

International Journal of Software Engineering and Knowledge Engineering
Vol. 11, No. 3 (2001) 231-258
© World Scientific Publishing Company

231

MULTIAGENT SYSTEMS ENGINEERING

SCOTT A. DELOACH, MARK F. WOOD AND CLINT H. SPARKMAN

Air Force Institute of Technology
Graduate School of Engineering and Management

Department of Electrical and Computer Engineering
Wright-Patterson Air Force Base, OH 45433-7765

E-mail: (sdeloach@computer.org, woodm@gateway.net, csparky@flash.net)

This paper describes the Multiagent Systems Engineering (MaSE) methodology. MaSE
is a general purpose, methodology for developing heterogeneous multiagent systems.
MaSE uses a number of graphically based models to describe system goals, behaviors,
agent types, and agent communication interfaces. MaSE also provides a way to specify
architecture-independent detailed definition of the internal agent design. An example of
applying the MaSE methodology is also presented.

Keywords: Multiagent systems; software engineering; methodologies; analysis; design.

1. Introduction

The advent of multiagent systems has brought together many disciplines in an effort
to build distributed, intelligent, and robust applications. They have given us a new way
to look at distributed systems and provided a path to more robust intelligent applications.
However, many of our traditional ways of thinking about and designing software do not
fit the multiagent paradigm. Over the past few years, there have been several attempts at
creating tools and methodologies for building such systems. Unfortunately, many of the
methods focused on a single agent architecture or have not gone to the necessary level of
detail to adequately support complex system development [5]. In our research, we have
developed a complete-lifecycle methodology, called Multiagent Systems Engineering
(MaSE), for analyzing, designing, and developing heterogeneous multiagent systems.

Much of the current research related to intelligent agents has focused on the
capabilities and structure of individual agents. However, to solve complex problems,
these agents must work cooperatively with other agents in a heterogeneous environment.
This is the domain of multiagent systems. In multiagent systems, we are interested in the
coordinated behavior of a system of individual agents to provide a system-level behavior.
Sycara [17] describes the challenges facing multiagent systems including the focus of our
research, how to engineer practical multiagent systems. MaSE uses the abstraction
provided by multiagent systems for developing intelligent, distributed software systems.
To accomplish the goal, MaSE uses a number of graphically based models to describe the

232 S. A. DeLoach, M. F. Wood & C. H. Sparkman

types of agents in a system and their interfaces to other agents, as well as an architecture-
independent detailed definition of the internal agent design.

In our research, we view MaSE as a further abstraction of the object-oriented
paradigm where agents are a specialization of objects. Instead of simple objects, with
methods that can be invoked by other objects, agents coordinate with each other via
conversations and act proactively to accomplish individual and system-wide goals.
Interestingly, this viewpoint sidesteps the issues regarding what is or is not an agent. We
view agents merely as a convenient abstraction, which may or may not possess
intelligence. In this way, we handle intelligent and non-intelligent system components
equally within the same framework. In addition, since we view agents as specializations
of objects, we build on existing object-oriented techniques and apply them to the
specification and design of multiagent systems.

The primary focus of MaSE is to help a designer take an initial set of requirements
and analyze, design, and implement a working multiagent system. This methodology is
the foundation for the Air Force Institute of Technology's (AFIT) agentTool development
system, which also serves as a validation platform and a proof of concept [2]. The
agentTool system is a graphically-based, fully interactive software engineering tool for
the MaSE methodology. agentTool supports the analysis and design in each of the seven
MaSE steps. The agentTool system also supports automatic verification of inter-agent
communications and code generation for multiple multiagent system frameworks. The
MaSE methodology, as well as agentTool, is independent of any particular agent
architecture, programming language, or communication framework. The focus of our
work is on building heterogeneous multiagent systems. We can implement a multiagent
system designed in MaSE in several different ways from the same design.

The MaSE methodology is a specialization of more traditional software engineering
methodologies. The general operation of MaSE follows the phases and steps shown on
the right side of Figure 1. The MaSE Analysis phase consists of three steps: Capturing
Goals, Applying Use Cases, and Refining Roles. The Design phase has four steps:
Creating Agent Classes, Constructing Conversations, Assembling Agent Classes, and
System Design. The rounded rectangles denote the MaSE models used to capture the
output of each step while the arrows between them show how the models affect each
other. While we have drawn it as a single flow from top to bottom, with the models
created in one step being the inputs for subsequent steps, in practice the methodology is
iterative. The intent is that the analyst or designer be allowed to move between steps and
phases freely such that with each successive pass, additional detail is added and,
eventually, a complete and consistent system design is produced.

A major strength of MaSE is the ability to track changes throughout the process.
Every object created during the analysis and design phases can be traced forward or
backward through the different steps to other related objects. For instance, a goal derived
in the Capturing Goals step can be traced to a specific role, task, and agent class.

Multiagent Systems Engineering 233

Likewise, an agent class can be traced back through tasks and roles to the system level
goal it was designed to satisfy.

The individual steps of the analysis and design phases are discussed in Sections 2
and 3. An overview of where MaSE has been used and future research directions is
presented in Section 4 while a comparison with other existing multiagent methodologies
is given in Section 5.

Creating Agent
Classes

Initial System
Context

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining Roles

Assembling
Agent Classes

System Design

Applying Use
Cases

Goal
Hierarchy

RolesConcurrent
Tasks

Conver-
sations

Agent
Classes

Constructing
Conversations

A
nalysis

D
esign

Figure 1. MaSE Phases

2. Analysis Phase

The purpose of the MaSE Analysis phase is to produce a set of roles whose tasks
describe what the system has to do to meet its overall requirements. A role describes an
entity that performs some function within the system. In MaSE, each role is responsible
for achieving, or helping to achieve specific system goals or sub-goals. MaSE roles are
analogous to roles played by actors in a play or by members of a typical company
structure. The company (which corresponds to system) has roles such as "president",
"vice-president", and "mail clerk" that have specific responsibilities, rights and
relationships defined in order to meet the overall company goal.

234 S. A. DeLoach, M. F. Wood & C. H. Sparkman

We chose to model multiagent systems using roles since roles are typically goal
driven and map conveniently to agents. Because roles are goal-driven, we also chose to
abstract the functional requirements into a set of system goals that can be passed on to the
individual roles to carry out. A goal is an abstraction of a set of functional requirements.
Typically a system has an overall goal and a set of sub-goals that must be achieved to
reach the overall system goal.

The overall approach in the MaSE Analysis phase is fairly simple. Define the
system goals from a set of functional requirements and then define the roles necessary to
meet those goals. While a direct mapping from goals to roles is possible, MaSE suggests
the use of Use Cases to help validate the system goals and derive an initial set of roles.
The individual steps of the Analysis phase of Capturing Goals, Applying Use Cases, and
Refining Roles are presented in Sections 2.1, 2.2, and 2.3 respectively.

2.1 Capturing Goals

The first step in the MaSE Analysis phase is Capturing Goals, which takes an initial
system specification and transforms it into a structured set of system goals. In the context
of the classic software lifecycle, this phase is concerned with system and software
analysis. The initial system context is the collection of anything given to the analyst as a
starting point for system analysis. We assume that the initial system context includes a
software requirements specification that includes a well-defined set of functional
requirements. Functional requirements tell the analyst the services that the system must
provide and how the system should or should not behave based on inputs to the system
and its current state [14]. The first step in the Analysis phase is to abstract the functional
requirements into system goals. Our definition of a goal is similar to that described by
Cockburn [1]; however, instead of focusing on the user's goal in using the system, we
look at it from the system's point of view. The overall goal of the system is to fulfill the
desires of the user. Therefore, if a user has a goal of "keeping track of possible login
violations," the system goal would be to "inform user of possible login violations."
Stating goals from the system's perspective seems to be more natural when talking about
the system itself.

