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This paper describes the Multiagent Systems Engineering (MaSE) methodology.  MaSE 
is a general purpose, methodology for developing heterogeneous multiagent systems.  
MaSE uses a number of graphically based models to describe system goals, behaviors, 
agent types, and agent communication interfaces.  MaSE also provides a way to specify 
architecture-independent detailed definition of the internal agent design.  An example of 
applying the MaSE methodology is also presented. 
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1. Introduction 

The advent of multiagent systems has brought together many disciplines in an effort 
to build distributed, intelligent, and robust applications.  They have given us a new way 
to look at distributed systems and provided a path to more robust intelligent applications.  
However, many of our traditional ways of thinking about and designing software do not 
fit the multiagent paradigm.  Over the past few years, there have been several attempts at 
creating tools and methodologies for building such systems.  Unfortunately, many of the 
methods focused on a single agent architecture or have not gone to the necessary level of 
detail to adequately support complex system development [5].  In our research, we have 
developed a complete-lifecycle methodology, called Multiagent Systems Engineering 
(MaSE), for analyzing, designing, and developing heterogeneous multiagent systems.   

Much of the current research related to intelligent agents has focused on the 
capabilities and structure of individual agents.  However, to solve complex problems, 
these agents must work cooperatively with other agents in a heterogeneous environment.  
This is the domain of multiagent systems.  In multiagent systems, we are interested in the 
coordinated behavior of a system of individual agents to provide a system-level behavior.  
Sycara [17] describes the challenges facing multiagent systems including the focus of our 
research, how to engineer practical multiagent systems.  MaSE uses the abstraction 
provided by multiagent systems for developing intelligent, distributed software systems.  
To accomplish the goal, MaSE uses a number of graphically based models to describe the 
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types of agents in a system and their interfaces to other agents, as well as an architecture-
independent detailed definition of the internal agent design.   

In our research, we view MaSE as a further abstraction of the object-oriented 
paradigm where agents are a specialization of objects.  Instead of simple objects, with 
methods that can be invoked by other objects, agents coordinate with each other via 
conversations and act proactively to accomplish individual and system-wide goals.  
Interestingly, this viewpoint sidesteps the issues regarding what is or is not an agent.  We 
view agents merely as a convenient abstraction, which may or may not possess 
intelligence.  In this way, we handle intelligent and non-intelligent system components 
equally within the same framework.  In addition, since we view agents as specializations 
of objects, we build on existing object-oriented techniques and apply them to the 
specification and design of multiagent systems. 

The primary focus of MaSE is to help a designer take an initial set of requirements 
and analyze, design, and implement a working multiagent system.  This methodology is 
the foundation for the Air Force Institute of Technology's (AFIT) agentTool development 
system, which also serves as a validation platform and a proof of concept [2].  The 
agentTool system is a graphically-based, fully interactive software engineering tool for 
the MaSE methodology.  agentTool supports the analysis and design in each of the seven  
MaSE steps.  The agentTool system also supports automatic verification of inter-agent 
communications and code generation for multiple multiagent system frameworks.  The 
MaSE methodology, as well as agentTool, is independent of any particular agent 
architecture, programming language, or communication framework.  The focus of our 
work is on building heterogeneous multiagent systems.  We can implement a multiagent 
system designed in MaSE in several different ways from the same design.   

The MaSE methodology is a specialization of more traditional software engineering 
methodologies.  The general operation of MaSE follows the phases and steps shown on 
the right side of Figure 1.  The MaSE Analysis phase consists of three steps: Capturing 
Goals, Applying Use Cases, and Refining Roles.  The Design phase has four steps: 
Creating Agent Classes, Constructing Conversations, Assembling Agent Classes, and 
System Design.  The rounded rectangles denote the MaSE models used to capture the 
output of each step while the arrows between them show how the models affect each 
other.  While we have drawn it as a single flow from top to bottom, with the models 
created in one step being the inputs for subsequent steps, in practice the methodology is 
iterative.  The intent is that the analyst or designer be allowed to move between steps and 
phases freely such that with each successive pass, additional detail is added and, 
eventually, a complete and consistent system design is produced. 

A major strength of MaSE is the ability to track changes throughout the process.  
Every object created during the analysis and design phases can be traced forward or 
backward through the different steps to other related objects.  For instance, a goal derived 
in the Capturing Goals step can be traced to a specific role, task, and agent class.  
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Likewise, an agent class can be traced back through tasks and roles to the system level 
goal it was designed to satisfy.   

The individual steps of the analysis and design phases are discussed in Sections 2 
and 3.  An overview of where MaSE has been used and future research directions is 
presented in Section 4 while a comparison with other existing multiagent methodologies 
is given in Section 5. 
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Figure 1.  MaSE Phases 

2. Analysis Phase 

The purpose of the MaSE Analysis phase is to produce a set of roles whose tasks 
describe what the system has to do to meet its overall requirements.  A role describes an 
entity that performs some function within the system.  In MaSE, each role is responsible 
for achieving, or helping to achieve specific system goals or sub-goals.   MaSE roles are 
analogous to roles played by actors in a play or by members of a typical company 
structure.  The company (which corresponds to system) has roles such as "president", 
"vice-president", and "mail clerk" that have specific responsibilities, rights and 
relationships defined in order to meet the overall company goal. 
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We chose to model multiagent systems using roles since roles are typically goal 
driven and map conveniently to agents.  Because roles are goal-driven, we also chose to 
abstract the functional requirements into a set of system goals that can be passed on to the 
individual roles to carry out.  A goal is an abstraction of a set of functional requirements.  
Typically a system has an overall goal and a set of sub-goals that must be achieved to 
reach the overall system goal. 

The overall approach in the MaSE Analysis phase is fairly simple.  Define the 
system goals from a set of functional requirements and then define the roles necessary to 
meet those goals.  While a direct mapping from goals to roles is possible, MaSE suggests 
the use of Use Cases to help validate the system goals and derive an initial set of roles.  
The individual steps of the Analysis phase of Capturing Goals, Applying Use Cases, and 
Refining Roles are presented in Sections 2.1, 2.2, and 2.3 respectively. 

2.1 Capturing Goals 

The first step in the MaSE Analysis phase is Capturing Goals, which takes an initial 
system specification and transforms it into a structured set of system goals.  In the context 
of the classic software lifecycle, this phase is concerned with system and software 
analysis.  The initial system context is the collection of anything given to the analyst as a 
starting point for system analysis.  We assume that the initial system context includes a 
software requirements specification that includes a well-defined set of functional 
requirements.  Functional requirements tell the analyst the services that the system must 
provide and how the system should or should not behave based on inputs to the system 
and its current state [14].  The first step in the Analysis phase is to abstract the functional 
requirements into system goals.  Our definition of a goal is similar to that described by 
Cockburn [1]; however, instead of focusing on the user's goal in using the system, we 
look at it from the system's point of view.  The overall goal of the system is to fulfill the 
desires of the user.  Therefore, if a user has a goal of "keeping track of possible login 
violations," the system goal would be to "inform user of possible login violations."  
Stating goals from the system's perspective seems to be more natural when talking about 
the system itself. 

