
FLORA-2 : User’s Manual

Version 0.88

Guizhen Yang Michael Kifer

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794-4400

June 9, 2002

CONTENTS i

Contents

1 Introduction 1

2 FLORA-2 Shell Commands 4

3 F-logic and FLORA-2 by Example 6

4 Basic FLORA-2 Syntax 6

4.1 F-logic Vocabulary . 7

4.2 Symbols, Strings, and Comments . 10

4.3 Operators . 12

4.4 Logical Expressions . 14

4.5 Arithmetic Expressions . 14

5 Multifile Programs 16

5.1 FLORA-2 Modules . 16

5.2 Calling Methods and Predicates Defined in User Modules 17

5.3 Finding the Current Module Name . 19

5.4 Loading Files into User Modules . 19

5.5 Calling Prolog from FLORA-2 . 21

5.6 Calling FLORA-2 from Prolog . 22

5.7 FLORA-2 System Modules . 24

5.8 Including Files into FLORA-2 Programs . 24

5.9 More on Variables as Module Specifications . 24

6 Path Expressions 25

6.1 Path Expressions in the Rule Body . 25

6.2 Path Expressions in the Rule Head . 27

7 Truth Values, Object Values, and Meta Signatures 27

8 HiLog and Related Issues 30

8.1 Meta-programming, Meta-unification, and Reification 31

8.2 Passing Arguments between FLORA-2 and Prolog 33

CONTENTS ii

8.3 First-Order Predicates and HiLog Predicates . 34

8.4 Expunging of First-Order Predicates . 35

9 Equality Maintenance 35

10 Inheritance 38

11 Aggregates 41

11.1 Aggregation and Set-Valued Methods . 42

12 Boolean Methods 43

13 Anonymous Oids 43

14 FLORA-2 and Tabling 44

14.1 Tabling in a Nutshell . 44

14.2 Procedural Methods . 45

14.3 Cuts . 46

15 Updates 46

15.1 Non-backtrackable Updates . 47

15.2 Backtrackable Updates . 50

15.3 Updates and Tabling . 52

15.4 Updates and Meta-programming . 53

16 Control Flow Statements 53

16.1 Some Subtleties of the Semantics of the Loop Statements 55

17 Negation 56

18 Constraint Solving 57

19 Debugging User Programs 58

19.1 Checking for Undefined Methods and Predicates . 58

19.2 Type Checking . 60

20 Optimizations 60

CONTENTS iii

21 Summary of Compiler Directives 61

22 FLORA-2 System Modules 63

22.1 Pretty Printing . 63

22.2 Input and Output . 64

22.3 Storage Control . 66

22.4 System Control . 66

23 A Note on Programming Style 67

24 Bugs in Prolog and FLORA-2 : How to Report 67

25 Authors 69

Appendices 71

A A BNF-style Grammar for FLORA-2 71

B The FLORA-2 Debugger 73

C Emacs Support 75

C.1 Installation . 75

C.2 Functionality . 76

D Inside FLORA-2 78

D.1 How FLORA-2 Works . 78

D.2 System Architecture . 83

1 INTRODUCTION 1

1 Introduction

FLORA-2 is a sophisticated compiler and application development platform that translates a unified
language of F-logic [9], HiLog [5], and Transaction Logic [2] into tabled Prolog code. It takes a
program written in the F-logic language with HiLog and Transaction Logic extensions (which must
be in a file with extension .flr, e.g., file.flr) and outputs a regular Prolog program (with
extension .P). This program is then passed to XSB for compilation (which produces file.xwam)
and execution, which, however, requires FLORA-2 runtime support.

The programming language supported by FLORA-2 is a dialect of F-logic with numerous ex-
tensions. Some extensions are borrowed from Florid, a C++-based F-logic system developed at
Freiburg University.1 In particular, FLORA-2 fully supports the versatile syntax of Florid path
expressions. Other important extensions are motivated by the need to support a flexible module
system (and enable modular software development in F-logic) and in order to support HiLog [5]
and Transaction Logic [3, 1, 2], both of which are smoothly integrated with F-logic. Extensions
aside, the syntax of FLORA-2 also differs in some important ways from Florid, from the original
version of F-logic, as described in [9], and from an earlier implementation of Flora. These syn-
tactic changes were needed in order to bring the syntax of FLORA-2 closer to that of Prolog and
make it possible to include typical Prolog programs into FLORA-2 programs without choking the
compiler. Other syntactic deviations from the original F-logic syntax are a direct consequence of
the added support for HiLog, which obviates the need for the “@” sign in method invocations (this
sign is now used to denote calls to FLORA-2 modules).

FLORA-2 is distributed in two ways. First, it is part of the official distribution of XSB and
thus is installed together with XSB (http://xsb.sourceforge.net). Second, a more up-to-date,
bleeding edge version of FLORA-2 can be downloaded from its own Web site at

http://flora.sourceforge.net

These two versions can be installed at the same time and used independently (e.g., if you want to
keep abreast with the development of FLORA-2 or if a newer version was released in-between the
releases of XSB). The installation instructions are somewhat different in these two cases.

Installting FLORA-2 under UNIX. To configure a version of FLORA-2 that was downloaded
as part of the distribution of XSB, simply configure XSB as usual:

cd XSB/build
configure
makexsb
makexsb packages

If you downloaded XSB from its CVS repository earlier and are updating your copy using the cvs
update command, then it might be a good idea to also do the following:

1 See http://www.informatik.uni-freiburg.de/∼dbis/florid/ for more details.

1 INTRODUCTION 2

cd packages/flora2
makeflora clean
makeflora

To install the bleeding edge version of FLORA-2 from http://flora.sourceforge.net you
must download it (either as a tarball or from CVS) into a separate directory outside of the XSB
installation tree. After unpacking (or checking out from CVS) the FLORA-2 sources will be placed
in the subdirectory called flora2. To configure FLORA-2 , do the following:

cd flora2
makeflora clean
makeflora

(assuming that XSB has been already installed and configured separately). If an XSB executable
is not on your program search PATH, then you need to provide the XSB installation directory to
makeflora as an argument, e.g.,

makeflora ~/XSB

Installing FLORA-2 in Windows. First, you need Microsoft’s nmake. Then use the following
commands to configure FLORA-2 (assuming that XSB is installed and configured):

cd flora2
makeflora clean
makeflora path-to-prolog-executable

Running FLORA-2 . FLORA-2 is fully integrated into the underlying Prolog engine, including
its module system. In particular, FLORA-2 modules can invoke predicates defined in other Prolog
modules, and Prolog modules can query the objects defined in FLORA-2 modules. At present,
XSB is the only Prolog platform where FLORA-2 can run, because it heavily relies on tabling and
the well-founded semantics for negation, both of which are available only in XSB.

Due to certain problems with XSB, FLORA-2 runs best when XSB is configured with local
scheduling, which is the default XSB configuration.

The easiest way to get a feel of the system is to start FLORA-2 shell and begin to enter queries
interactively. The simplest way to do this is to use the shell script

.../flora2/runflora

where “...” is the directory where FLORA-2 is downloaded. For instance, to invoke the version
supplied with XSB, you would type something like

~/XSB/packages/flora2/runflora

1 INTRODUCTION 3

If FLORA-2 is installed separately in a directory, say, bleeding-edge, then it can be invoked as

~/bleeding-edge/flora2/runflora

You can take a look at this script and devise your own ways of calling FLORA-2 . The version
supplied with XSB can also be invoked using the following commands:

foo> xsb
... XSB loading messages omitted ...
| ?- [flora2], flora shell.
... FLORA messages omitted ...
| ?-

or even

foo> xsb -e "[flora2]. flora_shell."

At this point, FLORA-2 takes over and F-logic syntax becomes the norm. To get back to the
Prolog command loop, type Control-D (in Unix), Control-Z (Windows), or

| ?- flEnd.

If you are using FLORA-2 shell frequently, it pays to define an alias, say (in Bash):

alias flora2=’xsb -e "[flora2], flora_shell."’
alias runflora=’~/bleeding-edge/flora2/runflora’

FLORA-2 can then be invoked directly from the shell prompt by typing flora2 or runflora. It
is even possible to tell FLORA-2 to execute commands on start-up. For instance,

foo> flora2 -e "flHelp."
foo> runflora -e "flHelp."

will cause the system to execute the help command right after after the initialization. Then the
usual FLORA-2 shell prompt is displayed.

FLORA-2 comes with a number of demo programs that live in

.../flora2/demos/

The demos can be run issuing the command “flDemo(demo-filename).” at the FLORA-2 prompt,
e.g.,

flora2 ?- flDemo(flogic_basics).

There is no need to change to the demo directory, as flDemo knows where to find these programs.

2 FLORA-2 SHELL COMMANDS 4

2 FLORA-2 Shell Commands

The most common shell command you might need to execute is loading and compiling a program:

flora2 ?- [programfile].

or

flora2 ?- flLoad programfile.

Here program-file can contain a FLORA-2 program or a Prolog program. If program-file.flr
exists, it is assumed to be a FLORA-2 program. The system will compile the program, if necessary,
and then load it. The compilation process is two-stage: first, the program is compiled into a Prolog
program (one or more files with extensions .P and .fdb) and then into an executable byte-code,
which has the extension .xwam.

If there is no program-file.flr file, the file is assumed to contain a Prolog program and the sys-
tem will look for the file named program-file.P. This file then is compiled into program-file.xwam
and loaded. Note that in this case the program is loaded into a Prolog module of FLORA-2 and,
therefore, calls to the predicates defined in that program must use the appropriate module attri-
bution — see Section 5.1 for the details about the module system in FLORA-2 .

By default, all FLORA-2 programs are loaded into the module main, but you can also load
them into other modules using the following syntax:

flora2 ?- [file>>modulename].

Understanding FLORA-2 modules is very important in order to be able to take full advantage
of the system; we will discuss the module system of FLORA-2 in Section 5.1. Once the program is
loaded, you can pose queries and invoke methods for the objects defined in the program.

There is an important special of the flLoad and [...] command when the file name is user.
In that case, instead of looking for the program file user.flr, FLORA-2 starts reading user input.
At this point, the user can start typing in program clauses, which the system saves in a temporary
file. When the user is done and types Control-D (end of file), the file is compiled and loaded. It is
also possible to load such a program into a designated module, rather than the default one, using
one of the following commands:

flora2 ?- [file>>module].
flora2 ?- flLoad file>>module.

When the user types in a query to the shell, the query is evaluated and the results are returned.
A result is a tuple of values for each variable mentioned in the query, except for the anonymous
variables represented as “ ” and named don’t care variables, which are preceded with the underscore,
e.g., abc.

By default, FLORA-2 prints out all answers. If only one is desired, type in the following
command: flOne. You can revert back to the all-answers mode by typing flAll.

2 FLORA-2 SHELL COMMANDS 5

FLORA-2 shell includes many more commands beyond those mentioned above. These com-
mands are listed below. However, at this point the purpose of some of these commands might seem
a bit cryptic, so it is a good idea to come back here after you become more familiar with the various
concepts underlying the system.

In the following command list, the suffixes .flr .P, .xwam are optional. If the file suffix is
specified explicitly, the system uses the file with the given name without any modification. The
.flr suffix denotes a FLORA-2 program, the .P suffix indicates that it is a Prolog program, and
.xwam means that it is a bytecode file, which can be executed by Prolog. If no suffix is given, the
system assumes it is dealing with a FLORA-2 program and adds the suffix .flr. If the file with
such a name does not exist, it assumes that the file contains a Prolog program and tries the suffix
.P. Otherwise, it tries .xwam in the hope that an executable Prolog bytecode exists. If none of
these tries are successful, an error is reported.

• flHelp: Show the help info.

• flCompile file: Compile FILE.flr for the default module main.

• flCompile file>>module: Compile FILE.flr for the module module.

• flLoad file>>module: Load file.flr into the module module. If you specify file.P or
file.xwam then will load these files.

• flLoad file: Load file.flr into the default module main. If you specify file.P or
file.xwam then will load these files.

• [file.{P|xwam|flr} >> module,...]: Load the files in the specified list into the module
module.

• flDemo(demofilename): Consult a demo from FLORA-2 demos directory.

• equality {none|basic|flogic}: Set the level of support for the equality predicate :=: in
the shell module main. none means that :=: is treated as a regular predicate; basic means
that only standard first-order equality is supported (i.e., the usual congruence rules); flogic
means that F-logic style equality is supported (i.e., congruence plus the axiom for scalar
methods).

• abolish all tables: Flush all tabled data. This is sometimes needed when Prolog’s tabling
gets in the way. We describe tabling (as it pertains to FLORA-2) in Section 14.

• firstorder Functor/Arity: Define Functor/Arity as non-HiLog in shell mode.

• arguments Functor({oid|meta}, ...): Define the predicate meta signature in shell mode.

• op(Precedence,Associativity,Operator): Define an operator in shell mode.

• flReset({firstorder|arguments|op}): Clear all dynamic firstorder/arguments/op def-
initions in the FLORA-2 shell.

• flAll: Show all solutions (default).

3 F-LOGIC AND FLORA-2 BY EXAMPLE 6

• flOne: Show solutions one by one.

• flMaxerr(all|N): Set/show the maximum number of errors FLORA-2 reports.

• flTrace/flNoTrace: Turn on/off FLORA-2 trace.

• flChatter/flNoChatter: Turn on/off the display of the number of solutions at the end of
query evaluation.

• flEnd: Say Ciao to FLORA-2 , stay in Prolog.

• flHalt: Quit both FLORA-2 and Prolog.

All commands with a FILE argument passed to them use the Prolog library directory pred-
icate to search for the file, except that the command flDemo(FILE) first looks for FILE in the
FLORA-2 demo directory. The search path typically includes the standard system’s directories
used by Prolog followed by the current directory.

All Prolog commands can be executed from FLORA-2 shell, if the corresponding Prolog library
has already been loaded.

After a syntax, parsing, or compilation error, FLORA-2 shell will discard tokens read from the
current input stream until the end of file or a rule delimiter (“.”) is encountered. If FLORA-2 shell
seems to be hanging after the message

++FLORA Warning: discarding tokens (rule delimiter ‘.’ or EOF expected)

hit the Enter key once, type “.”, and then Enter again. This should reset the current input buffer
and you should see the FLORA-2 command prompt:

flora2 ?-

3 F-logic and FLORA-2 by Example

In the future, this section will contain a number of small introductory examples illustrating the
use of F-logic and FLORA-2 . Meanwhile, the reader is referred to the excellent tutorial written
by the members of the Florid project.2 Since FLORA-2 and Florid share much of the same
syntax, most examples in that tutorial can be made into valid FLORA-2 programs by changing the
separator “;” used in F-molecules into “,” and by eliminating the “@” sign in method invocations.

4 Basic FLORA-2 Syntax

In this section we describe the basic syntactic structures used to build FLORA-2 programs. Subse-
quent sections describe the various advanced features that are needed to build practical applications.

2 See http://www.informatik.uni-freiburg.de/∼dbis/florid/ for more details.

4 BASIC FLORA-2 SYNTAX 7

The complete syntax is given in Appendix A. However, it should be noted that BNF cannot describe
the syntax of FLORA precisely, because it is based on operator grammar (like in Prolog) mixed
with context free grammars in places where operator grammar is inadequate (as, for example, in
parsing if-then-else).

4.1 F-logic Vocabulary

• Symbols: The F-logic alphabet of object constructors consists of the sets F(function sym-
bols), P(predicate symbols including =), and V(variables). Variables begin with a capitalized
letter or an underscore, followed by zero or more letters and/or digits and/or underscores
(e.g., X, Name, , v 5). All other symbols, including the constants (which are 0-ary object
constructors), are symbols that start with a lowercase letter (e.g., a, john). Constants can
also be any string of symbols enclosed in single quotes (e.g., ’AB@*c’). In addition to the
usual first-order connectives and symbols, there is a number of special symbols:], [, }, {, “,”,
“;”, #, #, →, →→, ⇒, ⇒⇒, : , :: . Later we will explain other symbols introduced by the
inheritance mechanism.

• Variables: The variable “ ” is called anonymous variable. It is used whenever a unique new
variable is needed. In particular, two different occurrences of “ ” in the same clause are
treated as different variables. Named variables that start with an underscore, e.g., foo, are
called don’t care variables. Unlike anonymous variables, two different occurrences of such a
variable in the same clause refer to the same variable. Nevertheless, don’t variables have
special status when it comes to error checking and returning answers. The practice of logic
programming shows that a singleton occurrence of a variable in a clause is often a mistake
due to misspelling. Therefore, FLORA-2 issues a warning when it finds that some variable is
mentioned only once in a clause. If such an occurrence is truly intended, it must be replaced by
an anonymous variable or a don’t care variable to avoid the warning message from FLORA-2 .
Also, bindings for anonymous and don’t care variables are not returned as answers.

• Id-Terms/Oids: First-order terms over F and V are called Id-terms, and are used to name
objects, methods, and classes. Ground Id-terms (i.e., terms with no variables) correspond to
logical object identifiers (oids), also called object names. Numbers (including integers and
floats) can also be used as Id-terms, but such use might be confusing and is not recommended.

• Atomic formulas: Let O, M, Ri, Xi, C, D, T be Id-terms. In addition to the usual first-order
atomic formulas, like p(X1, . . . , Xn), there are the following basic types of formulas:

1. O[M→V]

2. O[M→→{V1, . . . , Vn}]
3. C[M⇒T]

4. C[M⇒⇒{T1, . . . , Tm}]

4 BASIC FLORA-2 SYNTAX 8

In all of the above cases, O, C, M, Vi, and Ti are HiLog terms, i.e., expressions of the form,
a, f(X), X(s, Y), X(f, Y)(X, g(k)), etc., where X and Y are variables and lowercase letters f, s,
etc., are constants.

Expressions (1) and (2) above are data atoms, which specify that a method expression M
applied to an object O yields the result object V in case (1), or a set of objects, V1, ..., Vn, in
case (2). Thus, in (1), M is said to be a single-valued (or scalar) method expression, i.e., there
is at most one V such that O[M→V] holds. In contrast, in (2), M is multi-valued (also known
as set-valued), so the result contains several objects, which includes V1, V2, ..., Vn. Note that
we emphasized “includes” rather than “equals”, because other facts and rules in the program
can specify additional objects that must be considered part of the method result.

When n = 1 in set-valued data atoms, the curly braces can be omitted. For instance, O[M→→V1].
In fact, the single expression (2) is equivalent to a the following set of expressions, where the
result set is split into singletons:

O[M→→V1]
O[M→→V2]
. . .

O[M→→Vn]

When M is a constant, e.g., abc, then we say that it is an attribute; for example, john[name→’John’].
When M has the form f(X,Y,Z) then we refer to it as a method, f, with arguments X, Y, and Z;
for example, john[salary(1998)→50000]. However, as we saw earlier, method expressions
can be much more general than these two possibilities, as they can be arbitrary HiLog terms.

Expressions (3) and (4) above denote signature atoms. They specify that the method ex-
pression, M, when applied to objects that belong to class C, must yield objects that belong to
class T. In (3), M is declared as single-valued, while in (4) it is set-valued. In a set-valued
signature, the intention is that the method expression M must return objects that belong
simultaneously to the classes T1, ..., Tm. As with data atoms, a single set-valued signature
expression of the form (4) is equivalent to the set of signature expressions

O[M⇒⇒T1]
O[M⇒⇒T2]
. . .

O[M⇒⇒Tm]

and the curly braces { and } can be omitted when only one class appears on the right of ⇒⇒.

Note that it is allowed for the same method to have both a single-valued signature and a
set-valued one. The single-valued signature controls the data atoms that use →, and the
set-valued signatures control data atoms that use →→.

Objects are grouped into classes using ISA-atoms:

5. O : C

6. C :: D

4 BASIC FLORA-2 SYNTAX 9

The expression (5) states that O is an instance of class C, while (6) states that C is a subclass
of D.

