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Abstract 
This paper provides an overview of the work being done at the 
Air Force Institute of Technology on the Multiagent Systems 
Engineering methodology and the associated agentTool 
environment.  Our research is focused on discovering methods 
and techniques for engineering practical multiagent systems.  It 
uses the abstraction provided by multiagent systems for 
developing intelligent, distributed software systems. 

Introduction 
Multiagent systems have brought together many disciplines 
in an effort to build distributed, intelligent, and robust 
applications.  However, many of our traditional ways of 
thinking about and designing software do not fit the 
multiagent paradigm.  Over the past few years, there have 
been several attempts at creating tools and methodologies 
for building such systems (Iglesias, Garijo & Gonzalez 
1998).  Unfortunately, most of the tools and methodologies 
have either focused on specific agent architectures or 
lacked sufficient detail to adequately support designing 
complex systems.  In our research, we have developed both 
a complete-lifecycle methodology and a complimentary 
environment for analyzing, designing, and developing 
heterogeneous multiagent systems.  The methodology we 
are developing is Multiagent Systems Engineering (MaSE) 
(DeLoach, Wood, & Sparkman 2000) while the tool we are 
building to support that methodology is agentTool (Wood 
& DeLoach 2001). 
In our research, we do not take the typical artificial 
intelligence view of agents where agents are required to be 
autonomous, proactive, reactive, and social.  For our 
purposes, agents are simple software processes that interact 
with each other to meet an overall system goal.  It is often 
the case that multiple, non-complex agents may interact in 
such as way that the entire system may exhibit seemingly 
intelligent behavior.  We view agents merely as a 
convenient abstraction, which may or may not possess 
intelligence.  In this way, we handle intelligent and non-
intelligent system components equally within the same 
framework.  Our work is aimed at the much larger problem 
of building complex, distributed, and possibly dynamic 
systems that will pervade the future of computing.  To 
build these complex systems, distributed agents must work 

cooperatively with other agents in a heterogeneous 
environment.   
Sycara (Sycara 1998) describes six challenges of 
multiagent systems as 

1. decomposing problems and allocating tasks to 
individual agents, 

2. coordinating agent control and communications, 
3. making multiple agents act in a coherent manner, 
4. reasoning about other agents and the state of 

coordination, 
5. reconciling conflicting goals between agents, and 
6. engineering practical multiagent systems. 

Our research is an attempt to answer the sixth challenge, 
how to engineer practical multiagent systems, and to 
provide a framework for solving the first five challenges.  It 
uses the abstraction provided by multiagent systems for 
developing intelligent, distributed software systems.  To 
accomplish this goal, MaSE uses a number of graphically 
based models to describe the types of agents in a system 
and their interfaces to other agents, as well as an 
architecture-independent definition of the internal agent 
design.   

Multiagent Systems Engineering 
In general, our research at AFIT has focused on developing 
the methodology, techniques, and tools for building 
practical agent systems.  To this end, we have developed 
the Multiagent Systems Engineering methodology (Wood 
& DeLoach 2001, DeLoach & Wood 2001) that defines 
multiagent systems in terms of agent classes and their 
organization.  We define their organization in terms of 
which agents can communicate using conversations.  There 
are two basic phases in MaSE: analysis and design.  The 
first phase, Analysis, includes three steps: capturing goals, 
applying use cases, and refining roles. 
The first step, Capturing Goals, takes user requirements 
and turns them and top-level system goals.  After defining 
system level goals, we extract system-level use cases and 
define Sequence Charts in the applying use cases step.  
This step defines an initial set of system roles and 
communications paths.  Using the system goals and roles 
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identified in the use cases, we refine and extend the initial 
set of roles and define tasks to accomplish each goal in the 
refining roles step. 
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Figure 1.  MaSE Methodology 

In the Design phase, we transform the analysis models into 
constructs useful for actually implementing the multiagent 
system.  The Design phase has four steps:  creating agent 
classes, constructing conversations, assembling agent 
classes, and system design.  In the first step, creating agent 
classes, we define specific agent classes to fill the roles 
defined in the Analysis phase.  Then, after determining the 
number and types of agent classes in the system, we can 
either construct conversations between those agent classes 
or define the internal components that comprise the agent 
classes.  The analyst may perform these steps in parallel 
during the constructing conversations and assembling agent 
classes steps.  Once we have completely defined the system 
structure, we define how the system is to be deployed.  
During this step, the designer defines the number of 
individual agents, their locations, and other system specific 
items. 

