
Current Issues in Multi-Agent Systems Development
(Invited Paper)

Rafael H. Bordini1, Mehdi Dastani2, and Michael Winikoff3?

1 University of Durham, U.K.
R.Bordini@durham.ac.uk

2 Utrecht University, The Netherlands
mehdi@cs.uu.nl

3 RMIT University, Australia
winikoff@cs.rmit.edu.au

Abstract. This paper is based on an invited talk, delivered by the first author, but
prepared by all three authors. The paper surveys the state-of-the-art in developing
multi-agent systems, and sets out to answer the questions: “what are the key out-
standing issues in developing multi-agent systems?” and “what should we, as a
research community, be paying particular attention to, over the next few years?”.
Based on our characterisation of the current state-of-the-art in developing MAS,
we identify three key areas for work: techniques for integrating design and code;
extending agent-oriented programming languages to cover certain aspects that are
currently weak or missing (e.g. social concepts, and modelling the environment);
and development of debugging and verification techniques, with a particular fo-
cus on using model checking in testing and debugging, and on extending model
checking to design artefacts.

1 Introduction

In this paper we survey the current state of the art in multi-agent system development
and identify current issues. These issues are areas where we believe the research com-
munity should concentrate future research efforts, since they are, in the authors’ opin-
ion, crucial to practical adoption and deployment of agent technology.

This paper was based on an invited talk at ESAW 2006. The talk was presented by
Rafael Bordini, but the contents of the talk grew out of each of the author’s opinions,
as presented and discussed at a Dagstuhl Seminar4, and incorporating ideas from the
AgentLink ProMAS technical forum group5.

This paper is structured as follows. We begin (section 2) by reviewing the current
state-of-the-art in MAS development, focussing in particular on Agent Oriented Soft-
ware Engineering (AOSE), Agent Oriented Programming Languages (AOPLs), and on
verification of agent systems. We then (section 3) identify a number of key issues. For

? Michael Winikoff acknowledges the support of the Australian Research Council & Agent Ori-
ented Software (grant LP0453486).

4 http://www.dagstuhl.de/de/program/calendar/semhp/?semnr=06261
5 http://www.cs.uu.nl/∼mehdi/al3promas.html

each issue we discuss what we believe is the way forward towards resolving the issue.
Since this paper is all about future work, our conclusion (section 4) merely summarises
the key points of the paper.

2 State of the Art

There are a number of methodologies that provide developers with a process for do-
ing software engineering of multi-agent systems, and there is a range of programming
languages especially designed to facilitate the programming of agent system. The field
of verification and validation of agent systems is comparatively less well-developed,
but there has been work on both formal verification using model checking, and on ap-
proaches for debugging and testing agent systems.

In current practice, the way in which a multi-agent system is typically developed
is that the developer designs the agent organisation and the individual agents (perhaps
using an AOSE methodology), then takes the detailed design and manually codes the
agents in some programming language, perhaps agent-oriented, but more often using
traditional programming languages. The resulting system is debugged (at best) using a
combination of tracing messages and agent inspectors.

Thus developing a multi-agent system, like developing any software system, en-
compasses activities that are traditionally classified into three broad areas: software en-
gineering (e.g. requirements elicitation, analysis, design6), implementation (using some
suitable programming language), and verification/validation. To help structure this pa-
per, which has also a focus on agent programming languages and verification, we have
separated the last two types of activities from general software engineering (specifically
analysis and design). Therefore, in the following subsections we briefly review the state
of the art in AOSE, programming languages for multi-agent systems, and verification
of multi-agent systems (including debugging).

2.1 Agent Oriented Software Engineering

Agent Oriented Software Engineering is concerned with how to do software engineering
of agent-oriented systems. It is a relatively youthful field, with the first AOSE work-
shop held in the year 2000. Nevertheless, over the past decade or so there has been
considerable work by many people, resulting in quite a number of methodologies in the
literature. These methodologies vary considerably in terms of the level of detail that
is provided, the maturity of the methodology, and the availability of both descriptions
that are accessible to developers (i.e., not researchers) and of tool support. Of the many
methodologies available (e.g. see [6, 31]), key methodologies that are widely regarded
as mature include Gaia [63, 66], MaSE [23], Tropos [13] and Prometheus [43].

It is important to clarify what is meant by a methodology. From a pragmatic point of
view, a methodology needs to include all that a software engineer requires to do analysis
and design, namely:

6 Design includes various sorts of design activities, e.g. architectural design, social design, de-
tailed design.

Fig. 1. Prometheus

Concepts: While for object-oriented design the concepts used — classes, objects, in-
heritance, etc. — are so commonly understood as to be taken for granted, for agents
a single set of basic concepts is not (yet) universally accepted or known, so a
methodology needs, for completeness, to define a set of basic concepts that are
used. For example, the Prometheus7 methodology uses a set of concepts that are
derived from the definition of an agent: action, percept, goal, event, plan, and belief
[60].

Process: A methodology needs to provide an overall process that specifies what is done
after what. For example, in Prometheus there are three phases — system specifi-
cation, architectural design, and detailed design — where each phase consists of
steps. For example, system specification includes the steps of identifying the sys-
tem’s goals, and of defining the interface between the system and its environment.
Although these steps are often most easily described as being sequential, it is usual
to recognise that iteration is the norm when doing software analysis/design. The
process used by Prometheus is summarised in Figure 1.

Models and Notations: The results of analysis and design are a collection of models,
for example a goal overview model or a system overview model. These models are
depicted using some notation, often graphical, typically some variation on “boxes
and arrows”. Figure 2 shows an example model.

Techniques: It is not enough to merely say that, for example, the second step of the
methodology is to develop a goal overview diagram. The software designer, espe-

7 We shall use Prometheus as an example because we are most familiar with it.

Fig. 2. System Overview Diagram (using Prometheus)

cially if not particularly experienced in designing agent systems, benefits from a
collection of specific techniques — usually formulated as heuristics — that guide
them in how that step is carried out. For example, a goal overview diagram can
be refined by asking for each goal “how?” and “why?”, yielding respectively new
child and new parent goals [53].

Tool Support: Whilst arguably not essential, for any but the smallest design, and for
any design that is iteratively refined, having tool support is of enormous benefit.
Tools can range from simple drawing packages, to more sophisticates design envi-
ronments that provide various forms of consistency checking.

Although each methodology has its own processes and notations, there are some
common aspects. Many methodologies are broken down into some sort of requirements
phase (e.g., “system specification” in Prometheus), some sort of system design (e.g.,
“architectural design” in Prometheus), and detailed design. The requirements phase
specifies what it is that the system should do, with one of the commonly used mod-
els being some sort of goal hierarchy. The system design phase determines what agent
types exist in the system, and how they interact (i.e., interaction design). Finally, the
detailed design phase determines how each agent operates. It is also important to note
that many methodologies capture in some way the environment that the agent system
will inhabit. In Prometheus this is done, fairly simply, by specifying the interface to the
environment in terms of actions and percepts.