• F-molecules provide a convenient way to shortcut specifications related to the same object.
For instance, the conjunction of the atoms john : person, john[age→31], john[children→→{bob,mary}],
and john[children→→john] is equivalent to the following single F-molecule:

john : person[age→31, children→→{bob,mary,john}]

Note the use of the “,” that separates the expression for the age attribute from the expression
for the children attribute. This is a departure from the original F-logic syntax in [9], which
uses “;” to separate such expressions.

• Rules are, as usual, the constructs of the form head : −body, where head is an F-molecule
and body is a conjunction of F-molecules or negated F-molecules. (Negation is specified using
\+ or tnot — the difference will be explained later.) Each rule must be terminated with a
“.”.

Conjunction is specified as in Prolog, using the “,” symbol. Like in Prolog, FLORA-2 also
allows disjunction in the rule body, which is denoted using “;”. As usual in logic languages,
a single rule of the form

head : − john[age→31], (john[children→→{bob, mary}] ; john[children→→john]). (1)

is equivalent to the following pair of rules:

head :- john[age→31], john[children→→{bob,mary}].
head :- john[age→31], john[children→→john].

Disjunction is also allowed inside F-molecules. For instance, the rule (1) can be equivalently
rewritten as:

head :- john[age→31, (children→→{bob,mary} ; children→→john)].

Note that conjunction “,” binds stronger than disjunction “;”, so the parentheses in the above
example are essential.

• Programs and queries: A program is a set of rules. A query is a rule without the head. In
FLORA-2 , such headless rules use ?- instead of :-, e.g.,

?- john[age->X].

The symbol :- in headless FLORA-2 expressions is used for various directives, which are
plenty and will be introduced in due course.

Example 4.1 (Publications Database) Figure 1 depicts a fragment of a FLORA-2 program
that represents a database of scientific publications.

4 BASIC FLORA-2 SYNTAX 10

Schema:
conf p :: paper.
journal p :: paper.
paper[authors⇒⇒person, title⇒string].
journal p[in vol⇒volume].
conf p[at conf⇒conf proc].
journal vol[of ⇒journal, volume⇒integer, number⇒integer, year⇒integer].
journal[name⇒string, publisher⇒string, editors⇒⇒person].
conf proc[of conf⇒conf series, year⇒integer, editors⇒⇒person].
conf series[name⇒string].
publisher[name⇒string].
person[name⇒string, affil(integer)⇒institution].
institution[name⇒string, address⇒string].
Objects:
oj1 : journal p[title→’Records, Relations, Sets, Entities, and Things’, authors→→{omes}, in vol→oi11].
odi : conf p[title→’DIAM II and Levels of Abstraction’, authors→→{omes, oeba}, at conf→ov76].
oi11 : journal vol[of→ois, number→1, volume→1, year→1975].
ois : journal[name→’Information Systems’, editors→→{omj}].
ov76 : conf proc[of→vldb, year→1976, editors→→{opcl, oejn}].
ovldb : conf series[name→’Very Large Databases’].
omes : person[name→’Michael E. Senko’].
omj : person[name→’Matthias Jarke’, affil(1976)→orwt].
orwt : institution[name→’RWTH Aachen’].

Figure 1: A Publications Object Base and its Schema in FLORA-2

4.2 Symbols, Strings, and Comments

Symbols. FLORA-2 symbols (that are used for the names of constants, predicates, and ob-
ject constructors) begin with a lowercase letter followed by zero or more letters (A . . . Z, a . . . z),
digits (0 . . . 9), or underscores (), e.g., student, apple pie. Symbols can also be any sequence
of characters enclosed in a pair of single quotes, e.g., ’JOHN SMITH’,’default.flr’. Internally,
FLORA-2 symbols are represented as Prolog symbols,3 which are used there as names of predicates
and function symbols.

FLORA-2 also recognizes escaped characters inside single quotes (’). An escaped character
normally begins with a backslash (\). Table 1 lists the special escaped character strings and their
corresponding special symbols. An escaped character may also be any ASCII character. Such a
character is preceded with a backslash together with a lowercase x (or an uppercase X) followed
by one or two hexadecimal symbols representing its ASCII value. For example, \xd is the ASCII
character Carriage Return, whereas \x3A represents the semicolon. In other cases, a backslash is
recognized as itself.

One exception is that inside a quoted symbol, a single quote character is escaped by another
3 Symbols are called “atoms” in Prolog, which contravenes the use of this term for atomic formulas in classical

logic and F-logic. We avoid the use of the term “atom” in reference to symbols.

4 BASIC FLORA-2 SYNTAX 11

Escaped String ASCII (decimal) Symbol
\\ 92 \
\n 10 NewLine
\N 10 NewLine
\t 9 Tab
\T 9 Tab
\r 13 Return
\R 13 Return
\v 11 Vertical Tab
\V 11 Vertical Tab
\b 8 Backspace
\B 8 Backspace
\f 12 Form Feed
\F 12 Form Feed
\e 27 Escape
\E 27 Escape
\d 127 Delete
\D 127 Delete
\s 32 Whitespace
\S 32 Whitespace

Table 1: Escaped Character Strings and Their Corresponding Symbols

single quote, e.g., ’isn’’t’.

Strings (character lists). Like Prolog strings, FLORA-2 strings are enclosed in a pair of double
quotes ("). These strings are represented internally as lists of ASCII characters. For instance,
[102,111,111] is the same as "foo".

Escape characters are recognized inside FLORA-2 strings similarly to FLORA-2 symbols. How-
ever, inside a string, a single quote character does not need to be escaped. A double quote character,
however, needs to be escaped by another double quote, e.g., """foo""".

Numbers. Normal FLORA-2 integers are decimals represented by a sequence of digits, e.g., 892,
12. FLORA-2 also recognizes integers in other bases (2 through 36). The base is specified by a
decimal integer followed by a single quote (’). The digit string immediately follows the single quote.
The letters A . . . Z or a . . . z are used to represent digits greater than 9. Table 2 lists a few example
integers.

Integer Base (decimal) Value (decimal)
1023 10 1023

2’1111111111 2 1023
8’1777 8 1023

16’3FF 16 1023
32’vv 32 1023

Table 2: Representation of Integers

4 BASIC FLORA-2 SYNTAX 12

Underscore () can be put inside any sequence of digits as delimiters. It is used to partition
some long numbers. For instance, 2’11 1111 1111 is the same as 2’1111111111. However, “ ”
cannot be the first symbol of an integer, since variables can start with an underscore. For example,
1 2 3 represents the number 123 whereas 12 3 represents a variable named 12 3.

Floating numbers normally look like 24.38. The decimal point must be preceded by an integral
part, even if it is 0, e.g., 0.3 must be entered as 0.3, but not as .3. Each floating number may
also have an optional exponent. It begins with a lowercase e or an uppercase E followed by an
optional minus sign (-) or plus sign (+) and an integer. This exponent is recognized as in base 10.
For example, 2.43E2 is 243 whereas 2.43e-2 is 0.0243.

Comments. FLORA-2 supports three kinds of comments: (1) all characters following % until the
end of the line; (2) all characters following // until the end of the line; (3) all characters inside a
pair of /* and */. Note that only (3) can span multiple lines.

Comments are recognized like whitespaces by the compiler. Therefore, tokens can also be
delimited by comments.

4.3 Operators

As in Prolog, FLORA-2 allows the user to define operators, to liven up the otherwise boring syntax.
There are three kinds of operators: infix, prefix, and postfix. An infix operator appears between its
two arguments, while a prefix operator before its single argument and a postfix operator after its
single argument. For instance, if foo is defined as an infix operator, then X foo a will be parsed
as foo(X,a) and if bar is a postfix operator then X bar is parsed as bar(X).

Each operator has a precedence level, which is a positive integer. Each operator also has a type.
The possible types for infix operators are: xfx, xfy, yfx; the possible types for prefix operators are:
fx, fy; and the possible types for postfix operators are: xf, yf. In each of these type expressions,
f stands for the operator, and x and y stand for the arguments. The symbol x in a type expression
means that the precedence level of the corresponding argument should be strictly less than that
of the operator, while y means that the precedence level of the corresponding argument should be
less or equal than that of the operator.

The precedence level and the type together determine the way the operators are parsed. The
general rule is that precedence of a constant or a functor symbol that has not been defined as an
operator is zero. Precedence of a Prolog term is the same as the precedence of its main functor. An
expression that contains several operators is parsed in such a way that the operator with the highest
precedence level becomes the main functor of the parsed term, the operator with the next-highest
precedence level becomes the main functor of one of the arguments, and so on. If an expression
cannot be parsed according to this rule, a parse error is reported.

It is not our goal to cover the use of operators in any detail, since this information can be found
in any book on Prolog. Here we just give an example that illustrates the main points. For example,
in FLORA-2 , - has precedence level 800 and type yfx, * has precedence level 700 and type yfx,
-> has precedence level 1100 and type xfx. Therefore, 8-2-3*4 is the same as -(-(8,2),*(3,4))
in prefix notation, and a -> b -> c will generate a parsing error.

4 BASIC FLORA-2 SYNTAX 13

Any symbol can be defined as an operator. The general syntax is

:- op(Precedence,Type,Name).

For instance,

:- op(800, xfx, foo)

As a notational convenience, the argument Name can also be a list of operator names of the same
type and precedence level, for instance,

:- op(800,yfx,[+,-]).

It is possible to have more than one operator with the same name provided they have different use
(e.g., one infix and the other postfix). However, the FLORA-2 built-in operators are not allowed to
be redefined. In particular, any symbol that is part of F-logic syntax, such as “,’, “.”, “[“, “:”, etc.,
as well as any name that begins with flora or fl followed by a capital letter should be considered
as reserved for internal use.

Although this simple rule is sufficient, in most cases, to keep you out of trouble, you should be
aware of the fact that symbols such as “,”, “;”, “+”, “.”, “->”, “::”, “:-”, “?-” and many other
parts of FLORA-2 syntax are operators. Therefore, there is a chance that precedence levels chosen
for the user-defined operators conflict with those of FLORA-2 and, as a result, your program might
not parse. If in doubt, check the declarations in the file flroperator.P in the FLORA-2 source
code.

The fact that some symbols are operators can sometimes lead to surprises. For instance,

?- (a,b,c).
:- (a,b).

will be interpreted as terms ’?-’(a,b,c) and ’:-’(a,b) rather than a query and a directive,
respectively. The reason for this is that, first, such terms are allowed in Prolog and there is no
good reason to ban them in FLORA-2 ; and, second, the above syntax is ambiguous and the parser
makes the choice that is consistent with the choice made in Prolog. Typically users do not put
parentheses around subgoals in such cases, and would instead write

?- a,b,c.
:- a,b.

Note that things like

?- (a,b),c.
?- ((a,b,c)).

will be interpreted as queries, so there are plenty of ways to satisfy one’s fondness for redundant
parentheses.

4 BASIC FLORA-2 SYNTAX 14

4.4 Logical Expressions

In a FLORA-2 program, any combination of conjunction, disjunction, and negation of literals can
appear wherever a logical formula is allowed, e.g., in a rule body.

Conjunction is represented through the infix operator “,” and disjunction is made using the
infix operator “;”. Negation is made through the prefix operators “\+” and “tnot”.4 When
parentheses are omitted, conjunction binds stronger than disjunction and the negation operators
bind their arguments stronger than the other logical operators. For example, in FLORA-2 the
following expression: a, b; c, not d, is equivalent to the the logical formula: (a∧b)∨ (c∧ (¬d)).

Logical formulas can also appear inside the specification of an object. For instance, the following
F-molecule:

o[tnot att1→val1, att2→→val2; meth→res]

is equivalent to the following formula:

(tnot o[att1→val1], o[att2→→val2]) ; o[meth→res]

4.5 Arithmetic Expressions

In FLORA-2 arithmetic expressions are not always evaluated. As in Prolog, the arithmetic op-
erators such as +, -, /, and *, are defined as normal binary functors. To evaluate an arithmetic
expression, FLORA-2 provides another operator, is. For example, X is 3+4 will bind X to the
value 7.

When dealing with arithmetic expressions, the order of literals is important. In particular, all
variables appearing in an arithmetic expression must be instantiated at the time of evaluation.
Otherwise, a runtime error will occur. For instance,

?- X > 1, X is 1+1.

will produce an error, while

?- X is 1+1, X > 1.

will evaluate to true.

As in Prolog, the operands of an arithmetic expression can be any variable or a constant.
However, in FLORA-2 , an operand can also be a path expression. For the purpose of this discussion,
a path expression of the form p.q should be understood as a shortcut for p[q→X], where X is a
new variable, and p.q.r is a shortcut for p[q→X], X[r→Y]. For set-valued formulas, the notation

4 In brief, “\+” represents negation as failure and can be applied only to non-tabled Prolog, FLORA-2 , or HiLog
predicates. “tnot”, on the other hand, is negation that implements the well-founded semantics. Refer to Section 17
for more information on the difference between negation operators.

4 BASIC FLORA-2 SYNTAX 15

“..” is used. For instance, p..q stands for p[q→→X]. More detailed discussion of path expressions
appears in Section 6.

Both single-valued and multi-valued path expressions are allowed in arithmetic expressions, and
all variables are considered to be existentially quantified. For example, the following query

?- john..bonus + mary..bonus > 1000.

should be understood as

?- john[bonus→→ V1], mary[bonus→→ V2], V1 + V2 > 1000.

Note that in first query does not have any variables, so after the evaluation the system would print
either yes or no. To achieve the same behavior, we use don’t care variables, V1 and V2. If we used
V1 and V2 instead, the values of these variables would have been printed out.

FLORA-2 recognizes numbers as oids and, thus, it is perfectly normal to have allows arithmetic
expressions inside path expressions such as this: 1.2.(3+4*2).7. When parentheses are omitted,
this might lead to ambiguity. For instance, is the meaning of

1.m+2.n.k

represented by the arithmetic expression (1.m)+(2.n.k), or by the path expressions (1.m+2.n).k,
by (1.m + 2).n.k, or by 1.(m+2).n.k? To disambiguate such expressions, we must remember that
the operators “.” and “..” used in path expressions bind stronger than the arithmetic operators +,
−, etc.

Even more interesting is the following example: 2.3.4. Does it represent the path expression
(2).(3).(4), or (2.3).4, or 2.(3.4) (where in the latter two cases 2.3 and 3.4 are interpreted
as decimal numbers)? The answer to this puzzle (according to FLORA-2 conventions) is (2.3).4:
when tokenizing, FLORA-2 first tries to classify tokens into meaningful categories. Thus, when 2.3
is first found, it is identified as a decimal. Thus, the parser receives the expression (2.3).4, which
it identifies as a path expression that consists of two components, the oids 2.3 and 4.

Another ambiguous situation arises when the symbols - and + are used as minus and plus signs,
respectively. FLORA-2 follows the common arithmetic interpretation of such expressions, where
the +/- signs bind stronger than the infix operators and thus 4--7 and 4-+7 are interpreted as
4-(-7) and 4-(+7), respectively.

Table 3 lists various operators in decreasing precedence order, their associativity, and arity.
When in doubt, use parentheses. Here are some more examples of valid arithmetic expressions:

o1.m1+o2.m2.m3 same as (o1.m1)+(o2.m2)
2.(3.4) the value of the attribute 3.4 on object 2
3 + - - 2 same as 3+(-(-2))
5 * - 6 same as 5*(-6)
5.(-6) the value of the attribute -6 on object 5

5 MULTIFILE PROGRAMS 16

Precedence Operator Use Associativity Arity
not applicable () parentheses not applicable not applicable
not applicable . decimal point not applicable not applicable

. single-valued object reference left binary
300 .. multi-valued object reference left binary

: ISA specification left binary
:: subclass specification left binary

600 - minus sign right unary
+ plus sign right unary

700 * multiplication left binary
/ division left binary

800 - subtraction left binary
+ addition left binary
=< less than or equals to not applicable binary
>= greater than or equals to not applicable binary

1000 =:= equals to not applicable binary
=\= unequal to not applicable binary
is assignment not applicable binary

Table 3: Operators in Non-Increasing Precedence Order and Their Associativity and Arity

Note that the parentheses in 5.(-6) are needed, because otherwise “.-” would be recognized
as a single token. Similarly, the whitespace around “+”, “-”, and “*” are also needed in these
examples to avoid *- and +-- being interpreted as distinct token.

5 Multifile Programs

FLORA-2 supports many ways in which a program can be modularized. First, an F-logic program
can be split into many files with separate namespaces. Each such file can be considered an in-
dependent library, and the different libraries can call each other. In particular, the same method
name (or a predicate) can be used in different files and the definitions will not clash. Second, a
program file can be split of several files, and these files can be included by the preprocessor prior
to the compilation. In this case, all files share the same namespace in the sense that the different
rules that define the same method name (or a predicate) in different files are assumed to be part
of one definition. Third, FLORA-2 programs can call Prolog modules and vice versa. In this way,
a large system can be built partly in Prolog and partly in FLORA-2 .

We discuss each of the aforesaid modularization methods in turn.

5.1 FLORA-2 Modules

A FLORA-2 module is a programming abstraction that allows a large program to be split into
separate libraries that can be reused in multiple ways in the same program. Formally, a module
is a pair that consists of a name and a contents. The name is just an alphanumeric symbol (the
underscore, , is also allowed), and the contents consists of the program code that is typically loaded

5 MULTIFILE PROGRAMS 17

from some file (but it can also be constructed dynamically by inserting facts5 into another module).

The basic idea behind FLORA-2 modularization is that reusable code libraries are to be placed
in separate files. To use a library, it must be loaded into a module. Other parts of the program can
then invoke this library’s methods by providing the name of the module (and the method/predicate
names, of course). There is no need to export anything from a library — any public method or
predicate can be called by other parts of the program.6 In this way, the library loaded into a
module becomes that module’s content.

Note that there is no a priori association between files and modules. Any file can be loaded
into any module and one program file can even be loaded into two different modules at the same
time. The same module can be reused during the same program run by loading another file into
that module. In this case, the old contents is erased and the module gets new contents from the
second file.

In FLORA-2 , modules are completely decoupled from file names. A FLORA-2 program knows
only the module names it needs to call, but not the file names. Specific files can be loaded into
modules by another, unrelated bootstrapping program. Moreover, a program can be written in
such a way that it calls a method of some module without knowing that module’s name. The name
of the module can be passed as a parameter or in some other way and the concrete binding of the
method to the module will be done at runtime.

This dynamic nature of FLORA-2 modules stands in sharp contrast to the module system
of Prolog, which is static and associates modules with files at compile time. Moreover, to call a
predicate from another module, that predicate must be imported explicitly and referred to by the
same name.

As a pragmatic measure, FLORA-2 defines three kinds of modules rather than just one. The
kind described above is actually just one of the three: the user module. As explained, these modules
are decoupled from the actual code, and so they can contain different code at different times. The
next kind is a Prolog module. This is an abstraction in FLORA-2 , which is used to call Prolog
predicates. Prolog modules are static and are assumed to be closely associated with their code. We
describe these modules in Section 5.5. (Do not confuse FLORA-2 Prolog modules — an abstraction
used in the language of FLORA-2 — with Prolog modules, which is an abstraction used in Prolog.)
The third type of modules are the FLORA-2 system modules. These modules are preloaded with
FLORA-2 programs that provide useful methods and predicates (e.g., I/O) and, thus, are also
static. These modules are described in Section 5.7 and 22. The abstraction of system modules
is a convenience provided by FLORA-2 , which enables user programs to perform common actions
using standard names of predicates and methods implemented in those modules. The syntactic
conventions for calling each of these types of modules are similar, but distinct.

