extended UML class
diagram and two new diagrams: organization and

role. MAS-ML extends the UML class diagram to
represent the structural relationships between agents,
agents and classes, organizations, organizations and
classes, environments, and environments and classes.
The organization diagram
models system organizations
and the relationships between
them and other system enti-
ties. The role diagram models
the relationships between the
roles defined in organizations.
The three structural dia-
grams—class, organization,
and role diagrams—model all
entities and relationships
defined in TAO.

We further aim to extend
the UML sequence and activ-
ity diagrams to represent the
dynamic aspects of MASs.
These diagrams make it possi-
ble to model interactions
between agents, organiza-
tions, environments, and
objects; execution of plans
and actions associated with
agents, organizations, and
active environments; and pro-
tocols defined by roles. The
entities modeled in the
sequence diagrams are instances of the entity classes
modeled in the structural diagrams. The methods,
plans, and actions modeled in the sequence and activ-

ity diagrams are also defined in the structural dia-
grams associated with the respective entity classes.

Since a sequence or activity diagram can model dif-
ferent entities executing different plans and actions at

the same time, as well as the same
entity playing more than one role,
any of these diagrams can express
concurrency and parallelism in
the design models. Moreover,
since a sequence or activity dia-
gram can model different entities
executing in different environ-
ments, as well as entities moving
from one environment to
another, any of these diagrams
can express distribution in the
design models. For representation
of both the structural and
dynamic diagrams and their use
in modeling concrete MAS appli-
cations, see [5–7].

With the aim of implementing
systems modeled through MAS-
ML, a transformer was developed
to generate code from the MAS-
ML structural diagrams. The
models described at the agent
level of abstraction are automati-
cally transformed into object-ori-
ented code.

The transformation process
consists of three phases (see Fig-
ure 3). In the first, the MAS-ML
graphical models of the applica-
tion are described textually
through MAS-ML grammar.
Using that grammar makes it pos-
sible to describe all information
presented in MAS-ML structural
diagrams, including entities and
their properties and the relation-
ships between them.

In the second, domain-inde-
pendent-entity rules and domain-
dependent-entity rules are applied
to the textual description of the
MAS-ML models to generate a

partial transformation. The domain-independent-
entity rules generate the set of domain-independent
object-oriented modules and their relationships defined
by an object-oriented abstract architecture. The set of
classes in the architecture represents the entities that
cannot be mapped directly from MAS-ML to Java
classes. Entities (such as agents, organizations, and

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 107

set of MAS abstractions developed based on our
investigation of existing agent-based and object-ori-
ented methodologies, languages, and theories. TAO
combines the abstractions frequently described in
the literature on MASs.
The benefit of having
such a framework is to
provide support for
developing new
methodologies, meth-
ods, and languages
based on the concepts
defined and related in
the framework. Each
concept is viewed as a
candidate abstraction
for modeling lan-
guages, methodologies,
and support environ-
ments to be applied in different phases of MAS
development.

TAO defines the structural and dynamic aspects of
MASs, as well as the entities that may be described in
MASs, along with their properties and the relation-
ships associated with them (see Table 1). The
dynamic aspects described in
TAO are classified in primitive
dynamic processes and high-level
dynamic processes (see Table 2).
The primitive dynamic processes
describe the creation and destruc-
tion of entities. High-level
dynamic processes are more com-
plex domain-independent behav-
ior described based on primitive
dynamic processes. Domain-
independent high-level dynamic
processes describe patterns of
behavior derived from the char-
acteristics of the inhabit (envi-
ronment), ownership, and play
relationships between MAS enti-
ties. These relationships are
domain-independent in several
ways: agents, organizations, and
objects inhabit environments;
agents and suborganizations play
at least one role; and every role is
owned by an organization.