2.2 Agent Oriented Programming Languages

There exist many Agent Oriented Programming Languages (AOPLs). In addition, there
also exist platforms that focus on providing certain functionalities — such as com-
munication and general infrastructure (e.g., white/yellow pages) — but which do not
provide a programming language for developing agents. Such so-called platforms, such

as OAA[15], JADE[5] and FipaOS[47], are not in the scope of this paper as they are not
AOPLs.

In this section we shall, instead, focus on agent oriented programming languages
for defining the behaviour of individual agents in a multi-agent system. In general, in
so-called “cognitive agent programming languages”, the focus is on how to describe
the behaviour of an agent in terms of constructs such as plans, events, beliefs, goals,
and messages. Although there are differences between various proposed AOPLs, they
also have significant common characteristics. It is instructive to note that in some of
these languages the environment is not captured, that agent interaction is implemented
at the level of sending individual message — interaction protocols, for example, are
not represented — and that in many languages goals are not provided, but they are
approximated by the notion of events instead [61].

Most cognitive agent programming languages such as Jason [12], Jadex[12], JACK
[45], 3APL[22, 32], and 2APL[19] come with their own platforms. These platforms pro-
vide general infrastructure (e.g., agent management system, white and yellow pages),
a communication layer, and integrated development environment (IDE). The existing
IDE’s provide editors with syntax highlighting facilities, enable a set of agents pro-
grams to be executed in parallel in various modes such as step-by-step or continuous,
provide tools to inspect the internal states of the agents during execution, and examine
messages that are exchanged by the agents. Further, some of the platforms that come
with a cognitive agent programming languages, such as Jadex[46] and 2APL[19], built
on an existing agent platform, such as JADE[5]. The resulting platforms use the func-
tionalities of the existing platforms such as the general infrastructure, communication
facilities, and inspection tools.

Loosely speaking, agent-oriented programming languages can be classified as be-
ing either “theoretical” (i.e., having formal semantics, but arguably being impractical
for serious development) or “practical” (i.e., being practical for serious development,
but lacking formal semantics). However, it must be noted that this classification is sim-
plistic in that languages with formal semantics are not precluded from being practical.
Additionally, there are a number of more recent languages (or extensions of existing
languages, such as Jason, which extends AgentSpeak(L)) that aim to be practical, yet
have formal semantics. In particular, we mention 2APL, Jason, and SPARK [12, 19, 40]
as examples of languages that aim to be practical yet have formal semantics. Below we
briefly present some relevant features of Jason and 2APL. For more information on
AOPLs, including various agent programming languages and platforms not mentioned
here, see [7, 8].

AgentSpeak(L) and Jason

AgentSpeak(L)8 was proposed by Anand Rao in the mid 90s [50]. Perhaps surprisingly,
the proposal received limited attention for a number of years before being “revived”: in
recent years there have been a number of implementations of AgentSpeak. Of these, the
best developed is Jason, which extends AgentSpeak with a range of additional features.

8 In the remainder of this paper we shall simply refer to this language and its variants as “AgentS-
peak”.

The AgentSpeak language was intended to capture, in an abstract form, the key ex-
ecution mechanism of existing Belief-Desire-Intention (BDI) platforms such as PRS
[28, 36] and dMARS[24]. This execution cycle links events and plans. Each (relevant)
event has a number of plans that it triggers. These plans have so-called context condi-
tions, that specify under what conditions a plan should be considered to be applicable
to handle an event. A given event instance is handled by determining which of the plans
that it triggers are currently applicable, and then selecting one of these plans and execut-
ing it. Execution of plans is done step-by-step in an interleaved manner; plan instances
form intentions, each representing one of the various foci of attention for the agent. The
execution switches to the plan in the focus of attention of currently greatest importance
for the agent.

Figure 3 shows examples of AgentSpeak plans for an abstract scenario of a plan-
etary exploration robot. The first plan is triggered when the robot perceives a green
patch on a rock, which indicates that rock should be examined first as its analysis is
likely to contain important data for scientist working on the mission. In particular, the
triggering event is green patch(Rock) which occurs when the agent has a new
belief of that form. However, the plan is only to be used when the battery charge
is not low (this is the plan context, in this case battery charge(low) must not
be believed by the agent). The course of action prescribed by this plan, for when the
relevant event happens and the context condition is satisfied is as follows: the loca-
tion of the rock with the perceived green patch is to be retrieved from the belief base
(?location(Rock,Coordinates)), then the agent should have a new goal to
traverse to those coordinates (!traverse(Coordinates)), and finally, after the
traverse has been successfully achieved, having a new goal to examine that particular
rock (!examine(Rock)). The other two plans give alternative courses of action for
when the robot comes to have a new goal of traversing to a certain coordinate. When
the robot believes there is a safe path towards there, all it has to do is to execute the ac-
tion (that the robot is hardwired to do) of physically moving towards those coordinates.
The figure omits for the sake of space the alternative course of action (which would
be to move around to try and find a different location from which a safe path can be
perceived, probably by using some image processing software).

Jason9 is a Java-based platform that implements the operational semantics of an ex-
tended version of AgentSpeak. The purpose of the language extensions was to turn the
abstract AgentSpeak(L) language originally defined by Rao into a practical program-
ming language. The language extensions and the platform have the following features:

Strong negation: as agents typically operate under uncertainty and in dynamic envi-
ronments, it helps the modelling of such applications if we are able to refer to things
agents believe to be true, believe to be false, or are ignorant about.

Handling of plan failures: as multi-agent system operate in unpredictable environ-
ment, plans can fail to achieve the goals they were written to achieve. It is therefore
important that agent languages provide mechanisms to handle plan failure.

Speech-act based communication: as the mental attitudes that are classically used
to give semantics for speech-act based communication are formally defined for

9 Jason is jointly developed by Rafael Bordini and Jomi F. Hübner (FURB, Brazil) and available
open source at http://jason.sf.net.

+green patch(Rock) :
not battery charge(low) <-

?location(Rock,Coordinates);
!traverse(Coordinates);
!examine(Rock).

+!traverse(Coords) :
safe path(Coords) <-

move towards(Coords).

+!traverse(Coords) :
not safe path(Coords) <-

...

Fig. 3. Examples of AgentSpeak Plans

AgentSpeak we can give precise semantics for how agents should interpret the ba-
sic illocutionary forces, and this has been implemented in Jason. An interesting
extension of the language is that beliefs can have “annotations” which can be use-
ful for application-specific tasks, but there is one standard annotations that is done
automatically by Jason, which is on the source of each particular belief.

Plan annotations: in the same way that beliefs can have annotations, programmers can
add annotations to plan labels, which can be used by elaborate (e.g., using decision-
theoretic techniques) selection functions. Selection functions are user-defined func-
tions which are used by the interpreter, including which plan should be given pref-
erence in case various different plans happen to be considered applicable for a
particular event.

Distribution: the platform makes it easy to define the agents that will take part in the
system and also determine in which machines each will run, if actual distribution
is necessary. The infrastructure for actual distribution can be changed (e.g., if a
particular application needs to use a particular distribution platform such as JADE).

