

presented at 12th Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001)

Miami University, Oxford, Ohio, March 31 - April 1, 2001

1

Analysis and Design using MaSE and agentTool

Scott A. DeLoach

Air Force Institute of Technology
Graduate School of Engineering and Management

Department of Electrical and Computer Engineering
Wright-Patterson Air Force Base, OH 45433-7765

sdeloach@computer.org

Abstract
This paper provides an overview of the work being done at the
Air Force Institute of Technology on the Multiagent Systems
Engineering methodology and the associated agentTool
environment. Our research is focused on discovering methods
and techniques for engineering practical multiagent systems. It
uses the abstraction provided by multiagent systems for
developing intelligent, distributed software systems.

Introduction
Multiagent systems have brought together many disciplines
in an effort to build distributed, intelligent, and robust
applications. However, many of our traditional ways of
thinking about and designing software do not fit the
multiagent paradigm. Over the past few years, there have
been several attempts at creating tools and methodologies
for building such systems (Iglesias, Garijo & Gonzalez
1998). Unfortunately, most of the tools and methodologies
have either focused on specific agent architectures or
lacked sufficient detail to adequately support designing
complex systems. In our research, we have developed both
a complete-lifecycle methodology and a complimentary
environment for analyzing, designing, and developing
heterogeneous multiagent systems. The methodology we
are developing is Multiagent Systems Engineering (MaSE)
(DeLoach, Wood, & Sparkman 2000) while the tool we are
building to support that methodology is agentTool (Wood
& DeLoach 2001).
In our research, we do not take the typical artificial
intelligence view of agents where agents are required to be
autonomous, proactive, reactive, and social. For our
purposes, agents are simple software processes that interact
with each other to meet an overall system goal. It is often
the case that multiple, non-complex agents may interact in
such as way that the entire system may exhibit seemingly
intelligent behavior. We view agents merely as a
convenient abstraction, which may or may not possess
intelligence. In this way, we handle intelligent and non-
intelligent system components equally within the same
framework. Our work is aimed at the much larger problem
of building complex, distributed, and possibly dynamic
systems that will pervade the future of computing. To
build these complex systems, distributed agents must work

cooperatively with other agents in a heterogeneous
environment.
Sycara (Sycara 1998) describes six challenges of
multiagent systems as

1. decomposing problems and allocating tasks to
individual agents,

2. coordinating agent control and communications,
3. making multiple agents act in a coherent manner,
4. reasoning about other agents and the state of

coordination,
5. reconciling conflicting goals between agents, and
6. engineering practical multiagent systems.

Our research is an attempt to answer the sixth challenge,
how to engineer practical multiagent systems, and to
provide a framework for solving the first five challenges. It
uses the abstraction provided by multiagent systems for
developing intelligent, distributed software systems. To
accomplish this goal, MaSE uses a number of graphically
based models to describe the types of agents in a system
and their interfaces to other agents, as well as an
architecture-independent definition of the internal agent
design.

Multiagent Systems Engineering
In general, our research at AFIT has focused on developing
the methodology, techniques, and tools for building
practical agent systems. To this end, we have developed
the Multiagent Systems Engineering methodology (Wood
& DeLoach 2001, DeLoach & Wood 2001) that defines
multiagent systems in terms of agent classes and their
organization. We define their organization in terms of
which agents can communicate using conversations. There
are two basic phases in MaSE: analysis and design. The
first phase, Analysis, includes three steps: capturing goals,
applying use cases, and refining roles.
The first step, Capturing Goals, takes user requirements
and turns them and top-level system goals. After defining
system level goals, we extract system-level use cases and
define Sequence Charts in the applying use cases step.
This step defines an initial set of system roles and
communications paths. Using the system goals and roles

2

identified in the use cases, we refine and extend the initial
set of roles and define tasks to accomplish each goal in the
refining roles step.