We chose to base the MaSE Analysis phase on goals because system goals are more 
stable than functions, processes, or information structures that often change with time [7].  
Goals embody what the system is trying to achieve and generally remain constant 
throughout the analysis and design process.  This is in contrast to other possible analysis 
objects, such as functions, that are organized around how something is done.  In 
functional analysis, the details can be overwhelming and rapidly changing [7]. 

There are two sub-steps in Capturing Goals: identifying goals and structuring goals.  
First, goals must be identified from the initial system context.  Next, the goals are 
analyzed and structured into a form that can be used later in the Analysis phase.  Each 
sub-step is described in more detail below. 
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2.1.1 Identifying Goals 

The first step in capturing goals is to capture the essence of an initial set of 
functional requirements.  This process begins by extracting scenarios from the initial 
specification and describing the goal of that scenario.  Assume we are given the 
following function requirements for security violations on a computer system [7]. 

• The system is responsible for dealing with host violations, in particular login 
violations and system file intrusions. The system administrator is notified of 
suspected or attempted intrusions. 

• It is necessary to validate the date, time and existence of system files 
periodically, every few minutes. When a file is not found or a new version 
appears, the system administrator needs to be notified. When a user tries to 
modify or delete a system file, the system administrator needs to be notified. 

• A user tries to login when he or she does not have a valid account. If this occurs 
once or twice in a short period of time, it is not a violation. Three or more 
attempts are a violation that needs to be reported. 

• The system administrator may not be available to receive a notification. This can 
be due to a network failure or the fact that the administrator is performing 
another task. The report needs to be stored and resent after a delay. 

An example of the goals derived from these requirements is shown below.  Notice 
that all the details on how to perform system functions (e.g., "It is necessary to validate 
the date, time and existence of system files periodically, every few minutes") are not 
included as goals. 

1. Inform administrator of file violations. 
2. Inform administrator of login violations. 
3. Detect invalid file deletion attempts. 
4. Detect invalid file modification attempts. 
5. Detect invalid login attempts. 
6. Notify administrator of violations. 

The purpose of using goals is that identify the critical aspects of the system 
requirements.  Therefore, an analyst should specify goals as abstractly as possible without 
losing the essence of the requirement.  This abstraction can be performed by removing 
detailed information when specifying goals.  For example, to “Detect invalid login 
attempts” is a goal.  How to detect invalid attempts is a requirement that may change with 
time or between various operating systems and is not a goal. 

Once goals have been captured and explicitly stated, they are less likely to change 
than the detailed steps and activities involved in accomplishing them.  These goals 
provide the foundation for the analysis model; all roles and tasks defined in later steps 
must support one of the goals identified in this step.  If, later in the analysis, the analyst 
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discovers roles or tasks that do not support an existing system goal, either the roles and 
tasks are superfluous or a new goal can be added to the goal set. 

2.1.2 Structuring Goals  

The final step in Capturing Goals is structuring the goals into a Goal Hierarchy 
Diagram, as shown in Figure 2.  A Goal Hierarchy Diagram is a directed, acyclic graph 
where the nodes represent goals and the arcs define a sub-goal relationship.  A goal 
hierarchy is not a tree since a goal may be a sub-goal of more than one parent goal.  Each 
level in the diagram is intended to contain goal "peers" that are at approximately the same 
level of detail. 

To develop the goal hierarchy, the analyst studies the initial set of goals for their 
importance and inter-relationships.  Even though goals have been captured, they are of 
various importance, size, and level of detail.  The Goal Hierarchy Diagram preserves 
such relationships, and divides goals into levels of detail and importance that are easier to 
manage and understand. 
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host violations

1.1.1  Detect invalid
file deletion

attemps.

1.1.2  Detect invalid
file modification

attempts.

1.1.3  Notify
administrator of

violations.
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Figure 2.  Example Goal Hierarchy Diagram 

The first step in building the hierarchy is to identify the overall system goal, which 
is placed at the top of the Goal Hierarchy Diagram.  However, it is often the case, as in 
our example above, that a single system goal cannot be directly extracted from the 
functional requirements.  In this case, the highest-level goals are summarized to create an 
overall system goal and the high level goals become sub-goals of the system goal. Once a 
basic goal hierarchy is in place, goals may be decomposed into new sub-goals.  Each sub-
goal must support its parent goal in the hierarchy.  A goal is a valid sub-goal if it defines 
what the system must do to support its parent goal. 

Goal decomposition is not simply “functional decomposition.”  Functional 
decomposition results in a set of steps to achieve a goal.  For example, the steps required 
to implement the goal "Inform administrator of login violations" are to (1) detect all 
logins, (2) determine if they are valid, and (3) send a message to the administrator for all 
invalid logins.  However, valid sub-goals include "Detect invalid login attempts" and 
"Notify administrator of violations."  The facts that an invalid login is detected and the 
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administrator is notified are the goals, how we detect invalid logins and notify the 
administrator are not.  Goal decomposition continues until any further decomposition 
would result in a functional requirement instead of a goal (i.e., the analyst starts capturing 
how the goal should be accomplished).  Once a decision of how a goal should be 
accomplished, the analyst has moved gone too far in the goal decomposition process. 

There are four special types of goals in a Goal Hierarchy Diagram: summary, 
partitioned, combined, and non-functional.  Goals can have attributes of more than one 
special goal type; however, they do not necessarily have to be one of these types at all.   

A summary goal [1] is derived from a set of existing "peer" goals to provide a  
common parent goal.  This often happens at the highest levels of the hierarchy.  For 
instance, if the analyst decides that goals of  "Inform admin of file violations" and 
"Inform admin of login violations" constitute the highest level of goals for the system, the 
analyst may abstract them further to create the summary goal "Inform admin of host 
violations", which is the overall system goal as shown in Figure 2. 

Some goals do not directly direct support of the overall system goal, but are critical 
to the correct functioning of the system.  These non-functional goals are often derived 
from non-functional requirements such as reliability or response times.  For example, if a 
system must be able to find resources dynamically, a goal to facilitate locating dynamic 
resources may be required.  While not central to the main goal of the system, this goal 
allows the system to meet its requirements.  In this case, another "branch" of the Goal 
Hierarchy Diagram can be created and placed under an overall system level goal. 

There are often a number of sub-goals in a hierarchy that are identical or very 
similar that can be grouped into a combined goal.  For example, the initial goals "Inform 
administrator of file violations" and "Inform administrator of login violations" are 
combined in Figure 2 into the single goal of  "Notify administrator of violations."  In this 
case, the combined goal becomes a sub-goal of both the "Inform admin of file violations" 
and the "Inform admin of login violations" goals.  By combining goals, the analyst can 
make the final system more understandable by combining similar functionality into 
specific roles or agents. 