5.2 Calling Methods and Predicates Defined in User Modules

If literal is an F-molecule or a predicate defined in another user module, it can be called using the
following syntax:

5 Unimplemented: Dynamic insertion of rules will be implemented in the future.
6 Unimplemented: At present, all methods are public, but encapsulation will be implemented in the future.

5 MULTIFILE PROGRAMS 18

literal @ module

The name of the module can be any alphanumeric symbol.7 For instance, foo(a) @ foomod tests
whether foo(a) is true in the user module named foomod, and mary[children→→X]@genealogy
queries the information on mary’s children available in the module genealogy. More interestingly,
the module specifier can be a variable that gets bound to a module name at run time. For instance,

..., Agent=zagat, ..., newyork[dinner(italian) →→X]@Agent.

A call to a literal with an unbound module specification or one that is not bound to a symbol will
result in a runtime error.

When calling the literals defined in the same module, the @module notation is not needed, of
course. (In fact, since a program does not know where it will be loaded, using the @-notation to
call a literal in the same module is hard. However, it is possible with the help of the special token
@, which is described later, and is left as an exercise.)

The following rules apply when calling a literal defined in another module:

1. Literal reference cannot appear in a rule head or be specified as a fact. For example, the
following program will generate a parsing error

john[father->smith] @ foomod.
foo(X) @ foomod :- goo(X).

because defining a literal that belongs to another module does not make sense.

2. Module specification is distributive over logical connectives, including the conjunction oper-
ator, “,”, the disjunction, “;”, and the negation operators, “\+” and “tnot”. For example,
the formula below:

(john[father->smith], tnot smith[spouse->mary]) @ foomod

is equivalent to the following formula:

john[father->smith] @ foomod, tnot (smith[spouse->mary] @ foomod)

3. Module specifications can be nested. The one closest to a literal takes effect. For example,

(foo(a), goo(b) @ goomod, hoo(c)) @ foomod

is equivalent to

foo(a) @ foomod, goo(b) @ goomod, hoo(c) @ foomod

4. The module specification propagates to any F-molecule appearing in the argument of a pred-
icate for which the module is specified. For example,

foo(a.b[c->d]) @ foomod
7 In fact, any symbol is allowed. However, it cannot contain the quote symbol, “’”.

5 MULTIFILE PROGRAMS 19

is equivalent to

a[b->X] @ foomod, X[c->d] @ foomod, foo(X) @ foomod

5. Module specifications do not affect function terms that are not predicates or method names,
unless such a specification is explicitly attached to such a term. For instance, in

?- foo(goo(a)) @ foomod.

goo/1 refers to the same functor both in module foomod and in the calling module. However,
if the module is attached explicitly, as in

?- foo(goo(a) @ goomod) @ foomod.

then foo/1 is assumed to be a meta-predicate that receives the predicate goo/1 as a param-
eter.

5.3 Finding the Current Module Name

Since a FLORA-2 program can be loaded into any module, the program does not have a priori
knowledge of the module it will be executing in. However, the program can determine its module
at runtime using the special token @, which is replaced with the current module name when the
module is loaded. More precisely, if @ occurs anywhere as an oid, method name, value, etc., in file
foo.flr then when foo.flr is loaded into a module, say, bar, then all such occurrences of @ are
replaced with bar. For instance,

a[b->_@].
?- a[b->X].

X=main

Yes.

5.4 Loading Files into User Modules

FLORA-2 provides commands for compiling and loading program files into specified user modules.
The command

?- flCompile(file>>module).

generates the byte code for the program to be loaded into the user module named module. The
name of the byte code for the program in file.flr, which can later be loaded into the specified module.
In practice this means that the compiler generates files named file module.P and file module.xwam
with symbols appropriately renamed to avoid clashes.

If no module is specified, the command

5 MULTIFILE PROGRAMS 20

?- flCompile(file).

compiles file.flr for the default module main.

To load a file, the following command can be used:

[myprog].

This loads the program in the file myprog.flr into the default user module main. If myprog.flr
is newer than the compiled code, the source file is recompiled.

An optional module name can be used to load the program into a specified module:

[myprog >> foomod]

This loads the FLORA-2 program myprog.flr into the user module named foomod, compiling it
if necessary.

Like Prolog, FLORA-2 lets the user to compile and load several program files at the same time:
If the file was not compiled before (or if the program file is newer), the program is compiled before
being loaded. For instance, the following command:

[myprog1, myprog2]

will loads both myprog1 and myprog2 into the default module main. However, loading several
programs into the same module is not very useful: the code of the last program will wipe out the
code of the previous ones. This is a general rule in FLORA-2 (and Prolog). Thus, loading multiple
files is always used in conjunction with the module targets:

[’myprog1.flr’, myprog2 >> foomod].

which loads myprog1.flr into the module main and myprog2.flr into the module foomod.

Note that the [...] command can also load and compile Prolog programs. The overall algo-
rithm is as follows. If the file suffix is specified explicitly, the corresponding file is assumed to be
a FLORA-2 file, a Prolog file, or a byte code depending on the suffix: .flr, .P, or .xwam. If the
suffix is not given explicitly, the compiler first checks if file.flr exists. If so, the file assumed to be
a FLORA-2 program and is compiled as such. If file.flr is not found, but file.P or file.O is, the file
is passed to Prolog for compilation.

Sometimes it is useful to know which user modules are loaded or if a particular user module
is loaded (say, because your might want to load it, if not). To find out which modules are loaded
at the present time. Use the predicate flLoadedModule/1 for that. For instance, the first query,
below, succeeds if the module foo is loaded. The second query succeeds and binds L to the list of
all user modules that are loaded at the present time.

?- flLoadedModule(foo).
?- findall(X,flLoadedModule(X),L).

5 MULTIFILE PROGRAMS 21

5.5 Calling Prolog from FLORA-2

Prolog predicates can be called from FLORA-2 through the FLORA-2 module system FLORA-2
models Prolog programs as collections of static Prolog modules, i.e., from FLORA-2 ’s point of view,
Prolog modules are always available and do not need to be loaded explicitly because the association
between Prolog programs and modules is fixed.

@prolog(). The syntax to call Prolog predicates is either one of the following:

?- predicate@prolog(module)
?- predicate@prolog module

For instance, since the predicate member/2 is defined in the Prolog module basics, we can call it
as follows:

?- member(abc,[cde,abc,pqr])@prolog basics.

To use this mechanism, you must know which Prolog module the particular predicate is defined in.
Some predicates are defined by programs that do not belong to any module. When such an Prolog
program is loaded, the corresponding predicates become available in the default Prolog module. In
XSB, the default module is called usermod and FLORA-2 can call such predicates as follows:

?- foo(X)@prolog usermod.

Note that variables are not allowed in the module specifications of Prolog predicates, i.e.,

?- M=usermod, foo(X)@prolog(M).

will cause a compilation error.

Some Prolog predicates are considered “well-known” and, even though they are defined in
various obscure Prolog modules, the user can just use those predicates without remembering the
corresponding Prolog module names. These predicates (that are listed in the XSB manual) can be
called from FLORA-2 with particular ease:

?- writeln(’Hello’)@prolog()

i.e., we can simply omit the Prolog module name (but parentheses must be preserved).

@prologall(). The Prolog module specification @prolog() has one subtlety: it does not affect
the arguments of a call. For instance,

?- foo(f(X,b))@prolog().

5 MULTIFILE PROGRAMS 22

will call the Prolog predicate foo/1, but its argument, f(X,b), will be considered as a HiLog term.
If the fact foo(f(a,b)) was defined somewhere in the Prolog program then the above query will
fail, since a Prolog term f(X,b) and a HiLog term f(X,b) are different even though their textual
representation in FLORA-2 is the same.

A correct call to foo/1 in this case would be as follows:

?- foo(f(X,b)@prolog())@prolog().

Clearly, this might be too much writing and is error prone. Moreover, as explained in Section 8.2,
there also is a subtle issue of passing arguments between Prolog and FLORA-2 .

To simplify calls to Prolog, FLORA-2 provides another, more powerful primitive: @prologall().
Thus, one can call

?- foo(f(X,b))@prologall().

without having to worry about the differences between the HiLog representation of terms in
FLORA-2 and the representation used in Prolog.

One might wonder why is there the @prolog() module call in the first place. The reason is
efficiency. The @prologall() call does automatic conversion between Prolog and HiLog, which
is not always necessary. For instance, to check whether a term, f(a), is a member of a list,
[f(b),f(a)], one does not need to do any conversion, because the answer is the same whether
these terms are HiLog terms or Prolog ones. Thus,

?- member(f(a), [f(b),f(a)])@prolog basics.

is perfectly acceptable and is more efficient than

?- member(f(a), [f(b),f(a)])@prologall basics.

FLORA-2 provides a special predicate, flP2H/2, which converts terms to and from the HiLog
representation, and the programmer can use it in conjunction with @prolog() to achieve a greater
degree of control over argument conversion. This issue is further discussed in Section 8.2.

5.6 Calling FLORA-2 from Prolog

Since Prolog does not understand FLORA-2 syntax, it can call only predicates defined in FLORA-2
programs. These predicates can be HiLog or first-order predicates (See Section 8). To call predicates
defined in FLORA-2 programs, they must be imported by the Prolog program.

Importing FLORA-2 predicates into Prolog shell. To import a FLORA-2 predicate into
Prolog shell, the following must be done:

• The query

5 MULTIFILE PROGRAMS 23

?- [flora2], bootstrap flora.

must be executed first.

• One of the following flImport queries must be executed in the shell:

?- flImport {hilog|firstorder} flora-predicate/arity as xsb-name(, ,...,)
from filename >> flora-module-name

?- flImport {hilog|firstorder} flora-predicate/arity as xsb-name(, ,...,)
from flora-module-name

We will explain shortly which flImport query should be used in what situation.

Calling FLORA-2 from Prolog module. To call FLORA-2 from within a Prolog program, say
test.P, the following must be done:

1. The query

?- [flora2], bootstrap flora

must be executed before compiling or loading test.P — otherwise, the program will not
compile or load.

2. The directive

:- import (flImport)/1 from flora2.

must appear at the top of test.P.

3. The above flImport queries must appear near the top of the program (prior to any call to
FLORA-2 predicates).

The first syntax for flImport above is used to both import the predicate and also load the
program file defining it into a given FLORA-2 user module. The second syntax is used when
the flora program is already loaded into a module and we only need to import the corresponding
predicate.

In both cases, the option hilog is used to import a HiLog predicate and firstorder is used to
import first-order predicates. The imported predicate must be given a name by which the imported
predicate will be known in Prolog. (This name can be the same as the name used in FLORA-2 .)
It is important, however, that the Prolog name be specified as shown, i.e., as a predicate skeleton
with the same number of arguments as in the first-order predicate. For instance, foo(, ,) will
do, but foo/3 will not.

Once the predicate is imported, it can be used under its Prolog name as a regular predicate.

Prolog programs can also load and compile FLORA-2 programs using the following queries
(again, bootstrap flora must be executed in advance):

5 MULTIFILE PROGRAMS 24

:- import (flLoad)/1, (flCompile)/1 from flora2.
?- flLoad flora-file >> flora-module.
?- flLoad flora-file
?- flCompile flora-file >> flora-module.
?- flCompile flora-file

The first query loads the file flora-file into the given user module and compiles it, if necessary. The
second query loads the program into the default module main. The last two queries compile the
file for loading into the module flora-module and main, respectively, but do not load it.

Finally, a Prolog program can check if a certain FLORA-2 user module has been loaded using
the following call:

:- import flLoadedModule/1 from flora2.
?- flLoadedModule(flora-module-name).

5.7 FLORA-2 System Modules

FLORA-2 provides a special set of modules that are preloaded with useful utilities, such as pret-
typrinting or I/O. These modules have special syntax, @flora(modname), and cannot be loaded
by the user. For this reason, these modules are called FLORA-2 system modules. For instance,
to prettyprint all the attributes and methods of an object, the following method, defined in the
system module pp, can be used:

?- obj[#pp self(foo)]@flora(pp).

Here, the method #pp self is applied to the object obj. Since obj can have completely different
methods in different user modules, we have to tell the prettyprinting method in which module to
look. For more details on the existing FLORA-2 system modules, see Section 22.

5.8 Including Files into FLORA-2 Programs

The last and the simplest way to construct multi-file FLORA-2 programs is by using the #include
preprocessing directive. For instance if file foo.flr contains the following instructions:

#include file1
#include file2
#include file3

the effect is the same as if the above three files were concatenated together and stored in foo.flr.

5.9 More on Variables as Module Specifications

Earlier we mentioned that a user module specification can be a variable, e.g., a[m->b]@X, which
ranges over module names. This variable must be bound to a concrete module name before the
call is made. However, this binding cannot be prolog(), prolog(module), or flora(module).

6 PATH EXPRESSIONS 25

Dynamic module bindings can be used to implement adaptive methods, which are used in many
types of applications, e.g., agent programming. Consider the following example:

Module foo Module moo
something :-
something else :-

a[someservice(@,Arg)->Res]@moo
...... a[someservice(Module,Arg)-> Res] :-
...... something@Module, ...
......

Here the method someservice in user module moo performs different operation depending
on who is calling it, because something can be defined differently for different callers. When
something else is called, it invokes the method someservice on object a in module moo. The
current module name (foo) is passes as a parameter. When someservice is executed in module
moo it calls the predicate something in module foo.

This schema is, for instance, how the pretty printing system module of FLORA-2 works. A
pretty-printing method is called on an object in some user module, and to do its job the pretty-
printing method needs to query the object in the context of the calling module to find the methods
the object has.

It is also possible to view adaptive methods as a declarative counterpart of the callback functions
in C/C++, which allows the callee to behave differently for different clients.

6 Path Expressions

6.1 Path Expressions in the Rule Body

In addition to the basic F-logic syntax, the FLORA-2 system also supports path expressions to
simplify object navigation along single-valued and multi-valued method applications, and to avoid
explicit join conditions [7]. The basic idea is to allow the following path expressions wherever
Id-terms are allowed:

7. O.M

8. O..M

The path expression in (7) is single-valued ; it refers to the unique object R0 for which O[M→R0]
holds; (8) is a multi-valued path expression; it refers to each Ri for which O[M→→{Ri}] holds. The
symbols O and M stand for an Id-term or path a expression. Moreover, M can be a method that
takes arguments, in which case O.M(P1, . . . , Pk) and O..M(P1, . . . , Pk) are a valid path expressions.

In order to disambiguate the syntax and to specify the desired order of method applications,
parentheses can be used. By default, path expressions associate to the left, so a.b.c is equivalent

6 PATH EXPRESSIONS 26

to (a.b).c, which specifies the object o such that a[b→x] ∧ x[c→o] holds (note that x = a.b).
In contrast, a.(b.c) is the object o1 such that b[c→x1] ∧ a[x1→o1] holds (note that in this case,
x1 = b.c). In general, o and o1 can be different objects. Note also that in (a.b).c, b is a method
name, whereas in a.(b.c) it is used as an object name and b.c as a method. Observe that function
symbols can also be applied to path expressions, since path expressions, like Id-terms, represent
objects. Thus, f(a.b) is a valid expression.

Note: A path expression can appear wherever an oid can, but not in place of a truth-valued
expression (e.g., a subquery) even though path expressions can be viewed as formulas. Thus,

?- P..authors.

is illegal and will cause a compiler error. To use a path expression as a query, square brackets must
be attached. For instance, the following are legal queries:

?- P..authors[].
?- P..authors[name->N].

As path expressions and F-molecules can be arbitrarily nested, this leads to a concise and
flexible specification language for object properties, as illustrated in the following example.

Example 6.1 (Path Expressions) Consider again the schema given in Figure 1. If n is the name
of a person, the following path expression is a query that returns all editors of conferences in which
n had a paper:

?- P : conf p[authors→→{ [name→n]}].at conf..editors[].

Likewise, the answer to the query

?- P : conf p[authors→→{ [name→n]}].at conf[editors→→{E}].

is the set of all pairs (P,E) such that P is (the logical oid of) a paper written by n, and E is the
corresponding proceedings editor. If we also want to see the affiliations of the above editors, we
only need to modify our query slightly:

?- P : conf p[authors→→{ [name→n]}].at conf[year→Y]..editors[affil(Y)→A].

Thus, FLORA-2 path expressions support navigation along the method application dimension using
the operators “.” and “..”. In addition, intermediate objects through which such navigation takes
place can be selected by specifying the properties of such objects inside square brackets.8

To access intermediate objects that arise implicitly in the middle of a path expression, one can
define the method self as

X[self→X].
8 A similar feature is used in other languages, e.g., XSQL [8].

7 TRUTH VALUES, OBJECT VALUES, AND META SIGNATURES 27

and then simply write . . .[self→O]. . . anywhere in a complex path expression. This would bind
the Id of the current object to the variable O.

Example 6.2 (Path Expressions with self) To illustrate convenience afforded by the use of
the self attribute in path expressions, consider the second query in Example 6.1. If, in addition,
we want to obtain the names of the conferences where the respective papers were published, that
query can be reformulated as follows:

X[self→X].
?- P : conf p[authors→→ [name→n]].at conf[self→C, year→Y]..editors[affil(Y)→A].

6.2 Path Expressions in the Rule Head

Only single-valued path expressions are allowed in a rule head. Set-valued path expressions are not
allowed because the semantics is not always clear in such cases.

The following is an example of a path expression in rule head. For any person X, this rule
defines the grandchildren for X’s mother.

X.mother[grandson→→Y] :- X : person[son→→Y].

Here X’s mother is treated as an unknown object. Should this object become known in the future,
complications may arise. For instance, suppose that later on the following facts were added or
derived:

john[mother→mary].
john[son→→david].

Because John’s mother is now identified as mary, it follows that mary and john.mother represent
the same things, since the attribute mother is scalar. To deal with single-valued path expressions
in rule heads, FLORA-2 skolemizes john.mother and adds the requisite equalities to record that
the Skolem term that corresponds to john.mother equals mary. All this is done by the FLORA-2
compiler transparently to the user: if a path expression in rule head is detected, FLORA-2 replaces
this expression with a Skolem function. The problem here is that maintenance of such equalities
is costly (sometimes causing a slowdown by the factor of 2–10 times). Since the user often knows
that equations of the above kind will never be derived, FLORA-2 leaves it to the user to tell the
compiler whether equality maintenance is needed. Equality maintenance is discussed in Section 9.

7 Truth Values, Object Values, and Meta Signatures

Id-terms, F-logic atoms, and path expressions can all be used as objects. This is obvious for Id-
terms and the object interpretation of path expressions of the form (7) and (8) on page 25 was
discussed earlier. The F-logic atoms (1) through (6) on pages 7 through 8 are typically viewed as
formulas and, thus, they are assumed to have a truth value only. However, there also is a natural

7 TRUTH VALUES, OBJECT VALUES, AND META SIGNATURES 28

way to give them object interpretation. For example, o : c[m→r] has object value o and some truth
value. However, unlike the object value, the truth value depends on the database (on whether o
belongs to class c in the database and whether the value of the attribute m is, indeed, r.

Although previously we discussed only the object interpretation for path expressions, it is easy
to see that they have truth values as well, because a path expression corresponds to a conjunction
of F-logic atoms. Consequently, all F-molecules of the form (1) through (8) have dual reading: As
logical formulas (the deductive perspective), and as expressions that represent one or more objects
(the object-oriented perspective). Given an intended model, I, of an F-logic program an expression
has:

• An object value, which yields the Id(s) of the object(s) that are reachable in I by the corre-
sponding expression, and

• A truth value, like any other literal or molecule of the language.

An important property that relates the above interpretations is: a molecule, r, evaluates to false if
I has no object corresponding to r.