Capturing Goals 
The first step in the MaSE methodology is Capturing 
Goals, which takes the initial system specification and 
transforms it into a structured set of system goals, depicted 
in a Goal Hierarchy Diagram, as shown in Figure 2.  A 
MaSE goal is always defined as a system-level objective.  

Lower-level constructs may inherit or be responsible for 
goals, but goals always have a system-level context.  
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Figure 2.  Goal Hierarchy Diagram 

There are two steps to Capturing Goals: identifying the 
goals and structuring goals.  An analyst may identify goals 
by distilling the essence of the set of requirements.  These 
requirements may include detailed technical documents, 
user stories, or formalized specifications.  Once captured 
and explicitly stated, goals are less likely to change than the 
detailed steps and activities involved in accomplishing 
them (Kendall, Palanivelan & Klikivayi 1998).  Next, the 
analyst analyses and structures the identified goals into a 
Goal Hierarchy Diagram.  In a Goal Hierarchy Diagram, 
goals the analyst organizes the goals by importance.  Each 
level of the hierarchy should contain goals that are roughly 
equal in scope.  The analyst also identifies sub-goals that 
are necessary to satisfy parent goals.  Eventually, the 
analyst will associate each goal with a role and a set of 
agent classes responsible for satisfying that goal. 

Applying Use Cases 
The Applying Uses Cases step is a crucial step in 
translating goals into roles and associated tasks.  The 
analyst draws use cases from the system requirements and 
users.  Use cases are narrative descriptions of a sequence of 
events that define desired system behavior.  They are 
examples of how the system should behave in a given case.  
To help determine the actual communications required 
within a multiagent system, the analyst restructures the use 
cases into Sequence Diagrams, as shown in Figure 3.  A 
Sequence Diagram depicts a sequence of events between 
multiple roles and, as a result, defines the minimum 
communication that must take place between roles.  The 
roles identified in this step form the initial set of roles used 
to fully define the system roles in the next step.  In the next 
step, the analyst will use the events identified here to help 
define tasks and, eventually, conversations.   

Refining Roles 
The third step in MaSE is to ensure we have identified all 
the necessary roles and to develop the tasks that define role  
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Figure 3.  Sequence Diagram 

behavior and communication patterns.  Roles are identified 
from the Sequence Diagrams developed during the 
Applying Use Cases step as well as the system goals 
defined in Capturing Goals.  We ensure all system goals are 
accounted for by associating each goal with a specific role, 
which is eventually played by at least one agent in the final 
design.  A role is an abstract description of an entity’s 
expected function and is similar to the notion of an actor in 
a play or an office within an organization (Kendall 1998).  
Each goal is generally mapped to a single role.  However, 
there are situations where it is useful to combine multiple 
goals in a single role for convenience or efficiency.  We 
base these decisions on standard software engineering 
concepts such as functional, communicational, procedural, 
or temporal cohesion.  Other factors include the natural 
distribution of resources or special interfacing issues.  
Roles are captured in a Role Model as shown in Figure 4. 
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Figure 4.  Role Model 

Once roles have been defined, tasks are created. The most 
interesting, and most difficult, part of using the MaSE 
methodology is transforming the roles into agent classes 
and defining the conversations and internal agent 
behaviors.  To help us accomplish this task, we need to be 
able to define high-level tasks that can be transformed into 
specific agent functionality.  This functionality helps us 
define the internal components of agents as well as the 
details of the conversations in which the agents participate.  
Figure 5 shows a detailed version of the MaSE role model.  
The ovals below each role denote tasks that the role must 
execute in order to accomplish its goal.  The lines between 
nodes indicate protocols between tasks.  These protocols 

define a series of messages between the tasks that allow 
them to work cooperatively.  The arrows on the protocol 
lines point from the initiator of the protocol to the 
responding task. 
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Figure 5.  MaSE Role Model 

