
MAS-ML: A Multi-Agent System Modeling Language
Viviane Torres da Silva Carlos J. P. de Lucena

Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Computer Science Department/TecComm Group
Rua Marques de São Vicente, 225, Rio de Janeiro, RJ, Brazil 22.453-900

{viviane, lucena}@inf.puc-rio.br

ABSTRACT
A multi-agent system modeling language (MAS-ML) that extends
the UML (Unified Modeling Language) is proposed here based on
a conceptual framework (metamodel) called TAO (Taming
Agents and Objects). The most important difference between our
approach and others presented in the literature is our clear
definition and representation of the abstractions and behavioral
features that compose MASs. Extensive experimentation is being
used to access the expressiveness of models represented in MAS-
ML and the ease to implement a multi-agent system from a
specification expressed in our notation.

Categories and Subject Descriptors
D.2[Software Engineering]: Design – representation.

General Terms
Design, Languages

Keywords
Modeling language, multi-agent system, conceptual framework

1. PROBLEM DESCRIPTION
In the present section we justify the need for a new multi-agent
system modeling language called MAS-ML (Multi-Agent System
Modeling Language).
Multi-agent systems (MASs) are gaining wide acceptance in both
industry and academia as a powerful paradigm for designing and
developing software systems [1]. Together with this growth, new
methodologies, methods, modeling languages, development
platforms, tools and programming languages are being proposed.
Agent-based systems require adequate techniques that explore
their benefits and their peculiar characteristics.
In particular, there is a need for modeling languages for multi-
agent systems that explore the use of agents and other abstractions
as first order modeling elements. Modeling languages should
represent the static and dynamic aspects of such systems by
expressing the characteristics of all essential elements of MASs.
Some modeling languages proposed in the literature, such as
[2,6], are based on the UML in order to reduce the risk of
adopting a new technology. The UML is used as a basis for
extension because it is widely accepted as a de facto standard for
object-oriented modeling; whereas we believe, as in [2], that a
new modeling language preferably should be an incremental
extension of a known and trusted modeling language.
Nevertheless, in its original form UML provides insufficient
support for modeling MASs. Among other things, the UML

metamodel does not provide support for modeling agents,
organizations and agent roles. Current approaches [2,6] propose to
extend the UML by expressing agents as a stereotype of
objects/classes. This is not satisfactory because stereotypes can
only be used to indicate a difference in meaning or usage between
two model elements with identical structure. Based on the
definition presented in the UML specification [5], stereotypes
may not be used to represent two completely different paradigms.
As a consequence, the current UML extensions to deal with the
fundamental MAS characteristics neither define nor clearly
represent the elements they identify, nor their relationships.
Therefore, we felt the need for a new approach to extend the
UML metamodel so that it could incorporate all features of multi-
agent systems.

2. GOALS
Our aim is to provide a multi-agent system modeling language
that encompasses the essential static and dynamic aspects of
MASs by emphasizing a clear representation for their concepts
and relationships. Due to the non-existence of a set of commonly
accepted abstractions to describe the static and dynamic aspects of
MASs, we have developed a conceptual framework (metamodel)
that expresses most aspects of MASs. The TAO (Taming Agents
and Objects) conceptual framework [3] provides an ontology that
makes it possible to understand the abstractions, and their
relationships, when used to support the development of large-
scale MASs. The ontology associates well accepted abstractions,
such as objects and classes, to other abstractions, such as agents,
roles and organizations. Together, they establish the foundation
for agent and object-based software engineering.
We propose a multi-agent system modeling language (MAS-ML)
[4] that extends the UML based on TAO. The UML metamodel
was extended by preserving all object-related concepts while
including agent-related abstractions. To extend the UML
metamodel according to the TAO meta-model concepts, we
needed more than the three extensions mechanisms provided by
the UML, namely: tag definitions, constraints and stereotypes.
Often it was necessary to add new metaclasses to the UML
metamodel to represent some new MAS concepts.

3. THE APPROACH

3.1 TAO
In order to understand the difference between MASs and object-
oriented systems and to provide foundations to better understand
and define MAS elements, we have proposed the TAO conceptual
framework. TAO is an evolving innovative conceptual framework
based on agent and object abstractions, which are the foundations
for modeling distributed software systems.
The TAO metamodel [3] defines the static and dynamic aspects of
MASs. The static aspects are related to the definition of the
entities (structural and behavioral features) and the relationships

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

126

between them. The entities defined in TAO are object, agent,
organization, role (agent role and object role), environment and
event. The relationships link two elements and describe how these
elements are related to each other. The relationships defined in
TAO are inhabit, ownership, play, control, dependency,
association, aggregation and specialization.
The dynamic aspects of the TAO metamodel describe the
interactions between its static elements. They can be classified as
primitive (elementary) dynamic processes and high-level dynamic
processes. Primitive processes describe the most basic domain-
independent interactions that exist between elements. The
processes of creating and destroying MAS elements are
characterized as primitive processes. High-level dynamic
processes are more complex domain-independent behavior that
are described based on primitive dynamic processes and other
high-level dynamic processes.