Environments: multi-agent systems will normally be deployed in some real-world en-
vironment. Even in that case, during development a simulation of the environment
will be needed. Jason provides support for developing environments, which are
programmed in Java rather than an agent language.

Customisation: programmers can customise two important parts of the agent platform
by providing application-specific Java methods: the agent class and the agent archi-
tecture (note that the AgentSpeak interpreter provides only the reasoning compo-
nent of the overall agent architecture). For more details, see [11].

Language extensibility and legacy code: the AgentSpeak extension available with Ja-
son has a construct called “internal actions”. These are then implemented in Java
(or indeed any other language using JNI). This provides for straightforward lan-
guage extensibility, which is also a straightforward way of invoking legacy code
from within the high-level agent reasoning in an elegant manner. Jason comes with
a library of essential standard internal actions. These implement a variety of useful

operations for practical programming, but most importantly, they provide the means
for programmers to do important things for BDI-inspired programming that were
not possible in the original AgentSpeak language, such as checking and dropping
the agent’s own desires/intentions.

Integrated Development Environment: Jason is distributed with an IDE which pro-
vides a GUI for managing the system’s project (the multi-agent system), editing
the source code of individual agents, and running the system. Another tool pro-
vided as part of the IDE allows the user to inspect agents’ internal (i.e., “mental”)
states when the system is running in debugging mode. The IDE is a plug-in to
jEdit (http://www.jedit.org/), and an Eclipse plug-in is likely to be available in the
future.

There is also much ongoing research to extend Jason is various ways, including:
plan patterns for declarative goals [34], combination with the Moise+ [35] organisa-
tional model (http://moise.sf.net), automated belief revision [1], and combination with
a high-level environment language aimed at social simulation, which in recent work
aims to allow normative and organisational aspects to be associated with, for example,
certain environment locations [41].

2APL: A Practical Agent Programming Language

One of the challenges of practical cognitive agent programming languages is an effec-
tive integration of declarative and imperative style programming. The declarative style
programming should facilitate the implementation of the mental state of agents allow-
ing agents to reason about their beliefs and goals and update them accordingly. An
important issue here is the expressivity of the beliefs and goals, the expressions with
which they can be updated, interface to existing declarative languages, and the relation
between beliefs and goals (e.g., is it possible for an agent to have an expression as be-
lief and goal at the same time? I.e., can an agent desire a state which is believed to
be achieved?) [20, 62]. The imperative style programming should facilitate the imple-
mentation of processes, their execution modes, the flow of control, interface to exist-
ing imperative programming languages, and processing of events and exceptions. The
question is how to integrate these declarative and imperative programming aspects in an
effective way. This design objective is the main motivation for introducing a new agent
programming language called 2APL (A Practical Agent Programming Language) [19].

Agents that are implemented by 2APL programs can generate plans by reasoning
about their goals and beliefs, which are implemented in a declarative way. Plans can
consist of actions of different types. Like most BDI-based programming languages,
2APL provides different types of actions such as belief and goal update actions, belief
and goal test actions, external actions (to be performed in the agents’ shared environ-
ment), and communication actions. As agents may operate in dynamic environments,
they have to observe (be notified about) their environmental changes. In 2APL such
environmental changes will be notified to the agents by means of events.

A characterising feature of 2APL is its distinction between events and goals. In
some agent programming languages events are used for various purposes, e.g., for mod-
elling an agent’s goals or for notifying an agent about internal changes. Although both

goals and events cause a 2APL agent to execute actions, they differ from each other in
a principle way. For example, an agent’s goal denotes a desirable state for which the
agent performs actions to achieve it (goals are directly related with beliefs such that a
goal is automatically dropped as soon as it is achieved), while an event carries infor-
mation about (environmental) changes which may cause an agent to react and execute
certain actions. After the execution of actions, an agent’s goal may be dropped if the
state denoted by it is believed to be achieved, while an event can be dropped just before
executing the actions that are triggered by it. Moreover, because of the declarative na-
ture of goals (logical expressions), an agent can reason about its goals while an event
only carries information which is not necessarily the subject of reasoning.

Beliefs:
post(5,5).
dirt(3,6).
dirt(5,4).
clean(world) :- not dirt(X,Y).

Goals:
hasGold(2) and clean(world) ,
hasGold(5)

PG-rules:
clean(world) <- dirt(X,Y) |
{ goto(X,Y);

PickUpDirt();
goto(2,2);
DropDirt() }

PC-rules:
goldAt(X,Y) <- true | { [goto(X,Y); PickUpGold()] }

PR-rules:
PickUpDirt();R <- dirt(X,Y) | { goto(X,Y);PickUpDirt();R }

Fig.4. Examples of 2APL Program

For example, consider the 2APL program as illustrated in Figure 4. This program,
which for simplicity reasons does not include all details, indicates that the agent starts
with the beliefs that it is on position (5,5), there are dirts at positions (3,6) and (5,4),
and that the world is clean if there is no dirt at any position. The agent wants to achieve
two states (the goals are separated by a comma): one state in which he has two pieces
of gold and the world is clean of dirt, and another state in which he has five pieces
of gold. Note that these two state does not need to be achieved simultaneously. The
planning goals rule (PG-rules) indicates that the state in which the world is clean can be
achieved by going to the dirts’ positions, picking them up, bringing them to the depot
position (2,2), and dropping them in the depot. Note that the application of this rule

can only achieve the subgoal clean(world), not the desired state hasGold(2)
and clean(world). The ability to achieve subgoals requires reasoning about goals.
Different notions of reasoning about goals are discussed in [20, 54]. Note also that if all
dirts are picked up and dropped in the depot position, then the agent will believe that
the world is clean. If the agent also believes that it has two pieces of gold, then it
automatically drops the goal hasGold(2) and clean(world).

The difference between goals and events can be illustrated by the procedural rules
(PC-rules). This rule indicates that if the agent is notified by an event that there is a gold
piece at a certain position, then the agent should go to that position and pick up the gold
piece. Note that both goals and event can cause the agent to perform actions.

Other characterising 2APL features are related to the constructs designed with re-
spect to an agent’s plans. The first construct is a part of an exception handling mecha-
nism allowing a programmer to specify how an agent should repair its plans when the
execution of its plans fail. This construct has the form of a rule which indicates that a
plan should be replaced by another one. For example, consider again the agent program
illustrated in Figure 4. The plan repair rule (PR-rules) indicates that if the execution of
a plan that starts with the action PickUpDirt() (followed by the rest R of the plan)
fails (for example because the dirt was already removed by another agent), then the plan
should be replaced by the goto(X,Y);PickUpDirt();R plan if the agent believes
that there is dirt at another position (X,Y). Note the use of variable R which stands for
the rest of the original plan. The second 2APL programming construct related to plans
is the so-called non-interleaving (region of) plans. In most agent-oriented programming
languages, an agent can have a set of plans whose executions can be interleaved. The ar-
bitrary interleaving of plans may be problematic in some cases such that a programmer
may want to indicate that a certain part of a plan should be executed at once without be-
ing interleaved with the actions of other plans. A non-interleaving (region of) plan can
be marked by putting the (region of) plan within [] brackets. For example, in Figure
4 the plan for picking up a gold piece when notified by an event is a non-interleaving
plan.