We define these concurrent tasks (DeLoach 2001) as a 
finite state automaton that specifies messages sent between 
roles and tasks.  Concurrent tasks also allow us to specify 
internal processing via activities in the states.  Using 
concurrent tasks, we can define higher level, complex 
interaction protocols that require coordination between 
multiple agents.  We have also shown that we can actually 
verify correct operation of such interaction protocols based 
on Concurrent Tasks (Lacey & DeLoach 2000a).  An 
example of a MaSE Concurrent Task Diagram, which 
defines the Notify User task of the AdminNotifier role, is 
shown in Figure 6.   

FindAdmin
a = getAdminLoc();

t = setTimer();

wait

receive(RequestNotification(error), agent)

^ send(Notify(error, agent), a)

receieve(Acknowledge, a) ^ send(NotificationComplete(), agent)

[timeout(t)]

 

Figure 6.  Concurrent Task Diagram 

The syntax of a transition follows the notation below. 
trigger(args1) [guard]/transmission(args2)

We interpret the transition to say that if an event trigger is 
received with a number of arguments args1 and the 
condition guard holds, then the message transmission is 
sent with the set of arguments args2.  All items are 
optional.  For example, a transition with just a guard 
condition, [guard], is allowed, as well as one with a 
received message and a transmission, trigger/transmission.  
Multiple transmission events are also allowed and are 
separated by semi-colons (;).  Actions may be performed in 
a state and are written as functions. 

Creating Agent Classes 
In Creating Agent Classes, agent classes are identified from 
roles and documented in an Agent Class Diagram, as 
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shown in Figure 7.  Agent Class Diagrams depict agent 
classes as boxes and the conversations between them as 
lines connecting the agent classes.  As with goals and roles, 
we generally define a one-to-one mapping between roles, 
which are listed under the agent class name, and agent 
classes.  However, the designer may combine multiple roles 
in a single agent class or map a single role to multiple agent 
classes.  Since agents inherit the communication paths 
between roles, any paths between two roles become 
conversations between their respective classes.  Thus, as 
the designer assigns roles to agent classes, the overall 
organization of the system is defined.  To make the 
organization more efficient, it is often desirable to combine 
two roles that share a high volume of message traffic.  
When determining which roles to combine, concepts such 
as cohesion and the volume of message traffic are 
important considerations.   
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Figure 7.  Agent Class Diagram 

Constructing Conversations 
The designer may perform the next two steps, Constructing 
Conversations and Assembling Agents in parallel.  The two 
steps are closely linked, since the agent architecture 
defined in Assembling Agents must implement the 
conversations and methods defined in Constructing 
Conversations.  A MaSE conversation defines a 
coordination protocol between two agents.  Specifically, a 
conversation consists of two Communication Class 
Diagrams, one each for the initiator and responder.  A 
Communication Class Diagram is a pair of finite state 
machines that define a conversation between two 
participant agent classes.  One side of a conversation is 
shown in Figure 8.  The initiator always begins the 
conversation by sending the first message.  The syntax for 
Communication Class Diagrams is very similar to that of 
Concurrent Task Diagrams.  The main difference between 
conversations and concurrent tasks is that concurrent tasks 
may include multiple conversations between many different 
roles and tasks whereas conversations are binary exchanges 
between individual agents. 