A partitioned goal is a goal with a set of sub-goals that, when taken collectively, 
effectively meet that goal.  In essence, the sub-goals must cooperate to achieve their 
parent goal.  While this is always true of summary goals, it may be true of any goals with 
a set of sub-goals.  By defining a goal as "partitioned", it frees the analyst from 
specifically accounting for it in the rest of the analysis process.  Partitioned goals are 
annotated in a Goal Hierarchy Diagram using a gray goal box instead of a clear box.  For 
example, in Figure 2, Goal 1 is a partitioned goal since it is a summary goal. 

At the conclusion of the Capturing Goals step, the system goals have been analyzed, 
captured, and structured in a Goal Hierarchy Diagram.  The analyst can now move to the 
second step of the Analysis phase, Applying Use Cases, where the initial look at roles 
and communication paths takes place. 
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2.2 Applying Use Cases 

The objective of the Applying Use Cases step is to capture a set of use cases from 
the initial system context and create a set of Sequence Diagrams to help the system 
analyst identify an initial set of roles and communications paths within the system.  Use 
cases define basic scenarios that a system should be able to perform.  The Sequence 
Diagrams capture the use cases as a set of events between the roles that make up the 
system.  These event sequences are used later in the Analysis phase to define tasks that a 
particular role must accomplish.  These tasks eventually find their way into the inter-
agent conversations during the Design phase, thus ensuring that the use cases are 
implemented in the resulting multiagent system. 

2.2.1 Creating Use Cases 

The first step in Applying Use Cases is to extract use cases from the initial system 
context.  Use cases define a sequence of events that can occur in the system.  They are 
examples of how the user thinks the system should behave.  Although part of the 
Applying Use Cases step, creating use cases may actually elicit more information or 
clarify existing information about system goals.  If this happens, the analyst should 
immediately go back and add or modify the original Goal Hierarchy Diagram. 

Use cases may already exist as part of the initial system context or they may have to 
be extracted by the analyst.  The analyst may extract use cases from requirements 
specifications, user stories, or any other available source.  While having a large number 
of use cases may be handy in helping to understand the system, it is important not to let 
the creation of use cases get out of hand.  The goal of creating use cases is to identify 
paths of communication, not to define all possible combinations of events and data in the 
system.  The analyst should attempt to gather enough use cases to cover as many possible 
event sequences without repeating the same sequence many times with different data or 
events.  In general, the analyst should strive to show how each goal can be accomplished.  
The analyst should capture both positive and negative use cases.  A positive use case 
describes what should happen during normal system operation.  However, a negative use 
case still describes a desired sequence of events, but is illustrative of a breakdown or 
error.  We are currently investigating the use of obstacles (as a dual concept to goals) 
[18] and their relation to negative use cases. 

While use cases cannot be used to capture every possible requirement, they are an 
aid in deriving communication paths and roles.  Cross checking the final analysis against 
the set of derived goals and use cases provides a redundant method for deriving required 
system behavior.  
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2.2.2 Creating Sequence Diagrams 

A Sequence Diagram depicts the sequence of events that are transmitted between 
roles identified from use cases as shown in Figure 3.  The boxes at the top of the diagram 
represent system roles and the arrows between the lines represent events passed between 
roles.  Time is assumed to flow from the top of the diagram to the bottom.  Therefore, in 
Figure 3, the FileViolation event is sent from the FileModifiedDetector to the FileNotifier 
and must precede the RequestNotification event that is sent to the AdminNotifier. 

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

 

Figure 3: Sequence Diagram 

Transformation from use cases to Sequence Diagrams is relatively straightforward.  
Individual entities named in the use case correspond to roles while any type of 
communications or information passing between use case entities becomes an event.  The 
sequence of the events is based on the use case description.  Every type of participant in a 
Sequence Diagram becomes a role.  The roles identified in Sequence Diagrams form the 
initial set of roles used in the next step, Refining Roles, where they may be renamed, 
decomposed into multiple roles, or combined with other roles. 

In general, one Sequence Diagram is created for each use case.  However, if there 
are several possible execution sequences, multiple Sequence Diagrams may be created.  
For instance, if a use case has several alternate resolutions, such as "the diagnosis is sent 
from the doctor to the medical desk, and from the medical desk to the patient unless the 
patient is a minor, in which case it is sent to the patient's legal guardian from the medical 
desk", the analyst should create two similar but distinct Sequence Diagrams to define the 
use case.  One use case could be used to describe what happens when the patient is a 
minor and the second could describe the more normal case.  

After identifying the participating roles, creating the Sequence Diagram consists of 
reading through the use case and finding all instances of events that occurs between two 
of the roles.  Each event in the use case is drawn as an arrow on the Sequence Diagram in 
the order that they occur.  By applying use cases to create Sequence Diagrams, the main 
sequences of events from the use cases are explicitly accounted for in the concurrent 
tasks and conversations designed from these use cases.   
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2.3 Refining Roles 

The objective of the last step of the Analysis phase, Refining Roles, is to transform 
the structured goals and Sequence Diagrams into roles and their associated tasks, which 
are forms more suitable for designing multiagent systems.  Roles form the foundation for 
agent class definition and represent system goals during the Design phase.  By using roles 
in this manner, the system goals are carried forward into the system design.  It is our 
contention that system goals will be satisfied if every goal is associated with a role and 
every role is played by an agent class. 

The general case transformation of goals to roles is one-to-one, with each goal 
mapping to a role.  However, there are situations where it is useful to have a single role 
be responsible for multiple goals.  There are many considerations in Refining Roles.  
Similar or related goals may be combined into single roles for the sake of convenience or 
efficiency.  Commonplace goals often imply roles that can be reused from previous 
efforts.  For example, in the case where a system must find resources dynamically, some 
type of facilitator role may be required.  Facilitator roles are quite common and have been 
included in many multiagent systems.  One mapping of the goals from our previous 
example to a set of roles is shown below. 

FileNotifier  (1.1) 
LoginNotifier  (1.2) 
FileDeletionDetector (1.1.1) 
FileModifiedDetector (1.1.2) 
AdminNotifier  (1.1.3) 
LoginDetector  (1.2.1) 

Due to the simplicity of our example, we mapped goals to individual roles with a single 
exception; goal 1 was not mapped to a role since it was partitioned by Goals 1.1 and 1.2.  
In general, these decision on mapping goals to roles are based on detailed goal analysis.  
Possible considerations about when to combine and separate goals are detailed below. 

Some goals may go unstated in the requirements and undiscovered until this point in 
the analysis.  For example, interfacing with a user is a requirement that is often 
overlooked.  Since a user interface requires special design techniques, it should be a 
separate role.  If a goal is discovered at this point in system analysis, it should be added to 
existing goals as if it was part of the original system requirements.  The previous steps, 
such as adding the new goal to the Goal Hierarchy Diagram, are then re-accomplished to 
keep the system analysis consistent.   