We chose to base the MaSE Analysis phase on goals because system goals are more
stable than functions, processes, or information structures that often change with time [7].
Goals embody what the system is trying to achieve and generally remain constant
throughout the analysis and design process. This is in contrast to other possible analysis
objects, such as functions, that are organized around how something is done. In
functional analysis, the details can be overwhelming and rapidly changing [7].

There are two sub-steps in Capturing Goals: identifying goals and structuring goals.
First, goals must be identified from the initial system context. Next, the goals are
analyzed and structured into a form that can be used later in the Analysis phase. Each
sub-step is described in more detail below.

Multiagent Systems Engineering 235

2.1.1 Identifying Goals

The first step in capturing goals is to capture the essence of an initial set of
functional requirements. This process begins by extracting scenarios from the initial
specification and describing the goal of that scenario. Assume we are given the
following function requirements for security violations on a computer system [7].

• The system is responsible for dealing with host violations, in particular login
violations and system file intrusions. The system administrator is notified of
suspected or attempted intrusions.

• It is necessary to validate the date, time and existence of system files
periodically, every few minutes. When a file is not found or a new version
appears, the system administrator needs to be notified. When a user tries to
modify or delete a system file, the system administrator needs to be notified.

• A user tries to login when he or she does not have a valid account. If this occurs
once or twice in a short period of time, it is not a violation. Three or more
attempts are a violation that needs to be reported.

• The system administrator may not be available to receive a notification. This can
be due to a network failure or the fact that the administrator is performing
another task. The report needs to be stored and resent after a delay.

An example of the goals derived from these requirements is shown below. Notice
that all the details on how to perform system functions (e.g., "It is necessary to validate
the date, time and existence of system files periodically, every few minutes") are not
included as goals.

1. Inform administrator of file violations.
2. Inform administrator of login violations.
3. Detect invalid file deletion attempts.
4. Detect invalid file modification attempts.
5. Detect invalid login attempts.
6. Notify administrator of violations.

The purpose of using goals is that identify the critical aspects of the system
requirements. Therefore, an analyst should specify goals as abstractly as possible without
losing the essence of the requirement. This abstraction can be performed by removing
detailed information when specifying goals. For example, to “Detect invalid login
attempts” is a goal. How to detect invalid attempts is a requirement that may change with
time or between various operating systems and is not a goal.

Once goals have been captured and explicitly stated, they are less likely to change
than the detailed steps and activities involved in accomplishing them. These goals
provide the foundation for the analysis model; all roles and tasks defined in later steps
must support one of the goals identified in this step. If, later in the analysis, the analyst

236 S. A. DeLoach, M. F. Wood & C. H. Sparkman

discovers roles or tasks that do not support an existing system goal, either the roles and
tasks are superfluous or a new goal can be added to the goal set.

2.1.2 Structuring Goals

The final step in Capturing Goals is structuring the goals into a Goal Hierarchy
Diagram, as shown in Figure 2. A Goal Hierarchy Diagram is a directed, acyclic graph
where the nodes represent goals and the arcs define a sub-goal relationship. A goal
hierarchy is not a tree since a goal may be a sub-goal of more than one parent goal. Each
level in the diagram is intended to contain goal "peers" that are at approximately the same
level of detail.

To develop the goal hierarchy, the analyst studies the initial set of goals for their
importance and inter-relationships. Even though goals have been captured, they are of
various importance, size, and level of detail. The Goal Hierarchy Diagram preserves
such relationships, and divides goals into levels of detail and importance that are easier to
manage and understand.

1. Inform admin of
host violations

1.1.1 Detect invalid
file deletion

attemps.

1.1.2 Detect invalid
file modification

attempts.

1.1.3 Notify
administrator of

violations.

1.2.1 Detect invalid
login attempt.

1.1 Inform admin of
file violations

1.2 Inform admin of
login violations.

Figure 2. Example Goal Hierarchy Diagram

The first step in building the hierarchy is to identify the overall system goal, which
is placed at the top of the Goal Hierarchy Diagram. However, it is often the case, as in
our example above, that a single system goal cannot be directly extracted from the
functional requirements. In this case, the highest-level goals are summarized to create an
overall system goal and the high level goals become sub-goals of the system goal. Once a
basic goal hierarchy is in place, goals may be decomposed into new sub-goals. Each sub-
goal must support its parent goal in the hierarchy. A goal is a valid sub-goal if it defines
what the system must do to support its parent goal.

Goal decomposition is not simply “functional decomposition.” Functional
decomposition results in a set of steps to achieve a goal. For example, the steps required
to implement the goal "Inform administrator of login violations" are to (1) detect all
logins, (2) determine if they are valid, and (3) send a message to the administrator for all
invalid logins. However, valid sub-goals include "Detect invalid login attempts" and
"Notify administrator of violations." The facts that an invalid login is detected and the

Multiagent Systems Engineering 237

administrator is notified are the goals, how we detect invalid logins and notify the
administrator are not. Goal decomposition continues until any further decomposition
would result in a functional requirement instead of a goal (i.e., the analyst starts capturing
how the goal should be accomplished). Once a decision of how a goal should be
accomplished, the analyst has moved gone too far in the goal decomposition process.

There are four special types of goals in a Goal Hierarchy Diagram: summary,
partitioned, combined, and non-functional. Goals can have attributes of more than one
special goal type; however, they do not necessarily have to be one of these types at all.

A summary goal [1] is derived from a set of existing "peer" goals to provide a
common parent goal. This often happens at the highest levels of the hierarchy. For
instance, if the analyst decides that goals of "Inform admin of file violations" and
"Inform admin of login violations" constitute the highest level of goals for the system, the
analyst may abstract them further to create the summary goal "Inform admin of host
violations", which is the overall system goal as shown in Figure 2.

Some goals do not directly direct support of the overall system goal, but are critical
to the correct functioning of the system. These non-functional goals are often derived
from non-functional requirements such as reliability or response times. For example, if a
system must be able to find resources dynamically, a goal to facilitate locating dynamic
resources may be required. While not central to the main goal of the system, this goal
allows the system to meet its requirements. In this case, another "branch" of the Goal
Hierarchy Diagram can be created and placed under an overall system level goal.

There are often a number of sub-goals in a hierarchy that are identical or very
similar that can be grouped into a combined goal. For example, the initial goals "Inform
administrator of file violations" and "Inform administrator of login violations" are
combined in Figure 2 into the single goal of "Notify administrator of violations." In this
case, the combined goal becomes a sub-goal of both the "Inform admin of file violations"
and the "Inform admin of login violations" goals. By combining goals, the analyst can
make the final system more understandable by combining similar functionality into
specific roles or agents.

A partitioned goal is a goal with a set of sub-goals that, when taken collectively,
effectively meet that goal. In essence, the sub-goals must cooperate to achieve their
parent goal. While this is always true of summary goals, it may be true of any goals with
a set of sub-goals. By defining a goal as "partitioned", it frees the analyst from
specifically accounting for it in the rest of the analysis process. Partitioned goals are
annotated in a Goal Hierarchy Diagram using a gray goal box instead of a clear box. For
example, in Figure 2, Goal 1 is a partitioned goal since it is a summary goal.