3.2 MAS-ML
Our approach involved extending the UML metamodel to
incorporate concepts related to the MAS theory. TAO defines
three main concepts – entities, properties (structural and
behavioral features) and relationships – that have been mapped to
the UML metamodel. In order to extend UML according to TAO
non-object concepts, new metaclasses and stereotypes have been
created and associated with the UML metamodel. When
introducing new abstraction in the UML metamodel, it is
necessary to create new diagram elements to represent the new
elements and relationships.
Because of the set of different elements and relationships defined
in the TAO metamodel that have been incorporated in the UML
metamodel, new diagrams – Organization and Role Diagram –
have been created and UML diagrams that already exist – Class
and Sequence Diagram – have been adapted. The three structural
diagrams – Class, Organization and Role diagrams – show all
elements and all relationships defined in TAO. The Sequence
diagram represents the dynamic interaction between the elements
that compose a MAS — i.e., between objects, agents,
organizations and environments.
The extended Class diagram also represents agents, organizations
and the relationships between agents, organizations and classes as
defined in TAO. The Organization Diagram models the system
organizations identifying their habitats, the roles that they define
and the elements – objects, agents and sub-organizations – that
play these roles. This diagram shows the TAO’s ownership, play
and inhabits relationships. The Role Diagram is responsible for
clarifying the relationships between the agent roles and object
roles. This diagram shows the TAO’s control, dependency,
association, aggregation and specialization relationships.

3.3 From Design Models to Code
Software development based on the agent-oriented paradigm
depends on modeling and programming languages that provide
the traceability between the requirement, analysis, design and the
implementation code [2]. The proposed modeling language
defines agent, organization and environments as first order
abstractions. It would be easier to use a programming language
that also considers these elements as first order abstractions to
implement MAS-ML models . An object-oriented programming

language could be used as an alternative; however, the elements
presented in the models need to be mapped to objects/classes.
This work includes an analysis of existing agent and object-
oriented programming languages to support MAS
implementation. Our aim is to evaluate the mapping of agent-
oriented design models and concepts expressed in MAS-ML to
object-oriented and agent-oriented programming languages.

4. SUMMARY
The most important difference between our approach and others
presented in the literature is our clear definition and
representation of the elements that compose MASs and their
behavior. Our proposal is based on a conceptual framework
(TAO) that describes the structural and dynamic properties of
MASs.
The main contributions of our work can be summarized in three
aspects: i) the proposal of a conceptual framework that defines the
structural and dynamic aspects of MASs; ii) the proposal of a
modeling language that extends the UML, based on the
conceptual framework; and iii) the mapping of the design
elements in the agent level of abstraction to a programming
language.
Our goal will be achieved through extensive experimentation with
MAS-ML in multi-agent systems published as benchmarks in the
literature and other realistic MAS applications. Specialists other
than the author are conducting experiments. It is important to
experiment with different application situations that explore a
large spectrum of multi-agent system characteristics. The set of
projects has been chosen to illustrate the structural and dynamic
aspects proposed in TAO and expressed by the MAS-ML.
The contributions of creating an MAS modeling language will be
evaluated by expressing, in MAS-ML, several modeling situations
that are difficult and/or impossible to represent in existing MAS
modeling languages. These situations will be selected from the
characteristics of MASs proposed in the literature. The MAS-ML
designs will also be compared to designs provided by other multi-
agent system modeling languages that extend the UML.

5. REFERENCES
[1] Jennings, N.: On agent-based software engineering, In

Artificial Intelligence, 2000, 11, pp. 277-296.
[2] Odell, J., Parunak, H. and Bauer, B.: Extending UML for

Agents, In: Proceedings of the Agent-Oriented Information
Systems Workshop, Odell, J., et. al, Eds., 17th National
Conference on Artificial Intelligence,2000, pp.3-17

[3] Silva, V. et.al: Taming Agents and Objects in Software
Engineering, In Software Engineering for Large-Scale Multi-
Agent System, Garcia, A. et. al Eds., LNCS, Springer, 2003.

[4] Silva, V., Lucena, C.: From a Conceptual Framework for
Agents and Objects to a Multi-Agent System Modeling
Language, Technical Report CS2003-03, School of
Computer Science, University of Waterloo, Canada, 2003.

[5] UML, Unified Modeling Language Specification, Version
1.5, http://www.omg.org/uml/, 2002.

[6] Wagner, G.: The Agent-Object-Relationship Metamodel, In
Proceedings of the 2nd International Symposium: From
Agent Theory to Agent Implementation, 2000.

127