Related goals can often be combined into a single role.  For example, if we had 
decomposed our goals into “Notify administrator of file violations” and “Notify 
administrator of login violations”, we could have combined the roles into a single 
AdminNotifier role.  While making the role more complex, combing goals into a single 
role simplifies the overall system design.  This is a tradeoff that the analyst must make. 
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Interfacing with external or internal resources generally requires a separate role to 
act as an interface from a resource to the rest of the system.  We generally consider a 
human user as an external resource.  In MaSE we do not explicitly model human – 
computer interaction.  However, we would suggest that a specific role be created to 
encapsulate the user interface.  In this way, we can define the ways in which a user can 
interface with the system without defining the user interface itself.  Other resources such 
as databases, files or legacy systems may also require their own interface role. 

Role definitions are captured in a MaSE Role Model as shown in Figure 4, which 
includes information on interactions between role tasks and is more complex than 
traditional role models [8].  Roles are denoted by rectangles, while a role’s tasks are 
denoted by ovals attached to the role.  The detailed description of a task's definition is 
provided via Task Diagrams described in the next section.  Lines between tasks denote 
(possibly named) communications protocols that occur between the tasks.  The arrows 
denote the initiator/responder relationship of the protocol with the arrow pointing from 
the initiator to the respondent.  Solid lines indicate peer-to-peer communications, which 
are generally implemented as external communications protocols.  External protocols 
involve message passing between roles that may become actual messages if their roles 
end up being implemented in separate agents.  These protocols are derived from the 
Sequence Diagrams developed in the previous step.  Dashed lines denote communication 
between concurrent tasks within the same role.  A lined is dashed if its protocols denote 
communications occurring only within the same instance of the role.   

The tasks are generally derived from the goals for which a task is responsible.  For 
instance, the FileDeletionDetector role is responsible for attaining goal 1.1.1, which is to 
“Detect invalid file deletion attempts.”  Therefore, to accomplish this goal, the role must 
be able to detect file deletion attempts and determine if they are valid.  In this case, the 
designer has decided to separate these into two tasks: Detect File Deletions and 
Determine Validity. 
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Figure 4: MaSE Role Model 

Roles may not share or duplicate tasks.  Sharing of tasks is a sign of improper role 
decomposition.  Shared tasks should be placed in a separate role, which can be combined 
into various agent classes in the Design phase.  This does not imply that the more general 
notion of a task cannot be distributed among various agents in the system.  An agent in 
charge of satisfying a goal may distribute tasks among various agents capable of playing 
the appropriate role. 

2.3.1 Concurrent Task Diagram 

After roles are created, tasks are associated with each role that describe the behavior 
that the role must exhibit to successfully achieve its goals.  In general, a single role may 
have multiple concurrently executing tasks that define the required role behavior.  Each 
task specifies a single thread of control that defines a particular behavior that the role 
may exhibit and integrates inter- as well as intra-role interactions.  Concurrent tasks are 
specified graphically using a finite state automaton, which we refer to as a Concurrent 
Task Diagram, as shown in Figure 5.  We considered using Petri nets to model the tasks; 
however, we felt that finite state automata were generally easier to build and understand 
and provided a more straightforward translation to code. 

FindAdmin
a = getAdminLoc();
t = setTimer(2.0);

wait

receive(RequestNotification(error), agent)

^ send(Notify(error, agent), a)

receieve(Acknowledge, a) ^ send(NotificationComplete(), agent)

[timeout(t)]

  

Figure 5: Concurrent Task Diagram 
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There are two types of tasks: persistent and transient.  A persistent task is a task that 
has a null transition from the start state to the first state.  In other words, the task does not 
have an event that initiates its execution.  We assume that persistent tasks start when the 
agent is initiated and continue executing until the agent itself is terminated or until the 
task reaches an end state.  On the other hand, a transient task has a specific trigger on the 
transition from the start state.  A transient task is not executed when the agent starts, but 
waits until its trigger is received by the agent.  With transient tasks, it is possible to have 
multiple, concurrently executing tasks of the same type.   

Concurrent tasks consist of states and transitions, which are similar to the states and 
transitions of most other finite automata models.  States encompass the processing that 
goes on internal to the agent while transitions allow communication between agents or 
between tasks.  A transition consists of a source state, destination state, trigger, guard 
condition, and transmissions and uses the syntax trigger [guard] ^ transmission(s).  
Multiple transmissions may be separated with a semicolon (;), however, there is no 
ordering of transmissions implied.   

Generally, events specified in a trigger or transmissions are assumed to come 
from/to another task within the same role, thus allowing internal tasks to coordinate their 
behavior.  However, two special events are used to indicate messages that are sent 
between agents: send and receive.  The send (following the syntax send(message, agent)) 
event is used to send a message to another agent while the receive event (denoted as 
receive(message, agent)) signifies the receipt of such a message.  The message is defined 
as a performative, which describes the intent of the message, along with a set of 
parameters that are the content of the message.  The format of a message is 
performative(p1 ... pn) where p1 ... pn denotes n possible parameters.  It is also possible to 
send a message to a group of agents via multicasting.  Instead of specifying a single agent 
to send a message to, a group name is specified by enclosing the group name with braces 
(e.g., <group-name>) . 

States may contain activities (or functions) that can be used to represent internal 
reasoning, reading a percept from sensors, or performing actions via effectors.  Multiple 
activities may be included in a single state and are performed in sequence.  Once in a 
state, the task remains in that state until activity processing is complete and a transition 
out of the state becomes enabled.  Once processing starts in a state, all activities in  the 
state must complete before any transitions out of the state are enabled.   

The variables used in activity definitions in states and in message and event 
definitions on transitions are assumed to be globally visible within the task, but not 
outside of the task or within activities.  All messages sent between roles and events sent 
between tasks are queued to ensure that all messages are received even if the agent or 
task is not in the appropriate state to handle the message or event immediately.   

We also assume that each task is in exactly one state at any point in time.  That 
means that transitions between states are instantaneous while states take time.  If there are 
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no activities in a particular state or all activities have been completed and no transitions 
have been enabled, then the task is idle, waiting on a transition to be enabled.   

Concurrent tasks have predefined activities to deal with mobility and time.  The 
move activity specifies that the agent is to move to a new address.  The result of the move 
activity is a Boolean value that states whether the move actually occurred.  It is possible 
that an agent may want to move to a new location but is unable to for some reason.  The 
agent should be able to reason about this and deal with it accordingly.  The syntax for the 
move activity is Boolean = move(location). 