At the conclusion of the Capturing Goals step, the system goals have been analyzed,
captured, and structured in a Goal Hierarchy Diagram. The analyst can now move to the
second step of the Analysis phase, Applying Use Cases, where the initial look at roles
and communication paths takes place.

238 S. A. DeLoach, M. F. Wood & C. H. Sparkman

2.2 Applying Use Cases

The objective of the Applying Use Cases step is to capture a set of use cases from
the initial system context and create a set of Sequence Diagrams to help the system
analyst identify an initial set of roles and communications paths within the system. Use
cases define basic scenarios that a system should be able to perform. The Sequence
Diagrams capture the use cases as a set of events between the roles that make up the
system. These event sequences are used later in the Analysis phase to define tasks that a
particular role must accomplish. These tasks eventually find their way into the inter-
agent conversations during the Design phase, thus ensuring that the use cases are
implemented in the resulting multiagent system.

2.2.1 Creating Use Cases

The first step in Applying Use Cases is to extract use cases from the initial system
context. Use cases define a sequence of events that can occur in the system. They are
examples of how the user thinks the system should behave. Although part of the
Applying Use Cases step, creating use cases may actually elicit more information or
clarify existing information about system goals. If this happens, the analyst should
immediately go back and add or modify the original Goal Hierarchy Diagram.

Use cases may already exist as part of the initial system context or they may have to
be extracted by the analyst. The analyst may extract use cases from requirements
specifications, user stories, or any other available source. While having a large number
of use cases may be handy in helping to understand the system, it is important not to let
the creation of use cases get out of hand. The goal of creating use cases is to identify
paths of communication, not to define all possible combinations of events and data in the
system. The analyst should attempt to gather enough use cases to cover as many possible
event sequences without repeating the same sequence many times with different data or
events. In general, the analyst should strive to show how each goal can be accomplished.
The analyst should capture both positive and negative use cases. A positive use case
describes what should happen during normal system operation. However, a negative use
case still describes a desired sequence of events, but is illustrative of a breakdown or
error. We are currently investigating the use of obstacles (as a dual concept to goals)
[18] and their relation to negative use cases.

While use cases cannot be used to capture every possible requirement, they are an
aid in deriving communication paths and roles. Cross checking the final analysis against
the set of derived goals and use cases provides a redundant method for deriving required
system behavior.

Multiagent Systems Engineering 239

2.2.2 Creating Sequence Diagrams

A Sequence Diagram depicts the sequence of events that are transmitted between
roles identified from use cases as shown in Figure 3. The boxes at the top of the diagram
represent system roles and the arrows between the lines represent events passed between
roles. Time is assumed to flow from the top of the diagram to the bottom. Therefore, in
Figure 3, the FileViolation event is sent from the FileModifiedDetector to the FileNotifier
and must precede the RequestNotification event that is sent to the AdminNotifier.

FileModifiedDetector FileNotifier AdminNotifier User

FileViolation

RequestNotification

Notify

Acknowledge

NotificationComplete

Reported

Figure 3: Sequence Diagram

Transformation from use cases to Sequence Diagrams is relatively straightforward.
Individual entities named in the use case correspond to roles while any type of
communications or information passing between use case entities becomes an event. The
sequence of the events is based on the use case description. Every type of participant in a
Sequence Diagram becomes a role. The roles identified in Sequence Diagrams form the
initial set of roles used in the next step, Refining Roles, where they may be renamed,
decomposed into multiple roles, or combined with other roles.

In general, one Sequence Diagram is created for each use case. However, if there
are several possible execution sequences, multiple Sequence Diagrams may be created.
For instance, if a use case has several alternate resolutions, such as "the diagnosis is sent
from the doctor to the medical desk, and from the medical desk to the patient unless the
patient is a minor, in which case it is sent to the patient's legal guardian from the medical
desk", the analyst should create two similar but distinct Sequence Diagrams to define the
use case. One use case could be used to describe what happens when the patient is a
minor and the second could describe the more normal case.

After identifying the participating roles, creating the Sequence Diagram consists of
reading through the use case and finding all instances of events that occurs between two
of the roles. Each event in the use case is drawn as an arrow on the Sequence Diagram in
the order that they occur. By applying use cases to create Sequence Diagrams, the main
sequences of events from the use cases are explicitly accounted for in the concurrent
tasks and conversations designed from these use cases.

240 S. A. DeLoach, M. F. Wood & C. H. Sparkman

2.3 Refining Roles

The objective of the last step of the Analysis phase, Refining Roles, is to transform
the structured goals and Sequence Diagrams into roles and their associated tasks, which
are forms more suitable for designing multiagent systems. Roles form the foundation for
agent class definition and represent system goals during the Design phase. By using roles
in this manner, the system goals are carried forward into the system design. It is our
contention that system goals will be satisfied if every goal is associated with a role and
every role is played by an agent class.

The general case transformation of goals to roles is one-to-one, with each goal
mapping to a role. However, there are situations where it is useful to have a single role
be responsible for multiple goals. There are many considerations in Refining Roles.
Similar or related goals may be combined into single roles for the sake of convenience or
efficiency. Commonplace goals often imply roles that can be reused from previous
efforts. For example, in the case where a system must find resources dynamically, some
type of facilitator role may be required. Facilitator roles are quite common and have been
included in many multiagent systems. One mapping of the goals from our previous
example to a set of roles is shown below.

FileNotifier (1.1)
LoginNotifier (1.2)
FileDeletionDetector (1.1.1)
FileModifiedDetector (1.1.2)
AdminNotifier (1.1.3)
LoginDetector (1.2.1)

Due to the simplicity of our example, we mapped goals to individual roles with a single
exception; goal 1 was not mapped to a role since it was partitioned by Goals 1.1 and 1.2.
In general, these decision on mapping goals to roles are based on detailed goal analysis.
Possible considerations about when to combine and separate goals are detailed below.

Some goals may go unstated in the requirements and undiscovered until this point in
the analysis. For example, interfacing with a user is a requirement that is often
overlooked. Since a user interface requires special design techniques, it should be a
separate role. If a goal is discovered at this point in system analysis, it should be added to
existing goals as if it was part of the original system requirements. The previous steps,
such as adding the new goal to the Goal Hierarchy Diagram, are then re-accomplished to
keep the system analysis consistent.

Related goals can often be combined into a single role. For example, if we had
decomposed our goals into “Notify administrator of file violations” and “Notify
administrator of login violations”, we could have combined the roles into a single
AdminNotifier role. While making the role more complex, combing goals into a single
role simplifies the overall system design. This is a tradeoff that the analyst must make.

Multiagent Systems Engineering 241

Interfacing with external or internal resources generally requires a separate role to
act as an interface from a resource to the rest of the system. We generally consider a
human user as an external resource. In MaSE we do not explicitly model human –
computer interaction. However, we would suggest that a specific role be created to
encapsulate the user interface. In this way, we can define the ways in which a user can
interface with the system without defining the user interface itself. Other resources such
as databases, files or legacy systems may also require their own interface role.

Role definitions are captured in a MaSE Role Model as shown in Figure 4, which
includes information on interactions between role tasks and is more complex than
traditional role models [8]. Roles are denoted by rectangles, while a role’s tasks are
denoted by ovals attached to the role. The detailed description of a task's definition is
provided via Task Diagrams described in the next section. Lines between tasks denote
(possibly named) communications protocols that occur between the tasks. The arrows
denote the initiator/responder relationship of the protocol with the arrow pointing from
the initiator to the respondent. Solid lines indicate peer-to-peer communications, which
are generally implemented as external communications protocols. External protocols
involve message passing between roles that may become actual messages if their roles
end up being implemented in separate agents. These protocols are derived from the
Sequence Diagrams developed in the previous step. Dashed lines denote communication
between concurrent tasks within the same role. A lined is dashed if its protocols denote
communications occurring only within the same instance of the role.