Creating Agent
Classes

Require-
ments

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

Analysis
D

esign

Figure 1. MaSE Methodology

In the Design phase, we transform the analysis models into
constructs useful for actually implementing the multiagent
system. The Design phase has four steps: creating agent
classes, constructing conversations, assembling agent
classes, and system design. In the first step, creating agent
classes, we define specific agent classes to fill the roles
defined in the Analysis phase. Then, after determining the
number and types of agent classes in the system, we can
either construct conversations between those agent classes
or define the internal components that comprise the agent
classes. The analyst may perform these steps in parallel
during the constructing conversations and assembling agent
classes steps. Once we have completely defined the system
structure, we define how the system is to be deployed.
During this step, the designer defines the number of
individual agents, their locations, and other system specific
items.

Capturing Goals
The first step in the MaSE methodology is Capturing
Goals, which takes the initial system specification and
transforms it into a structured set of system goals, depicted
in a Goal Hierarchy Diagram, as shown in Figure 2. A
MaSE goal is always defined as a system-level objective.

Lower-level constructs may inherit or be responsible for
goals, but goals always have a system-level context.

1. Detect and notify
administrator of host

violations.

1.1.3a/1.1.2a
Ensure the admin

receives notification.

1.1.1 Determine if
files have been

deleted or modified.

1.1.2 Detect user
attempts to modify

files.

1.1.3 Notify
administrator of

violations.

1.2.1 Determine if
invalid user tries to

login

1.2.2 Notify
administrator of
login violations

1.1 Detect & notify
admin of system file

violations.

1.2 Detect and
notify administrator
of login violations.

Figure 2. Goal Hierarchy Diagram

There are two steps to Capturing Goals: identifying the
goals and structuring goals. An analyst may identify goals
by distilling the essence of the set of requirements. These
requirements may include detailed technical documents,
user stories, or formalized specifications. Once captured
and explicitly stated, goals are less likely to change than the
detailed steps and activities involved in accomplishing
them (Kendall, Palanivelan & Klikivayi 1998). Next, the
analyst analyses and structures the identified goals into a
Goal Hierarchy Diagram. In a Goal Hierarchy Diagram,
goals the analyst organizes the goals by importance. Each
level of the hierarchy should contain goals that are roughly
equal in scope. The analyst also identifies sub-goals that
are necessary to satisfy parent goals. Eventually, the
analyst will associate each goal with a role and a set of
agent classes responsible for satisfying that goal.

Applying Use Cases
The Applying Uses Cases step is a crucial step in
translating goals into roles and associated tasks. The
analyst draws use cases from the system requirements and
users. Use cases are narrative descriptions of a sequence of
events that define desired system behavior. They are
examples of how the system should behave in a given case.
To help determine the actual communications required
within a multiagent system, the analyst restructures the use
cases into Sequence Diagrams, as shown in Figure 3. A
Sequence Diagram depicts a sequence of events between
multiple roles and, as a result, defines the minimum
communication that must take place between roles. The
roles identified in this step form the initial set of roles used
to fully define the system roles in the next step. In the next
step, the analyst will use the events identified here to help
define tasks and, eventually, conversations.

Refining Roles
The third step in MaSE is to ensure we have identified all
the necessary roles and to develop the tasks that define role

3

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

Figure 3. Sequence Diagram

behavior and communication patterns. Roles are identified
from the Sequence Diagrams developed during the
Applying Use Cases step as well as the system goals
defined in Capturing Goals. We ensure all system goals are
accounted for by associating each goal with a specific role,
which is eventually played by at least one agent in the final
design. A role is an abstract description of an entity’s
expected function and is similar to the notion of an actor in
a play or an office within an organization (Kendall 1998).
Each goal is generally mapped to a single role. However,
there are situations where it is useful to combine multiple
goals in a single role for convenience or efficiency. We
base these decisions on standard software engineering
concepts such as functional, communicational, procedural,
or temporal cohesion. Other factors include the natural
distribution of resources or special interfacing issues.
Roles are captured in a Role Model as shown in Figure 4.