To reason about time, the concurrent task model provides a built in timer activity.  
An agent can define a timer using the setTimer activity.  The setTimer activity takes a 
time as input and returns a timer that will timeout in exactly the time specified. The timer 
that can then be tested by the agent to see if it has timed out using the timeout activity.  
The timeout activity returns a Boolean value that is true if the timer has timed out.  Using 
the setTimer and timeout activities, an agent can use time in carrying out its assigned 
responsibilities.  The syntax for the setTimer and timeout functions is shown below. 

t = setTimer(time) 
Boolean = timeout(t) 

Once a transition is enabled, it is executed and execution occurs instantaneously.  
This means that events and messages are sent instantaneously and the current task state 
becomes the destination state of the transition.  If multiple transitions are enabled 
simultaneously, the following priority scheme is used. 

1. Transitions whose triggers contain internal events from other tasks. 
2. Transitions whose transmissions contain internal events.   
3. Transitions whose trigger contains a receive message from other roles.  
4. Transitions whose transmissions contain a message to another role. 
5. Transitions with valid guard conditions only.   

Figure 5 shows the Notify User task for the AdminNotifier role.  The task is initiated 
upon receipt of a RequestNotification message from another agent.  The error to be sent 
to the administrator is captured in the parameter, error.  After the message is received, the 
task goes to the FindAdmin state where it locates the administrator and sets a timer.  
Once these activities are complete, the task sends a Notify message to the administrator, 
passing along the associated error.  The task waits in the wait state until either the timer 
times out or an acknowledge message is received.  If the timer times out, the task returns 
to the FindAdmin state and the exact same activities are re-accomplished.  However, if an 
acknowledge message is received from the Administrator, the task simply sends a 
NotificationComplete message to the initiating task and the current task ends.  Because 
the Notify User task is created based on a message receipt and terminates when it has 
completed, it is a transient task.   
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As discussed above, Sequence Diagrams define the minimum set of messages a role 
must respond to and send.  The analyst can create an initial Concurrent Task Model from 
a scenario by taking the sequence of messages sent or received by that role and use them 
to create a sequence of corresponding states and messages.  An example of the initial 
version of the Notify User task, derived directly from the Sequence Diagram in Figure 3, 
is shown in Figure 6.  Obviously, the biggest differences between Figure 5 and Figure 6 
are the addition of the parameters, activities, and the timeout capability, which was added 
for robust operation. 

1

2

3

RequestNotification

^ Notify

Acknowledge

^ NotificationComplete

 

Figure 6.  Initial Concurrent Task Diagram 

After creating the initial concurrent task diagram, the analyst must determine the 
internal processing the role must perform to be able to satisfy the use case.  This internal 
processing is captured as activities within the existing states.  The analyst also fills in 
information about the data passed in the messages as well as any additional messages 
required for robust information exchange. 

As tasks are created for each Sequence Diagram, the analyst may notice that several 
tasks are similar and can be combined.  In this case, the analyst may combine multiple 
tasks into a single, generally more complex, task that can handle all of the use cases. 

2.4 Analysis Phase Summary 

Once Concurrent Task Models have been defined for each role, the Analysis phase 
is complete.  Although there are three steps in the MaSE Analysis phase, the analyst is 
able, and even encouraged, to move freely between the steps. The MaSE Analysis phase 
can be summarized as follows: 

1. Identify goals from user requirements and structure into a Goal Hierarchy 
Diagram. 

2. Identify use cases and create sequence diagrams to help identify an initial set of 
roles and communications paths. 

3. Transform goals into a set of roles 
a. Create a Role Model to capture roles and their associated tasks. 
b. Define a Concurrent Task Model for each task to define role behavior. 
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3. Design Phase 

There are four steps to the designing a system with MaSE.  The first step is Creating 
Agent Classes, in which the designer assigns roles to specific agent types.  In the second 
step, Constructing Conversations, the actual conversations between agent classes are 
defined while in the third step, Assembling Agents Classes, the internal architecture and 
reasoning processes of the agent classes are designed.  Finally, in the last step, System 
Design, the designer defines the actual number and location of agents in the deployed 
system.  Each of these steps is discussed below. 

3.1 Creating Agent Classes 

In the Creating Agent Classes step of the Design phase, agent classes are created 
from the roles defined in the Analysis phase.  The end product of this phase is an Agent 
Class Diagram, which depicts the overall agent system organization consisting of agent 
classes and the conversations between them.  An agent class is a template for a type of 
agent in the system and is analogous to an object class in object-orientation.  An agent is 
an actual instance of an agent class.  During this step, agent classes are defined in terms 
of the roles they will play and the conversations in which they must participate.  

At this point in the methodology, we simply identify the roles and tasks an agent 
class must play, the internal details of the agent are defined in the Assembling Agent 
Classes (Section 3.3).  To ensure all the system goals are captured in the design, there 
must be at least one agent class assigned to play each role identified in the Analysis 
phase.  In actuality, agent classes may play many roles, with the roles changing 
dynamically during execution.  Furthermore, agents of the same class may play different 
roles at the same time. 

Roles are the foundation upon which agent classes are designed.  Since roles 
correspond to the set of system goals defined in the Analysis phase, roles form a bridge 
from what the system is trying to achieve (the Analysis phase and goals) to how it goes 
about achieving it (the Design phase agent classes).  The analyst can easily change the 
organization and allocation of roles among agent classes during design, since roles can be 
manipulated modularly.  This allows consideration of various design issues.  For 
example, a high communication volume between two roles could imply that those roles 
should be part of the same agent class.  In addition, two roles with large computational 
requirements are best be played by different agent classes so they can be executed on 
separate CPUs.  Often these decisions are based on standard software engineering 
concepts such as functional, communicational, procedural, or temporal cohesion.   

During this step, we also identify the conversations in which different agent classes 
must participate.  Again, we do not define all the details; these are added during the 
Constructing Conversations step as described in Section 3.2.  The set of conversations an 
agent class must participate in is derived from the external communications of the roles 
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that the agent plays.  For instance, assume roles A and B are defined by concurrent tasks 
and communicate with each other.  Then, if agent 1 plays role A and agent 2 plays role B, 
the designer must define a conversation between agent 1 and 2 to implement the 
communication described between roles A and B. 

The agent classes and conversations are documented via an Agent Class Diagram, 
which is similar to object-oriented class diagrams.  There are two main differences.  First, 
agent classes are not defined by attributes and methods; they are defined by the roles they 
play.  The second difference is the semantics of the relationships between agent classes.  
In Agent Class Diagrams, all relationships between classes are conversations that may 
take place between two agent classes.  A sample Agent Class Diagram is shown in Figure 
7.  The boxes in Figure 7 denote agent classes and contain the class name and the set of 
roles each agent plays.  The lines with arrows identify conversations and point from the 
initiator of the conversation to the responder.  The name of the conversation is written 
either over or next to the arrow. 

Notifier
� FileNotifier
� LoginNotifier
� AdminNotifier

FileMonitor
� FileDeletionDetector
� FileModifiedDetector

LoginMonitor
� LoginDetector

UserInterface
� User

FileDetection

LoginDetection

NotifyUser

 

Figure 7: Agent Class Diagram 

The Agent Class Diagram is the first design object in MaSE that depicts the entire 
multiagent system as it will eventually be implemented.  If we have carefully followed 
MaSE to this point, the system represented by the Agent Class Diagram will support the 
goals and use cases identified in the Analysis phase.  Of particular importance at this 
point is the system organization - the way that the agent classes are connected with 
conversations.   