The tasks are generally derived from the goals for which a task is responsible. For
instance, the FileDeletionDetector role is responsible for attaining goal 1.1.1, which is to
“Detect invalid file deletion attempts.” Therefore, to accomplish this goal, the role must
be able to detect file deletion attempts and determine if they are valid. In this case, the
designer has decided to separate these into two tasks: Detect File Deletions and
Determine Validity.

242 S. A. DeLoach, M. F. Wood & C. H. Sparkman

FileNotifier
1.1

LoginNotifier
1.2

FileDeletionDetector
1.1.1

FileModifiedDetector
1.1.2

LoginDetector
1.2.1

AdminNotifier
1.1.3, 1.1.3a
1.2.2, 1.2.2a

Detect File
Deletions

Determine
Validity Notify

Detect File
Deletions

Determine
Validity

Detect Failed
Logins

Detect Logins

Determine
Validity

Notify Notify User

Invalid File
Deletion

Invalid File
Modification

Failed
Login

Invalid
Login

Login
Notification

File
Notification

User

Display

Figure 4: MaSE Role Model

Roles may not share or duplicate tasks. Sharing of tasks is a sign of improper role
decomposition. Shared tasks should be placed in a separate role, which can be combined
into various agent classes in the Design phase. This does not imply that the more general
notion of a task cannot be distributed among various agents in the system. An agent in
charge of satisfying a goal may distribute tasks among various agents capable of playing
the appropriate role.

2.3.1 Concurrent Task Diagram

After roles are created, tasks are associated with each role that describe the behavior
that the role must exhibit to successfully achieve its goals. In general, a single role may
have multiple concurrently executing tasks that define the required role behavior. Each
task specifies a single thread of control that defines a particular behavior that the role
may exhibit and integrates inter- as well as intra-role interactions. Concurrent tasks are
specified graphically using a finite state automaton, which we refer to as a Concurrent
Task Diagram, as shown in Figure 5. We considered using Petri nets to model the tasks;
however, we felt that finite state automata were generally easier to build and understand
and provided a more straightforward translation to code.

FindAdmin
a = getAdminLoc();
t = setTimer(2.0);

wait

receive(RequestNotification(error), agent)

^ send(Notify(error, agent), a)

receieve(Acknowledge, a) ^ send(NotificationComplete(), agent)

[timeout(t)]

Figure 5: Concurrent Task Diagram

Multiagent Systems Engineering 243

There are two types of tasks: persistent and transient. A persistent task is a task that
has a null transition from the start state to the first state. In other words, the task does not
have an event that initiates its execution. We assume that persistent tasks start when the
agent is initiated and continue executing until the agent itself is terminated or until the
task reaches an end state. On the other hand, a transient task has a specific trigger on the
transition from the start state. A transient task is not executed when the agent starts, but
waits until its trigger is received by the agent. With transient tasks, it is possible to have
multiple, concurrently executing tasks of the same type.

Concurrent tasks consist of states and transitions, which are similar to the states and
transitions of most other finite automata models. States encompass the processing that
goes on internal to the agent while transitions allow communication between agents or
between tasks. A transition consists of a source state, destination state, trigger, guard
condition, and transmissions and uses the syntax trigger [guard] ^ transmission(s).
Multiple transmissions may be separated with a semicolon (;), however, there is no
ordering of transmissions implied.

Generally, events specified in a trigger or transmissions are assumed to come
from/to another task within the same role, thus allowing internal tasks to coordinate their
behavior. However, two special events are used to indicate messages that are sent
between agents: send and receive. The send (following the syntax send(message, agent))
event is used to send a message to another agent while the receive event (denoted as
receive(message, agent)) signifies the receipt of such a message. The message is defined
as a performative, which describes the intent of the message, along with a set of
parameters that are the content of the message. The format of a message is
performative(p1 ... pn) where p1 ... pn denotes n possible parameters. It is also possible to
send a message to a group of agents via multicasting. Instead of specifying a single agent
to send a message to, a group name is specified by enclosing the group name with braces
(e.g., <group-name>) .

States may contain activities (or functions) that can be used to represent internal
reasoning, reading a percept from sensors, or performing actions via effectors. Multiple
activities may be included in a single state and are performed in sequence. Once in a
state, the task remains in that state until activity processing is complete and a transition
out of the state becomes enabled. Once processing starts in a state, all activities in the
state must complete before any transitions out of the state are enabled.

The variables used in activity definitions in states and in message and event
definitions on transitions are assumed to be globally visible within the task, but not
outside of the task or within activities. All messages sent between roles and events sent
between tasks are queued to ensure that all messages are received even if the agent or
task is not in the appropriate state to handle the message or event immediately.

We also assume that each task is in exactly one state at any point in time. That
means that transitions between states are instantaneous while states take time. If there are

244 S. A. DeLoach, M. F. Wood & C. H. Sparkman

no activities in a particular state or all activities have been completed and no transitions
have been enabled, then the task is idle, waiting on a transition to be enabled.

Concurrent tasks have predefined activities to deal with mobility and time. The
move activity specifies that the agent is to move to a new address. The result of the move
activity is a Boolean value that states whether the move actually occurred. It is possible
that an agent may want to move to a new location but is unable to for some reason. The
agent should be able to reason about this and deal with it accordingly. The syntax for the
move activity is Boolean = move(location).

To reason about time, the concurrent task model provides a built in timer activity.
An agent can define a timer using the setTimer activity. The setTimer activity takes a
time as input and returns a timer that will timeout in exactly the time specified. The timer
that can then be tested by the agent to see if it has timed out using the timeout activity.
The timeout activity returns a Boolean value that is true if the timer has timed out. Using
the setTimer and timeout activities, an agent can use time in carrying out its assigned
responsibilities. The syntax for the setTimer and timeout functions is shown below.

t = setTimer(time)
Boolean = timeout(t)

Once a transition is enabled, it is executed and execution occurs instantaneously.
This means that events and messages are sent instantaneously and the current task state
becomes the destination state of the transition. If multiple transitions are enabled
simultaneously, the following priority scheme is used.

1. Transitions whose triggers contain internal events from other tasks.
2. Transitions whose transmissions contain internal events.
3. Transitions whose trigger contains a receive message from other roles.
4. Transitions whose transmissions contain a message to another role.
5. Transitions with valid guard conditions only.

Figure 5 shows the Notify User task for the AdminNotifier role. The task is initiated
upon receipt of a RequestNotification message from another agent. The error to be sent
to the administrator is captured in the parameter, error. After the message is received, the
task goes to the FindAdmin state where it locates the administrator and sets a timer.
Once these activities are complete, the task sends a Notify message to the administrator,
passing along the associated error. The task waits in the wait state until either the timer
times out or an acknowledge message is received. If the timer times out, the task returns
to the FindAdmin state and the exact same activities are re-accomplished. However, if an
acknowledge message is received from the Administrator, the task simply sends a
NotificationComplete message to the initiating task and the current task ends. Because
the Notify User task is created based on a message receipt and terminates when it has
completed, it is a transient task.