FileNotifier
1.1

LoginNotifier
1.2

FileDeletionDetector
1.1.1

FileModifiedDetector
1.1.2

LoginDetector
1.2.1

AdminNotifier
1.1.3a
1.2.2a

User

Figure 4. Role Model

Once roles have been defined, tasks are created. The most
interesting, and most difficult, part of using the MaSE
methodology is transforming the roles into agent classes
and defining the conversations and internal agent
behaviors. To help us accomplish this task, we need to be
able to define high-level tasks that can be transformed into
specific agent functionality. This functionality helps us
define the internal components of agents as well as the
details of the conversations in which the agents participate.
Figure 5 shows a detailed version of the MaSE role model.
The ovals below each role denote tasks that the role must
execute in order to accomplish its goal. The lines between
nodes indicate protocols between tasks. These protocols

define a series of messages between the tasks that allow
them to work cooperatively. The arrows on the protocol
lines point from the initiator of the protocol to the
responding task.

FileNotifier
1.1

LoginNotifier
1.2

FileDeletionDetector
1.1.1

FileModifiedDetector
1.1.2

LoginDetector
1.2.1

AdminNotifier
1.1.3, 1.1.3a
1.2.2, 1.2.2a

Detect File
Deletions

Determine
Validity Notify Detect File

Deletions
Determine

Validity

Detect Failed
LoginsDetect Logins

Determine
Validity

Notify Notify User

Invalid File
Deletion

Invalid File
Modification

Failed
Login

Invalid
Login

Login
Notification

File
Notification

User

Display

Figure 5. MaSE Role Model

We define these concurrent tasks (DeLoach 2001) as a
finite state automaton that specifies messages sent between
roles and tasks. Concurrent tasks also allow us to specify
internal processing via activities in the states. Using
concurrent tasks, we can define higher level, complex
interaction protocols that require coordination between
multiple agents. We have also shown that we can actually
verify correct operation of such interaction protocols based
on Concurrent Tasks (Lacey & DeLoach 2000a). An
example of a MaSE Concurrent Task Diagram, which
defines the Notify User task of the AdminNotifier role, is
shown in Figure 6.

FindAdmin
a = getAdminLoc();

t = setTimer();

wait

receive(RequestNotification(error), agent)

^ send(Notify(error, agent), a)

receieve(Acknowledge, a) ^ send(NotificationComplete(), agent)

[timeout(t)]

Figure 6. Concurrent Task Diagram

The syntax of a transition follows the notation below.
trigger(args1) [guard]/transmission(args2)

We interpret the transition to say that if an event trigger is
received with a number of arguments args1 and the
condition guard holds, then the message transmission is
sent with the set of arguments args2. All items are
optional. For example, a transition with just a guard
condition, [guard], is allowed, as well as one with a
received message and a transmission, trigger/transmission.
Multiple transmission events are also allowed and are
separated by semi-colons (;). Actions may be performed in
a state and are written as functions.

Creating Agent Classes
In Creating Agent Classes, agent classes are identified from
roles and documented in an Agent Class Diagram, as

4

shown in Figure 7. Agent Class Diagrams depict agent
classes as boxes and the conversations between them as
lines connecting the agent classes. As with goals and roles,
we generally define a one-to-one mapping between roles,
which are listed under the agent class name, and agent
classes. However, the designer may combine multiple roles
in a single agent class or map a single role to multiple agent
classes. Since agents inherit the communication paths
between roles, any paths between two roles become
conversations between their respective classes. Thus, as
the designer assigns roles to agent classes, the overall
organization of the system is defined. To make the
organization more efficient, it is often desirable to combine
two roles that share a high volume of message traffic.
When determining which roles to combine, concepts such
as cohesion and the volume of message traffic are
important considerations.