In addition to these features, 2APL provides specific programming mechanisms
such as procedures, recursion and encapsulation. A procedure can be implemented by
means of a specific rule that relates an abstract action (procedure call) to a concrete
plan (procedure body). A recursion can be implemented simply by including the pro-
cedure call in the procedure body. Although these mechanisms can be implemented in
other cognitive agent programming languages, 2APL follows the separation of concerns
principle and provides specific constructs for the purpose of implementing procedures
and recursions. In comparable cognitive agent programming languages (programming
languages with formal semantics), procedures can be implemented by means of rules
that relate events (or goals) to plans. In 2APL, procedures and recursion are considered
as inherently different concepts from goals and events such that their implementation is
independent of these concepts.

2.3 Verification and Validation

Multi-agent systems are distributed and concurrent, and the agents that make up a MAS
are able to exhibit complex flexible behaviour in order to achieve its objectives in the

face of a dynamic and uncertain environment. This flexible behaviour is key in making
agent technology useful, but it makes it difficult to debug agent systems, and, once the
system is (supposedly) debugged and ready for deployment, makes it hard to obtain
confidence that the system will work as desired.

Debugging is an essential part of the process of developing software, and so good
support for debugging is important. In the case of agent systems, there has been some
work on debugging (e.g. [26, 44]), but debugging techniques used in practice still rely
on tracing and state inspection. The better agent development environments provide
facilities to view, browse, and analyse the messages that are being exchanged, and fa-
cilities to examine the internal state of the agents. As examples, Figures 5 and 6 show
the Mind Inspector tool provided by Jason and 2APL’s State Trace, respectively; other
platforms, such as JACK, provide similar functionality.

In addition to using standard debugging techniques, there has been some work that
aims to provide semi-automatic bug detection. For example, the work of Poutakidis et
al. [44, 48, 49] automatically detects bugs in agent interactions by comparing an execu-
tion trace with the interaction protocol that is supposed to describe the valid message
sequences. Any sequence of messages that occurs in the system’s execution but that is
illegal according to the protocol is automatically identified and flagged as an error. The
general principle is that design artefacts can be used to assist in debugging.

In any software system it is essential that when the system is deployed and used,
there is confidence that it will do what it is supposed to do. Typically, this confidence is
achieved through testing. However, for agents that are able to exhibit flexible behaviour,
achieving their goals in a range of ways depending on the situation, it is harder to
achieve confidence in the system through testing. Hence, there has been a rather limited
amount of work on testing agent systems, but there has been interest in using formal
methods, especially model checking, to verify agent systems.

Work has focussed on model checking because it is easier to use than theorem prov-
ing, and, more importantly, because it can provide counter examples when the system
fails to satisfy a desired property. Further, much work is devoted to state-space reduc-
tion techniques which can make model checking practical even for very large systems.
However, although the technology is promising, at present it is fairly preliminary: the
languages handled are limited, and the techniques have not been applied to industrial-
scale case studies in multi-agent system.

Another type of work related to the correct behaviour of agent programs aims at
specifying the semantics of the agent programming language is such a way to guar-
antee the satisfaction of certain behaviour. For example, in [21] it was shown that the
semantics of an agent programming language can be defined in such a way that any
agent implemented in that agent programming language will drop its goals if the goal
is either achieved or believed not to be achievable anymore.

Most of the work done on model checking within the multi-agent systems research
area is quite theoretical, although there are approaches that use existing model checkers,
typically to check properties of particular aspects of a multi-agent system. A survey
paper on the use of logic-based techniques for specifying but particular for verifying
multi-agent systems is to appear in print around the same time as this paper, so instead
of giving references here, we refer the interested reader to [25]. When it comes to model

Fig. 5. Jason Debugging: Agent Mind Inspector

Fig. 6. 2APL Debugging: Agent State Tracer

checking software (i.e., a complete running system) there is little work that applies to
multi-agent systems in particular. More specifically on model checking agent programs
written in an agent-oriented programming language, to our knowledge the only existing
approach is the one presented in [10, 55].

3 Problems with the Current State of the Art

Let us briefly summarise the current state-of-the-art in developing MAS. Not all current
multi-agent system development projects use all of these, but rather we describe what
is already available and in our opinion is likely to be used. Indeed adoption of these
techniques will make short-term future development of agent-based system far more
successful than previous attempts, in our opinion. We then discuss how this process
should be improved by future research. We consider the state-of-the-art development
process to be as follows:

1. Designing organisation and individual agents using an AOSE methodology
2. Taking the resulting design and (manually) coding the agents in some AOPL, based

on the design
3. Debugging the system using message tracing and agent inspectors
4. Possibly using model checking on agent code (but unlikely)

Even though we believe that adoption of this development process would already
improve significantly the development of multi-agent systems, the above summary
highlights a number of areas where the current state-of-the-art is, in our opinion, se-
riously lacking, and where future work is sorely needed. There are three key issues:

– The implementation is developed completely manually from the design. This cre-
ates the possibility for the design and implementation to diverge, which tends to
make the design less useful for further work in maintenance and comprehension of
the system.

– Although present AOPLs provide powerful features for specifying the internals of
a single agent, they mostly10 only provide messages as the mechanism for agent
interaction. Messages are really just the least common denominator for interaction,
and, especially if flexible and robust agent interactions are desired, it is important
to design and implement agent interactions in terms of higher-level concepts such
as social commitments [27, 64], delegation of goal/task, responsibility[29, 30], or
interaction goals [14]. Additionally, AOPLs are weak in allowing the developer to
model the environment within which the agents will execute.

– In most of the practical approaches for verification of multi-agent systems, verifi-
cation is done on code. While this has the advantage of proving properties of the
system that will be actually deployed, it is also often useful to check properties
during the system design, so more work is required in verification of agent design
artefacts. In fact, all the work on model checking for multi-agent systems is still in
early stages so not really suitable for use on large and realistic systems.

10 Although there has been work on AOPL support for programming teams of agents (e.g. [17,
33, 52]), this approach only applies to certain problem domains, where agents are co-operative.

In the remainder of this section we tackle each of these issues, and describe where
we believe we should be heading, and what we believe needs to be done to address each
of these issues. In brief, we believe that the key things we, as a research community,
should be doing with respect to these issues are:

– Working on developing techniques and tools that allow for designs and code to be
strongly integrated with consistency checking and change propagation.

– Developing better integrated designs and code would be facilitated by AOPLs be-
ing closer to the design in terms of covered concepts — while this is already true
for individual agent abstractions, that is not the case for social abstractions. Thus,
we believe that research effort in AOPLs should in the short-term concentrate on
extending AOPLs so they cover design concepts that are presently either missing
or not covered well. Such concepts include interaction concepts at a higher level
than messages (e.g., interaction protocols, social commitments, norms, obligations,
responsibility, trust), and the environment (e.g., resources, services, actions), al-
though further work on certain types of declarative goals is still required [18].