THE MAS-ML MODELING

LANGUAGE

MAS-ML [5–7] aims to model all structural and
dynamic aspects of the entities defined in TAO. The

MAS-ML metamodel is defined by extending the
UML metamodel according to the concepts defined in
TAO. When extending UML according to TAO con-
cepts, it is not possible to use only the tag, constraints,

and stereotype-extension
mechanisms provided by
UML. New metaclasses
and stereotypes associated
with new entities, proper-
ties, and relationships
defined in TAO but not
presented in UML are
incorporated into the
UML metamodel. Since
we aim to produce a con-
servative extension of
UML, metaclasses defined
in UML are not modified
during the extension. Fig-
ure 1 outlines a subset of
metaclasses of the UML
metamodel and the exten-

sions made by MAS-ML, including the new meta-
classes and stereotypes proposed by MAS-ML related
to the entities and properties described in TAO. The

icons representing the stereotypes are associated
with the metaclasses on which the stereotypes are
based. Figure 2 outlines the new metaclasses related
to the relationships described in TAO that have
been proposed by MAS-ML to the UML meta-
model.

Due to the set of entities and relationships defined
in the TAO metamodel incorporated into the UML
metamodel, we have proposed a new set of structural

106 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

da Silva fig 1 (5/07)

Structural Feature Behavioral Feature EnvironmentClass ObjectRoleClass

OrganizationClass

Operation

postcondition

precondition precondition

postcondition

AgentRoleClassClass AgentClass

ClassifierFeatures

Element

Property

AgentAction

Right Duty

GoalBelief

Axiom

AgentProtocolAgentPlan

AgentMessage

Constraint

1..*1..*

0..10..10..10..1

1..* * *

*

* *

**

*
receiver

 1
sender

Legend

Metaclasses of the UML metamodel

New Metaclasses

New Stereotypes

Active
EnvironmentClass

Passive
EnvironmentClass

da Silva table 2 (5/07)

High-Level Dynamic
Processes

Primitive Dynamic
Processes

entering an organization
leaving an organization moving from
one environment to another

entering an organization
leaving an organization moving from
one environment to another

creation
destruction

creation
destruction

creation
destruction

creation
destruction

creation
destruction

creation
destruction

Object

Agent

Organization

Agent Role

Object Role

Environment

da Silva fig 2 (5/07)

Relationship Classifier1..*

Element

Direct RelationshipAssociation

Dependency Ownership Control Play Generalization

Metaclasses of the UML metamodel

New Metaclasses

Legend

Inhabit

Figure 1. The extended
UML metamodel

incorporating MAS-ML
entities and properties

(some relationships
omitted).

Figure 2. The extended
UML metamodel
incorporating MAS-ML
relationships.

Table 2. TAO primitive and
high-level dynamic processes.

da Silva fig 3 (5/07) - 15 picas

MAS-ML Models

MAS-ML
Grammar

1st phase of the
transformation

2nd phase of the
transformation

3rd phase of the
transformation

Domain-Independent
Entities Rules

Domain-Dependent
Entities Rules

Domain-Dependent
Relationships

Rules

Java Code
+

MAS-ML Relationships

MAS-ML Textual Description
MAS-ML Entities

+
MAS-ML Relationships

Java Code

. . .

Figure 3. Transformation
phases of the development

process.

diagrams to focus on the extension aspects to be cov-
ered by the resulting MAS-ML. The structural dia-
grams in MAS-ML are the extended UML class
diagram and two new diagrams: organization and

role. MAS-ML extends the UML class diagram to
represent the structural relationships between agents,
agents and classes, organizations, organizations and
classes, environments, and environments and classes.
The organization diagram
models system organizations
and the relationships between
them and other system enti-
ties. The role diagram models
the relationships between the
roles defined in organizations.
The three structural dia-
grams—class, organization,
and role diagrams—model all
entities and relationships
defined in TAO.