Multiagent Systems Engineering 245

As discussed above, Sequence Diagrams define the minimum set of messages a role
must respond to and send. The analyst can create an initial Concurrent Task Model from
a scenario by taking the sequence of messages sent or received by that role and use them
to create a sequence of corresponding states and messages. An example of the initial
version of the Notify User task, derived directly from the Sequence Diagram in Figure 3,
is shown in Figure 6. Obviously, the biggest differences between Figure 5 and Figure 6
are the addition of the parameters, activities, and the timeout capability, which was added
for robust operation.

1

2

3

RequestNotification

^ Notify

Acknowledge

^ NotificationComplete

Figure 6. Initial Concurrent Task Diagram

After creating the initial concurrent task diagram, the analyst must determine the
internal processing the role must perform to be able to satisfy the use case. This internal
processing is captured as activities within the existing states. The analyst also fills in
information about the data passed in the messages as well as any additional messages
required for robust information exchange.

As tasks are created for each Sequence Diagram, the analyst may notice that several
tasks are similar and can be combined. In this case, the analyst may combine multiple
tasks into a single, generally more complex, task that can handle all of the use cases.

2.4 Analysis Phase Summary

Once Concurrent Task Models have been defined for each role, the Analysis phase
is complete. Although there are three steps in the MaSE Analysis phase, the analyst is
able, and even encouraged, to move freely between the steps. The MaSE Analysis phase
can be summarized as follows:

1. Identify goals from user requirements and structure into a Goal Hierarchy
Diagram.

2. Identify use cases and create sequence diagrams to help identify an initial set of
roles and communications paths.

3. Transform goals into a set of roles
a. Create a Role Model to capture roles and their associated tasks.
b. Define a Concurrent Task Model for each task to define role behavior.

246 S. A. DeLoach, M. F. Wood & C. H. Sparkman

3. Design Phase

There are four steps to the designing a system with MaSE. The first step is Creating
Agent Classes, in which the designer assigns roles to specific agent types. In the second
step, Constructing Conversations, the actual conversations between agent classes are
defined while in the third step, Assembling Agents Classes, the internal architecture and
reasoning processes of the agent classes are designed. Finally, in the last step, System
Design, the designer defines the actual number and location of agents in the deployed
system. Each of these steps is discussed below.

3.1 Creating Agent Classes

In the Creating Agent Classes step of the Design phase, agent classes are created
from the roles defined in the Analysis phase. The end product of this phase is an Agent
Class Diagram, which depicts the overall agent system organization consisting of agent
classes and the conversations between them. An agent class is a template for a type of
agent in the system and is analogous to an object class in object-orientation. An agent is
an actual instance of an agent class. During this step, agent classes are defined in terms
of the roles they will play and the conversations in which they must participate.

At this point in the methodology, we simply identify the roles and tasks an agent
class must play, the internal details of the agent are defined in the Assembling Agent
Classes (Section 3.3). To ensure all the system goals are captured in the design, there
must be at least one agent class assigned to play each role identified in the Analysis
phase. In actuality, agent classes may play many roles, with the roles changing
dynamically during execution. Furthermore, agents of the same class may play different
roles at the same time.

Roles are the foundation upon which agent classes are designed. Since roles
correspond to the set of system goals defined in the Analysis phase, roles form a bridge
from what the system is trying to achieve (the Analysis phase and goals) to how it goes
about achieving it (the Design phase agent classes). The analyst can easily change the
organization and allocation of roles among agent classes during design, since roles can be
manipulated modularly. This allows consideration of various design issues. For
example, a high communication volume between two roles could imply that those roles
should be part of the same agent class. In addition, two roles with large computational
requirements are best be played by different agent classes so they can be executed on
separate CPUs. Often these decisions are based on standard software engineering
concepts such as functional, communicational, procedural, or temporal cohesion.

During this step, we also identify the conversations in which different agent classes
must participate. Again, we do not define all the details; these are added during the
Constructing Conversations step as described in Section 3.2. The set of conversations an
agent class must participate in is derived from the external communications of the roles

Multiagent Systems Engineering 247

that the agent plays. For instance, assume roles A and B are defined by concurrent tasks
and communicate with each other. Then, if agent 1 plays role A and agent 2 plays role B,
the designer must define a conversation between agent 1 and 2 to implement the
communication described between roles A and B.

The agent classes and conversations are documented via an Agent Class Diagram,
which is similar to object-oriented class diagrams. There are two main differences. First,
agent classes are not defined by attributes and methods; they are defined by the roles they
play. The second difference is the semantics of the relationships between agent classes.
In Agent Class Diagrams, all relationships between classes are conversations that may
take place between two agent classes. A sample Agent Class Diagram is shown in Figure
7. The boxes in Figure 7 denote agent classes and contain the class name and the set of
roles each agent plays. The lines with arrows identify conversations and point from the
initiator of the conversation to the responder. The name of the conversation is written
either over or next to the arrow.

Notifier
� FileNotifier
� LoginNotifier
� AdminNotifier

FileMonitor
� FileDeletionDetector
� FileModifiedDetector

LoginMonitor
� LoginDetector

UserInterface
� User

FileDetection

LoginDetection

NotifyUser

Figure 7: Agent Class Diagram

The Agent Class Diagram is the first design object in MaSE that depicts the entire
multiagent system as it will eventually be implemented. If we have carefully followed
MaSE to this point, the system represented by the Agent Class Diagram will support the
goals and use cases identified in the Analysis phase. Of particular importance at this
point is the system organization - the way that the agent classes are connected with
conversations.

In Section 2, we stated that roles are the "foundation" for multiagent system design.
If that is true, then agent classes are the "bricks" from which the system is actually built.
The reason for these two different abstractions is that they provide the ability to
manipulate two different system dimensions. Roles provide a way to allocate system
goals apart from lower-level considerations. On the other hand, agent classes allow us to
consider communications and other system resources, such as databases and external
interfaces, without explicitly worrying about the system goals.

248 S. A. DeLoach, M. F. Wood & C. H. Sparkman

3.2 Constructing Conversations

Constructing Conversations is the next step in the MaSE Design phase. Up to this
point, the designer has not defined communications between agents beyond stating that
they exist. The fact that a conversation must happen between two agents is known; the
goal of this step is to actually define the details of those conversations. The internal
details of concurrent tasks are indispensable in this pursuit.

A MaSE conversation defines a coordination protocol between two agents.
Specifically, a conversation consists of two Communication Class Diagrams, one each
for the initiator and responder. A Communication Class Diagram is a finite state
automaton that defines the conversation states of the two participant agent classes, as
shown in Figure 8. The initiator always begins the conversation by sending the first
message. When an agent receives a message, it compares it to its active conversations. If
it finds a match, the agent transitions the appropriate conversation to a new state and
performs any required actions or activities from either the transition or the new state.
Otherwise, the agent assumes the message is a request to start a new conversation and
compares it to all the possible conversations the agent can participate in with the agent
that sent the message. If the agent finds a match, it begins a new conversation. The
syntax of a transition follows conventional UML notation as shown below.

rec-mess(args1) [cond] / action ^ trans-mess(args2)

The above syntax states that if the message rec-mess is received with the arguments
args1 and the condition cond holds, then the method action is called and the message
trans-mess is sent with arguments args2. All elements of the transition are optional. By
analyzing the transition from the start state in Figure 8, it is obvious that it corresponds to
an initiator half of a conversation since the transition from its start state is triggered by a
message transmitted by the agent.

wait1

failure
failed(file, violdationType, reason)

^ request(informUser, violationType, file)

wait2
agree(informUser, true)

failure(informUser, reason) inform(notificationComplete)failure(informUser, reason)

Figure 8: Communication Class Diagram for FileDetection Conversation

Therefore, in Figure 8, the FileMonitor agent (the initiator of the FileDetection
conversation as defined in Figure 7) sends a message to the Notifier agent requesting that

Multiagent Systems Engineering 249

it inform the user of a file violation. At this point, the FileMonitor agent enters a wait
state waiting for a response. If the Notifier can notify the user, it sends an agree message
and informs the FileMonitor when the notification has been completed. If the Notifier
cannot inform the user for the FileMonitor, it returns a failure message with the
appropriate reason (e.g., the user may have logged out of the system, or the network may
be down, etc.). After receiving a failure message, the FileMonitor performs an internal
call to the failed method.