– Develop better techniques and tools for debugging and verification. One approach
that is enabled by the existence of design that is reliably consistent with the code11

is to use design artefacts to assist with debugging (e.g., [44]). However, debugging
alone cannot assure us of the correctness of a system, and so formal verification
techniques are also important. Interestingly, formal verification techniques such as
model checking can be used to help validation when formal verification turns out
not to be possible in practice (e.g., [57]).

3.1 Integrating Code and Design

There is an unfortunate tendency in the computing world to regard design and code
as being completely different beasts. There are some clear differences between them:
for instance, code is usually textual and detail-rich, whereas design is usually graphical
and high-level. However, as was lucidly argued as far back as 1992 “Programming is
a design activity” [51]. That is, the programming process, which is often (incorrectly)
related by analogy to manufacturing a design in other engineering disciplines, is in fact a
design activity, which is why it involves considerable rework in the form of debugging.
Thus, it is highly desirable to have code and design being seen as different views on
what is really a single conceptual activity.

Unfortunately, the current state-of-the-art in linking design and code is surprisingly
primitive: “In most cases, the reverse-engineering facilities provided by CASE-tools
supporting the Unified Modelling Language (UML) are limited to class diagram ex-
traction” [38].

In an attempt to be systematic, we briefly present a taxonomy of the possible ap-
proaches for eliminating the “gap” between code and design. We have identified eight
possible approaches:

11 In fact, using design artefacts for debugging can also assist in detecting inconsistencies be-
tween design and code.

Eliminate design: one way of avoiding discrepancies between two entities is to elim-
inate one of them! By “eliminating design” we do not mean that design activities
are not performed, but that the results of these activities (in the form of design arte-
facts) are not retained and maintained. This approach, which may sound impossibly
naive, is in fact what agile methodologies such as XP [4] propose. This approach
is feasible if the application’s design is relatively simple and/or is familiar to the
system’s developers.

Eliminate code: instead of eliminating design, we could eliminate code. Clearly, in
order to have running software we need to augment the design with additional de-
tails. This approach corresponds to Model-Driven Development (MDD). This has
been shown to be practical in certain cases, but has the drawback that the design
can become cluttered with the additional details needed to make it executable.

Generate code from design: a third approach is to generate the code from the design.
This can be done fairly easily (although usually there is not enough information
in the design to generate more than skeleton code). However, without additional
techniques to then ensure the continued consistency of design and code as one or
the other is changed, this is not a useful solution.

Extract design from code (reverse engineering): this automation possibility is intrigu-
ing, but not practical yet. Also, code typically does not contain all desired design
information. However, the code can be extended to encompass such information.

Extract changes from design and apply to code: there is an issue here with language-
dependence; that is, tools need to be developed for the particular design notation
and the target programming language so that changes in the design can be reflected
in the right way for that programming language. Also, it does not actually solve the
problem (in case the code is changed directly)!

Extract changes from code and apply to design: the same issue with language-dep-
endence as in the item above exists here. Also, it does not actually solve problem
(in case the design gets changed)!

Extract changes in design/code and apply to the other: although this approach com-
pletely solves the problem, the issue of language dependence still remains.

Integrate code and design into a single model: in this approach design and code be-
come just different views on an underlying model which encompasses both. This
avoids problem with language dependence by committing to a given programming
language for the methodology, but requires integration between design and pro-
gramming tools.

An issue in integrating code and design is that there are many design notations (and
associated tools), and many AOPLs. Having to develop a link between each possible
design tool and each possible language is clearly undesirable. A naive solution to this
problem would be firstly to get the AOSE research community to agree on a single
methodology and come together to develop a single support tool, and then secondly
to get the AOPL research community to agree on a single AOPL. Clearly, this is not
something that is likely to happen any time soon!

A more complex, but far more practical approach is to standardise interchange for-
mats and APIs, while allowing the underlying notations/languages/tools to remain di-
verse. This is the approach we believe is most suitable for the multi-agent systems
community and therefore we propose that the research community:

– Develop a standard abstraction for AOPLs
– Develop a standard API for making changes to an agent program (cf. Jadex ADF

[46])
– For each AOPL’s implementation, an implementation of the API is created
– Each design tool is extended with the ability to push changes into code via the API.

and, symmetrically, it is also required that the community:

– Agree on a common set of design abstractions
– Develop a standard API for making changes to a multi-agent system design
– For each AOSE methodology, an implementation of the API is created
– Each programming tool is extended with the ability to push changes into design via

the API.

Clearly this will require major research effort and collaboration within (and be-
tween) the AOSE and ProMAS communities, but we believe this will have a significant
impact in future MAS development, and that this line of research is worth pursuing.

3.2 Extending Agent-Oriented Programming Languages with Organisation and
Interaction Aspects

Organisations are useful because they allow us to address at design and runtime how
a complex multi-agent system should behave. Concepts such as responsibility, power,
task delegation, norms, role enactment, workflows, shared goals, access control, groups
and social structure help a software developer to understand and implement large multi-
agent systems. Agent development methodologies need to provide concepts to specify,
design, and implement static and dynamic aspects of such organisations. Though con-
cepts for static views of organisations appear in almost all methodologies, the dynamics
are not widely and thoroughly considered yet.

Historically, agent-oriented programming languages have focused on the internals
of agents and have somewhat neglected social and organisational aspects. Most existing
agent programming languages do not provide programming constructs to implement
such multi-agent aspects so that programmers have to translate and incorporate these
features at the level of individual agents’ internals. However, some existing program-
ming languages allow the implementation of these aspects, although to a very limited
extent. For example, Jason provides programming constructs to indicate the infrastruc-
ture to be used by the agents, the environment the agent will share, and the agents and
their numbers to be created and executed. Also, 2APL provides programming constructs
to indicate which individual agents and how many of them should be created, and which
agent has access to which environment.

One reason for neglecting these issues is the lack of clear and computational seman-
tics for these social and organisational concepts. A starting point to tackle this issue is
to develop formal and computational semantics for social and organisational concepts
based on theories of concurrency and coordination, and possibly inspiration from the-
ories of human organisations. It should be noted that work on electronic institutions,
such as Islander, which maps to an implementation platform called Ameli [2], regulates
agent interactions and ensures that the laws of the institution are obeyed. Although work

in that area does not focus on designing agent programming languages, they can be a
source of inspiration for designing agent programming languages with specific pro-
gramming constructs that allow the implementation of multi-agent organisations and
interactions organisations.

Extending AOPLs: Interaction

Current agent-oriented programming languages allow the implementation of agent in-
teractions at the level of messages. It is, however, desirable to move beyond messages
because designing and implementing at message level gives “brittle” interactions. Also,
designing and implementing at this level makes it very hard to verify/debug and mod-
ify the interaction between agents. In order to overcome these problems, the following
options can be considered.