Consider the following path expression and an equivalent, decomposed expression:

a..b[c→→{d.e}] ⇔ a[b→→Xab] ∧ d[e→Xde] ∧ Xab[c→→Xde]. (2)

Such decomposition is used to determine the truth value of arbitrarily complex path expressions in
the body of a rule. Let obj(path) denote the Ids of all objects represented by the path expression.
Then, for (2) above, we have:

obj(a..b) = {xab | I |= a[b→→xab]} and obj(d.e) = {xde | I |= d[e→xde]}

where I |= ϕ means that ϕ holds in I. Observe two formulas can be equivalent, but their object
values might be different. For instance, d[e→f] is equivalent to d.e as a formula. However, obj(d.e)
is f , while obj(d[e→f]) is d.

In general, for an F-logic database I, the object values of ground path expressions are given by
the following mapping, obj , from ground molecules to sets of ground oids (t, o, c, d, m can be oids
or path expressions):

obj(t) := {t | I |= t[]}, for a ground Id-term t
obj(o[. . .]) := {o1 | o1 ∈ obj(o), I |= o1[. . .]}
obj(o : c) := {o1 | o1 ∈ obj(o), I |= o1 : c}
obj(c :: d) := {c1 | c1 ∈ obj(c), I |= c1 :: d}
obj(o.m) := {r1 | r1 ∈ obj(r), I |= o[m→r]}
obj(o..m) := {r1 | r1 ∈ obj(r), I |= o[m→→{r}]}

Observe that if t[] does not occur in I, then obj(t) is ∅. Conversely, a ground molecule r is
called active if obj(r) is not empty. A molecule, r, can be single-valued or multi-valued:

7 TRUTH VALUES, OBJECT VALUES, AND META SIGNATURES 29

• r is called multi-valued if

– it has the form o..m, or

– it has one of the forms o[. . .], o : c, c :: d, or o.m, and any of the underlined subexpressions
is multi-valued;

• in all other cases, r is single-valued.

Dual representation and meta-predicates. Since path expressions can appear wherever Id-
terms are allowed, the question arises whether a path expression is intended to indicate a truth value
or an object value. For instance, we may want to call the Prolog aggregate predicate findall/3
to retrieve the oids of the managers who like to play tennis:

findall(P,P : manager[hobbies→→tennis],L)

If all arguments are treated as objects, then this expression would mean

P : manager[hobbies→→tennis], findall(P,P,L)

and a meaningless result — the list of all instances of P that evaluate to true — will be returned.
Since, due to the first F-molecule, these instances of P must be the oids of the tennis-playing
managers, such as john, the list L would contain those oids that happen to be true as 0-ary facts.
(For example, john would end up on such a list if the fact john is true as a 0-ary predicate).

The upshot of this problem is that the interpretation of F-logic expressions as objects is not
always suitable. In our example, we need to indicate to the compiler that the middle argument of
findall/3 ought to be translated into Prolog as follows:

findall(P,F(P),L)

where F(P) is an formula into which P : manager[hobbies→→tennis] is translated by the FLORA-2
compiler.9 Under this translation, findall/3 will find all instances of P that make F(P) true and
return a list of such instances in the list L. This feat is accomplished using the arguments compiler
instruction.

By default, when a truth-valued expression, E, such as an F-logic molecule or a path expression,
appears as an argument to a predicate or function symbol, p, the FLORA-2 compiler will pass the
object value of the expression to p. In order to tell the compiler that the entire formula obtained
by translating E into Prolog is to be passed to p, we need to reify E, i.e., turn this formula as a
whole into an object into an object. This is done by defining the meta signature of p using the
compiler directive arguments. For instance, the following directive will make findall/3 work as
intended:

:- arguments findall(oid,meta,oid).
9 Something like isa(P,manager),mvd(P,hobbies,tennis).

8 HILOG AND RELATED ISSUES 30

This signature declaration tells FLORA-2 that the first and the third arguments to findall/3
should be translated as oids, while the second argument of findall/3 should be treated as a
syntactic object that represents formulas of the kind that might occur in the body of a rule.

Another way to reify a formula is to use the reification operator, “${...}”, introduced in Sec-
tion 8.1.

8 HiLog and Related Issues

HiLog [5] is the default syntax that FLORA-2 uses to represent functor terms (including object
Ids) and predicates. In HiLog, complex terms can appear wherever a function symbol is allowed.
For example, group(X)(Y,Z) is a HiLog term where the functor is no longer a symbol but rather a
complex term group(X). Variables in HiLog can range over terms, predicate and function symbols,
and even over atomic formulas. For instance,

?− p(X), X(p). (3)

and
?− p(X), X(p), X. (4)

are perfectly legal queries. If p(a(b)), a(b)(p), and a(b) are all true in the database, then X = a
is one of the answers to the query.

Although HiLog has a higher order syntax, its semantics is first order [5]. Any HiLog term can
be consistently translated into a Prolog term. For instance, group(X)(Y,Z) can be represented by
the Prolog term apply(apply(group,X),Y,Z). The translation scheme is pretty straightforward
and described in [5].

In FLORA-2 any Id-term, including function symbols and predicate symbols, are considered
to be HiLog terms and therefore are subject to translation. That is, even a normal Prolog term
will by default be represented using the HiLog translation, e.g., foo(a) will be represented as
apply(foo,a). This guarantees that HiLog unification will work correctly at runtime. For instance,
foo(a) will unify with F(a) and bind the variable F to foo.

There is one important difference between HiLog, as described in [5], and its implementation
in FLORA-2 . In HiLog, functor terms that appear as arguments to predicates and the atomic
formulas (i.e., predicates that are applied to some arguments) belong to the same domain. In
contrast, in FLORA-2 they are in different domains.10 For instance, (4) will cause an error because
X is bound to the term a(b), which is different from the atomic formula a(b), and thus has no
truth value. In a future release, we will provide a predicate call/1, which converts HiLog terms
in the domain of arguments into HiLog terms in the domain of atomic formulas, so (4) could be
rewritten into p(X), X(p), call(X).11

Like in classical logic, foo and foo() are different terms. However, in programming, it is
convenient to identify these terms when they are treated as predicates. Prologs often disallow the

10 This is allowed in sorted HiLog [4].
11 Of course, call/1 exists in Prolog as well. However, unlike HiLog and sorted HiLog, this predicate does not

have logical semantics.

8 HILOG AND RELATED ISSUES 31

use of the foo() syntax altogether. The same distinction holds in HiLog: foo, foo() and foo()()
are all different. In terms of the HiLog to Prolog translation, this means that foo is different
from apply(foo) is different from apply(apply(foo)). However, just like in Prolog, we treat p as
syntactic sugar for p() when both occur as predicates. Thus, the following queries are the same:

?- p.
?- p().

In the following program,

p.
q().
?- p(), X().
?- q, X().
?- r = r().

the first two queries will succeed (with X bound to p or q), but the last one will fail. Identification
of p with p() does not extend to p()(), which is distinct from both p and p() not only as a term
but also as a formula. Thus, in the following program, all queries fail:

p.
q().
?- p()().
?- q()().
?- p = p()().
?- q() = q()().

8.1 Meta-programming, Meta-unification, and Reification

F-logic together with HiLog is powerful stuff. In particular, it lends itself naturally to meta-
programming. For instance, it is easy to examine the methods and types defined for the various
classes. Here are some simple examples:

// all unary scalar methods defined for John
?- john[M(_) -> _].

// all unary scalar methods that apply to John,
// for which a signature was declared
?- john[M(_) => _].

// all method signatures that apply to John,
// which are either declared explicitly or inherited
?- john[M => _].

// all method invocations defined for John
?- john[M -> _].

8 HILOG AND RELATED ISSUES 32

However, a number of meta-programming primitives are still needed since they cannot be di-
rectly expressed in F-logic. Many such features are provided by the underlying Prolog system and
FLORA-2 simply takes advantage of them:

?- functor(X,f,3).
X = f(_h455,_h456,_h457)
Yes.

?- compound(f(X)).
X = _h472
Yes.

?- X =.. [f,a,b].
X = f(a,b)
Yes.

Note that these primitives are used for Prolog terms only and are described in the XSB manual.

Meta-unification. In FLORA-2 , variables can be bound to both formulas and terms. For in-
stance, in X = p(a), p(a) is viewed as a term and X is bound to it. Likewise, in X = a[m->v], the
F-molecule is evaluated to its object value and then unified with X. To bind variables to formulas
instead, FLORA-2 provides a meta-unification operator, ∼. This operator treats its arguments
as formulas and unifies them as such. For instance, X ∼ a[m->v,k->V] binds X to the F-molecule
a[m->v,k->V] and a[m->v,k->V] ∼ X[M->v,k->p] unifies the two molecules by binding X to a,
M to m, and V to p.

Reification. It is sometimes useful to be able to treat FLORA-2 molecules and predicates as
objects. For instance, consider the following statement:

tom[believes->> alice[thinks->>floraProgramming:coolThing]].

The intended meaning here is that one of Tom’s beliefs is that Alice thinks that programming in
FLORA-2 is a cool thing. Unfortunately, this is incorrect, because, as stated, the above formula
has a different meaning:

tom[believes->> alice].
alice[thinks->>floraProgramming:coolThing].

That is, Tom believes in Alice and Alice thinks that FLORA programming is cool. This is
different from what we originally intended. For instance, we did not want to say that Alice
likes FLORA (she probably does, but she did not tell us). All we said was what Tom believes
about what Alice thinks. In other words, to achieve the desired effect we must turn the formula
alice[thinks->>floraProgramming:coolThing] into an object, i.e., reify it.

Reification is done using the operator “${...}”. For instance, to say that Tom believes that
Alice thinks that programming in FLORA-2 is a cool thing one should write:

8 HILOG AND RELATED ISSUES 33

tom[believes->> ${alice[thinks->>floraProgramming:coolThing]}].

Reification and meta-unification. Reification should not be confused with meta-unification,
although they are close concepts. A reified formula reflects the exact structure that is used to
encode it, so structurally similar, but syntactically different formulas might meta-unify, but their
internal representations could be very different. For instance,

?- M=foo, a[b->X]@M ~ Y[b->d]@foo.

will return true, because the two molecules are structurally similar and thus meta-unify. On the
other hand,

?- M=foo, ${a[b->X]@M} = ${Y[b->d]@foo}.

will be false, because a[b->Y]@X and Z[b->d]@foo have different internal representations (even
though their conceptual structures are similar), so they do not unify (using “=”, i.e., in the usual
first-order sense). Note, however, that

?- ${a[b->Y]@foo} = ${Z[b->d]@foo}.
?- M=foo, ${a[b->Y]@M} = ${Z[b->d]@M}.
?- a[b->Y]@foo ~ Z[b->d]@foo.
?- M=foo, a[b->Y]@M ~ Z[b->d]@M.

will all return true, because a[b->Y]@foo and Z[b->d]@foo are structurally similar — both con-
ceptually and as far as their internal encoding is concerned (and likewise are a[b->Y]@foo and
Z[b->d]@foo).

Unimplemented: Meta-programming support for HiLog terms and F-molecules is incomplete.
For instance, there is no operator similar to =.., like in Prolog (or, rather, it does not do the
right thing in FLORA-2). Additional meta-programming support will be provided through future
enhancements.

8.2 Passing Arguments between FLORA-2 and Prolog

The native HiLog support in FLORA-2 causes some tension when crossing the border from one
system to another. The reason is that FLORA-2 terms and Prolog terms have different internal
representation. Even though XSB supports HiLog (according to the manual, anyway), this support
is incomplete and is not integrated well into the system — most notably into the XSB module
system. As a result, XSB does not recognize terms passed to it from FLORA-2 as HiLog terms
and, thus, many useful primitives will not work correctly. (Try ?- writeln(foo(abc))@prolog()
and see what happens.)

To cope with the problem, FLORA-2 provides a primitive, flP2H(Plg,Hlg), which does the
translation. If the first argument, Plg, is bound, the primitive binds the second argument to the
Hilog representation of the term. If Plg is already bound to a Hilog term, then Hlg is bound to the

8 HILOG AND RELATED ISSUES 34

same term without conversion. Similarly, if Hlg is bound to a HiLog term, then Plg gets bound
to the Prolog representation of that term. If Hlg is bound to a non-HiLog term, then Plg gets
bound to the same term without conversion. In all these cases, the call to flP2H/2 succeeds. If
both arguments are bound, then the call succeeds if and only if

• Plg is a Prolog term and Hlg is its HiLog representation.

• Both Plg and Hlg are identical HiLog terms.

Note that if both Plg and Hlg are bound to the same Prolog term then the predicate fails. Thus,
if you type the following queries into the FLORA-2 shell, they both succeed:

?- flP2H(X,f(a)), flP2H(X,f(a)).
?- flP2H(f(a),f(a)).

Not all arguments passed back and forth to Prolog need conversion. For instance, sort/2,
ground/1, compound/1, and many others do not need conversion because they work the same for
Prolog and HiLog representations. On the other hand, most I/O predicates require conversion. In a
future release, FLORA-2 will provide libraries of useful predicates and methods that do appropriate
conversion without the user having to do this explicitly. One such library, io, is described in
Section 22.

Another mechanism, described in Section 5.5, is the use of the @prologall() and @prologall(module)
specifier to call Prolog modules. This specifier cause the compiler to include code for automatic
conversion of arguments to and from Prolog representation. However, as mentioned above, such
conversion is sometimes not necessary and the use of @prologall() might incur unnecessary over-
head.

8.3 First-Order Predicates and HiLog Predicates

FLORA-2 is an object-relational language in the sense that it supports both the object-oriented
syntax of F-logic and the predicate-based (i.e., relational) syntax of Prolog. Incorporation of
predicates is conceptually simple, but is somewhat burdened by pragmatic considerations, namely,
integration with HiLog. As a result, FLORA-2 has two types of predicates, first-order predicates
and HiLog predicates.

Recall that the main reason for using HiLog as the native syntax and semantics in FLORA-2 is
meta-programming. However, this is also one of the reasons for adding the first-order predicates.
To explain, consider the following query:

?- X(a,b).

which returns all names of binary predicates that contain the tuple a,b. However, it is sometimes
useful to exclude certain predicates from the domain of the meta-variables, such as X above. For
instance, if write/2 is an I/O predicates, should the above query return the binding X=write? If

9 EQUALITY MAINTENANCE 35

so, if a happens to be the name of a file and b a string, should this string be written out to that
file as a side effect of the evaluation of this query?

To avoid these semantic problems, FLORA-2 supports the firstorder declaration, which de-
fines certain symbols as first-order predicates. For instance,

:- firstorder foo/1, moo/3.

Predicates defined in this way are outside of the range of HiLog variables. If you want all predicates
to be shielded from meta programming, you can use the following compiler directive:

:- firstorderall.

First-order predicates are module-aware. This means that the predicates defined in different
user, system, or Prolog modules are treated as unrelated entities.

There is one other reason why we might sometimes choose first-order predicates over HiLog
predicates — predicate tabling. This issue is discussed in Section 14.

8.4 Expunging of First-Order Predicates

Expunging a predicate means deleting all of its tuples as well as the rules that have this predicate
in the head. This operation corresponds to abolishing a predicate in Prolog. Only first-order
predicates can be expunged in FLORA-2 .

To expunge a predicate of the form functor/arity from the user module that a program is
loaded into, the following compiler directive can be used:

:- expunge functor/arity.

expunge can also be called like a normal predicate, either from the shell or from within a rule body,
to expunge predicates in one specific user module. The syntax is shown below:

:- expunge functor/arity, ..., functor/arity in modulename.

where in is a special keyword, and modulename stands for the name of the user module from which
to expunge the given list of predicates.

Note that when expunge functor/arity is used as a normal predicate (not as a compiler
directive), it will expunge the predicate for the current program module.

9 Equality Maintenance

Implicitly derived equality. Unlike in regular Prolog, FLORA-2 terms can become equal,
which is a side effect of the F-logic semantics for scalar methods. For instance, consider the
following F-logic facts:

9 EQUALITY MAINTENANCE 36

mary[spouse→john].
mary[spouse→joe].
john[son→→frank].

Since spouse is a scalar attribute, it can have at most one value for any given object. This
implies that the oids john and joe must refer to the same object. Therefore, whatever is true
about john should be also true about joe, and vice versa. Thus we should be able to derive that
joe[son→→frank].

What is illustrated above is just a very simple scenario of equality maintenance. Another
scenario when terms may become equal arises due to the path expressions in the rule heads (Sec-
tion 6.2). For instance, if our program has

john.mother[father->bob].

then FLORA-2 will create an internal oid to represent the value of john.mother. However, if later
on we insert the face john[mother->sally] then this internal oid must be equated with sally.

User-defined equality. In addition, FLORA-2 users can define equality explicitly in the source
program using the predicate :=:, e.g.,

john:=:batman.
X:=:Y :- X[similar->Y].

Equality maintenance levels. Once an equality between terms is derived, this information may
need to be propagated to all F-logic structures, including the subclass hierarchy, the ISA hierarchy,
etc. For instance, if x and y are equal, then so must be f(x) and f(y). If x:a has been previously
derived then we should now be able to derive y:a, etc. Although equality is a powerful feature,
its maintenance can slow the program down quite significantly. In order to be able to eat the cake
and have it at the same time, FLORA-2 allows the user to control how equality is handled. by
providing the following three compiler directives:

:- equality none. (default)
:- equality basic.
:- equality flogic.

The first directive, equality none, does not maintain equality and :=: is considered just like
any other user-defined predicate without any special semantics. The directive equality basic
guarantees that :=: obeys the usual congruence rules for equality, i.e., transitivity, reflexivity,
symmetry, and substitution, but not the special F-logic equality rule for scalar methods. Finally,
equality flogic means that the full equality theory for F-logic is in force. In particular, programs
with path expressions in the rule heads might require this level of equality to work correctly (if
there is a possibility that the Skolem terms introduced to represent the path expressions might be
equal to some real objects).

9 EQUALITY MAINTENANCE 37

If a FLORA-2 module does not define facts of the form a:=:b, which involve the equality
predicate :=:, then the default equality maintenance level is none. If the program does define such
facts, then the default equality maintenance level is basic, because it is assumed that the use of
:=: in the program is not accidental. In any case, the equality directive overrides the default.

Note that even if the module might have path expression in the head, the default equality level
is still none (unless :=: is used). The reason for this is that such path expressions do not always
require equality maintenance, so the user has to request it explicitly. For instance, if in the above
example we never insert john[mother->sally] then no equality maintenance will be required even
if the program defines the fact john.mother[father->bob], as above. However, if this fact is
inserted, then the equality maintenance level appropriate for this case is flogic (basic will not be
sufficient).

Locality of equality. Equality in FLORA-2 is always local to the module in which it is derived.
For example, if a:=:b is derived by the rules in module foo then the query

?- (a:=:b)@foo.

will succeed, but the query

?- (a:=:b)@bar.

will fail (unless, of course, a:=:b is also derived by the rules in module bar).

Since equality information is local to each module, the directives for setting the equality level
affect only the particular user modules in which they are included. Thus, equality can be treated
differently in different modules, which allows the programmer to compartmentalize the perfor-
mance problem associated with equality and, if used judiciously, can lead to significant gains in
performance.

Run-time changes to the equality maintenance level. In FLORA-2 , the desired level of
equality maintenance can also be changed at run time by executing a goal such as

?- (equality basic).

Furthermore, FLORA-2 allows one user module to set, at run time, the level of equality maintenance
in another user module:

?- (equality flogic in modulename).

This might be useful for dynamic modules, i.e., modules that are not associated with any files and
whose content is generated completely dynamically. (See Section 15.)

10 INHERITANCE 38

Using the preprocessor to avoid the need for equality maintenance. One final advice
regarding equality. In many cases, programmers tend to use equality as an aliasing technique for
long messages, numbers, etc. In this case, we recommend to use the preprocessor commands, which
achieve the same result without loss of performance. For instance,

#define YAHOO ’http://yahoo.com’

?- YAHOO[fetch \fd X].