The complimentary side of the conversation, from the point of view of the Notifier
agent, is shown in Figure 9. In a well designed conversation, each possible sequence of
messages sent/responded to by one side of the conversation must correspond to the
messages sent/responded to by the opposite side. Conversations must be deadlock free.
Besides deadlock, there are other ways to improperly design a conversation. For
example, every message sent from one side of the conversation must be able to be
received on the other half of the conversation. Additionally, the conversation must be
able to exit every state, meaning that every state must have a valid transition from it that
eventually leads to the end state. The agentTool system provides automatic verification
of conversations during the design stage. Once a set of conversations has been created,
the designer may choose to automatically verify them. The verification process beings
with the automated transformation of the system conversations into the Promela
modeling language. Then, the Promela model is automatically analyzed using the Spin
verification tool to detect errors such as deadlock, non-progress loops, syntax errors,
unused messages, and unused states [4]. Feedback from this process is provided to the
designer automatically via text messages and graphical highlighting of error conditions.
The topic of deadlock and the methods used in agentTool to avoid and detect it are
covered in detail by Lacey [11, 12].

checkUser
ok = checkUser()

request(informUser, violationType, file)

inform
good =

inform(violationType)

[ok] ^ agree(informUser, true)

[NOT ok] ^ failure(informUser, userNotAvailable)

[good] ^ inform(notificationComplete)

[NOT good] ^ failure(informUser, unknown)

Figure 9. Communication Diagram for FileDetection Conversation (Part II)

250 S. A. DeLoach, M. F. Wood & C. H. Sparkman

As discussed above, the designer determines the set of conversations an agent class
may participate in by the roles it plays. Likewise, the detailed design of conversations is
derived from the concurrent tasks associated with those roles. Since a Concurrent Task
Model specifies a single thread of control that integrates inter-role and intra-role
interactions, they provide critical information required to define conversations. Basically
each task that defines external communication creates one or more conversations. If all
the communication within the task is with a single role, or set of roles that have all been
mapped to a single agent class, the task can be mapped directly to a single conversation.
More generally, however, concurrent tasks are more complex and consist of multiple
conversations. The communications between separate roles or agents can be mapped to
individual conversations.

Once all the information from Concurrent Task Models has been captured as part of
conversations, the designer must ensure that other factors, such as robustness and fault
tolerance, are taken into account. For instance, if a particular agent sends a message to
another agent requesting some action be done, what happens if the other agent refuses or
is unable to complete the request? The conversation should be robust enough to handle
these possible problems.

In designing conversations, the designer faces a trade-off between having many
simple conversations or a few complex ones. If the system has a large number of simple
communications, these should be implemented by a series of smaller conversations.
Larger and more complex conversations are only appropriate if an elaborate protocol is
required.

3.3 Assembling Agents

During the Assembling Agents step of the Design phase, the internals of agent
classes are created. This is accomplished via two sub-steps: defining the agent
architecture and defining the components that make up the architecture. Designers have
the choice of either designing their own architecture or using predefined architectures
such as Belief-Desire-Intention (BDI). Likewise, a designer may use predefined
components or develop them from scratch. Components consist of a set of attributes,
methods, and, if complex, may have a sub-architecture.

An example of an Agent Architecture Diagram is shown in Figure 10. Architectural
components (denoted by boxes) are connected to either inner- or outer-agent connectors.
Inner-agent connectors (thin arrows) define visibility between components while outer-
agent connectors (thick dashed arrows) define connections with external resources such
as other agents, sensors and effectors, databases, and data stores. Internal component
behavior may be represented by formal operation definitions as well as state-diagrams
that represent events passed between components. The architecture and internal
definition of the components must be consistent with the conversations defined in the
previous step. At a minimum, this requires that each action or activity defined in a

Multiagent Systems Engineering 251

Communication Class Diagram be defined as an operation in one of the internal
components. The internal component state diagrams and operations can also be used to
initiate and coordinate various conversations.

LoginDetector

loginDetected (user, location)
loginFailed(username, location)

Validator

userRights : UserList
locations : LocationList

validateLogin(user, location) : Boolean
validateFile(user, file) : Boolean

FileDetector

fileModDetected (file, user)

Figure 10. FileMonitor Agent Architecture

The FileMonitor agent architecture is shown in Figure 10. The FileMonitor agent
has three components. The LoginDetector and FileDetector components work basically
the same, interacting with the operating system to detect logins and file modification
attempts. Both of these components call the Validator component to determine whether
the login or file accesses were valid and need to be reported. The outer-agent connectors
on the detector components denote both the fact that the components interact with the
operating system as well as communicate with the Notifier agent via conversations.

While the designer may use existing architectures or design one from scratch, we
are currently investigating deriving the agent architecture directly from the roles and
tasks defined in the analysis phase [15]. This approach has the advantage of more
directly mapping the analysis to the design while possibly losing some flexibility and
reuse potential. Basically, each task from each role played by an agent defines a
component in the agent class. The concurrent task itself is transformed into a
combination of the component’s internal state diagram and a set of conversations.
Activities identified in the concurrent task become methods of the component.

3.4 System Design

The final step of the MaSE methodology takes the agent classes defined previously
and instantiates actual agents. We use a Deployment Diagram to show the numbers,
types, and locations of agents within a system. System design is actually the simplest
step of MaSE, as most of the work was done in previous steps. The concept of
instantiating agents from agent classes is similar to instantiating objects from object
classes in object-oriented programming.

Deployment Diagrams describe a system based on agent classes defined in the
previous steps of MaSE. Figure 11 shows a Deployment Diagram for our example

252 S. A. DeLoach, M. F. Wood & C. H. Sparkman

system. The three-dimensional boxes represent agents while the connecting lines
represent actual conversations between agents. The agents are identified by their class
name or in the form of designator:class if there are multiple instances of a class. Any
conversation between agent classes appears between agents of those classes.
Furthermore, a dashed-line box indicates agents executing on the same physical platform.

LM1:
LoginMonitor

FM1:
FileMonitor

LM2:
LoginMonitor

FM2:
FileMonitor

LM3:
LoginMonitor

FM3:
FileMonitor

LM4:
LoginMonitor

FM4:
FileMonitor

Notify: Notifier
User:

UserInterface

Figure 11: Deployment Diagram

A designer must define the system using a Deployment Diagram before
implementing it since agents typically require the information contained in the
Deployment Diagram, such as a hostname or address, in order to participate in external
communications. Deployment Diagrams also offer an opportunity for the designer to
tune the system to its environment. The designer can use Deployment Diagrams to
define various configurations of agents and computers to maximize available processing
power and network bandwidth. In some cases, the designer may specify a particular
number of agents in the system or the specific computers on which certain agents must
reside. The designer should also consider the communication and processing
requirements when assigning agents to computers. To reduce communications overhead,
a designer may choose to deploy agents on the same machine. However, putting too
many agents on a single machine destroys the advantages of distribution gained by using
the multiagent paradigm. Likewise, if an agent has high processing requirements, the

Multiagent Systems Engineering 253

designer can place it on a machine by itself. A strength of MaSE is that a designer can
make these modifications after designing the system organization, thus generating a
variety of system configurations.