One can extend agent-oriented programming languages with programming con-
structs that enable the implementation of interaction protocols. The execution of im-
plemented protocols should enable individual agents to perform appropriate actions to
achieve desirable interactions when they so choose. Alternatively, the execution of these
programming constructs could extend the individual agent programs with the appropri-
ate actions such that the execution of extended agent programs guarantee the desirable
interactions between the agents.

Other options include using alternatives to message-centric interaction protocols,
such as specifying interactions in terms of social commitments (e.g. [27, 65]), land-
marks [39] or interaction goals [14]; and extending AOPLs with support for these con-
cepts [59].

Extending AOPLs: Environments

The environment shared by agents can be seen as a first-class abstraction which is as
important as agents [58]. It provides the surrounding conditions for agents to exist and
contains elements that are not present in agents, which are often important means for
agent interaction. The environment can be used to help building a solution (coordination
marks, such as pheromones, are a typical example). Agents can influence the environ-
ment to make it change or to extract meaningful information (perception). Agents can
also communicate indirectly via the environment by adding and reading information
from the environment. Finally, from the decision theory point of view, an agent decides
which action to perform in an environment while the environment determines the actual
effects of the action.

The environment benefits agent technology because it contributes to the separation
of concerns and forces designers to incorporate appropriate agent features. Environ-
ments can be considered as a set of artefacts [42] used by agents to achieve goals and
that regulate agent interaction. More elaborate approaches try to give more explicit defi-
nitions of environments by defining a framework. This framework would be responsible
for executing agent actions and determining the effects of such actions.

Some agent development methodologies such as Prometheus generate agent system
designs that include a primitive environment model. The environment model is cap-
tured as actions and percepts. Also, some of the existing agent programming languages

such as 3APL, 2APL, and Jason support the implementation of external shared envi-
ronments. These environment are implemented as Java classes, for example so that their
methods correspond with the actions that agents can perform in the environment. The
state of the environment is then implemented by class variables which will be changed
by the agents’ actions (method calls). The modification of the state of the environment
is implemented by the methods of the class. It is important to emphasis that these agent
programming languages use Java to implement the agents’ shared environment. Future
work should consider extending the existing agent programming languages with spe-
cific abstract programming constructs that facilitate implementation of the environment
in terms of high-level concepts such as resource, service, actions, and action effects.

3.3 Verification and Validation

Some of the reasons why debugging MAS is so hard are: agents exhibit flexible be-
haviour so it may turn out to be difficult to detect the circumstance that led to the
faulty behaviour and even more so to fix the problems in a way that is consistent in all
behaviours; the inherent concurrency in the system is an obvious complication as con-
current systems are notoriously difficult to debug; the environment is typically failure-
prone so it may again be difficult to detect/reproduce the exact circumstances that cause
problems and ensure that it will work correctly in the future; there will be typically a
large number of agents which clearly makes things more difficult; systems might be
open, so possibly difficult to consider the consequence of changes for various combi-
nations of participating agents; each agent has a complex mental structure which needs
to be not only inspected, but also understood; there will be typically a large number of
communication messages that might need to be analysed in conjunction with agents’
mental states. More importantly, the whole process needs to be tailored to account for
the high-level notions used in MAS, such as beliefs, goals, plans, norms, roles, groups,
etc. We strongly expect a lot of research to be done in this area to produce debugging
approaches and tools which address these and many other specific issues in debugging
multi-agent systems.

Whilst debugging and testing are fundamental, some applications require more than
that. Many applications of multi-agent systems need to be dependable systems. Ideally,
we would like to be able to fully verify, using formal methods, a multi-agent system
which is safety/business/mission-critical. A popular current approach for formal veri-
fication of software is model checking [16]. Unfortunately, model checking techniques
for verification of agent systems is still in its infancy (particularly in regards to practical
tools). We expect to see a lot of work being done also in this area, and indeed there is
already an active research community with ongoing projects in this direction.

In summary, in order to provide good support for ensuring that MAS run correctly,
much work is needed in testing, debugging, and verification approaches and tools. More
interestingly, approaches that combine these three activities are also likely to emerge
for MAS, as they have in the automated software verification literature with approaches
for traditional systems/languages. For example, when full verification is not possible
because the system’s state space is too large even after the use of state-space reduction
techniques, practical model checking tools can still be used, for example, to help find

the required input leading to special cases that can be potentially useful in testing a
system [57].

One possible direction for research on model-checking multi-agent systems is as
follows. In the same way that there is work being done for model checking to be ap-
plied to systems programmed in agent-oriented programming languages, it would be
interesting to see approaches that apply directly to design documents of AOSE method-
ologies. This would, however, require that the design notations are given formal se-
mantics, which is another interesting research strand. Both approaches exist in model
checking traditional software. The idea in model checking programs [56] is to verify the
system as it will be run by the users. Because code is much more detailed than design,
the state-space explosion problems is normally much worse for programs than for de-
sign. In this approach, the use of state-space reduction techniques is particularly impor-
tant. In fact, much work is done by the automated verification community on that topic,
and a variety of different techniques exists for various types of state-space reduction
used in model checking (e.g., data abstraction, partial-order reduction, property-based
slicing, and compositional reasoning). The advantage of model checking programs is
that if we succeed in the verification exercise, we know that the system as actually run
satisfies the checked properties. When model-checking a high-level description of the
system, we need to ensure that no errors are introduced in the implementation, which is
typically done by a process of “refinement”.

In general terms, what we would like to see in the future, ideally, are model checking
techniques that are tailored particularly for MAS; that is, taking into account important
agent abstractions such as goals, coalitions, etc. It must be noted though, that certain
characteristics of MAS might prove to be particularly difficult to deal with for model
checking, such as openness, emergence, etc. On the other hand, it is also possible that
characteristics that are typical of MAS specifically can be explored for more efficient
verification than normally expected in traditional software (e.g., compositional reason-
ing may turn out to work particularly well for agent organisations), but at the moment
this is at best a conjecture.

One issue is that work on verifying agent programs has been done in the context
of a given agent-oriented programming language. Clearly, it is desirable to have model
checking tools that can be used on programs written in a range of languages. One ap-
proach to doing this is currently being pursued by Fisher, Wooldridge, Bordini, and
colleagues. They aim to develop an “Agent Infrastructure Layer” (AIL) in the form of
a Java library. There will then be provably correct translation of various programming
languages into that Java library, so that JPF [56](http://javapathfinder.sf.net) can be
used as a model checker. This would extend the previous approach so that it would
apply to a variety of agent programming languages rather than only AgentSpeak. The
development of AIL itself should be of interest as it would highlight common aspects
of existing programming languages for multi-agent systems. For up-to-date information
on that project, see http://www.csc.liv.ac.uk/∼michael/mcapl06.html.

Another important area for future research is devising state-space reduction tech-
niques specifically created for MAS. As mentioned earlier, much work in the automated
verification community centres on state-space reduction techniques, and indeed they are
responsible for the (relatively recent) success and popularity of model checking tech-

niques. The availability of such techniques would have a major impact in the scale of
multi-agent systems that will be verifiable in practice. Unfortunately, almost no work
has yet been done in this direction; some (initial) work in this direction was done in [9],
where a property-based slicing technique for an agent language was presented.