Assuming that fetch is a method that applies to strings that represent WWW sites and that
fetches the corresponding Web pages, the above program will fetch the page at the Yahoo site,
because FLORA-2 compiler will replace YAHOO with the corresponding string that represents a
URL.

10 Inheritance

F-logic supports two types of inheritance: structural and behavioral. Structural inheritance ap-
plies to signatures only. For instance, if student::person and a program defines the signature
person[name⇒string] then the query ?- student[name⇒X] succeeds with X=string.

Behavioral inheritance is much more complicated. The problem is that it is non-monotonic.
That is, the addition of new facts might obviate previously established inferences.

F-logic (and FLORA-2) distinguishes between attributes and methods that can inherit values
from superclasses and those that do not. The syntax that we have seen so far applies to non-
inheritable attributes only. Inheritable attributes are declared using the *=> and *=>> style arrows
and defined using the *-> and *->> style arrows. For instance, the following is a FLORA-2 program
for the classical Royal Elephant example:

elephant[color*=>color].
royal_elephant::elephant.
clyde:elephant.
elephant[color*->gray].

The question is what is the color of clyde? clyde’s color has not been defined in the above
program. However, since clyde is an elephant and the default color for elephants is gray, clyde
must be gray. Thus, we can derive:

clyde[color->gray].

Observe that when inheritable methods are inherited from a class by its members, the attribute
becomes non-inheritable. On the other hand, when such a method is inherited by a subclass from
its superclass, then the method is still inheritable, so it can be further inherited by the members
of that subclass or by its subclasses. For instance, if we have

10 INHERITANCE 39

circus_elephant::elephant.

then we can derive

circus_elephant[color*->gray].

Non-monotonicity of behavioral inheritance becomes apparent when certain new information
gets added to the knowledge base. For instance, suppose we learn that

royal_elephant[color*->white].

Although we have previously established that clyde is gray, this new information renders our
earlier conclusion invalid. Indeed, Since clyde is a royal elephant, he must be white, while being
an elephant he must be gray. The conventional wisdom in object-oriented languages, however, is
that inheritance from more specific classes must take precedence. Thus, we must withdraw our
earlier conclusion that clyde is gray and infer that he is white:

clyde[color->white].

Behavioral inheritance in F-logic is discussed at length in [9]. The above problem of non-
monotonicity is just a tip of the iceberg. Much more difficult problems arise when inheritance
interacts with the regular deduction. To illustrate, consider the following program:

b[m*->>c].
a:b.
a[m->>d] :- a[m->>c].

In the beginning, it seems that a[m->>c] should be derived by inheritance, and so we can derive
a[m->>d]. Now, however, we can reason in two different ways:

1. a[m->>c] was derived based on the belief that attribute m is not defined for the object a.
However, once inherited, necessarily we must have a[m->>{c,d}]. So, the value of attribute
m is not really the one produced by inheritance. In other words, inheritance of a[m->>c]
negates the very premise on which the original inheritance was based, so we must undo the
operation and the ensuing rule application.

2. We did derive a[m->>d] as a result of inheritance, but that’s OK — we should not really
be looking back and undo previously made inheritance inferences. Thus, the result must be
a[m->>{c,d}].

A similar situation (with similarly conflicting conclusions) arises when the class hierarchy is not
static. For instance,

d[m*->e]
d::b.
b[m*->c].
a:b.
a:d :- a[m->c].

10 INHERITANCE 40

If we inherit a[m →c] from b (which seems to be OK in the beginning, because nothing overrides
this inheritance), then we derive a:d, i.e., we get the following: a:d::b. This means that now
d seems to be negating the reason why a[m →c] was inherited in the first place. Again, we can
either undo the inheritance or adopt the principle that inheritance is never undone.

A semantics that favors the second interpretation was proposed in [9]. This approach is based
on a fixpoint computation of non-monotonic behavioral inheritance. However, this semantics is
very hard to implement efficiently, especially using a top-down deductive engine provided by the
underlying Prolog engine. It is also unsatisfactory in many respects because it is not based on any
model-theory. FLORA-2 uses a different, more cautious semantics for inheritance, which favors
the first interpretation above. The basic idea can be summarized using the following rules, which
define how class instances inherit from the classes they belong to:

// inheritance rules for scalar attributes
:- table defined/2, overwritten/3, conflict/3.

Obj[A->V] :- Obj:Class, Class[A*->V], tnot defined(Obj,A),
tnot overwritten(Obj,Class,A), tnot conflict(Obj,Class,A).

defined(Obj,A) :- Obj[A->V].

overwritten(Obj,Class,A) :- Obj:Class1, Class1::Class,
Class1[A*->W], Class1 \= Class.

conflict(Obj,Class,A) :- Obj:Super, Super[A*->V],
tnot Super::Class, tnot Class::Super.

// inheritance rules for multi-valued attributes
:- table definedSet/2, overwrittenSet/3, conflictSet/3.

Obj[A->>V] :- Obj:Class, Class[A*->>V], tnot definedSet(Obj,A),
tnot overwrittenSet(Obj,Class,A),
tnot conflictSet(Obj,Class,A).

definedSet(Obj,A) :- Obj[A->>V].

overwrittenSet(Obj,Class,A) :- Obj:Class1, Class1::Class,
Class1[A*->>W], Class1 \= Class

conflictSet(Obj,Class,A) :- Obj:Super, Super[A*->V],
tnot Super::Class, tnot Class::Super.

Negation here is implemented using the well-founded semantics for negation [10, 11] (as indicated
by the tnot operator). Similar rules are needed to describe how classes inherit from superclasses.

Under this semantics, clyde will still be white, but in the other two examples a[m->c] is not
inherited. Details of this semantics and its model theory will be presented in a future paper.

11 AGGREGATES 41

In the examples that we have seen so far, path expressions use only non-inheritable attributes.
Clearly, there is no reason to disallow inheritable attributes in such expressions. To distinguish
inheritable attributes from non-inheritable ones, FLORA-2 uses the symbols ! and !! in its path
expressions. For instance,

clyde!color means: some X, such that clyde[color*->X]}.
obj!!attr means: some Y, such that obj[attr*->>Y].

11 Aggregates

The syntax for aggregates is similar to that in Florid. An aggregate has the following form:

agg{X[Gs] | query}

where agg represents the aggregate operator, X is called the aggregation variable, Gs is a list
of comma-separated grouping variables, and query is a logical formula that specifies the query
conditions. The grouping variables, Gs, are optional. query can be any combination of conjunction,
disjunction, and negation of literals.

All the variables appearing in query but not in X or Gs are considered to be existentially quan-
tified. Furthermore, the syntax of an aggregate must satisfy the following conditions:

1. All names of variables in both X and Gs must appear in query;

2. Gs should not contain X.

Aggregates are evaluated as follows: First, the query condition specified in query is evaluated
to obtain all the bindings for the template of the form <X, Gs>. Then, these tuples are grouped
according to each distinct binding for <Gs>. Finally, for each group, the aggregate operator is
applied to the list of bindings for the aggregate variable X.

The following aggregate operators are supported in FLORA-2 : min, max, count, sum, avg,
collectset and collectbag.

The operators min and max can apply to any list of terms. The order among terms is defined
by the Prolog operator @=<. In contrast, the operators sum and avg can take numbers only. If the
aggregate variable is instantiated to something other than a number, sum and avg will discard it
and generate a runtime warning message.

For each group, the operator collectbag collects all the bindings of the aggregation variable
into a list. The operator collectset works similarly to collectbag, except that all the duplicates
are removed from the result list.

The aggregates min, max, sum, count, and avg fail if query fails. In contrast, collectbag and
collectset succeed even if query returns no binding. In this case, these aggregates return the
empty list.

11 AGGREGATES 42

In general, aggregates can appear wherever a number or a list is allowed. Therefore, aggregates
can be nested. The following examples illustrate the use of aggregates (some borrowed from the
Florid manual):

?- Z = min{S|john[salary(Year)->S]}.
?- Z = count{Year|john.salary(Year) < max{S|john[salary(Y)->S], Y < Year}}.
?- avg{S[Who]|Who:employee[salary(Year)->S]} > 20000.

If an aggregate contains grouping variables that are not bound by a preceding subgoal, then this
aggregate would backtrack over such grouping variables (In other words, grouping variables are
considered to be existentially quantified). For instance, in the last query above, the aggregate will
backtrack over the variable Who. Thus, if john’s and mary’s average salary is greater than 20000,
this query will backtrack and return both john and mary.

The following query returns, for each employee, a list of years when this employee had salary
less than 60. This illustrates the use of the collectset aggregate.

?- Z = collectset{Year[Who]|Who[salary(Year)->X], X < 60}.
Z = [1990,1991]
Who = mary

Z = [1990,1991,1997]
Who = john

11.1 Aggregation and Set-Valued Methods

Aggregation is often used in conjunction with set-valued methods, and FLORA-2 provides several
shortcuts to facilitate this use. In particular, the operators ->-> and *->->, for non-inheritable
and inheritable multivalued methods, collects all the values of the given method for a given object
in a set. The semantics of these operators is as follows:

O[M->->L] :- L=collectset{V|O[M->>V]}

O[M*->->L] :- L=collectset{V|O[M*->>V]}

Note that in O[M->->L] and O[M*->->L] L is a list of oids.

Having special meaning for ->-> and *->-> means that these constructs cannot appear in the
head of a rule. One other caveat: recursion through aggregation is not supported and can produce
incorrect results.

Sets collected in the above manner often need to be compared to other sets. For this, FLORA-2
provides another pair of primitives: +>> and *+>> for non-inheritable and inheritable methods,
respectively. The atom of the form o[m+>>s] is true if the set of all values of the non-inheritable
attribute m for object o contains every element in the list s.

For instance, the following query tests whether all Mary’s children are also John’s children:

12 BOOLEAN METHODS 43

?- mary[children->->L], john[children+>>L].

As with ->-> and *->->, the use of +>> and *+>> is limited to rule bodies.

12 Boolean Methods

As a syntactic sugar, FLORA-2 introduces boolean methods, which can be considered as scalar
methods that return some fixed value, e.g., void. For example, the following facts:

john[is_tall -> void].
john[loves(tennis) -> void].

can be simplified as boolean methods as follows:

john[is_tall].
john[loves(tennis)].

Conceptually, boolean methods are statements about objects whose truth value is the only
concern. Boolean methods do not return any value (not even the value void). Therefore, boolean
methods cannot appear in path expressions. For instance, john.is vegetarian is illegal.

Like scalar methods, boolean methods can be inheritable. To make a boolean method inherita-
ble, the * sign is prepended to the method name:

buddhist[*is_vegetarian].
john:buddhist.

The above says that all Buddhists are vegetarian and John (the object with oid john) is a
Buddhist. Since is_vegetarian is inheritable, it follows that John is also a vegetarian, i.e.,
john[is_vegetarian].

13 Anonymous Oids

For applications where oids are not important, FLORA-2 provides the compiler directive _# to
automatically generate a new oid. _# can be used wherever an Id-term is allowed, except in the
rule body, where such oids make no sense. Like the anonymous variable _, each occurrence of _#
represents an anonymous oid. The difference is that such an oid is not only unique in each rule,
but in the source program as well.

Of course, uniqueness is achieved through the use of special “weird” naming schema for such
oids. However, as long as the user does not use a similar naming convention (who, on earth, would
give names that begin with lots of ‘‘ $’’s?), uniqueness is guaranteed.

For example, in the following program:

14 FLORA-2 AND TABLING 44

#[ssn->123, father->#[name->john, spouse->_#[name->mary]]].
foo[_#(X)->Y] :- foo(X,Y).

the compiler will generate unique oids for each occurrence of #. Note that, in the second clause,
only one oid is generated and it serves as a method name.

In some situations, it is needed to be able to create a new oid and use it within the same rule
head or a fact. Since such an oid needs to be referenced inside the same program clause, it is no
longer possible to use _#, because each occurrence of _# causes the compiler to generate a new oid.
To solve this problem, FLORA-2 allows numbered anonymous oids, which are of the form _#132,
i.e., _# with a number attached to it. For instance,

#1[ssn->123, father->f(#1)[name->john, spouse->_#[name->mary]]].
#1[self->#1].

The first time the compiler finds _#1 in the first clause above, it will generate a new oid. However,
the second occurrence of _#1 in the same clause (i.e., f(_#1)) will use the oid previously generated
for the first occurrence. On the other hand, occurrences of _#1 in different clauses are substituted
with different oids. Thus, the occurrences of _#1 in the first and second clauses above refer to
different objects.

14 FLORA-2 and Tabling

14.1 Tabling in a Nutshell

Tabling is a technique that enhances top-down query evaluation with a mechanism that remembers
the calls made previously in the process. This technique is known to be essentially equivalent to the
Magic Sets method for bottom-up evaluation. However, tabling combined with top-down evaluation
has the advantage of being able to utilize highly optimized compilation techniques developed for
Prolog. The result is a very efficient deductive engine.

XSB lets the user specify which predicates must be tabled. The FLORA-2 compiler automat-
ically tables the predicates used to represent F-molecules. However, the user is responsible for
telling the system which other predicates — first-order and HiLog — must be tabled. FLORA-2
understands one tabling directive for first-order predicates and another for HiLog. (Section 21 lists
all the compiler directives.)

To table a first-order predicate, the following can be used:

:- firstorder tc/2.
:- table tc/2.

tc(X,Y) :- edge(X,Y).
tc(X,Y) :- edge(X,Y), tc(Y,Z).

which renders tc/2 as a tabled first-order predicate. (Unimplemented: In the future, the tabling
directive will imply firstorder.)

14 FLORA-2 AND TABLING 45

To table HiLog predicates, FLORA-2 requires you to table all predicates of a given arity: For
instance,

:- hilogtable 3.

tables all HiLog predicates of arity 3.

It is important to keep in mind that Prolog does not do reordering of F-logic molecules and
predicates during joins. Instead, all joins are performed left-to-right. Thus, program clauses must
be written in such a way as to ensure that smaller predicates and classes appear early on in the
join. Also, even though XSB tables the results obtained from previous queries, the current tabling
engine has several limitations. In particular, when a new query comes in, XSB tries to determine
if this query is “similar” to one that already has been answered (or is in the process of being
evaluated). Unfortunately, the default notion of similarity used by XSB is fairly weak, and many
unnecessary recomputations might result. Recently, a new technique, called subsumptive tabling,
has been implemented in XSB. It is known that subsumptive tabling can speed up certain queries
by an order of magnitude. A future version of FLORA-2 might take advantage of this technique.

14.2 Procedural Methods

When Prolog (and FLORA-2) evaluate a program, all tabled predicates are partially materialized
and all the computed tuples are stored in Prolog tables. Thus, if you change the set of facts,
the existing tables must be discarded in order to allow Prolog to recompute the results. This is
accomplished by issuing the predicate abolish all tables/0 described in the XSB manual. We
discuss updates in Section 15.

Because tabling is not integrated with the update mechanism in Prolog, it can have undesirable
effect on predicates with non-logical “side effects” (e.g., writing or reading a file) and predicates
that change the state of the database. If a tabled predicate has a side effect, the first time the
predicate is called the side effect is performed, but the second time the call simply returns with
success or failure (depending on the outcome of the first call), because Prolog will simply look it
up in a table. Thus, if the predicate is intended to perform the side effect each time it is called, it
will not operate correctly.

Object-oriented programs often rely on methods that produce side effects or make updates. In
FLORA-2 we call such methods procedural. Because by default FLORA-2 tables everything that
looks like an F-molecule, these procedural methods are potentially subject to the aforesaid problem.

To sidestep this program, FLORA-2 introduces a new syntax to identify procedural methods
— by allowing the “#” sign in front of a procedural method. For instance, the following rule defines
an output method that, for every object, writes out its oid:

O[#output] :- write(O)@prolog().

Like boolean methods, procedural methods can take arguments, but do not return any values. The
only difference is that procedural methods are not tabled, while boolean methods are.

15 UPDATES 46

14.3 Cuts

No discussion of a logic programming language is complete without a few words about the infamous
Prolog cut (!). Although Prolog cut has been (mostly rightfully) excommunicated as far as Database
Query Languages are concerned, it is sometimes indispensable when doing “real work”, like pretty-
printing FLORA-2 programs or implementing a pattern matching algorithm. To facilitate this kind
of tasks, FLORA-2 lets the programmer use cuts. However, the current implementation of XSB
has a limitation that Prolog cuts cannot “cut across tabled predicates.” If you get an error message
telling something about cutting across the tables — you know that you have cut too much!

The basic rule that can keep you out of trouble is: do not put a cut in the body of a rule after
any F-molecule or tabled first-order or HiLog predicate. However, it is OK to to put a cut before
any F-molecule. It is even OK to have a cut in the body of a rule that defines an F-molecule (again,
provided that the body has no F-molecule to the left of that cut). If you need to use cuts, plan on
using procedural methods or non-tabled predicates.

In a future release, XSB will implement a different tabling schema. While cutting across tables
will still be prohibited, it will provide an alternative mechanism that achieves many of the goals a
cut is used to achieve.

15 Updates

FLORA-2 provides primitives to update the runtime database. Unlike Prolog, FLORA-2 does not
require the user to define a predicate as dynamic in order to update it. Instead, every predicate
(HiLog or first-order) and object has a base part and a derived part. Updates directly change only
the base parts and only indirectly the derived parts.

Note that the base part of a predicate or an object contains both the facts that were inserted
explicitly into the database and the facts that you specified in the program. For instance, in

p(a).
a[m->b].

the fact p(a) will be placed in the base part of the predicate p/1 tt and it can be deleted by the
delete primitive. Likewise, the fact a[m->b] is updatable. If you do not want some facts to be
updatable, use the following syntax:

p(a) :- true.
a[m->b] :- true.

Unimplemented: In the current release, the base part of first-order predicates cannot be
queried in the FLORA-2 shell (but it can be queried in the program file). Likewise, if the
firstorderall directive is in effect, the base part of the first-order predicates is inaccessible to
querying. These limitations will be removed in the future.

FLORA-2 updates can be non-backtrackable, as in Prolog, or backtrackable, as in Transaction
Logic [2]. We first describe non-backtrackable updates.

15 UPDATES 47

15.1 Non-backtrackable Updates

The effects of non-backtrackable updates persist even if a subsequent failure causes the system to
backtrack.

FLORA-2 supports the following non-backtrackable update primitives: insert, insertall,
delete, deleteall, erase, eraseall. These primitives use special syntax (the curly braces) and
are not predicates. Thus, it is allowed to have a user-defined predicate such as insert.

Insertion. The syntax of an insertion is as follows (note the {,}s!):

insop {literals [| query]}

where insop stands for either insert or insertall. The literals part represents a comma
separated list of literals, which can include predicates and F-molecules. The optional part, |query,
is an additional condition that must be satisfied in order for literals to be deleted. The semantics
is that query is posed first and, if it is satisfied, literals is inserted (note that the query may affect
the variable binding and thus the particular instance of literals that will be inserted). For instance,
in

flora2 ?- insert{p(a),mary[spouse->smith,children->>frank]}
flora2 ?- insertall{P[spouse->S] | S[spouse->P]}

the first statement inserts a particular molecule. In the second case, the query S[spouse->P] is
posed and one answer (a binding for P and S) is obtained. If there is no such binding, nothing
is inserted and the statement fails. Otherwise, the instance of P[spouse->S] is inserted for that
binding and the statement succeeds.

The difference between insert and insertall is that insert inserts only one instance of
literals that satisfies the formula, while insertall inserts all instances of the literals that satisfy
the formula. In other words, query is posed first and all answers are obtained. Each answer is a
tuple of bindings for some (or all) of the variables that occur in literals. To illustrate the difference
between insert and insertall, consider the following statements:

flora2 ?- p(X,Y), insert{q(X,Y,Z)|r(Y,Z)}.
flora2 ?- p(X,Y), insertall{q(X,Y,Z)|r(Y,Z)}.