3.5 Design Phase Summary

Once the Deployment Diagrams are finished, the Design phase is complete. The
MaSE Design Phase can be summarized as follows:

1. Assign roles to specific agent classes, and identify conversations by examining
Concurrent Task Models based on the roles played by each agent class.

2. Construct conversations by extracting the messages and states defined for each
communication path in Concurrent Task Models, adding additional messages
and states for added robustness.

3. Define the internals of agent classes by defining the architecture of each agent
class using components and connectors. Ensure that each action defined in a
conversation is implemented as a method within the agent architecture.

4. Define the final system structure using Deployment Diagrams.

4. Summary & Future Work

MaSE is a seven-step process that transforms a set of abstract models into a series
of more concrete representations. It begins in the Analysis phase by capturing the
essence of an initial system context in a structured set of goals and use cases. Next, the
use cases are transformed into Sequence Diagrams so desired event sequences will be
designed into the system. Finally, roles are identified from goals and use cases and
include tasks, which describe how their associated goals are satisfied. The goal of the
Design phase is to define the overall system organization by transforming the roles and
tasks defined during analysis into agent types and conversations. Once the system
organizational structure is defined, the internal structure of each agent class is defined.
The final system configuration is defined in the system design step. Once again, we
cannot overstress the importance of moving fluidly between steps and phases in MaSE to
achieve the final goal - a robust, flexible, and efficient multiagent system.

Both MaSE and agentTool are works in progress. MaSE, along with our current
version of agentTool, has been used to develop over a dozen multiagent systems ranging
a few agents to over a hundred. The application areas range from information systems [9,
13] to biologically based immune systems [3] to recent work on teams of uninhabited air
vehicles. The results have been promising. Users tell us that MaSE is relatively simple
to use, yet is flexible enough to allow for a variety of solutions. We are currently using
MaSE and agentTool to develop larger scale multiagent systems.

We are also currently extending MaSE to handle mobility and dynamic systems (in
terms of agents being able to enter and leave the system during execution) [16]. We are

254 S. A. DeLoach, M. F. Wood & C. H. Sparkman

also looking more closely at the relationship between tasks, conversations, and the
internal design of agents [15]. Two additional areas that require further research are the
use of obstacles to goals as a way to increase robustness and exception handling abilities
and modeling of the information domain. As for agentTool, we are extending it to handle
all phases and steps of MaSE including code generation. We are also looking at
visualization techniques to make existing MaSE diagrams, or modified versions of them,
easier to view and use in agentTool. The agentTool system already includes a code
generator that generates complete conversations for multiple communication frameworks.

5. Related Work

There have been several proposed methodologies for analyzing, designing, and
building multiagent systems [5], most of which are based on existing object-oriented or
knowledge-based methodologies. In the following subsections, we compare MaSE
against three of the better-known methodologies. Section 5.1 looks at the Gaia
methodology offered by Wooldridge, Jennings, and Kinney, Section 5.2 evaluates the
approach of Kinny, Georgeff, and Rao, and Section 5.3 compares MaSE against the
MAS-Common KADS approach.

5.1 Gaia Methodology

One of the most recent attempts at defining a full methodology for the analysis and
design of multiagent systems is Gaia [19]. The Gaia methodology views the system as a
society or organization, with the elements of that society defined by roles. In Gaia, roles
are initially captured in a prototypical role model, which are incrementally expanded and
fully elaborated by the end of the analysis phase. These roles have direct correspondence
to roles and role model defined in MaSE. A key difference between Gaia and MaSE is
that Gaia provides no concrete way of determining the organization of the system or the
type of roles that should exist in the organization. MaSE, on the other hand, develops the
roles in a systematic manner using use cases and sequence diagrams. In MaSE it is often
straightforward to recognize the required roles, relationships between roles, and goals for
which the roles are responsible.

In Gaia, a role is defined by four attributes: responsibilities, permissions, activities,
and protocols. Responsibilities determine the functionality of a role and are analogous to
goals as defined in MaSE. Permissions are the "rights" (generally information resources)
associated with a role and identify the resources that are available to a role in order to
achieve its responsibilities. MaSE has no counterpart for permissions; however, we
generally assume that each resource is encapsulated by a unique role that provides an
interface to the rest of the system. Gaia Activities define a role’s computations that are
carried out without interacting with other roles. Gaia activities correspond directly
concurrent task activities. Protocols define how Gaia roles interact with each other and

Multiagent Systems Engineering 255

are defined by six attributes: purpose, initiator, responder, inputs, outputs, and
processing. In MaSE, protocols are defined in more detail by modeling them as
concurrent tasks.

In the design phase, Gaia only provides an abstract, high-level design. It consists of
an Agent Model that identifies the agent types, the roles they implement, and their
multiplicity within the system. This information is also captured in MaSE using Agent
Class Diagrams and Deployment Diagrams. The Gaia Services Model identifies the main
services of the agent type in terms of the inputs, outputs, pre- and post-conditions (as
derived from safety properties). This does not have a direct parallel in MaSE although
services and the details of the interactions (inputs and outputs) are defined in much more
detail in MaSE tasks and conversations. Finally, the Gaia acquaintance model simply
identifies lines of communications between agent types. In MaSE, this information is
captured in the Agent Diagram, which also identifies the types of interactions as
individual conversations. MaSE conversations go on to describe the structure of these
communications, a level of detail not addressed by Gaia.

5.2 Belief-Desire-Intention (BDI)

An early attempt to define a multiagent systems methodology was developed by
Kinney, Georgeff, and Rao [10]. They proposed a set of specialized Object-Oriented
models for developing a system of Belief-Desire-Intention (BDI) agents. In this
methodology, there are two sets of models: external and internal.

From the external viewpoint, the system is decomposed into agents, their
responsibilities, the services they perform, the information they require, and their external
interactions. These characteristics are captured in two models: the Agent Model and the
Interactions Model. The Agent Model describes the hierarchical relationship between
different abstract and concrete agent classes, and identifies the agent instances that may
exist within the system, their multiplicity, and when they come into existence. The
Interaction Model describes the responsibilities of an agent class, the services it provides,
associated interactions, and control relationships between agent classes. The external
viewpoint and associated models are captured in MaSE Agent Class Diagrams using
agent classes and conversations.

From the internal viewpoint, the elements required by particular agent architectures
are modeled for each agent using three models that describe its informational and
motivational state and its potential behavior: the Belief Model, the Goal Model, and the
Plan Model. The Belief Model describes the information about the environment and
internal state that an agent of that class may hold, and the action is may perform. The
Goal Model describes the goals that an agent may possibly adopt, and the events to which
it can respond. Finally, the Plan Model describes the plans that an agent may possibly
employ to achieve its goals or respond to events it perceives. It consists of a plan set
which describes the properties and control structure of individual plans.