Still, we cannot be sure to be able to verify all multi-agent systems, but we would
like to emphasise that there is much to be explored in the use of model checkers besides
verification (e.g., for debugging and testing). We expect to see work in that direction and
we would like to see, eventually, off-the-shelf MAS algorithms with verified properties
available for MAS practitioners. That way, even when verification of the whole system
is not possible, we would be able to know properties of particulars techniques used in
parts of the system, which may turn out to be of great usefulness in many applications,
and have such techniques immediately available for reuse by MAS developers.

4 Conclusion

We have surveyed the state-of-the-art in developing multi-agent systems, focussing on
the three core areas of software engineering (analysis, design), programming, and ver-
ification (including both debugging and formal verification). Based on this we have
identified three key areas where we feel the state-of-the-art is lacking, and could be
improved. Specifically we believe that there is a need to:

– integrate design and code better;
– extend AOPLs with the ability to represent social aspects and the environment; and
– develop practical tools for verification and validation that are tailored specifically

for multi-agent systems.

For each of these three key topics we discussed ways of meeting the challenges, and
suggested some possible directions for the agents research community.

References

1. N. Alechina, R. H. Bordini, J. F. Hübner, M. Jago, and B. Logan. Automating belief revision
for agentspeak. In M. Baldoni and U. Endriss, editors, Proceedings of the Fourth Interna-
tional Workshop on Declarative Agent Languages and Technologies (DALT 2006), held with
AAMAS 2006, 8th May, Hakodate, Japan, pages 1–16, 2006.

2. J. L. Arcos, M. Esteva, P. Noriega, J. A. Rodrı́guez, and C. Sierra. Engineering open en-
vironments with electronic institutions. Journal on Engineering Applications of Artificial
Intelligence, 18(2):191–204, 2005.

3. G. S. Avrunin and G. Rothermel, editors. Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2004, Boston, Massachusetts, USA, July
11-14, 2004. ACM, 2004.

4. K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000. ISBN
201-61641-6.

5. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. Jade - a java agent development frame-
work. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, Multi-
Agent Programming: Languages, Platforms and Applications, chapter 5. Springer-Verlag,
2005.

6. F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors. Methodologies and Software Engi-
neering for Agent Systems. Kluwer Academic Publishing (New York), 2004.

7. R. Bordini, L. Braubach, M. Dastani, A. Seghrouchni, J. Gomez-Sanz, J. Leite, G. O’Hare,
A. Pokahr, and A. Ricci. A survey of programming languages and platforms for multi-agent
systems. Informatica, 30(1):33–44, 2006.

8. R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-agent Program-
ming: Languages, Platforms, and Applications. Springer, 2005.

9. R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. State-space reduction techniques
in agent verification. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors,
Proceedings of the Third International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS-2004), New York, NY, 19–23 July, pages 896–903, New York, NY,
2004. ACM Press.

10. R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying multi-agent programs by
model checking. Journal of Autonomous Agents and Multi-Agent Systems, 12(2):239–256,
Mar 2006.

11. R. H. Bordini, J. F. Hübner, et al. Jason: A Java-based interpreter for
an extended version of AgentSpeak, manual, release 0.9 edition, Jul 2006.
http://jason.sourceforge.net/.

12. R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the Golden Fleece of agent-oriented
programming. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors,
Multi-Agent Programming: Languages, Platforms and Applications, chapter 1, pages 3–37.
Springer-Verlag, 2005.

13. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
Agent Systems, 8:203–236, May 2004.

14. C. Cheong and M. Winikoff. Hermes: Designing goal-oriented agent interactions. In Pro-
ceedings of the 6th International Workshop on Agent-Oriented Software Engineering (AOSE-
2005), July 2005.

15. A. Cheyer and D. Martin. The open agent architecture. Journal of Autonomous Agents and
Multi-Agent Systems, 4(1):143–148, March 2001. OAA.

16. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cam-
bridge, MA, 1999.

17. P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.
18. M. Dastani and J. Gomez-Sanz. Programming multi-agent systems. The Knowledge Engi-

neering Review, 20(2):151–164, 2006.
19. M. Dastani, D. Hobo, , and J.-J. C. Meyer. Practical extensions in agent programming lan-

guages. In Proceedings of the sixth International Joint Conference on Autonomous Agents
and Multi-agent Systems (AAMAS’07). ACM Press, 2007.

20. M. Dastani, M. van Riemsdijk, and J.-J. Meyer. Goal types in agent programming. In
Proceedings of the 17th European Conference on Artificial Intelligence (ECAI’06)., 2006.

21. M. Dastani, M. B. van Riemsdijk, , and J.-J. C. Meyer. On the relation between agent
specification and agent programming languages. In Proceedings of the sixth International
Joint Conference on Autonomous Agents and Multi-agent Systems (AAMAS’07). ACM Press,
2007.

22. M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. C. Meyer. A programming lan-
guage for cognitive agents: goal directed 3APL. In M. Dastani, J. Dix, and A. El Fallah-
Seghrouchni, editors, Programming multiagent systems, first international workshop (Pro-
MAS’03), volume 3067 of LNCS, pages 111–130, Berlin, 2004. Springer Verlag.

23. S. A. DeLoach. Analysis and design using MaSE and agentTool. In Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001), 2001.

24. M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of dMARS.
Technical Note 72, Australian Artificial Intelligence Institute, 1997.

25. M. Fisher, R. H. Bordini, B. Hirsch, and P. Torroni. Computational logics and agents: a
roadmap of current technologies and future trends. Computational Intelligence Journal,
2007. To appear.

26. D. Flater. Debugging agent interactions: a case study. In Proceedings of the 16th ACM
Symposium on Applied Computing (SAC2001), pages 107–114. ACM Press, 2001.

27. R. A. Flores and R. C. Kremer. A pragmatic approach to build conversation protocols using
social commitments. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors, Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pages 1242–1243. ACM Press, 2004.

28. M. P. Georgeff and A. L. Lansky. Procedural knowledge. Proceedings of the IEEE Special
Issue on Knowledge Representation, 74:1383–1398, 1986.

29. D. Grossi, F. Dignum, M. Dastani, and L. Royakkers. Foundations of organizational struc-
tures in multi-agent systems. In Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multi-agent Systems (AAMAS’05). ACM Press, 2005.

30. D. Grossi, F. Dignum, V. Dignum, M. Dastani, and L. Royakkers. Structural aspects of the
evaluation of agent organizations. In Pre-proceedings of COIN@ECAI’06, 2006.

31. B. Henderson-Sellers and P. Giorgini, editors. Agent-Oriented Methodologies. Idea Group
Publishing, 2005.

32. K. V. Hindriks, F. S. D. Boer, W. V. der Hoek, and J.-J. C. Meyer. Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

33. A. Hodgson, R. Rönnquist, and P. Busetta. Specification of coordinated agent behaviour
(the simple team approach). Technical Report 5, Agent Oriented Software, Pty. Ltd., 1999.
Available from http://www.agent-software.com.