We further aim to extend
the UML sequence and activ-
ity diagrams to represent the
dynamic aspects of MASs.
These diagrams make it possi-
ble to model interactions
between agents, organiza-
tions, environments, and
objects; execution of plans
and actions associated with
agents, organizations, and
active environments; and pro-
tocols defined by roles. The
entities modeled in the
sequence diagrams are instances of the entity classes
modeled in the structural diagrams. The methods,
plans, and actions modeled in the sequence and activ-

ity diagrams are also defined in the structural dia-
grams associated with the respective entity classes.

Since a sequence or activity diagram can model dif-
ferent entities executing different plans and actions at

the same time, as well as the same
entity playing more than one role,
any of these diagrams can express
concurrency and parallelism in
the design models. Moreover,
since a sequence or activity dia-
gram can model different entities
executing in different environ-
ments, as well as entities moving
from one environment to
another, any of these diagrams
can express distribution in the
design models. For representation
of both the structural and
dynamic diagrams and their use
in modeling concrete MAS appli-
cations, see [5–7].

With the aim of implementing
systems modeled through MAS-
ML, a transformer was developed
to generate code from the MAS-
ML structural diagrams. The
models described at the agent
level of abstraction are automati-
cally transformed into object-ori-
ented code.

The transformation process
consists of three phases (see Fig-
ure 3). In the first, the MAS-ML
graphical models of the applica-
tion are described textually
through MAS-ML grammar.
Using that grammar makes it pos-
sible to describe all information
presented in MAS-ML structural
diagrams, including entities and
their properties and the relation-
ships between them.

In the second, domain-inde-
pendent-entity rules and domain-
dependent-entity rules are applied
to the textual description of the
MAS-ML models to generate a

partial transformation. The domain-independent-
entity rules generate the set of domain-independent
object-oriented modules and their relationships defined
by an object-oriented abstract architecture. The set of
classes in the architecture represents the entities that
cannot be mapped directly from MAS-ML to Java
classes. Entities (such as agents, organizations, and

COMMUNICATIONS OF THE ACM May 2007/Vol. 50, No. 5 107

set of MAS abstractions developed based on our
investigation of existing agent-based and object-ori-
ented methodologies, languages, and theories. TAO
combines the abstractions frequently described in
the literature on MASs.
The benefit of having
such a framework is to
provide support for
developing new
methodologies, meth-
ods, and languages
based on the concepts
defined and related in
the framework. Each
concept is viewed as a
candidate abstraction
for modeling lan-
guages, methodologies,
and support environ-
ments to be applied in different phases of MAS
development.

TAO defines the structural and dynamic aspects of
MASs, as well as the entities that may be described in
MASs, along with their properties and the relation-
ships associated with them (see Table 1). The
dynamic aspects described in
TAO are classified in primitive
dynamic processes and high-level
dynamic processes (see Table 2).
The primitive dynamic processes
describe the creation and destruc-
tion of entities. High-level
dynamic processes are more com-
plex domain-independent behav-
ior described based on primitive
dynamic processes. Domain-
independent high-level dynamic
processes describe patterns of
behavior derived from the char-
acteristics of the inhabit (envi-
ronment), ownership, and play
relationships between MAS enti-
ties. These relationships are
domain-independent in several
ways: agents, organizations, and
objects inhabit environments;
agents and suborganizations play
at least one role; and every role is
owned by an organization.

THE MAS-ML MODELING

LANGUAGE

MAS-ML [5–7] aims to model all structural and
dynamic aspects of the entities defined in TAO. The

MAS-ML metamodel is defined by extending the
UML metamodel according to the concepts defined in
TAO. When extending UML according to TAO con-
cepts, it is not possible to use only the tag, constraints,

and stereotype-extension
mechanisms provided by
UML. New metaclasses
and stereotypes associated
with new entities, proper-
ties, and relationships
defined in TAO but not
presented in UML are
incorporated into the
UML metamodel. Since
we aim to produce a con-
servative extension of
UML, metaclasses defined
in UML are not modified
during the extension. Fig-
ure 1 outlines a subset of
metaclasses of the UML
metamodel and the exten-

sions made by MAS-ML, including the new meta-
classes and stereotypes proposed by MAS-ML related
to the entities and properties described in TAO. The

icons representing the stereotypes are associated
with the metaclasses on which the stereotypes are
based. Figure 2 outlines the new metaclasses related
to the relationships described in TAO that have
been proposed by MAS-ML to the UML meta-
model.