Assembling Agents 
In this step of MaSE, the internals of agent classes are 
created.  Robinson (Robinson 2000) describes the details of 
assembling agents from a set of standard or user-defined 

architectures.  This process is simplified by using an 
architectural modeling language that combines the abstract 
nature of traditional architectural description languages 
with the Object Constraint Language, which allows the 
designer to specify low-level details.   

wait1

failure
failed(file, violdationType, reason)

^ request(informUser, violationType, file)

wait2
agree(informUser, true)

failure(informUser, reason) inform(notificationComplete)failure(informUser, reason)

 

Figure 8.  Communication Class Diagram 

System Deployment 
The final step of MaSE defines the configuration of the 
actual system to be implemented.  To date, we have only 
looked at static, non-mobile systems although we are 
currently investigating the specification and design of 
dynamic and mobile agent systems.  In MaSE, we define 
the overall system architecture using Deployment Diagrams 
to show the numbers, types, and locations of agents within 
a system.   
System Deployment is also where all previously undefined 
implementation decisions, such as programming language 
or communication framework, must be made.  While in a 
pure software engineering sense, we want to put off these 
decisions until this step, there will obviously be times when 
the decision are made early, perhaps even as part of the 
requirements.   

agentTool 
The agentTool system is our attempt to implement a tool to 
support and enforce MaSE.  Currently agentTool 
implements all seven steps of MaSE as well as automated 
support for transforming analysis models into design 
models.  The agentTool user interface is shown in Figure 9.  
The menus across the top allow access to several system 
functions, including a persistent knowledge base (Raphael 
& DeLoach 2000) conversation verification (Lacey & 
DeLoach 2000a) and code generation.  The buttons on the 
left add specific items to the diagrams while the text 
window below them displays system messages.  The 
different MaSE diagrams are accessed via the tabbed 
panels across the top of the main window.  When a MaSE 
diagram is selected, the designer can manipulate it 
graphically in the window.  Each panel has different types 
of objects and text that can be placed on them.  Selecting 
an object in the window enables other related diagrams to 
become accessible.  For example, in Figure 10, three roles 
have been defined with their various collections of 
concurrent tasks.  When the user selects the Register 
Researcher task (by clicking on the oval), the Task Panel 
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tab becomes visible.  The user may then access that 
diagram (Figure 11) by selecting the appropriate tab.  

 

Figure 9.  agentTool Goal Hierarchy Diagram 

 

Figure 10.  agentTool Role Model 

 

Figure 11.  agentTool Concurrent Task Diagram 

The part of agentTool that is perhaps the most appealing is 
the ability to work on different pieces of the system and at 
various levels of abstraction interchangeably, which 
mirrors the ability of MaSE to incrementally add detail.  
The “tabbed pane” operation of agentTool implements this 

capability of MaSE since the step you are working on is 
always represented by the current diagram and the 
available tabs show how you might move up and down 
through the methodology. 
During each step of system development, the various 
analysis and design diagrams are available through tabs on 
the main window.  The ordering of the tabs follows the 
MaSE steps, so selecting a tab to the left of the current 
pane would move “back” in the methodology while 
selecting a tab to the right would move “forward.”  The 
currently selected object controls the available diagrams 
(via tabs), which include those that can be reached 
following valid MaSE steps.  For instance, selecting a task 
causes a tab for the associated Concurrent Task Diagram to 
become visible.  Selecting that tab would cause the 
Concurrent Task Diagram to appear.  

Designing Systems using agentTool 
Designing a multiagent system using agentTool begins in 
an Agent Class Diagram as shown above in Figure 12.  
Since a conversation can only exist between agent classes, 
we must define agent classes before we can define the 
conversations.  While we can add all the agent classes to 
the Agent Class Diagram before adding any conversations, 
we can also add “sections” of the system at a time, 
connecting appropriate agent classes with conversations, 
and then moving onto the next section.  AgentTool 
supports either method, which is generally a matter of 
personal choice. 

 

Figure 12.  agentTool Class Diagram 

Once we have defined agent classes and conversations, we 
can define the details of the conversations using 
Communication Class Diagrams (Figure 13).  The “Add 
State” button adds a state to the panel while the “Add 
Trans” button adds a conversation between the two selected 
states.  A designer can verify a conversations at any point 
during its creation by using the Verify Conversations 
command from the Verify menu (Lacey & DeLoach 
2000b).  The agentTool verification process ensures 
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conversation specifications are deadlock free.  If any errors 
exist, the verification results in a highlighted section of a 
conversation, as shown in Figure 13 on the “Ack” transition 
(highlights are yellow in the application).  Each highlight 
indicates a potential error as detected by the verification 
routine. 