In the first case, if p(x,y) and r(y,z) are true, then the fact q(x,y,z) is inserted. In the
second case, if p(x,y) is true, then the update means the following:

For each z such that r(y,z) holds, insert(x,y,z).

The primitive insertall is also known as a bulk-insert operator.

Note that literals appearing inside the update predicates are treated as facts and should follow
the syntactic rules for facts and literals in the rule head. In particular, multi-valued path expressions

15 UPDATES 48

are not allowed. However, FLORA-2 permits database updates whose target is a user module
other than the current one. Thus, FLORA-2 module specifications are allowed. As before, module
specification is distributive through parentheses, so

flora2 ?- insert{(mary[children->>frank], john[father->smith]) @ foomod}

is equivalent to the following one:

flora2 ?- insert{mary[children->>frank] @ foomod, john[father->smith] @ foomod}

However, @prolog(...) is not allowed: If you want to update a dynamic Prolog predicate, use
assert/retract:

flora2 ?- assert(foo(a,b,c))@prolog().

Well, not quite. Recall Section 8.2 on the issues concerning the difference between Prolog repre-
sentation of terms and the one used in Prolog. The problem is that f(a,b,c) is a HiLog term that
Prolog does not understand and will not associate it with the predicate foo/3 that it might have.
To do it right, use explicit conversion:

?- flP2H(PrologRepr,foo(a,b,c)), assert(PrologRepr)@prolog().

This will insert foo(a,b,c) into the default XSB module called usermod.

If all this looks too complicated, FLORA-2 provides a higher-level primitive, @prologall(),
as described in Section 5.5. This module specifier does automatic conversion of terms to and from
Prolog representation, so the above example can be written much more simply:

flora2 ?- assert(foo(a,b,c))@prologall().

Another possible complication might be that If foo/3 is defined in another Prolog module, bar,
and is imported by usermod, then the above statement will not do anything useful due to certain
idiosyncrasies in the XSB module system. In this case, we have to tell the system that foo/3 was
defined in Prolog module bar. Thus, foo/3 was defined as a dynamic predicate in the module bar,
we have to write:

flora2 ?- assert(foo(a,b,c)@prolog(bar))@prolog().

Note that if we want to assert a more complex fact, such as foo(f(a),b,c), we would have to use
either

flora2 ?- assert(foo(f(a)@prolog(bar),b,c)@prolog(bar))@prolog().

or @prologall():

flora2 ?- assert(foo(f(a),b,c)@prologall(bar))@prolog().

15 UPDATES 49

We should also mention one important difference between insertion of facts in FLORA-2 and
Prolog. Prolog treats facts as a list, so duplicates are allowed and the order matters. In contrast,
FLORA-2 treats the database as a set of facts with no duplicates. Thus, insertion of a fact that is
already in the database has no effect.

Deletion. The syntax of a deletion primitive is as follows:

delop {literals [| query]}

where delop can be delete, deleteall, erase, and eraseall. The literals part is a comma
separated list of F-molecules and predicates. The optional part, |query, represents an additional
constraint or a restricted quantifier, similarly to the one used in the insertion primitive.

For instance, the following predicate:

flora2 ?- deleteall{john[Year(Semester)->>Course] | Year < 2000}

will delete John’s course selection history before the year 2000.

Note that the semantics of a delete{literal|query} statement is that first the query literal ∧
query should be asked. If it succeeds, then deletion is performed. For instance, if the database is

p(a). p(b). q(a). q(c).

then the statement below:

flora2 ?- delete{p(X)|q(X)}

will succeed with the variable X bound to a and p(a) will be deleted. However, if the database
contains only the facts p(b) and q(c), then the above predicate will fail and the database will stay
unchanged.

FLORA-2 provides four deletion primitives: delete, deleteall, erase, and eraseall. The
primitive delete removes at most one fact from the database. The primitives deleteall and
eraseall are bulk delete operations; erase is kind of a hybrid: it starts slowly, by deleting
one fact, but may go on a joy ride and end up deleting much of your data. These primitives are
described below.

1. If there are several bindings or matches for the literals to be deleted, then delete will choose
only one of them nondeterministically, and delete it. For instance, suppose the database
contains the following facts:

p(a). p(b). q(a). q(b).

then

flora2 ?- delete{p(X),q(X)}

15 UPDATES 50

will succeed with X bound to either a or b, depending on the ordering of facts in the database
at runtime.

2. In contrast to the plain delete primitive, deleteall will try to delete all bindings or matches.
Namely, for each binding of variables produced by query it deletes the corresponding instance
of literal. If query ∧ literal is false, the deleteall primitive fails. To illustrate, consider the
following:

flora2 ?- p(X,Y), deleteall{q(X,Y,Z)|r(Y,Z)}.

and suppose p(x,y) is true. Then the above statement will, for each z such that r(y,z) is
true, delete q(x,y,z).

For another example, suppose the database contains the following facts:

p(a). q(b). q(c).

and the query is ?- deleteall{p(a),q(X)}. The effect will be the deletion of p(a) and of
all the facts in q. (If you wanted to delete just one fact in q, delete should have been used.

Unlike the delete predicate, deleteall always succeeds. However, when it succeeds, deleteall
will leave all variables unbound.

3. erase works like delete, but with an object-oriented twist: For each F-logic fact, f , that it
deletes, erase will traverse the object tree by following f ’s methods and delete all objects
reachable in this way. It is a power-tool that can cause maiming and injury. Safety glasses
and protective gear are recommended.

Note that only the base part of the objects can be erased. If the object has a part that is
derived from the facts that still exist, this part will not be erased.

4. eraseall is the take-no-prisoners version of erase. Just like deleteall, it first computes
query and for each binding of variables it deletes the corresponding instance of literal. For each
deleted object, it then finds all objects it references through its methods and deletes those.
This continues recursively until nothing reachable is left. This primitive always succeeds.

15.2 Backtrackable Updates

The effects of backtrackable updates are undone upon backtracking, i.e., if some post-condition
fails and the system backtracks, a previously inserted item will be removed from the database, and
a previously deleted item will be put back.

The syntax of backtrackable update primitives is similar to that of non-backtrackable ones and
the names are similar, too. The syntax for backtrackable insertion is:

btinsop{literals [| formula]}

while the syntax of a backtrackable deletion is:

btdelop{literals [| query]}

15 UPDATES 51

where btinsop stands for either btinsert or btinsertall, and btdelop stands for either of
the following four deletion operations: btdelete, btdeleteall, bterase, and bteraseall. The
meanings of literals and query is the same as in Section 15.1.

btinsert, btinsertall, btdelete, btdeleteall, bterase, and bteraseall work similarly to
insert, delete, deleteall, erase, and eraseall, respectively, except that the new operations
are backtrackable. Refer to Section 15.1 for details of these operations.

To illustrate the difference between backtrackable and non-backtrackable updates, consider the
following execution trace immediately after the FLORA-2 system starts:

flora2 ?- insert{p(a)}, fail.

No.

flora2 ?- p(a).

Yes.

flora2 ?- btinsert{q(a)}, fail.

No.

flora2 ?- q(a).

No.

In the above example, when the first fail executes, the system backtracks to insert{p(a)} and
does nothing. Thus the insertion of p(a) persists and the following query p(a) returns with Yes.
However, when the second fail executes, the system backtracks to btinsert{q(a)} and removes
q(a) that was previously inserted into the database. Thus the next query q(a) returns with No.

Keep in mind that some things that Prolog programmers routinely do with assert and retract
goes against the grain of the use of backtrackable updates. In particular, fail-loops are not going
to work (will leave the database unchanged) for obvious reasons. The while and until loops should
should be used in such situations.

Unimplemented: In the current release, arithmetic expressions in the query part of an update
must have their variables be bound by the subgoals that precede the update primitive, except that
the literal part does not currently bind. For instance,

?- delete{X[salary->Y] | Y<20000}.

is going to cause a run-time error. This limitation will be removed in a future release.

15 UPDATES 52

15.3 Updates and Tabling

Updating tabled predicates or predicates on which tabled predicates depend. We have
earlier remarked in Section 14.2 that tabling and database updates do not mix well. One problem
is that the results from previous queries are stored in Prolog tables, and database updates do not
modify Prolog tables. Thus, a user might get the following counterintuitive result:

flora2 ?- insert{o[m->v]}.

Yes.

flora2 ?- o[m->v].

Yes.

flora2 ?- delete{o[m->v]}, o[m->v].

Yes.

The last positive answer is a consequence of the fact that Prolog tables remember that the query
o[m->v] is true. So, when the same query is asked after delete, a “stale” answer is returned from
the tables. Similarly, tabling might interact poorly with insert:

flora2 ?- o[m->v].

No.

flora2 ?- insert{o[m->v]}, o[m->v].

No.

The reason for this result is, again, that Prolog tables remember that o[m->v] is false. However,
this result becomes stale after the insertion.

In a future release, FLORA-2 will provide a workaround for these problems (and it is even
possible that a future release of XSB will start doing the right thing in these situations). For now,
the only remedy is to use a call to abolish all tables, which will clear all tables. However, at
present, the only safe way to do this is by executing abolish all tables as a separate query.

One other temporal solution could be to design your program in such a way that tabled predi-
cates and F-molecules will not depend on the facts that are dynamically inserted or deleted.

Tabled predicates that depend on update operations. A related issue is that a tabled
predicate (or an F-logic molecule) might occur in the head of a rule that has an update operation
in its body, or it may be transitively dependent on such an update. Note that this is different from

16 CONTROL FLOW STATEMENTS 53

the previous issue, where tabled predicates did not necessarily depend on update operations but
rather on other predicates that were modified by these update operations.

In this case, the update operation will be executed the first time the tabled predicate is eval-
uated. Subsequent calls will return the predicate truth value from the tables, without invoking
the predicate definition. Moreover, if the update statement is non-logical (i.e., non-backtrackable),
then it is hard to predict how many times it will be executed (due to backtracking) before it will
start being ignored due to tabling.

If FLORA-2 compiler detects that a tabled literal depends on an update statement, a warning
is issued, because such a dependency is most likely a mistake. This warning is issued also for
procedural methods (i.e., Boolean methods of the form #foo(...)) when a tabled literal depends
on them.

There are situations, however, when dependency on an update makes perfect sense. For instance,
we might be computing a histogram of some function by computing its values at every point and
then adding it to the histogram. When a value, f(a), is computed first, the histogram is updated.
However, subsequent calls to f(a) (which might be made during the computation of other values
for f) should not update the histogram. In this case it makes sense to make f/1 into a tabled
predicate, whose definition will include an update operator. At present, the compiler will issue
a warning even in such a benign case. A future release will provide means to exempt certain
predicates and methods from such dependency checks.

15.4 Updates and Meta-programming

The update operators can take variables in place of literals to be inserted and queries. For instance,

flora2 ?- X ∼ a[b->c], insert{X}.

One use for this facility is when one module, foo, provides methods that allow other modules to
perform update operations on objects in foo. For instance, foo can have a rule

update(X,Y) :- delete{X}, insert{Y}.

Other modules can then issue queries like

flora2 ?- john[salary->X]@foo, Y is X+1000,
update(john[salary->X],john[salary->Y]).

16 Control Flow Statements

FLORA-2 supports a number of control statements that are commonly used in procedural lan-
guages. These include if - then - else and a number of looping constructs.

16 CONTROL FLOW STATEMENTS 54

if-then-else. This is the usual conditional control flow construct supported by most programming
languages. For instance,

?- if (foo(a),foo2(b)) then (abc(X),cde(Y)) else (qpr(X),rts(Y)).

Here the system first evaluates foo(a),foo2(b) and, if true, evaluates abc(X),cde(Y). Otherwise,
it evaluates qpr(X),rts(Y). Note that if, then, and else bind stronger than the conjunction “,”,
the disjunction “;”, etc. This is why the parentheses are needed in the above example.

The abbreviated if-then construct is also supported. However, it should be mentioned that
FLORA-2 gives a different semantics to if-then than Prolog does. In Prolog,

..., (Cond -> Action), Statement, ...

fails if Cond fails and Statement is not executed. If the programmer wants such a conditional
succeed even if Cond fails, then (Cond->Action; true) must be used. Our experience shows,
however, that it is the latter form that is used in most cases in Prolog programming, so in FLORA-2
the conditional

..., if Cond then Action, Statement, ...

succeeds even if Cond fails and Statement is executed next. To fail when Cond fails, one should
explicitly use else: if Cond then Action else fail. More precisely:

• if Cond then Action fails if and only if Cond succeeds but Action fails.

• if Cond then Action else Alternative succeeds if and only if Cond and Action both
succeed or Cond fails while Alternative succeeds.

Note that the if-statement is friendly to backtrackable updates in the sense that backtrackable
updates executed as part of an if-statement would be undone on backtracking, unless the changes
done by such updates are explicitly committed using the commit method of the system module
flora(db) (see Section 22.3).

unless-do. This construct is an abbreviation of if Cond then true else Action. If Cond is
true, it succeeds without executing the action. Otherwise, it executes Action and succeeds or fails
depending on whether Action succeeds or fails.

while-do and do-until. These loops are similar to those in C, Java, and the like. In while
Condition do Action, Condition is evaluated before each iteration. If it is true, Action is exe-
cuted. This statement succeeds even if Condition fails at the very beginning. The only case when
this loop fails is when Condition succeeds, but Action fails (for all possible instantiations).

The loop do Action until Condition is similar, except that Condition is evaluated after
each iteration. Thus, Action is guaranteed to execute at least once.

16 CONTROL FLOW STATEMENTS 55

These loops work by backtracking through Condition and terminate when all ways to satisfy
it have been exhausted (or when Action fails). The loop condition should not be modified inside
the loop body. If it is modified (e.g., new facts are inserted in a predicate that Condition uses),
XSB does not guarantee that the changes will be seen during backtracking and thus the result of
such a loop is indeterminate. If you need to modify Condition, use the statements while-loop
and loop-until described below.

The above loop statements have special semantics for backtrackable updates. Namely, changes
done by these types of updates are committed at the end of each iteration. Thus, if Condition fails,
the changes done by backtrackable updates that occur in Cond are undone. Likewise, if Action
fails, backtracking occurs and the corresponding updates are undone. However, changes made by
backtrackable update statements during the previous iteration remain committed. If the current
iteration finishes then its changes will also remain committed regardless of what happens during
the next iteration.

while-loop and loop-until. This pair of loop statements is similar to while-do and do-until,
except that backtrackable updates are not committed after each iteration. Thus, failure of a
statement following such a loop can cause all changes made by the execution of the loop to be
undone. In addition, while-loop and loop-until do not work through backtracking. Instead,
they execute as long as Condition stays true. Therefore, the intended use of these loop statements
is that Action in the loop body must modify Condition and, eventually, make it false (for instance,
by deleting objects or tuples from some predicates mentioned in Condition).

As in the case of the previous two loops, while-loop and loop-until succeed even if Condition
fails right from the outset. The only case when these loops fail is when Action fails — see Sec-
tion 16.1 for ways to avoid this (i.e., to continue executing the loop even when Action fails) and
the possible pitfalls.

The statements while-loop and loop-until are more expensive (both time- and space-wise)
than while-do and do-until. Therefore, they should be used only when full backtrackability of
updates is required. In particular, such loops are rarely used with non-backtrackable updates.

16.1 Some Subtleties of the Semantics of the Loop Statements

Observe that while-loop and loop-until assume that the condition in the loop is being updated
inside the loop body. Therefore, the condition must not contain tabled predicates. If such predicates
are involved in the loop condition, the loop is likely to execute infinitely many times.

Also, keep in mind that in any of the four loop statements, if Action fails before Condition
does, the loops terminate and fail. Therefore, if the intention is that the loop should continue even
if Action fails, use the

(Action ; true)

idiom in the loop body. In case of while-do and do-until, continuing execution of the loop is not a
problem, because these loops work by backtracking through Condition and the loop will terminate

17 NEGATION 56

when there is no more ways to backtrack. However, in case of while-loop and loop-until, there
is a potential pitfall. The problem is that these loops will continue as long as there is a way to
satisfy Condition. If condition stays true, the loop continues forever. Therefore, the way to use
these loops is to make sure that Condition is modified by Action. If Action has non-backtrackable
updates, the user must ensure that if Action fails then Condition is modified appropriately anyway
(for otherwise the loop will never end). If Action is fully backtrackable and it fails, then using the
(Action ; true) idiom in the loop body will definitely make the loop infinite, so the use of this
idiom in the body of while-loop and loop-until is dangerous if there is a possibility that Action
will fail, and it is useless if the action is expected to always succeed.

17 Negation

FLORA-2 supports two kinds of negation: the usual Prolog’s negation as failure [6] and negation
based on well-founded semantics [10, 11]. Both types of negation are compiled into clauses that
invoke the corresponding operators in Prolog.

Negation as failure is specified using the operator \+. Negation based on well-founded semantics
is specified using the operator tnot. The well-founded negation, tnot, is applied to predicates that
are tabled or to F-molecules that do not contain procedural methods (which are the only methods
that are not tabled).

For non-tabled predicates and procedural methods, \+ is usually recommended (we assume
that the user is familiar with the use of negation as failure in Prolog programs). It is also possible
to apply tnot to these types of queries. The effect is that the system will first generate a new
tabled predicate to hold the results of the query and then apply tnot to this new predicate. This
may lead to incorrect results, if the negated formula is defined in terms of an update primitive (see
Section 15 for a discussion of this issue).

For more information on the implementation of the negation operators in XSB we refer the
reader to the XSB manual.

Both \+ and tnot can be used as operators inside and outside FLORA-2 molecules. For
instance,

?- tnot p(a).
?- \+ p(a).
?- tnot X[foo->bar, bar->>foo].
?- X[tnot foo->bar, bar->>foo, \+ #p(Y)].

are all legal. Note that \+ applies only to non-tables constructs, such as non-tabled FLORA-2
predicates and procedural methods.

We should warn against one pitfall however. Sometimes it is necessary to apply negation to
several separate literals and write something like

?- \+ (p(a),q(X)).
?- tnot(p(a),q(X)).

18 CONSTRAINT SOLVING 57

?- tnot(X[foo->bar], X[bar->>foo]).

This is incorrect however, since in this context FLORA-2 (and Prolog as well) will interpret tnot
and \+ as predicates with two arguments, which are undefined. The correct syntax is:

?- \+ ((p(a),q(X))).
?- tnot((p(a),q(X))).
?- tnot((X[foo->bar], X[bar->>foo])).

i.e., an additional pair of parentheses is needed to indicate that the sequence of literals form a
single argument.

18 Constraint Solving

FLORA-2 provides an interface to constraint solving capabilities of the underlying Prolog engine.
Currently XSB supports linear constraint solving over the domain of real numbers (CLPR). How-
ever, we must warn that the XSB implementation of CLPR has many rough spots – do not say
that we did not warn! To pass a constraint to a constraint solver in the body of a FLORA-2 rule
(or query), simply include it inside curly braces.

Here is a 2-minute introduction to CLPR. Try the following program:

?- insert{p(1.0),p(2.0),p(3.0)}.
?- X>0, X<5, p(X).

Intuitively, one would expect 2.0 and 3.0 as answers. However, if you actually try to run this
program, you will be disappointed — an error message will be reported:

++Error[XSB]: [Runtime/P] Type Error: Uninstantiated Arithmetic Expression
Aborting...

This happens because ordinarily Prolog views >/2 and </2 as predicates with infinite number of
facts. Since there are infinite number of values for X that make X > 0 true, it reasons, the query
does not make sense.