256 S. A. DeLoach, M. F. Wood & C. H. Sparkman

The biggest difference between MaSE and this approach lie in the focus on a
particular agent type. MaSE is designed to be used with heterogeneous agents as
opposed to a single agent architecture (i.e., BDI). In MaSE, attributes such as beliefs,
desires, and intentions are initially captured in the analysis phase with goals and tasks.
Agents cooperate with each other by passing messages, effectively changing each other's
beliefs (which corresponds to a state transition in a task). These same concepts are
carried forward into the design phase of MaSE as agent classes assume roles (and their
associated goals) and the role tasks are translated into conversations and component state
diagrams in the internal agent architecture. More complicated belief computations are
easily added to the way MaSE handles states and their transitions.

5.3 MAS-CommonKADS

Another proposed multiagent system methodology is the MAS-CommonKADS
methodology [6]. This methodology extends CommonKADS for multiagent systems by
adding techniques from object oriented methodologies and protocol engineering. The
general software engineering process combines a risk-driven approach with a component-
based approach. The first phase of analysis is Conceptualization, where the analyst
determines use cases from the initial user requirements and then formalizes them with
Message Sequence Charts. The purpose of this phase is to capture roles and to develop
an initial understanding of the interactions that must take place between those roles. This
Conceptualization phase is analogous to the Applying Use Cases phase in MaSE.

After the Conceptualization phase, a system requirements specification is generated
using six models, each consisting of constituents (entities to be modeled) and the
relationships between them. The Agent model specifies the agent characteristics, which
include reasoning capabilities, sensors, effectors, services, agent groups and hierarchies
(both modeled in the organization model). The Task model describes the tasks that the
agents can carry out and include goals, decompositions, ingredients and problem-solving
methods. The Expertise model defines the information sources needed by the agents to
achieve their goals. The Organization model specifies the organization and the social
organization of the agent society. The Coordination model describes the conversations
between agents: their interactions, protocols and required capabilities. Finally, the
Communication model details the human-software agent interactions and the human
factors required for developing these interfaces.

Many of the steps and models seem to be similar to those produced in MaSE.
Unfortunately, there were no examples of most of the models and some of the modeling
steps were not well defined, as some of the models described above were never
mentioned in any particular step. One concept that MAS-CommonKADS fails to capture
is the concurrency of the activities being performed by the agent roles. However, MAS-
CommonKADS does appear to provide a more detailed definition of the methods or
functions (here called tasks) and information sources associated with each role.

Multiagent Systems Engineering 257

5.4 Summary

Based on the comparisons above, we believe that MaSE is a comprehensive
methodology for the analysis of multiagent systems and provides solid foundation for the
design and development of multiagent systems. MaSE not only takes advantage of goal-
driven development, but also uses the power of multiagent systems by defining roles,
protocols and tasks in the analysis phase. Another less obvious advantage that MaSE has
is that its steps are defined at a fine level of granularity making the transition between
models simpler and more straightforward than many of the techniques discussed above.
MaSE also provides more guidance on how models relate to each other.

6. Acknowledgements

This research was supported by grants from the Air Force Office of Scientific
Research and the Dayton Area Graduate Studies Institute. The views expressed in this
article are those of the authors and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the US Government.

References

1. A. Cockburn, "Structuring Use Cases with Goals,” Journal of Object-Oriented Programming,
Sep-Oct, 1997 and Nov-Dec, 1997.

2. S. A. DeLoach and M. Wood, "Developing Multiagent Systems with agentTool," in Y.
Lesperance and C. Castelfranchi, editors, Intelligent Agents VII - Proceedings of the 7th
International Workshop on Agent Theories, Architectures, and Languages (ATAL'2000).
Springer Lecture Notes in AI, Springer Verlag, Berlin, 2001.

3. P. K. Harmer, G. B. Lamont, G.B, "An Agent Architecture for a Computer Virus Immune
System," in Workshop on Artificial Immune Systems at Genetic and Evolutionary
Computation Conference, Las Vegas, Nevada, July 2000.

4. G. J. Holzmann, “The Model Checker Spin,” IEEE Transactions On Software Engineering,
vol. 23(5), pp. 279-295, 1997.

5. C. Iglesias, M. Garijo, and J. González, "A Survey of Agent-Oriented Methodologies," in
Intelligent Agents V. Agents Theories, Architectures, and Languages, Lecture Notes in
Computer Science, vol. 1555, J. P. Müller, M. P. Singh, and A. S. Rao (Eds.), Springer-
Verlag, 1998.

6. C. Iglesias, M. Garijo, J. González, and J. Velasco, "Analysis and Design of Multiagent
Systems using MAS-CommonKADS," in INTELLIGENT AGENTS IV: Agent Theories,
Architectures, and Languages, Springer Verlag, Berlin Heidelberg, 1998.

7. E. A. Kendall, U. Palanivelan, and S. Kalikivayi, "Capturing and Structuring Goals: Analysis
Patterns," Proceedings of the Third European Conference on Pattern Languages of
Programming and Computing, Bad Irsee, Germany, July 1998.

8. E. A. Kendall, "Agent Roles and Role Models: New Abstractions for Multiagent System
Analysis and Design," Proceedings of the International Workshop on Intelligent Agents in
Information and Process Management, Bremen, Germany, September 1998.

258 S. A. DeLoach, M. F. Wood & C. H. Sparkman

9. S. C. Kern, M. T. Cox, and M. L. Talbert, "A Problem Representation Approach for Decision
Support Systems," Proceedings of the Eleventh Annual Midwest Artificial Intelligence and
Cognitive Science Conference, AAAI Press, Fayetteville, Arkansas, April 2000.

10. D. Kinny, M. Georgeff, and A. Rao, "A Methodology and Modelling Technique for Systems
of BDI Agents," in Agents Breaking Away: Proceedings of the Seventh European Workshop
on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW '96. Lecture Notes in
Artificial Intelligence, vol. 1038. Springer-Verlag, Berlin Heidelberg, 1996.

11. T. H. Lacey, and S. A. DeLoach, “Verification of Agent Behavioral Models,” in Proceedings
of the International Conference on Artificial Intelligence, CSREA Press, Las Vegas, Nevada,
July 2000.

12. T. H. Lacey, and S. A. DeLoach, “Automatic Verification of Multiagent Conversations,” in
Proceedings of the Eleventh Annual Midwest Artificial Intelligence and Cognitive Science
Conference, pp. 93-100, AAAI Press, Fayetteville, Arkansas, April 2000.

13. J. T. McDonald, M. L. Talbert, and S. A. DeLoach, "Heterogeneous Database Integration
Using Agent Oriented Information Systems," in Proceedings of the International Conference
on Artificial Intelligence, CSREA Press, Las Vegas, Nevada, July 2000.

14. I. Sommerville, Software Engineering, Pearson Education Limited, Essex England, 2001.

15. Self, “Design & Specification of Dynamic, Mobile, and Reconfigurable Multiagent Systems,”
MS thesis, AFIT/ENG/01M-11. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson Air Force Base Ohio, USA, March 2001.

16. C. H. Sparkman, “Transforming Analysis Models into Design Models for the Multiagent
Systems Engineering Methodology,” MS thesis, AFIT/ENG/01M-21. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson Air Force Base Ohio, USA, March
2001.

17. K. P. Sycara, "Multiagent Systems," AI Magazine vol. 19(2), pp. 79-92, 1998.

18. A. van Lamsweerde, and E. Letier, “Handling Obstacles in Goal-Oriented Requirements
Engineering,” IEEE Transactions on Software Engineering vol. 26(10), pp. 978-1005, 2000.

19. M. Wooldridge, N. Jennings, and D. Kinny, "The Gaia Methodology for Agent-Oriented
Analysis and Design," Journal of Autonomous Agents and Multi-Agent Systems. vol. 3(3),
2000.