In Section 2, we stated that roles are the "foundation" for multiagent system design.  
If that is true, then agent classes are the "bricks" from which the system is actually built.  
The reason for these two different abstractions is that they provide the ability to 
manipulate two different system dimensions.  Roles provide a way to allocate system 
goals apart from lower-level considerations.  On the other hand, agent classes allow us to 
consider communications and other system resources, such as databases and external 
interfaces, without explicitly worrying about the system goals.   
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3.2 Constructing Conversations 

Constructing Conversations is the next step in the MaSE Design phase.  Up to this 
point, the designer has not defined communications between agents beyond stating that 
they exist.  The fact that a conversation must happen between two agents is known; the 
goal of this step is to actually define the details of those conversations.  The internal 
details of concurrent tasks are indispensable in this pursuit. 

A MaSE conversation defines a coordination protocol between two agents.  
Specifically, a conversation consists of two Communication Class Diagrams, one each 
for the initiator and responder.  A Communication Class Diagram is a finite state 
automaton that defines the conversation states of the two participant agent classes, as 
shown in Figure 8.  The initiator always begins the conversation by sending the first 
message.  When an agent receives a message, it compares it to its active conversations.  If 
it finds a match, the agent transitions the appropriate conversation to a new state and 
performs any required actions or activities from either the transition or the new state.  
Otherwise, the agent assumes the message is a request to start a new conversation and 
compares it to all the possible conversations the agent can participate in with the agent 
that sent the message.  If the agent finds a match, it begins a new conversation.  The 
syntax of a transition follows conventional UML notation as shown below.  

rec-mess(args1) [cond] / action ^ trans-mess(args2) 

The above syntax states that if the message rec-mess is received with the arguments 
args1 and the condition cond holds, then the method action is called and the message 
trans-mess is sent with arguments args2.  All elements of the transition are optional.  By 
analyzing the transition from the start state in Figure 8, it is obvious that it corresponds to 
an initiator half of a conversation since the transition from its start state is triggered by a 
message transmitted by the agent. 

wait1

failure
failed(file, violdationType, reason)

^ request(informUser, violationType, file)

wait2
agree(informUser, true)

failure(informUser, reason) inform(notificationComplete)failure(informUser, reason)

 

Figure 8: Communication Class Diagram for FileDetection Conversation 

Therefore, in Figure 8, the FileMonitor agent (the initiator of the FileDetection 
conversation as defined in Figure 7) sends a message to the Notifier agent requesting that 
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it inform the user of a file violation.  At this point, the FileMonitor agent enters a wait 
state waiting for a response.  If the Notifier can notify the user, it sends an agree message 
and informs the FileMonitor when the notification has been completed.  If the Notifier 
cannot inform the user for the FileMonitor, it returns a failure message with the 
appropriate reason (e.g., the user may have logged out of the system, or the network may 
be down, etc.).  After receiving a failure message, the FileMonitor performs an internal 
call to the failed method.   

The complimentary side of the conversation, from the point of view of the Notifier 
agent, is shown in Figure 9.  In a well designed conversation, each possible sequence of 
messages sent/responded to by one side of the conversation must correspond to the 
messages sent/responded to by the opposite side.  Conversations must be deadlock free.  
Besides deadlock, there are other ways to improperly design a conversation.  For 
example, every message sent from one side of the conversation must be able to be 
received on the other half of the conversation.  Additionally, the conversation must be 
able to exit every state, meaning that every state must have a valid transition from it that 
eventually leads to the end state.  The agentTool system provides automatic verification 
of conversations during the design stage.  Once a set of conversations has been created, 
the designer may choose to automatically verify them.  The verification process beings 
with the automated transformation of the system conversations into the Promela 
modeling language.  Then, the Promela model is automatically analyzed using the Spin 
verification tool to detect errors such as deadlock, non-progress loops, syntax errors, 
unused messages, and unused states [4].  Feedback from this process is provided to the 
designer automatically via text messages and graphical highlighting of error conditions.  
The topic of deadlock and the methods used in agentTool to avoid and detect it are 
covered in detail by Lacey [11, 12]. 

checkUser
ok = checkUser()

request(informUser, violationType, file)

inform
good =

inform(violationType)

[ok] ^ agree(informUser, true)

[NOT ok] ^ failure(informUser, userNotAvailable)

[good] ^ inform(notificationComplete)

[NOT good] ^ failure(informUser, unknown)

 

Figure 9.  Communication Diagram for FileDetection Conversation (Part II) 
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As discussed above, the designer determines the set of conversations an agent class 
may participate in by the roles it plays.  Likewise, the detailed design of conversations is 
derived from the concurrent tasks associated with those roles.  Since a Concurrent Task 
Model specifies a single thread of control that integrates inter-role and intra-role 
interactions, they provide critical information required to define conversations.  Basically 
each task that defines external communication creates one or more conversations.  If all 
the communication within the task is with a single role, or set of roles that have all been 
mapped to a single agent class, the task can be mapped directly to a single conversation.  
More generally, however, concurrent tasks are more complex and consist of multiple 
conversations.  The communications between separate roles or agents can be mapped to 
individual conversations.   

Once all the information from Concurrent Task Models has been captured as part of 
conversations, the designer must ensure that other factors, such as robustness and fault 
tolerance, are taken into account.  For instance, if a particular agent sends a message to 
another agent requesting some action be done, what happens if the other agent refuses or 
is unable to complete the request?  The conversation should be robust enough to handle 
these possible problems. 

In designing conversations, the designer faces a trade-off between having many 
simple conversations or a few complex ones.  If the system has a large number of simple 
communications, these should be implemented by a series of smaller conversations.  
Larger and more complex conversations are only appropriate if an elaborate protocol is 
required.   

3.3 Assembling Agents 

During the Assembling Agents step of the Design phase, the internals of agent 
classes are created.  This is accomplished via two sub-steps: defining the agent 
architecture and defining the components that make up the architecture.   Designers have 
the choice of either designing their own architecture or using predefined architectures 
such as Belief-Desire-Intention (BDI).  Likewise, a designer may use predefined 
components or develop them from scratch.  Components consist of a set of attributes, 
methods, and, if complex, may have a sub-architecture. 

An example of an Agent Architecture Diagram is shown in Figure 10.  Architectural 
components (denoted by boxes) are connected to either inner- or outer-agent connectors.  
Inner-agent connectors (thin arrows) define visibility between components while outer-
agent connectors (thick dashed arrows) define connections with external resources such 
as other agents, sensors and effectors, databases, and data stores.  Internal component 
behavior may be represented by formal operation definitions as well as state-diagrams 
that represent events passed between components.  The architecture and internal 
definition of the components must be consistent with the conversations defined in the 
previous step.  At a minimum, this requires that each action or activity defined in a 
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Communication Class Diagram be defined as an operation in one of the internal 
components.  The internal component state diagrams and operations can also be used to 
initiate and coordinate various conversations. 