Constraint logic programming takes a different view: it considers X>0, X<5 to be a constraint on
the set of solutions of the query p(X). This approach allows Prolog to return meaningful solutions
to the above query. However, the user must explicitly tell the system which view to take — the
“dumb” view that treats arithmetic built-ins are infinite predicates or a “smart” view, which treats
them as constraints. The smart view is indicated by enclosing constraints in curly braces. Thus,
the above program becomes:

?- [clpr]. % must be loaded prior to the use of constraint solver
?- insert{p(1.0),p(2.0),p(3.0)}.
?- {X>0, X<5}, p(X).

19 DEBUGGING USER PROGRAMS 58

X = 2.000000e+00

X = 3.000000e+00

2 solution(s) in 0.0000 seconds

Note that the package clpr must be loaded in advance.

It should be kept in mind that the constraint solver is very picky about the type of values it is
willing to work with. It insists on floats and will refuse to convert integers to floats. For instance,
if the insert statement were as follows:

?- insert{p(1),p(2),p(3)}.

then the user would have been rewarded with the following obscure message:

type error(h5356 = 3,2,a real number,3)

It is trying to tell the user that a floating number is expected and the integer 3 will not do.

19 Debugging User Programs

FLORA-2 comes with an interactive, Prolog-style debugger, which is described in Appendix B.
The compiler makes many useful checks, such as the occurrence of singleton variables, which is
often an error (see Section 4.1). More checks will be provided in the future.

In addition, it is possible to tell FLORA-2 to perform various run-time checks, as described
below.

19.1 Checking for Undefined Methods and Predicates

FLORA-2 has support for checking the invocation of undefined methods and predicates at run
time. This feature can be of great help because a trivial typo can cause a method/predicate call to
fail, sending the programmer on a wild goose chase after a hard-to-find bug. It should be noted,
however, that enabling these checks can slow the runtime by up to 2 times (typically about 50%
though), so we recommend this to be done during debugging only.

To enable runtime checks for undefined invocations, FLORA-2 provides two methods, which
can be called at any time during program execution (and thus enable and disable the checks
dynamically):

?- debug[#check_undefined(Flag)]@flora(sys).}
?- debug[#check_undefined(Flag,Module)]@flora(sys).

19 DEBUGGING USER PROGRAMS 59

The argument Flag can be on, off, or it can be a variable. The argument Module must be a
valid loaded flora module name or it can be a variable. When the flag argument is on, the first
method turns on the checks for undefinedness in all modules. The second method does it in a
specific module. When the flag argument is off, the above methods turn the undefinedness checks
off globally or in a specific module, respectively.

When either Flag or Module (or both) is a variable, the above methods do not change the way
undefined calls are treated. Instead, they query the state of the system. For instance, in

?- debug[#check_undefined(Flag)]@flora(sys).
?- debug[#check_undefined(Flag,foo)]@flora(sys).
?- debug[#check_undefined(on,Module)]@flora(sys).

the first query binds Flag to on or off depending on whether the checks are turned on or off
globally. The second query reports on the state of the undefinedness checks in FLORA-2 module
foo, while the third query tells in which modules these checks are turned on.

We should note one subtle interaction between these checks and meta-programming. Suppose
your program does not have any class membership facts and the undefinedness checks are turned
on. Then the meta-query

?- a:X.

would cause the following error:

++Error[FLORA]: Undefined class : in user module main

Likewise, if the program does not have any definitions for set-valued methods, the query ?-
X[Y->>Z]. would cause an error. This might be not what you expected because the program
in question might be exploring the schema or the available data, and the intention in the above
cases might be to fail rather than to get an error.

One way of circumventing this problem is to insert some weird facts into the database and
special-case them in the program. For instance, you could put the following facts into the program
to silence the above errors:

ads_asd_fsffdfd : ads_asd_fsffdfd.
ads_asd_fsffdfd[ads_asd_fsffdfd ->> ads_asd_fsffdfd].

You can then arrange the logic of your program so that anything that contains ads asd fsffdfd
is discarded.

Another way to circumvent the problem is to turn the undefinedness checks off temporarily. For
instance, suppose the query ?- X:a causes unintended undefinedness error in module foo. Then
we can avoid the problem by posing the following query instead:

?- debug[#check_undefined(off,foo)]@flora(sys),
X:a,
debug[#check_undefined(on,foo)]@flora(sys).

20 OPTIMIZATIONS 60

19.2 Type Checking

Although FLORA-2 allows specification of object types through signatures, type correctness is
not checked automatically. A future versions of FLORA-2 might support some form of run-time
type checking. Nevertheless, run-time type checking is possible even now, although you should not
expect any speed here and this should be done during debugging only.

Run-time type checking is possible because F-logic naturally supports powerful meta-programming,
although currently the programmer has to do some work to make type checking happen. For in-
stance, a programmer can write simple queries to check the types of methods that might look
suspicious. Here is one way to construct such a type-checking query:

scalar_type_incorrect(O,M,R) :- O[X->R], O:C, C[X=>D], tnot R:D.
?- scalar_type_incorrect(obj,meth,Result).

Here, we define what it means to violate type checking using the usual F-logic semantics. The
corresponding predicate can then be queried. A “no” answer means that the corresponding attribute
does not violate the typing rules.

In this way, one can easily construct special purpose type checkers. This feature is particularly
important when dealing with semistructured data. (Semistructured data has object-like structure
but normally does not need to conform to any type; or if it does, the type would normally cover only
certain portions of the object structure.) In this situation, one might want to limit type checking
only to certain methods and classes, because other parts of the data might not be expected to have
regular structure.

20 Optimizations

Left-to-right processing. The first rule in improving the performance of FLORA-2 programs
is to remember that query evaluation proceeds from left to right. Therefore it is generally advisable
to place subgoals with smaller answer sets as close to the left of the rule body as possible. And,
like in databases, Cartesian products should be avoided at all costs.

Nested molecules and path expressions. FLORA-2 compiler makes decisions about where to
place the various parts of complex F-logic molecules, and the programmer can affect this placement
by writing molecules in various ways. For instance,

?- ..., X[attr1 ->> Y, attr2->>Y], ...

is translated as

?- ..., X[attr1 ->> Y], X[attr2->>Y], ...

so the first attribute will be computed first. If the second attribute has a smaller answer set, the
attributes in the molecule should be written in the opposite order. The other consideration has to
do with literals that have nested molecules in them. For instance, the following query

21 SUMMARY OF COMPILER DIRECTIVES 61

?- ..., X[attr1->Y[attr2->Z]], f(P[attr3->Q]), ...

is translated as

?- ..., X[attr1->Y], Y[attr2->Z], f(P), P[attr3->Q], ...

i.e., the nested literals follow their hosts in the translation. Thus, writing terms in this way is
considered a hint to the compiler, which indicates that bindings are propagated from X[attr1->Y]
to Y[attr2->Z], etc. If, on the other hand, Y[attr2->Z] has only one solution then, perhaps,
writing Y[attr2->Z], X[attr1->Y] might produce a more efficient code. The same considerations
apply to f(P[attr3->Q]).

Similarly to nested molecules, the FLORA-2 compiler assumes that path expressions represent
a hint that bindings are propagated left-to-right. In other words, in X.Y.Z, X will be bound first.
Based on this, the oids, of the objects X.Y are computed, and then the attribute Z is applied. In
other words, the translation will be X[Y->Newvar1], Newvar1[Z->Newvar2].

Unfortunately, unlike in databases, statistical information is not available to the FLORA-2
compiler and only a few heuristics (such as variable binding analysis, which the compiler does not
perform) can be used to optimize such queries. If the order chosen by the compiler is not right, the
programmer can always unnest the literals and place them in the right order in the rule body.

Open calls vs. bound calls. In Prolog it is much more efficient (space- and time-wise) to make
one unbound call than multiple bound ones. For instance, suppose we have a class, cl, that has
hundreds of members, and consider the following query:

?- X:cl[attr->Y].

Here, Prolog would first evaluate the open call X : cl and then for each answer x for X it will
evaluate x[attr->Y]. If the cost of computing x[attr->Y] is higher than the cost of x : cl and the
number of answers to X[attr->Y] is not significantly higher than the number of answers to X:cl,
then the following query might be evaluated much faster:

?- X[attr->Y], X:cl.

In this query, a single call X[attr->Y] is evaluated first and then x:cl is computed for each answer
for X. Since, as we remarked, the cost of this call can be much smaller than the combined cost of
multiple calls to x[attr->Y] for different x. If the number of bindings for X in X[attr->Y] that
are not members of class cl is small, the second query might take significantly less space and time.

21 Summary of Compiler Directives

Like Prolog compiler, FLORA-2 compiler can take compiler directives, which begin with :- in
contrast to ?- for queries. FLORA-2 requires that all directives appear at the top of the program
prior to the first appearance of a rule or a fact. The following is a list of all the supported compiler
directives:

21 SUMMARY OF COMPILER DIRECTIVES 62

• expunge functor/arity, ..., functor/arity
Expunges the listed first-order predicates in the current user module, i.e., deletes the contents
as well as the definition of the corresponding predicate. By the current module we mean the
user module into which the program that contains this particular expunge directive is loaded.

• expunge functor/arity, ..., functor/arity in module
Same as above, except the predicates are expunged in the specified module rather than in the
current user module.

• equality none|basic|flogic
Sets the equality maintenance level in the current user module. With none, equality is not
maintained, and the symbol :=: works like an ordinary predicate. With basic, the predicate
:=: is treated as the equality, but only the usual congruence axioms for equality are enforced.
With flogic, the usual congruence axioms are maintained plus the additional equality axiom
for single-valued methods in F-logic.

• equality none|basic|flogic in module
Same as above, except that equality maintenance is set for the specified user module.

• firstorder functor/arity, ..., functor/arity
Declare the listed predicates as first-order predicates (as opposed to HiLog predicates).

• firstorderall Makes all predicates into first-order predicates. (The default for predicates
is HiLog.)

• arguments functor(type, ..., type), where type is either oid or meta
Specifies the meta signature to the given predicate, which tells how the arguments of the

predicate are to be compiled. The oid type means that the oid of the corresponding argument
is computed and passed to the predicate as an argument; meta means that the argument is
treated as a syntactic object and its entire structure is preserved. For instance, if the argument
is a formula (an F-logic molecule, a conjunction or a disjunction of literals), then it is converted
to an object that preserves the entire structure of the formula. This type of compilation is
useful in meta-predicates, such as findall/3, which need to consider the truth value of some
of their arguments rather than their oid.

• index(PredicateSpec,IndexSpec)
Specifies how the given first-order predicate must be indexed. PredicateSpec is of the form
functor/arity. IndexSpec is either trie — meaning that trie indexing should be used — or
a number. In the last case, indexing is hash-based on the specified argument (which should
not exceed the arity, of course). Trie indexing is best if several arguments are instantiated,
beginning with the first. Hash indexing is better if the fist argument is uninstantiated, because
then you can specify another argument to index on.

Note that the index directive is not very useful for predicates that mostly contain facts,
because these are trie-indexed anyway (regardless of what you say). Thus, this instruction is
useful only for predicates with partially instantiated arguments that appear in the rule heads.

22 FLORA-2 SYSTEM MODULES 63

• op(precedence,type,operator)
Defines operator as a FLORA-2 operator with the given precedence and type. The type is
the same as in Prolog operators, i.e., fx, xf, xfy, etc.

• op(precedence,type,[operator, ..., operator])
Same as above, except that this directive defines a list of operators with the same precedence
and type.

• table functor/arity, ..., functor/arity Requests that the specified first order predicates
must be tabled.

Unimplemented: Currently, the table directive also requires an explicit firstorder di-
rective, but this restriction will be eliminated in the future.

22 FLORA-2 System Modules

FLORA-2 provides a number of useful libraries that other programs can use. These libraries are
statically preloaded into modules that are accessible through the special @flora(modname) syntax,
and they are called system modules. We describe the functionality of these modules below.

22.1 Pretty Printing

This library provides methods for pretty printing the information about an object or about all
objects in a given class. This information can be saved in a file or printed on the screen. This
library is preloaded in the system module pp and is accessible using the @flora(pp) syntax.

To pretty print information about an object, the following calls can be used. The first argument
is the user module whose object is to be pretty printed. (Recall that the same object can have
completely different sets of properties in different user modules, so the pretty printing methods
need to know which set of properties to use.)

• Class[#pp class(Module,Outfile)] — pretty print all objects in Class and put the result
in Outfile.

• Class[#pp class(Module)] — same, but the information is printed to the screen.

• Obj[#pp self(Module,Outfile)] — pretty print Obj, send the result to Outfile.

• Obj[#pp self(Module)] — same, but print to the screen.

• Class[#pp isa(Module,Outfile)] — Print the part of the isa hierarchy beneath Class.

• Class[#pp isa(Module)] — same, but print to the screen.

The following example illustrates the use of this library:

?- john[#pp self(@)]@flora(pp).

22 FLORA-2 SYSTEM MODULES 64

When this method is called, the token @ is replaced with the name of the module in which the call
occurs, so it known that it has to pretty print the object john in that module.

22.2 Input and Output

This library simplifies access to the most common Prolog I/O facilities. This library is preloaded
into the system module io and can be accessed using the @flora(io) syntax.

The purpose of the I/O library is not to replace the standard I/O predicates with FLORA-2
methods, but rather to relieve the user from the need to do explicit conversion of arguments between
the HiLog representation of terms used in FLORA-2 and the standard Prolog representation of the
underlying engine.12 However, for uniformity, the io library also provides certain methods that
do not suffer from the conversion problem.

The library contains two types of I/O operations: stream-based I/O and port-based. Stream-
based I/O is based on the standard Prolog I/O primitives. It uses symbols as file handles. Port-
based I/O is specific to XSB. Its file handles are internally represented as numbers. Although
stream-based I/O is often easier to use, there are many more port-based primitives that can ac-
complish various low-level I/O operations. This FLORA-2 library provides just a few common
ones. See the XSB manual, volume 2, for a complete list of these primitives.

The methods and predicates accessible through the io library are listed below. Note that some
operations are defined as procedural methods and others as predicates. This is because we use the
object-oriented representation only where it makes sense — we avoid introducing additional classes
and objects that require more typing just for the sake of keeping the syntax object-oriented.

Stream-based I/O.

• Filename[#see] — open Filename and make it into the current input stream.

• seeing(Stream) — binds Stream to the current input stream.

• seen — closes the current input stream.

• Filename[#tell] — opens Filename as the current output stream.

• telling(Stream) — binds Stream to the current output stream.

• told — closes the current output stream.

• write(Obj) — writes Obj to the current output stream.

• Stream[#write(Obj)] — writes Obj to the stream Stream.

• writeln(Obj), Stream[#writeln(Obj)] — same as above, except that the newline character
is output after Obj.

• nl — writes the newline character to the current output stream.
12 See Section 8 for a discussion of the problems associated with this representation mismatch.

22 FLORA-2 SYSTEM MODULES 65

• read(Result) — binds Result to the next term in the current input stream.

• Stream[#read(Result)] — same as above, but use Stream as the input stream.

Port-based I/O.

• Filename[#open(Mode,Port)] — opens Filename with mode Mode (which can be r, w, or
a) and binds Port to the file handle.

• Port[#close] — closes the file handle to which Port is bound.

• Port[#read(Result)] — bind Result to the next term in the previously open input Port.

• stdread(Result) — same, but use the standard input as the port.

• Port[#write(Result)] — write Result out to the previously open output Port.

• stdwrite(Result) — same, but use standard output as the port.

• fmt write(Format,Term) — C-style formatted output to the standard output. See the XSB
manual, volume 2, for the description of all the options.

• Port[#fmt write(Format,O)] — same, but use Port for the output.

• fmt write string(String,Format,Obj — same as above, but bind String to the result.
See the XSB manual for the details.

• fmt read(Format,Result,Status) — C-style formatted read from standard input. See the
XSB manual.

• Port[#fmt read(Format,Result,Status)] — same, but use Port for input.

• write canonical(Term) — write Term to standard output in canonic Prolog form.

• Port[#write canonical(Term)] — same, but use Port for output.

• read canonical(Term) — read standard input and bind Term to the next term in the input.
The term must be in canonical Prolog form, or else an error will result. This method is much
faster than the usual read operation, but it is not as versatile, as it assumes that input is in
canonical form.

• Port[#read canonical(Term)] — same, but use Port for input.

• readline(Type,String) — read the standard input and bind String to the next line. Type
is either atom or charlist. The former means that String is to be bound to a Prolog atom
and the latter binds it to a list of characters.

• Port[#readline(Type,String)] — same, but use Port for input.

22 FLORA-2 SYSTEM MODULES 66

22.3 Storage Control

FLORA-2 keeps the facts that are part of the program or those that are inserted by the program in
special data structures called storage tries. The system module db accessible through the module
reference @flora(db), provides primitives for controlling this storage.

• commit — commits all changes made by backtrackable updates. If this statement is executed
in the middle of an update transaction, changes made by backtrackable updates prior to this
will be committed and will not be undone even if a subsequent subgoal fails.

• commit(Module) — commits all changes made by backtrackable updates to facts in the user
module Module. Backtrackable updates to other modules are unaffected.

• purgedb(Module) — deletes all facts previously inserted into the storage associated with
module Module.

22.4 System Control

The system module sys provides primitives that affect the global behavior of the system. It is
accessible though the system module reference @flora(sys).

• libpath[#add(Path)] — adds Path to the library search path. This works similarly to the
PATH environment variable in that when the compiler or the loader are trying to locate a file
specified by its name only (without directory, etc.) then they examine the files stored in the
directories on the library search path.

• libpath[#remove(Path)] — removes Path from the library search path.

• libpath[#query(Path)] — queries the library search path. If Path is bound, checks if the
specified directory is on the library search path. Otherwise, binds (through backtracking)
Path to each directory on the library search path.

• tables[#abolish] — abolishes all tabled data in Prolog.

This module also provides the following amenities:

• abort(Message) — puts Message on standard error stream and terminates the current exe-
cution. Message can also be in the form (M1, M2, ..., Mn). In this case, all the component
strings are concatenated before printing them out.

• warning(Message) — prints a warning header, then message, Message, and continues. Out-
put goes to standard error stream. Message can be of the form (M1, M2, ..., Mn).

• message(Message) — Like warning/1, but does not print the warning header. Message can
be of the form (M1, M2, ..., Mn).

23 A NOTE ON PROGRAMMING STYLE 67

23 A Note on Programming Style

Programming in FLORA-2 is similar to programming in Prolog, but is more declarative. For one
thing, F-molecules are always tabled, so the programmer does not need to worry about tabling the
right predicates. Second, there is no need to worry that a predicate must be declared as dynamic
in order to be updatable. Third — and most important — the facts specified in the program are
considered to be part of the database. In particular, their order does not matter and duplicates
are eliminated automatically.

This has a far-reaching implication on the programming style. In Prolog, it is a common practice
to put the catch-all facts at the end of a program block in order to capture subgoals that do not
match the rest of the program clauses. For instance,

p(f(X)) :- ...
p(g(X)) :- ...
%% If all else fails, simply succeed.
p(_).

This will not work in FLORA-2 , because p() will be treated as a database fact, which is placed
in no particular order with respect to the program. If you want the desired effect, represent the
catch-all facts as rules:

p(f(X)) :- ...
p(g(X)) :- ...
%% If all else fails, simply succeed. Use the rule notation for p/1.
p(_) :- true.

24 Bugs in Prolog and FLORA-2 : How to Report

The FLORA-2 system includes a compiler and runtime libraries, but for execution it relies on
Prolog. Thus, some bugs that you might encounter are the fault of FLORA-2 , while others are
Prolog bugs. For instance, a memory violation that occurs during the execution is in all likelihood
an internal Prolog bug. (FLORA-2 is a stress test — all bugs come to the surface.)

An incorrect result during the execution can be equally blamed on Prolog or on FLORA-2 — it
requires a close look at the program. A compiler or a runtime error for a perfectly valid program
is probably a bug in the FLORA-2 system.