FileMonitor
FileDeletionDetector
FileModifiedDetector

LoginMonitor
LoginDetector

DetectNotify
FileNotifier

LoginNotifier

Notifier
AdminNotifier

User
User

Violation

RequestNotification

RequestNotification

Notify

Figure 7. Agent Class Diagram

Constructing Conversations
The designer may perform the next two steps, Constructing
Conversations and Assembling Agents in parallel. The two
steps are closely linked, since the agent architecture
defined in Assembling Agents must implement the
conversations and methods defined in Constructing
Conversations. A MaSE conversation defines a
coordination protocol between two agents. Specifically, a
conversation consists of two Communication Class
Diagrams, one each for the initiator and responder. A
Communication Class Diagram is a pair of finite state
machines that define a conversation between two
participant agent classes. One side of a conversation is
shown in Figure 8. The initiator always begins the
conversation by sending the first message. The syntax for
Communication Class Diagrams is very similar to that of
Concurrent Task Diagrams. The main difference between
conversations and concurrent tasks is that concurrent tasks
may include multiple conversations between many different
roles and tasks whereas conversations are binary exchanges
between individual agents.

Assembling Agents
In this step of MaSE, the internals of agent classes are
created. Robinson (Robinson 2000) describes the details of
assembling agents from a set of standard or user-defined

architectures. This process is simplified by using an
architectural modeling language that combines the abstract
nature of traditional architectural description languages
with the Object Constraint Language, which allows the
designer to specify low-level details.

wait1

failure
failed(file, violdationType, reason)

^ request(informUser, violationType, file)

wait2
agree(informUser, true)

failure(informUser, reason) inform(notificationComplete)failure(informUser, reason)

Figure 8. Communication Class Diagram

System Deployment
The final step of MaSE defines the configuration of the
actual system to be implemented. To date, we have only
looked at static, non-mobile systems although we are
currently investigating the specification and design of
dynamic and mobile agent systems. In MaSE, we define
the overall system architecture using Deployment Diagrams
to show the numbers, types, and locations of agents within
a system.
System Deployment is also where all previously undefined
implementation decisions, such as programming language
or communication framework, must be made. While in a
pure software engineering sense, we want to put off these
decisions until this step, there will obviously be times when
the decision are made early, perhaps even as part of the
requirements.

agentTool
The agentTool system is our attempt to implement a tool to
support and enforce MaSE. Currently agentTool
implements all seven steps of MaSE as well as automated
support for transforming analysis models into design
models. The agentTool user interface is shown in Figure 9.
The menus across the top allow access to several system
functions, including a persistent knowledge base (Raphael
& DeLoach 2000) conversation verification (Lacey &
DeLoach 2000a) and code generation. The buttons on the
left add specific items to the diagrams while the text
window below them displays system messages. The
different MaSE diagrams are accessed via the tabbed
panels across the top of the main window. When a MaSE
diagram is selected, the designer can manipulate it
graphically in the window. Each panel has different types
of objects and text that can be placed on them. Selecting
an object in the window enables other related diagrams to
become accessible. For example, in Figure 10, three roles
have been defined with their various collections of
concurrent tasks. When the user selects the Register
Researcher task (by clicking on the oval), the Task Panel

5

tab becomes visible. The user may then access that
diagram (Figure 11) by selecting the appropriate tab.

Figure 9. agentTool Goal Hierarchy Diagram

Figure 10. agentTool Role Model

Figure 11. agentTool Concurrent Task Diagram

The part of agentTool that is perhaps the most appealing is
the ability to work on different pieces of the system and at
various levels of abstraction interchangeably, which
mirrors the ability of MaSE to incrementally add detail.
The “tabbed pane” operation of agentTool implements this

capability of MaSE since the step you are working on is
always represented by the current diagram and the
available tabs show how you might move up and down
through the methodology.
During each step of system development, the various
analysis and design diagrams are available through tabs on
the main window. The ordering of the tabs follows the
MaSE steps, so selecting a tab to the left of the current
pane would move “back” in the methodology while
selecting a tab to the right would move “forward.” The
currently selected object controls the available diagrams
(via tabs), which include those that can be reached
following valid MaSE steps. For instance, selecting a task
causes a tab for the associated Concurrent Task Diagram to
become visible. Selecting that tab would cause the
Concurrent Task Diagram to appear.