LoginDetector

loginDetected (user, location)
loginFailed(username, location)

Validator

userRights : UserList
locations : LocationList

validateLogin(user, location) : Boolean
validateFile(user, file) : Boolean

FileDetector

fileModDetected (file, user)

  

Figure 10.  FileMonitor Agent Architecture 

The FileMonitor agent architecture is shown in Figure 10.  The FileMonitor agent 
has three components.  The LoginDetector and FileDetector components work basically 
the same, interacting with the operating system to detect logins and file modification 
attempts.  Both of these components call the Validator component to determine whether 
the login or file accesses were valid and need to be reported.  The outer-agent connectors 
on the detector components denote both the fact that the components interact with the 
operating system as well as communicate with the Notifier agent via conversations.  

While the designer may use existing architectures or design one from scratch, we 
are currently investigating deriving the agent architecture directly from the roles and 
tasks defined in the analysis phase [15].  This approach has the advantage of more 
directly mapping the analysis to the design while possibly losing some flexibility and 
reuse potential.  Basically, each task from each role played by an agent defines a 
component in the agent class.  The concurrent task itself is transformed into a 
combination of the component’s internal state diagram and a set of conversations.  
Activities identified in the concurrent task become methods of the component. 

3.4 System Design 

The final step of the MaSE methodology takes the agent classes defined previously 
and instantiates actual agents.  We use a Deployment Diagram to show the numbers, 
types, and locations of agents within a system.  System design is actually the simplest 
step of MaSE, as most of the work was done in previous steps.  The concept of 
instantiating agents from agent classes is similar to instantiating objects from object 
classes in object-oriented programming. 

Deployment Diagrams describe a system based on agent classes defined in the 
previous steps of MaSE.  Figure 11 shows a Deployment Diagram for our example 
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system.  The three-dimensional boxes represent agents while the connecting lines 
represent actual conversations between agents.  The agents are identified by their class 
name or in the form of designator:class if there are multiple instances of a class.  Any 
conversation between agent classes appears between agents of those classes.  
Furthermore, a dashed-line box indicates agents executing on the same physical platform. 

LM1:
LoginMonitor

FM1:
FileMonitor

LM2:
LoginMonitor

FM2:
FileMonitor

LM3:
LoginMonitor

FM3:
FileMonitor

LM4:
LoginMonitor

FM4:
FileMonitor

Notify: Notifier
User:

UserInterface

 

Figure 11: Deployment Diagram 

A designer must define the system using a Deployment Diagram before 
implementing it since agents typically require the information contained in the 
Deployment Diagram, such as a hostname or address, in order to participate in external 
communications.  Deployment Diagrams also offer an opportunity for the designer to 
tune the system to its environment.  The designer can use Deployment Diagrams to 
define various configurations of agents and computers to maximize available processing 
power and network bandwidth.  In some cases, the designer may specify a particular 
number of agents in the system or the specific computers on which certain agents must 
reside.  The designer should also consider the communication and processing 
requirements when assigning agents to computers.  To reduce communications overhead, 
a designer may choose to deploy agents on the same machine.  However, putting too 
many agents on a single machine destroys the advantages of distribution gained by using 
the multiagent paradigm.  Likewise, if an agent has high processing requirements, the 
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designer can place it on a machine by itself.  A strength of MaSE is that a designer can 
make these modifications after designing the system organization, thus generating a 
variety of system configurations. 

3.5 Design Phase Summary 

Once the Deployment Diagrams are finished, the Design phase is complete.  The 
MaSE Design Phase can be summarized as follows: 

1. Assign roles to specific agent classes, and identify conversations by examining 
Concurrent Task Models based on the roles played by each agent class. 

2. Construct conversations by extracting the messages and states defined for each 
communication path in Concurrent Task Models, adding additional messages 
and states for added robustness. 

3. Define the internals of agent classes by defining the architecture of each agent 
class using components and connectors.  Ensure that each action defined in a 
conversation is implemented as a method within the agent architecture. 

4. Define the final system structure using Deployment Diagrams. 

4. Summary & Future Work 

MaSE is a seven-step process that transforms a set of abstract models into a series 
of more concrete representations.  It begins in the Analysis phase by capturing the 
essence of an initial system context in a structured set of goals and use cases.  Next, the 
use cases are transformed into Sequence Diagrams so desired event sequences will be 
designed into the system.  Finally, roles are identified from goals and use cases and 
include tasks, which describe how their associated goals are satisfied.  The goal of the 
Design phase is to define the overall system organization by transforming the roles and 
tasks defined during analysis into agent types and conversations.  Once the system 
organizational structure is defined, the internal structure of each agent class is defined.  
The final system configuration is defined in the system design step.  Once again, we 
cannot overstress the importance of moving fluidly between steps and phases in MaSE to 
achieve the final goal - a robust, flexible, and efficient multiagent system. 

Both MaSE and agentTool are works in progress.  MaSE, along with our current 
version of agentTool, has been used to develop over a dozen multiagent systems ranging 
a few agents to over a hundred.  The application areas range from information systems [9, 
13] to biologically based immune systems [3] to recent work on teams of uninhabited air 
vehicles.  The results have been promising.  Users tell us that MaSE is relatively simple 
to use, yet is flexible enough to allow for a variety of solutions.  We are currently using 
MaSE and agentTool to develop larger scale multiagent systems.   

We are also currently extending MaSE to handle mobility and dynamic systems (in 
terms of agents being able to enter and leave the system during execution) [16].  We are 
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also looking more closely at the relationship between tasks, conversations, and the 
internal design of agents [15].  Two additional areas that require further research are the 
use of obstacles to goals as a way to increase robustness and exception handling abilities 
and modeling of the information domain.  As for agentTool, we are extending it to handle 
all phases and steps of MaSE including code generation.   We are also looking at 
visualization techniques to make existing MaSE diagrams, or modified versions of them, 
easier to view and use in agentTool.  The agentTool system already includes a code 
generator that generates complete conversations for multiple communication frameworks. 

5. Related Work 

There have been several proposed methodologies for analyzing, designing, and 
building multiagent systems [5], most of which are based on existing object-oriented or 
knowledge-based methodologies.  In the following subsections, we compare MaSE 
against three of the better-known methodologies.  Section 5.1 looks at the Gaia 
methodology offered by Wooldridge, Jennings, and Kinney, Section 5.2 evaluates the 
approach of Kinny, Georgeff, and Rao, and Section 5.3 compares MaSE against the 
MAS-Common KADS approach. 