Due to the set of entities and relationships defined
in the TAO metamodel incorporated into the UML
metamodel, we have proposed a new set of structural

106 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

da Silva fig 1 (5/07)

Structural Feature Behavioral Feature EnvironmentClass ObjectRoleClass

OrganizationClass

Operation

postcondition

precondition precondition

postcondition

AgentRoleClassClass AgentClass

ClassifierFeatures

Element

Property

AgentAction

Right Duty

GoalBelief

Axiom

AgentProtocolAgentPlan

AgentMessage

Constraint

1..*1..*

0..10..10..10..1

1..* * *

*

* *

**

*
receiver

 1
sender

Legend

Metaclasses of the UML metamodel

New Metaclasses

New Stereotypes

Active
EnvironmentClass

Passive
EnvironmentClass

da Silva table 2 (5/07)

High-Level Dynamic
Processes

Primitive Dynamic
Processes

entering an organization
leaving an organization moving from
one environment to another

entering an organization
leaving an organization moving from
one environment to another

creation
destruction

creation
destruction

creation
destruction

creation
destruction

creation
destruction

creation
destruction

Object

Agent

Organization

Agent Role

Object Role

Environment

da Silva fig 2 (5/07)

Relationship Classifier1..*

Element

Direct RelationshipAssociation

Dependency Ownership Control Play Generalization

Metaclasses of the UML metamodel

New Metaclasses

Legend

Inhabit

Figure 1. The extended
UML metamodel

incorporating MAS-ML
entities and properties

(some relationships
omitted).

Figure 2. The extended
UML metamodel
incorporating MAS-ML
relationships.

Table 2. TAO primitive and
high-level dynamic processes.

da Silva fig 3 (5/07) - 15 picas

MAS-ML Models

MAS-ML
Grammar

1st phase of the
transformation

2nd phase of the
transformation

3rd phase of the
transformation

Domain-Independent
Entities Rules

Domain-Dependent
Entities Rules

Domain-Dependent
Relationships

Rules

Java Code
+

MAS-ML Relationships

MAS-ML Textual Description
MAS-ML Entities

+
MAS-ML Relationships

Java Code

. . .

Figure 3. Transformation
phases of the development

process.

agent roles) cannot be
mapped directly into
classes, because classes are
defined based on attrib-
utes and methods. The
entities are instead defined
based on such properties
as goals, actions, and pro-
tocols. The domain-
dependent entities rules
generate classes that repre-
sent the application entities; the classes extend the
abstract classes defined in the architecture.

Finally, the third applies the domain-dependent-
relationship rules to the output of the second phase.
The classes in the previews phase are modified in
order to represent the application relationships. The
output of this phase is a set of object-oriented Java
classes representing the application being modeled
through MAS-ML.

Helping to explain the relationship among UML,
TAO, and MAS-ML, we use a four-layer metadata
architecture described in the Meta Object Facility
(MOF) specification [3], including meta-meta-
model, metamodel, domain model layer, and
instance. Here, we concentrate on the three lowest
layers: metamodel, domain model layer, and instance
(see Table 3).

The metamodel layer includes the description of
the structure and semantics of metadata. The Object
Management Group (www.omg.org) defines the
UML metamodel; we define the TAO metamodel (or
conceptual framework). The MAS-ML metamodel
extends the UML metamodel according to the con-
cepts described in TAO. MAS-ML specifies a model-
ing language that incorporates both object- and
agent-oriented concepts.

The domain model layer depicts data specific to the
application domain. The concepts modeled using
MAS-ML are instantiated according to the domain
information used to create domain models. The
instance (information or implementation) layer
describes the specific instances of the domain model
data.