 

Figure 13.  agentTool Conversation Error 

Agent classes have internal components that can be added, 
removed, and manipulated in a manner similar to the other 
agentTool panels (see Figure 14).  However, agent classes 
do have an added layer of complexity since components 
can have internal Component State Diagrams and possibly 
additional sub-components beneath them.   

 

Figure 14.  agentTool Agent Class Components 

The designer can add detailed design information at a 
lower levels of abstraction.  In Figure 14, the Component 
State Diagram and MessageInterface Architecture tabs lead 
to a Component State Diagram and Sub-Architecture 
Diagram respectively.  The Component State Diagram 
defines the dynamic behavior of the component while the 
Sub-Architecture Diagram contains additional components 
and connector that further define the component. 

Semi-automated Design Support 
Recent work on agentTool includes developing support for 
semi-automatic transformations that transform a set of 
analysis models into the appropriate design models 
(Sparkman 2001).  To perform the process, the designer 
must first assign roles to specific agent classes.  After the 

assignments have been made, the designer can apply the 
semi-automated transformations to the analysis models.   
There are basically three stages to the transformations.  In 
stage one, the transformations attempt to determine to 
which protocol events in the concurrent tasks belong.  In 
most cases this can be done automatically.  However, in 
some cases, the system cannot precisely determine the 
appropriate protocol for each send/receive event.  When 
this happens, the system simply asks the designer to make 
the choice as shown in Figure 15.  Here the system could 
not automatically determine to which protocol the bottom 
receive(msg, ag2) event actually belongs.  In this case, the 
designer has the option to choose Protocol2, Protocol3, or 
both.  Once the designer has made the choice, the system 
carries out the remaining transformations. 

 

Figure 15.  Semi-automatic Transformations - Getting 
User Input 

After the protocols have been determined for each event, 
the transformation continues by creating internal agent 
components for each concurrent task associated with the 
roles being played by an agent.  Then, the system copies 
the concurrent task definition into the component’s internal 
state machine.  This ensures the behavior defined for each 
role is transferred to the agent that will play that role. 
In stage two, the internal state machines of each component 
are annotated in preparation for extracting the actual 
conversations.  This preparation phase finds the starting 
and ending location of each conversation and ensures that 
conversations between agents “match up.” 
In the final stage, the conversations are extracted from the 
internal components and placed in separate conversation 
diagrams.  The conversations are replaced by method calls 
so that the internal component state machine still retain 
internal processing and allow for conversation 
coordination. 

Mobility 
Other recent work on MaSE and agentTool includes 
research into providing the ability to model mobile agents.  
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The initial step in modeling mobility is to include a move 
activity in a concurrent task state.  The move activity 
basically requests that the agent move to a new location.  
The actual implementation of the move activity is assumed 
to be part of the environment within which the agent is 
executing.  The activity returns a Boolean value as to 
whether the move actually occurred.  This simple addition 
to the analysis phase allows the analyst to specify when a 
move should occur, the requested location, and the ability 
to decide whether or not the move was successful. 
While simple to model in the analysis phase, mobility is 
more complex in the design phase.  At the design level, 
MaSE had to provide the capability to inform each 
component when a move was requested and to provide the 
capability for each component to store its current state, 
shutdown, and restart after the move.  To help the designer 
carry out these complex design activities, semi-automated 
transformations, similar to those described in the previous 
section, were developed and implemented in agentTool 
(Self 2001). 

Summary 
This paper has presented an overview of the Multiagent 
Systems Engineering methodology and the agentTool 
environment.  MaSE and agentTool are being developed in 
tandem to provide guidance and practical support for 
building complex, distributed, and dynamic systems.  This 
research is supported by grants from the Air Force Office 
of Scientific Research and the Dayton Area Graduate 
Studies Institute.  The views expressed in this article are 
those of the authors and do not reflect the official policy or 
position of the United States Air Force, Department of 
Defense, or the US Government. 
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