5.1 Gaia Methodology 

One of the most recent attempts at defining a full methodology for the analysis and 
design of multiagent systems is Gaia [19].  The Gaia methodology views the system as a 
society or organization, with the elements of that society defined by roles.  In Gaia, roles 
are initially captured in a prototypical role model, which are incrementally expanded and 
fully elaborated by the end of the analysis phase.  These roles have direct correspondence 
to roles and role model defined in MaSE.  A key difference between Gaia and MaSE is 
that Gaia provides no concrete way of determining the organization of the system or the 
type of roles that should exist in the organization.  MaSE, on the other hand, develops the 
roles in a systematic manner using use cases and sequence diagrams.  In MaSE it is often 
straightforward to recognize the required roles, relationships between roles, and goals for 
which the roles are responsible.   

In Gaia, a role is defined by four attributes: responsibilities, permissions, activities, 
and protocols.  Responsibilities determine the functionality of a role and are analogous to 
goals as defined in MaSE.  Permissions are the "rights" (generally information resources) 
associated with a role and identify the resources that are available to a role in order to 
achieve its responsibilities.  MaSE has no counterpart for permissions; however, we 
generally assume that each resource is encapsulated by a unique role that provides an 
interface to the rest of the system.  Gaia Activities define a role’s computations that are 
carried out without interacting with other roles.  Gaia activities correspond directly 
concurrent task activities.  Protocols define how Gaia roles interact with each other and 
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are defined by six attributes: purpose, initiator, responder, inputs, outputs, and 
processing.  In MaSE, protocols are defined in more detail by modeling them as 
concurrent tasks.   

In the design phase, Gaia only provides an abstract, high-level design.  It consists of 
an Agent Model that identifies the agent types, the roles they implement, and their 
multiplicity within the system.  This information is also captured in MaSE using Agent 
Class Diagrams and Deployment Diagrams.  The Gaia Services Model identifies the main 
services of the agent type in terms of the inputs, outputs, pre- and post-conditions (as 
derived from safety properties).  This does not have a direct parallel in MaSE although 
services and the details of the interactions (inputs and outputs) are defined in much more 
detail in MaSE tasks and conversations.  Finally, the Gaia acquaintance model simply 
identifies lines of communications between agent types.  In MaSE, this information is 
captured in the Agent Diagram, which also identifies the types of interactions as 
individual conversations.  MaSE conversations go on to describe the structure of these 
communications, a level of detail not addressed by Gaia.  

5.2 Belief-Desire-Intention (BDI) 

An early attempt to define a multiagent systems methodology was developed by 
Kinney, Georgeff, and Rao [10].  They proposed a set of specialized Object-Oriented 
models for developing a system of Belief-Desire-Intention (BDI) agents.  In this 
methodology, there are two sets of models: external and internal.   

From the external viewpoint, the system is decomposed into agents, their 
responsibilities, the services they perform, the information they require, and their external 
interactions.  These characteristics are captured in two models:  the Agent Model and the 
Interactions Model.  The Agent Model describes the hierarchical relationship between 
different abstract and concrete agent classes, and identifies the agent instances that may 
exist within the system, their multiplicity, and when they come into existence.  The 
Interaction Model describes the responsibilities of an agent class, the services it provides, 
associated interactions, and control relationships between agent classes.  The external 
viewpoint and associated models are captured in MaSE Agent Class Diagrams using 
agent classes and conversations.   

From the internal viewpoint, the elements required by particular agent architectures 
are modeled for each agent using three models that describe its informational and 
motivational state and its potential behavior:  the Belief Model, the Goal Model, and the 
Plan Model.  The Belief Model describes the information about the environment and 
internal state that an agent of that class may hold, and the action is may perform.  The 
Goal Model describes the goals that an agent may possibly adopt, and the events to which 
it can respond.  Finally, the Plan Model describes the plans that an agent may possibly 
employ to achieve its goals or respond to events it perceives.  It consists of a plan set 
which describes the properties and control structure of individual plans. 
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The biggest difference between MaSE and this approach lie in the focus on a 
particular agent type.  MaSE is designed to be used with heterogeneous agents as 
opposed to a single agent architecture (i.e., BDI).  In MaSE, attributes such as beliefs, 
desires, and intentions are initially captured in the analysis phase with goals and tasks.  
Agents cooperate with each other by passing messages, effectively changing each other's 
beliefs (which corresponds to a state transition in a task).  These same concepts are 
carried forward into the design phase of MaSE as agent classes assume roles (and their 
associated goals) and the role tasks are translated into conversations and component state 
diagrams in the internal agent architecture.  More complicated belief computations are 
easily added to the way MaSE handles states and their transitions. 

5.3 MAS-CommonKADS 

Another proposed multiagent system methodology is the MAS-CommonKADS 
methodology [6].  This methodology extends CommonKADS for multiagent systems by 
adding techniques from object oriented methodologies and protocol engineering.  The 
general software engineering process combines a risk-driven approach with a component-
based approach.  The first phase of analysis is Conceptualization, where the analyst 
determines use cases from the initial user requirements and then formalizes them with 
Message Sequence Charts.  The purpose of this phase is to capture roles and to develop 
an initial understanding of the interactions that must take place between those roles.  This 
Conceptualization phase is analogous to the Applying Use Cases phase in MaSE.   

After the Conceptualization phase, a system requirements specification is generated 
using six models, each consisting of constituents (entities to be modeled) and the 
relationships between them.  The Agent model specifies the agent characteristics, which 
include reasoning capabilities, sensors, effectors, services, agent groups and hierarchies 
(both modeled in the organization model).  The Task model describes the tasks that the 
agents can carry out and include goals, decompositions, ingredients and problem-solving 
methods.  The Expertise model defines the information sources needed by the agents to 
achieve their goals.  The Organization model specifies the organization and the social 
organization of the agent society.  The Coordination model describes the conversations 
between agents: their interactions, protocols and required capabilities.  Finally, the 
Communication model details the human-software agent interactions and the human 
factors required for developing these interfaces. 

Many of the steps and models seem to be similar to those produced in MaSE.  
Unfortunately, there were no examples of most of the models and some of the modeling 
steps were not well defined, as some of the models described above were never 
mentioned in any particular step.  One concept that MAS-CommonKADS fails to capture 
is the concurrency of the activities being performed by the agent roles.  However, MAS-
CommonKADS does appear to provide a more detailed definition of the methods or 
functions (here called tasks) and information sources associated with each role. 
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5.4 Summary 

Based on the comparisons above, we believe that MaSE is a comprehensive 
methodology for the analysis of multiagent systems and provides solid foundation for the 
design and development of multiagent systems.  MaSE not only takes advantage of goal-
driven development, but also uses the power of multiagent systems by defining roles, 
protocols and tasks in the analysis phase.  Another less obvious advantage that MaSE has 
is that its steps are defined at a fine level of granularity making the transition between 
models simpler and more straightforward than many of the techniques discussed above.  
MaSE also provides more guidance on how models relate to each other. 
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