CONCLUSION

Each of the MAS-related methodologies, languages,
and platforms we’ve explored in the literature pro-
pose distinct and varied sets of abstractions. The
TAO framework’s main role is to help make clear the
abstractions (and their relationships and interac-
tions) when developing large-scale MASs. The pro-
posed framework elicits an ontology connecting
consolidated abstractions (such as objects and classes)

and frequently used MAS
abstractions (such as
agents, roles, organiza-
tions, and environments)
that are the foundations
of agent-based and
object-based software
engineering.

Aiming to define a MAS modeling language that
contemplates all the concepts described in TAO, we’ve
proposed the MAS-ML language, extending UML by
preserving all object-related concepts in the UML
metamodel, even as it includes the agent-related con-
cepts in TAO. Using MAS-ML, it is possible to
describe agents, roles, organizations, and environ-
ments, as well as model the interactions among these
entities and how they execute internally.

References
1. Depke, R., Heckel, R., and Huster, J. Formal agent-oriented modeling

with UML and graph transformation. Science of Computer Program-
ming 44, 2 (Aug. 2002), 229–252.

2. D’Inverno, M. and Luck, M. Understanding Agent Systems. Springer,
New York, 2001.

3. Meta Object Facility Specification, version 1.4; www.org/cwm.
4. Odell, J., Parunak, H., and Bauer, B. Extending UML for agents. In

Proceedings of the Agent-Oriented Information Systems Workshop (Austin,
TX, July 2000), 3–17.

5. Silva, V., Choren, R., and Lucena, C. Using the UML 2.0 activity dia-
gram to model agent plans and actions. In Proceedings of the Fourth
International Conference on Autonomous Agents and Multi-Agent Systems
(Utrecht, The Netherlands, July 2005), 594–600.

6. Silva, V., Choren, R., and Lucena, C. A UML-based approach for
modeling and implementing multi-agent systems. In Proceedings of the
Third International Conference on Autonomous Agents and Multi-Agent
Systems (New York, July 2004), 914–921.

7. Silva, V. and Lucena, C. From a conceptual framework for agents and
objects to a multi-agent system modeling language. Journal of
Autonomous Agents and Multi-Agent Systems 9, 1–2 (July 2004),
145–189.

8. Silva, V., Garcia, A., Brandao, A., Chavez, C., Lucena, C., and Alen-
car, P. Taming agents and objects in software engineering. In Proceed-
ings of Software Engineering for Large-Scale Multi-Agent Systems.
Springer, Berlin, 2003, 1–26.

9. Unified Modeling Language Specification, version 2.0;
www.omg.org/uml/.

10. Wagner, G. The agent-object-relationship metamodel: Toward a uni-
fied view of state and behavior. Information Systems 28, 5 (July 2003),
475–504.

11. Wooldridge, M. and Ciancarini, P. Agent-oriented software engineer-
ing: The state of the art. In Proceedings of Agent-Oriented Software Engi-
neering. Springer, Berlin, 2001, 1–28.

12. Yu, L. and Schmid, B. A conceptual framework for agent-oriented and
role-based work on modeling. In Proceedings of the First International
Workshop on Agent-Oriented Information Systems (Heidelberg, Ger-
many, June 1999).

Viviane Torres da Silva (viviane@fdi.ucm.es) is an associate
researcher in the Informatics Systems and Computation Department
of Universidad Complutense de Madrid, Spain.
Carlos J.P. de Lucena (lucena@inf.puc-rio.br) is a professor in
the Computer Science Department of Universidade Catolica do Rio de
Janeiro, Brasil.

© 2007 ACM 0001-0782/07/0500 $5.00

c

108 May 2007/Vol. 50, No. 5 COMMUNICATIONS OF THE ACM

da Silva table 3 (5/07)

ModelsLayers

UML metamodel TAO metamodel

MAS-ML metamodel

MAS-ML models

Instances of the domain models

Metamodel layer

Domain-model layer

Instance layer

Table 3. MOF metadata
architecture.