Designing Systems using agentTool
Designing a multiagent system using agentTool begins in
an Agent Class Diagram as shown above in Figure 12.
Since a conversation can only exist between agent classes,
we must define agent classes before we can define the
conversations. While we can add all the agent classes to
the Agent Class Diagram before adding any conversations,
we can also add “sections” of the system at a time,
connecting appropriate agent classes with conversations,
and then moving onto the next section. AgentTool
supports either method, which is generally a matter of
personal choice.

Figure 12. agentTool Class Diagram

Once we have defined agent classes and conversations, we
can define the details of the conversations using
Communication Class Diagrams (Figure 13). The “Add
State” button adds a state to the panel while the “Add
Trans” button adds a conversation between the two selected
states. A designer can verify a conversations at any point
during its creation by using the Verify Conversations
command from the Verify menu (Lacey & DeLoach
2000b). The agentTool verification process ensures

6

conversation specifications are deadlock free. If any errors
exist, the verification results in a highlighted section of a
conversation, as shown in Figure 13 on the “Ack” transition
(highlights are yellow in the application). Each highlight
indicates a potential error as detected by the verification
routine.

Figure 13. agentTool Conversation Error

Agent classes have internal components that can be added,
removed, and manipulated in a manner similar to the other
agentTool panels (see Figure 14). However, agent classes
do have an added layer of complexity since components
can have internal Component State Diagrams and possibly
additional sub-components beneath them.

Figure 14. agentTool Agent Class Components

The designer can add detailed design information at a
lower levels of abstraction. In Figure 14, the Component
State Diagram and MessageInterface Architecture tabs lead
to a Component State Diagram and Sub-Architecture
Diagram respectively. The Component State Diagram
defines the dynamic behavior of the component while the
Sub-Architecture Diagram contains additional components
and connector that further define the component.

Semi-automated Design Support
Recent work on agentTool includes developing support for
semi-automatic transformations that transform a set of
analysis models into the appropriate design models
(Sparkman 2001). To perform the process, the designer
must first assign roles to specific agent classes. After the

assignments have been made, the designer can apply the
semi-automated transformations to the analysis models.
There are basically three stages to the transformations. In
stage one, the transformations attempt to determine to
which protocol events in the concurrent tasks belong. In
most cases this can be done automatically. However, in
some cases, the system cannot precisely determine the
appropriate protocol for each send/receive event. When
this happens, the system simply asks the designer to make
the choice as shown in Figure 15. Here the system could
not automatically determine to which protocol the bottom
receive(msg, ag2) event actually belongs. In this case, the
designer has the option to choose Protocol2, Protocol3, or
both. Once the designer has made the choice, the system
carries out the remaining transformations.

Figure 15. Semi-automatic Transformations - Getting
User Input

After the protocols have been determined for each event,
the transformation continues by creating internal agent
components for each concurrent task associated with the
roles being played by an agent. Then, the system copies
the concurrent task definition into the component’s internal
state machine. This ensures the behavior defined for each
role is transferred to the agent that will play that role.
In stage two, the internal state machines of each component
are annotated in preparation for extracting the actual
conversations. This preparation phase finds the starting
and ending location of each conversation and ensures that
conversations between agents “match up.”
In the final stage, the conversations are extracted from the
internal components and placed in separate conversation
diagrams. The conversations are replaced by method calls
so that the internal component state machine still retain
internal processing and allow for conversation
coordination.

Mobility
Other recent work on MaSE and agentTool includes
research into providing the ability to model mobile agents.

7

The initial step in modeling mobility is to include a move
activity in a concurrent task state. The move activity
basically requests that the agent move to a new location.
The actual implementation of the move activity is assumed
to be part of the environment within which the agent is
executing. The activity returns a Boolean value as to
whether the move actually occurred. This simple addition
to the analysis phase allows the analyst to specify when a
move should occur, the requested location, and the ability
to decide whether or not the move was successful.
While simple to model in the analysis phase, mobility is
more complex in the design phase. At the design level,
MaSE had to provide the capability to inform each
component when a move was requested and to provide the
capability for each component to store its current state,
shutdown, and restart after the move. To help the designer
carry out these complex design activities, semi-automated
transformations, similar to those described in the previous
section, were developed and implemented in agentTool
(Self 2001).