34. J. F. Hübner, R. H. Bordini, and M. Wooldridge. Programming declarative goals using plan
patterns. In M. Baldoni and U. Endriss, editors, Proceedings of the Fourth International
Workshop on Declarative Agent Languages and Technologies (DALT 2006), held with AA-
MAS 2006, 8th May, Hakodate, Japan, pages 65–81, 2006.

35. J. F. Hübner, J. S. Sichman, and O. Boissier. Using theMoise+ for a cooperative framework
of MAS reorganisation. In A. L. C. Bazzan and S. Labidi, editors, Advances in Artificial
Intelligence - SBIA 2004, 17th Brazilian Symposium on Artificial Intelligence, São Luis,
Maranhão, Brazil, September 29 - October 1, 2004, Proceedings, volume 3171 of Lecture
Notes in Computer Science, pages 506–515. Springer, 2004.

36. F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time reasoning and
system control. IEEE Expert, 7(6), 1992.

37. N. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors. 3rd International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2004), 19-23 August 2004,
New York, NY, USA. IEEE Computer Society, 2004.

38. R. Kollman, P. Selonen, E. Stroulia, T. Systa, and A. Zundorf. A study on the current state of
the art in tool-supported UML-based static reverse engineering. In Ninth Working Conference
on Reverse Engineering (WCRE’02), 2002.

39. S. Kumar, M. J. Huber, and P. R. Cohen. Representing and executing protocols as joint
actions. In Proceedings of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, pages 543 – 550, Bologna, Italy, 15 – 19 July 2002. ACM Press.

40. D. Morley and K. L. Myers. The spark agent framework. In Jennings et al. [37], pages
714–721.

41. F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa. Spatially distributed normative
objects. In G. Boella, O. Boissier, E. Matson, and J. Vázquez-Salceda, editors, Proceedings
of the Workshop on Coordination, Organization, Institutions and Norms in Agent Systems
(COIN), held with ECAI 2006, 28th August, Riva del Garda, Italy, 2006.

42. A. Omicini, A. Ricci, and M. Viroli. Coordination artifacts as first-class abstractions for
MAS engineering: State of the research. In A. F. Garcia, R. Choren, C. Lucena, P. Giorgini,
T. Holvoet, and A. Romanovsky, editors, Software Engineering for Multi-Agent Systems IV:
Research Issues and Practical Applications, volume 3914 of LNAI, pages 71–90. Springer,
Apr. 2006. Invited Paper.

43. L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A Practical Guide.
John Wiley and Sons, 2004. ISBN 0-470-86120-7.

44. L. Padgham, M. Winikoff, and D. Poutakidis. Adding debugging support to the Prometheus
methodology. Engineering Applications of Artificial Intelligence, 18(2):173–190, 2005. Spe-
cial issue on Agent-oriented Software Development.

45. M. Papasimeon and C. Heinze. Extending the UML for designing JACK agents. In Proceed-
ings of the Australian Software Engineering Conference (ASWEC 01), 2001.

46. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In R. H.
Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, editors, Multi-Agent Programming:
Languages, Platforms and Applications, chapter 6, pages 149–174. Springer, 2005.

47. S. Poslad, P. Buckle, and R. Hadingham. The fipa-os agent platform: Open source for open
standards. In Proceedings of the 5th International Conference and Exhibition on the Practi-
cal Application of Intelligent Agents and Multi-Agents, pages 355–368, 2000.

48. D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent systems using design
artifacts: The case of interaction protocols. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS’02), 2002.

49. D. Poutakidis, L. Padgham, and M. Winikoff. An exploration of bugs and debugging in
multi-agent systems. In Proceedings of the 14th International Symposium on Methodologies
for Intelligent Systems (ISMIS), pages 628–632, Maebashi City, Japan, 2003.

50. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In W. V.
de Velde and J. Perrame, editors, Agents Breaking Away: Proceedings of the Seventh Euro-
pean Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96),
pages 42–55. Springer Verlag, 1996. LNAI, Volume 1038.

51. J. Reeves. What is software design? C++ Journal, 1992.
52. M. Tambe. Agent architectures for flexible, practical teamwork. In National Conference on

Artificial Intelligence (AAAI-97), 1997.
53. A. van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In Proceedings

of the 5th IEEE International Symposium on Requirements Engineering (RE’01), pages 249–
263, Toronto, 2001.

54. M. B. van Riemsdijk, M. Dastani, , and J.-J. C. Meyer. Subgoal semantics in agent program-
ming. In Proceedings of 12th Portuguese Conference on Artificial Intelligence, volume 3808
of Lecture Notes in Computer Science, pages 548 – 559. Springer, 2005.

55. M. B. van Riemsdijk, F. de Boer, M. Dastani, , and J.-J. C. Meyer. Prototyping 3apl in the
maude term rewriting language. In K. Inoue, K. Satoh, and F. Toni, editors, Proceedings of
the seventh International Workshop on Computational Logic in Multi-Agent Systems (CLIMA
VII), volume 4371 of Lecture Notes in Artificial Intelligence. Springer, 2007.

56. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proceedings of
the Fifteenth International Conference on Automated Software Engineering (ASE’00), 11-15
September, Grenoble, France, pages 3–12. IEEE Computer Society, 2000.

57. W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with java pathfinder. In
Avrunin and Rothermel [3], pages 97–107.

58. D. Weyns, H. V. D. Parunak, and F. Michel, editors. Environments for Multi-Agent Systems
II, Second International Workshop, E4MAS 2005, Utrecht, The Netherlands, July 25, 2005,
Selected Revised and Invited Papers, volume 3830 of Lecture Notes in Computer Science.
Springer, 2006.

59. M. Winikoff. Implementing commitment-based interactions. In Autonomous Agents and
Multi-Agent Systems (AAMAS), 2007.

60. M. Winikoff, L. Padgham, and J. Harland. Simplifying the development of intelligent agents.
In AI2001: Advances in Artificial Intelligence. 14th Australian Joint Conference on Artificial
Intelligence, pages 555–568. Springer, LNAI 2256, 2001.

61. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & procedural goals
in intelligent agent systems. In Proceedings of the Eighth International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR2002), Toulouse, France, 2002.

62. L. Winkelhagen, M. Dastani, and J. Broersen. Beliefs in agent implementation. In Proceed-
ings of the third International Workshop on Declarative Agent Languages and Technologies
(DALT 2005), volume 3904 of Lecture Notes in Computer Science. Springer, 2006.

63. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-oriented anal-
ysis and design. Autonomous Agents and Multi-Agent Systems, 3(3), 2000.

64. P. Yolum and M. P. Singh. Flexible protocol specification and execution: Applying event
calculus planning using commitments. In Proceedings of the 1st Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), pages 527–534, 2002.

65. P. Yolum and M. P. Singh. Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence
(AMAI), Special Issue on Computational Logic in Multi-Agent Systems, 2004.

66. F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems: the Gaia
methodology. ACM Transactions on Software Engineering and Methodology, 12(3):317–
370, July 2003.