Summary
This paper has presented an overview of the Multiagent
Systems Engineering methodology and the agentTool
environment. MaSE and agentTool are being developed in
tandem to provide guidance and practical support for
building complex, distributed, and dynamic systems. This
research is supported by grants from the Air Force Office
of Scientific Research and the Dayton Area Graduate
Studies Institute. The views expressed in this article are
those of the authors and do not reflect the official policy or
position of the United States Air Force, Department of
Defense, or the US Government.

References
1. S. DeLoach, M. Wood, and C. Sparkman. Multiagent

Systems Engineering, submitted to International Journal of
Software Engineering and Knowledge Engineering,
November 2000.

2. S. DeLoach, Specifying Agent Behavior as Concurrent
Tasks, to appear at the 5th International Conference on
Autonomous Agents, Montreal, Canada. May 28 – June 1,
2001.

3. Scott A. DeLoach & Mark Wood. Developing Multiagent
Systems with agentTool, Intelligent Agents VII -
Proceedings of the 7th International Workshop on Agent
Theories, Architectures, and Languages (ATAL'2000).
Springer Lecture Notes in AI, Springer Verlag, Berlin, 2001.

4. C. Iglesias, M. Garijo, and J. Gonzalez. A Survey of Agent-
Oriented Methodologies. In: Müller, J.P., Singh, M.P., Rao,
A.S., (Eds.): Intelligent Agents V. Agents Theories,
Architectures, and Languages. Lecture Notes in Computer
Science, Vol. 1555. Springer-Verlag, Berlin Heidelberg,
1998.

5. E. Kendall. Agent Roles and Role Models: New
Abstractions for Multiagent System Analysis and Design.
Proceedings of the International Workshop on Intelligent
Agents in Information and Process Management, Bremen,
Germany, September 1998.

6. E. Kendall, U. Palanivelan, and S. Kalikivayi. Capturing
and Structuring Goals: Analysis Patterns. Proceedings of
the Third European Conference on Pattern Languages of
Programming and Computing, Bad Irsee, Germany, July
1998.

7. T. Lacey, S. DeLoach, Verification of Agent Behavioral
Models. Proceedings of the International Conference on
Artificial Intelligence (IC-AI'2000), pages 557-564, CSREA
Press, 2000.

8. T. Lacey, S. DeLoach. Automatic Verification of
Multiagent Conversations. Proceedings of the Eleventh
Annual Midwest Artificial Intelligence and Cognitive
Science Conference, pages 93-100. AAAI, 2000.

9. Marc J. Raphael & Scott A. DeLoach. A Knowledge Base
for Knowledge-Based Multiagent System Construction,
National Aerospace and Electronics Conference
(NAECON), Dayton, OH, October 10-12, 2000.

10. D. Robinson. A Component Based Approach to Agent
Specification. MS thesis, AFIT/ENG/00M-22. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson Air Force Base Ohio, USA, March 2000.

11. A. Self. Design & Specification of Dynamic, Mobile, and
Reconfigurable Multiagent Systems. MS thesis,
AFIT/ENG/01M-11. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson Air Force
Base Ohio, USA, March 2001.

12. C. Sparkman. Transforming Analysis Models into Design
Models for the Multiagent Systems Engineering
Methodology. MS thesis, AFIT/ENG/01M-12. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson Air Force Base Ohio, USA, March 2001.

13. K. P. Sycara, "Multiagent Systems," AI Magazine vol. 19(2),
pp. 79-92, 1998.

14. M. Wood, S. DeLoach. An Overview of the Multiagent
Systems Engineering Methodology, In P. Ciancarini and M.
Wooldridge, editors, Agent-Oriented Software Engineering -
First International Workshop (AOSE), Limerick, Ireland,
June 10, 2000. Lecture Notes in Computer Science. Vol.
1957, Springer Verlag, Berlin, 2001.