Bugs that are the fault of the underlying Prolog engine are particularly hard to fix, because
FLORA-2 programs are translated into mangled, unreadable to humans Prolog code. To make
things worse, this code might contain calls to FLORA-2 system libraries.

To simplify bug reporting, FLORA-2 provides a utility that makes the compiled Prolog program
more readable. The flDump/1 predicate can be used to strip the macros from the code, making it
much easier to understand. If you issue the following command

flora2 ?- flDump(foo).

24 BUGS IN PROLOG AND FLORA-2 : HOW TO REPORT 68

the program foo.flr will be compiled without the macros and dump the result in the file foo dump.P.
This file is pretty-printed to make it easier to read. Similarly,

flora2 ?- flDump(foo,bar)

will compile foo.flr for module bar and will dump the result to the file foo dump.P.

Unfortunately, this more readable version of the translated FLORA-2 program might still not
be executable on its own because it might contain calls to FLORA-2 libraries or other modules.
The set of guidelines, below, can help cope with these problems.

Reporting FLORA-2 -related Prolog bugs. If you find a Prolog bug triggered by a FLORA-2
program, here is a set of guidelines that can simplify the job of the XSB developers and increase
the chances that the bug will be fixed promptly:

1. Reduce the size of your FLORA-2 program as much as possible, while still being able to
reproduce the bug.

2. Eliminate all calls to the system modules that use the @flora(lib) syntax. (Prolog modules
that are accessible through the @prolog(modname) syntax are OK, but the more you can
eliminate the better.)

3. If the program has several user modules, try to put them into one file and use just one module.

4. Use flDump/1 to strip FLORA-2 macros from the output of the FLORA-2 compiler.

5. See if the resulting program runs under plain XSB system (without the FLORA-2 shell). If
it does not, it means that the program contains calls to FLORA-2 runtime libraries. Try to
eliminate such calls.

One common library call is used to collect all query answers in a list and then print them
out. You can get rid of this library call by finding the predicate fllibprogramans/2 in
the compiled .P program and removing it while preserving the subgoal (the first argument)
and renaming the variables (as indicated by the second argument). Make sure the resulting
program is still syntactically correct!

Other calls that are often no longer needed in the dumped code are those that load FLORA-2
runtime libraries (which we are trying to eliminate!). These calls have the form

?- flora_load_library(...).

If there are other calls to FLORA-2 runtime libraries, try to delete them, but make sure that
the bug is still reproducible.

6. If the program still does not run because of the hard-to-get-rid-of calls to FLORA-2 runtime
libraries, then see if it runs after you execute the command

?- bootstrap flora.

25 AUTHORS 69

in the Prolog shell. If the program runs after this (and reproduces the bug) — it is better
than nothing. If it does not, then something went wrong during the above process: start
anew.

7. Try to reduce the size of the resulting program as much as possible.

8. Tell the XSB developers how to reproduce the bug. Make sure you include all the steps
(including such gory details as whether it is necessary to call bootstrap flora/0).

Finally, remember to include the details of your OS and other relevant information. Some bugs
might be architecture-dependent.

Reporting FLORA-2 bugs. If you believe that the bug is in the FLORA-2 system rather than
in the underlying Prolog engine, the algorithm is much simpler:

1. Reduce the size of the program as much as possible by deleting unrelated program clauses
and squeezing a multi-module program into just one file.

2. Remove all the calls to system modules, unless such a call that is the essence of the bug.

3. Tell FLORA-2 developers how to reproduce the bug.

The current version contains the following known bugs, which are due to the fact that certain
features are yet to be implemented:

1. Certain programs might cause the following XSB error message:

++Error[XSB]: [Compiler] ’ !’ after table dependent symbol

This is due to certain limitations in the implementation of tabled predicates in the XSB
system. This problem will be eliminated in a future release of XSB. Meanwhile, as explained
in the Introduction, configuring XSB for SLG-WAM and local scheduling will avoid many of
such errors.

2. Error messages when FLORA-2 update predicates contain arithmetic expressions in the query
part. This problem will be fixed in the future.

3. Multiple types (which represent type intersection in F-logic) are not allowed in set-valued
signature expressions: a[m=>>c,d] and a[m*=>>c,d]. Use a[m=>>c],a[m=>>d] for now.

4. Inheritance of procedural methods is not supported: a[*#p(X)].

25 Authors

FLORA-2 was designed and implemented by Guizhen Yang. Some architectural ideas, such as the
use of trailer files to implement the F-logic semantics, trace back to the Flip compiler developed
by Bertram Ludäescher.

25 AUTHORS 70

Michael Kifer helped design FLORA-2 , implemented the debugger, and some other features.
Chang Zhao added a number of important enhancements, such as run-time undefinedness checks
and the checker for dependency among tabled predicates and updates.

A A BNF-STYLE GRAMMAR FOR FLORA-2 71

Appendices

A A BNF-style Grammar for FLORA-2

%% To avoid confusion between some language elements and meta-syntax
%% (e.g., parentheses and brackets are part of BNF and also of the language
%% being described), we enclose some symbols in single quotes to make it
%% clear that they are part of the language syntax, not of the grammar.
%% However, in FLORA these symbols can be used with or without the quotes.

Rule := Head (’:-’ Body)? .

Head := HeadLiteral
Head := Head ’,’ Head

HeadLiteral := BinaryRelationship | ObjectSpecification | Term

Body := BodyLiteral
Body := BodyConjunt | BodyDisjunct | BodyNegative | ControlFlowStatement
Body := Body ’@’ ModuleName
Body := BodyConstraint

ModuleName := ’prolog()’ | ’prolog(’ atom ’)’ | atom | ’flora(’ atom ’) ’

BodyConjuct := Body ’,’ Body
BodyDisjunct := Body ’;’ Body
BodyNegative := (’tnot’ | ’\+’) Body
BodyConstraint := ’{’ CLPR-style constraint ’}’

ControlFlowStatement := IfThenElse | UnlessDo
| WhileDo | WhileLoop

| DoUntil | LoopUntil
IfThenElse := if Body then Body (else Body)?
UnlessDo := unless Body do Body
WhileDo := while Body do Body
WhileLoop := while Body loop Body
DoUntil := do Body until Body
LoopUntil := loop Body until Body

BodyLiteral := BinaryRelationship | ObjectSpecification | Term
| DBUpdate | Builtin | Loading

Builtin := ArithmeticComparison, Unification, MetaUnification, etc.

A A BNF-STYLE GRAMMAR FOR FLORA-2 72

Loading := ’[’ LoadingCommand (’,’ LoadingCommand)* ’]’
LoadingCommand := filename (’>>’ atom)

BinaryRelationship := PathExpression ’:’ PathExpression
BinaryRelationship := PathExpression ’::’ PathExpression

ObjectSpecification := PathExpression ’[’ SpecBody ’]’

SpecBody := ’tnot’ MethodSpecification
SpecBody := SpecBody ’,’ SpecBody
SpecBody := SpecBody ’;’ SpecBody

MethodSpecification := (’#’ | ’*’)? Term
MethodSpecification := PathExpression ValueReferenceConnective PathExpression

ValueReferenceConnective := ’->’ | ’->>’ | ’*->’ | ’*->>’ | ’=>’ | ’=>>’

PathExpression := atom | number | string | variable | specialOidToken
PathExpression := Term | List | ReifiedFormula
PathExpression := PathExpression PathExpressionConnective PathExpression
PathExpression := BinaryRelationship
PathExpression := ObjectSpecification
PathExpression := Aggregate

PathExpressionConnective := ’.’ | ’..’ | ’!’ | ’!!’

specialOidToken := anonymousOid | numberedOid | thisModuleName

ReifiedFormula := ${Body}

%% No quotes are allowed in the following special tokens!
%% No space alowed between _# and integer
%% anonymousOid & numberedOid can occur only in rule head
anonymousOid := _#
numberedOid := _#integer
thisModuleName := _@

List := ’[’ PathExpression (’,’ PathExpression)* (’|’ PathExpression)? ’]’

Term := Functor ’(’ Arguments ’)’

Functor := PathExpression

Arguments := PathExpression (’,’ PathExpression)*

B THE FLORA-2 DEBUGGER 73

Aggregate := AggregateOperator ’{’ TargetVariable (GroupingVariables)? ’|’ Body ’}’
AggregateOperator := ’max’ | ’min’ | ’avg’ | ’sum’ | ’collectset’ | ’collectbag’
%% Note: only one TargetVariable is permitted.
%% It must be a variable, not a term. If you need to aggregate over terms,
%% as for example, in collectset/collectbag, use the following idiom:
%% S = collectset{ V | ... , V=Term }
TargetVariable := variable
GroupingVariables := ’[’ variable, (’,’ variable)* ’]’

DBUpdate := DBOp ’{’ UpdateList (’|’ Body)? ’}’
DBOp := insert | insertall | delete | deleteall | erase | eraseall
UpdateList := HeadLiteral (’@’ atom)?
UpdateList := UpdateList ’,’ UpdateList

B The FLORA-2 Debugger

FLORA-2 debugger is implemented as a presentation layer on top of the Prolog debugger, so
familiarity with the latter is highly recommended (XSB Manual, Part I). Here we sketch only a few
basics.

The debugger has two facilities: tracing and spying. Tracing allows the user to watch the
program being executed step by step, and spying allows one to tell FLORA-2 that it must pose
when execution reaches certain predicates or object methods. The user can trace the execution
from then on. At present, only the tracing facility has been implemented.

Tracing. To start tracing, you must issue the command flTrace at the FLORA-2 prompt. It
is also possible to put the subgoal flTrace in the middle of the program. In tat case, tracing will
start after this subgoal gets executed. This is useful when you know where exactly you want to
start tracing the program. To stop tracing, type flNoTrace.

During tracing, the user is normally prompted at the four ports of subgoal execution: Call
(when a subgoal is first called), Exit (when the call exits), Redo (when the subgoal is tried with
a different binding on backtracking), and Fail (when a subgoal fails). At each of the prompts,
the user can issue a number of commands. The most common ones are listed below. See the XSB
manual for more.

• carriage return (creep): to go to the next step

• s (skip): execute this subgoal non-interactively; prompt again when the call exits (or fails)

• S (verbose skip): like s, but also show the trace generated by this execution

• l (leap): stop tracing and execute the remainder of the program

B THE FLORA-2 DEBUGGER 74

The behavior of the debugger is controlled by the predicate debug ctl. For instance, executing
debug ctl(profile, on) at the FLORA-2 prompt tells XSB to measure the CPU time it takes
to execute each call. This is useful for tuning your program for performance. Other useful controls
are: debug ctl(prompt, off), which causes the trace to be generated without user intervention;
and debug ctl(redirect, foobar), which redirects debugger output to the file named foobar.
The latter feature is usually useful only in conjunction with the aforesaid prompt-off mode. See
the XSB manual for additional information on debugger control.

FLORA-2 provides a convenient shortcut that capture some of the most common uses of the
aforesaid debug ctl interface. Executing

?- flTrace(filename).

will switch FLORA-2 to non-interactive trace mode and the entire trace will be dumped to file
filename. Note that you have to execute flNoTrace or exit Prolog in order for the entire file to
be flushed on disk.

Low-level tracing. FLORA-2 debugger also supports low-level tracing via the shell command
flTraceLow. With normal tracing, the debugger converts low-level subgoals to subgoals that are
found in the user program and are thus meaningful to the programmer. With low-level tracing, the
debugger displays the actual Prolog subgoals (of the compiled .P program) that are being executed.
This facility is useful for debugging FLORA-2 runtime libraries.

As with flTrace, FLORA-2 provides a convenient shortcut that allows the entire execution
trace to be dumped into a file:

?- flTraceLow(filename).

Note: FLORA-2 turns on various Prolog optimizations. Some (like specialization and unifi-
cation factoring) can cause certain subgoals to be omitted from the trace or the trace might show
subgoals that are not in the original program. In the future, it will be possible to turn these
optimizations off for debugging.

C EMACS SUPPORT 75

C Emacs Support

Editing and debugging FLORA-2 programs can be greatly simplified with the help of flora-mode, a
special Emacs editing mode designed specifically for FLORA-2 programs. Flora-mode provides sup-
port for syntactic highlighting, automatic indentation, and the ability to run FLORA-2 programs
right out of the Emacs buffer.

C.1 Installation

To install flora-mode, you must perform the following steps. Put the file

XSB/packages/flora2/emacs/flora.el

found in your XSB distribution on the load path of Emacs or XEmacs (whichever you are using).
The best way to work with Emacs is to make a separate directory for Emacs libraries (if you do
not have one), and put flora.el there. Such a directory can be added to emacs search path by
putting the following command in the file ~/.emacs (or ~/.xemacs, if you are running one of the
newer versions of XEmacs):

(setq load-path (cons "your-directory" load-path))

It is also a good idea to compile emacs libraries. To compile flora.el, use this:

emacs -batch -f batch-byte-compile flora.el

This will produce the file flora.elc — a compiled byte code. If you are using XEmacs, use
xemacs instead of emacs above — the two emacsen use incompatible byte code, and you cannot
use flora.elc compiled under one system for editing files under another.

Finally, you must tell X/Emacs how to recognize FLORA-2 program files, so Emacs will be
able to invoke the Flora major mode automatically when you are editing such files:

(setq auto-mode-alist (cons ’("\\.flr$" . flora-mode) auto-mode-alist))
(autoload ’flora-mode "flora" "Major mode for editing Flora programs." t)

To enable syntactic highlighting of Emacs buffers (not just for FLORA-2 programs), you can
do the following:

• In Emacs: select Help.Options.Global Font Lock on the menubar. To enable highlingting
permanently, put

(global-font-lock-mode t)

in ~/.emacs.

• In XEmacs: select Options.Syntax Highlighting.Automatic in the menubar. To enable
this permanently, put

C EMACS SUPPORT 76

(add-hook ’find-file-hooks ’turn-on-font-lock)

in ~/.emacs or ~/.xemacs (whichever is used by your XEmacs).

C.2 Functionality

Menubar menu. Once FLORA-2 editing mode is installed, it provides a number of functions.
First, whenever you edit a FLORA-2 program, you will see the “Flora” menu in the menubar. This
menu provides commands for controlling the Flora process (i.e., the FLORA-2 shell). You can start
and stop this process, type queries to it, and you can tell it to consult regions of the buffer you are
editing, the entire buffer, or some other file.

Because Emacs provides automatic file completion and allows you to edit what you typed, per-
forming these functions right out of the buffer takes much less effort than typing the corresponding
commands to the FLORA-2 shell.

Keyboard functions. In addition to the menu, flora-mode lets you execute most of the menu
commands using the keyboard. Once you get the hang of it, keyboard commands are much faster
to invoke:

Load file: Ctl-c Ctl-f
Load file dynamically: Ctl-u Ctl-c Ctl-f
Load buffer: Ctl-c Ctl-b
Load buffer dynamically: Ctl-u Ctl-c Ctl-b
Load region: Ctl-c Ctl-r
Load region dynamically: Ctl-u Ctl-c Ctl-r

When you invoke any of the above commands, a FLORA-2 process is started, unless it is already
running. However, if you want to invoke this process explicitly, type

ESC x run-flora

You can control the FLORA-2 process using the following commands:

Interrupt Flora Process: Ctl-c Ctl-c
Quit Flora Process: Ctl-c Ctl-d
Restart Flora Process: Ctl-c Ctl-s

Interrupting FLORA-2 is equivalent to typing Ctl-c at the FLORA-2 prompt. Quitting the process
stops the Prolog engine, and restarting the process shuts down the old Prolog process and starts a
new one with FLORA-2 shell running.

Indentation. Flora editing mode understands some aspects of the FLORA-2 syntax, which en-
ables it to provide correct indentation of program lines (in many cases). In the future, flora-mode
will know more about the syntax, which will let it provide even better support for indentation.

C EMACS SUPPORT 77

The most common use of FLORA-2 indentation facility is by typing the TAB-key. If flora-mode
manages to understand where the cursor is, it will indent the line accordingly. Another way is to
put the following in your emacs startup file (~/.emacs or ~/.xemacs):

(setq flora-electric t)

In this case, whenever you type the return key, the next line will be indented automatically.

D INSIDE FLORA-2 78

D Inside FLORA-2

D.1 How FLORA-2 Works

As an F-logic-to-Prolog compiler, FLORA-2 first parses its source file, compiles it into Prolog
syntax and then outputs the resulting code. For instance the command

flora ?- flLoad(myprog).

compiles the FLORA-2 program myprog.flr and generate the following files: myprog.P, myprog main.xwam,
and myprog.fdb (if myprog.flr contains F-logic facts). By default, flLoad(myprog) loads the pro-
gram into the default user module named main. If myprog.flr contains F-logic facts, all these facts
will be compiled separately into the file myprog.fdb that is dynamically loaded at runtime. Next,
the file myprog.P is generated — take a look at “myprog main.P” to see what has become of your
FLORA-2 program! — and passed to the Prolog compiler, yielding Prolog byte code myprog.xwam,
which is then renamed to myprog main.xwam. This file is then loaded and executed. If myprog.flr
contains queries, they are immediately executed by Prolog (provided there are no errors).

In the module system of FLORA-2 , the same program can be loaded into any user module. The
same program can even be loaded into two different modules at the same time, in which case there
will be two distinct copies of the same program running at the same time. For each user module,
a different byte code is generated (this is why myprog.xwam was renamed into an object file that
contains the module name as part of the file name).

The main purpose of the FLORA-2 shell is to allow the evaluation of ad-hoc F-logic queries.
For example, after consulting and loading the the file default.flr from the demo directory by
launching the command flora2 ?- flDemo(default)., pose the following query and see what
happens.

flora2 ?- X..kids[% Whose kids
self -> K, % ... (list them by name)
hobbies ->> % ... have hobbies
H:dangerous_hobby % ... that are dangerous?

].

FLORA-2 compilation. The basic idea behind the implementation of F-logic by translating it
into predicate calculus is described in [9]. It consists of two parts: translation of F-molecules into
various kinds of Prolog predicates, and addition of appropriate “closure rules” that implement the
object-oriented semantics of the logic.

Consider, for instance, the following complex F-molecule, which represents some facts about
the object mary:

mary:employee[age->29, kids->>{tim,leo}, salary(1998)->100000].

As described in [9], any complex F-molecule can be decomposed into a conjunction of simpler
F-logic atomic formulas. These latter atoms can be directly represented using Prolog syntax. For

D INSIDE FLORA-2 79

different kinds of F-logic atoms we use different Prolog predicates. For instance, the result of
translating the above F-molecule might be:

isa(mary,employee). % mary:employee.
fd(mary,age,29). % mary[age->29].
mvd(mary,kids,tim). % mary[kids->>{tim}].
mvd(mary,kids,leo). % mary[kids->>{leo}].
fd(mary,salary(1998),100000). % mary[salary(1998)->a_lot].

The fd predicate is used to encode scalar attributes and methods and mvd is used for set
methods. The predicates isa ans sub encode the IS-A and subclass relationships, respectively. Of
course, FLORA-2 has much more: signatures, inheritable and non-inheritable methods, directives,
and all kinds of auxiliary predicates needed to improve efficiency. The following diagram shows the
main predicates involved and their dependency:

fd <- inferred_fd
fd <- tnot defined_inferred_fd <- inferred_fd <- base_fd

inferred_fd <- derived_fd <- fd
fd <- tnot conflict_obj_ifd <- ifddef <- fd

ifddef <- ifd
fd <- immediate_isa
fd <- ifd
ifd <- inferred_ifd
ifd <- immediate_sub
ifd <- tnot defined_inferred_ifd
ifd <- tnot conflict_ifd

Here we listed only the predicates that are used to model scalar inheritable (ifd) and non-inheritable
(fd) methods. A similar diagram exists for set methods (which uses imvd and mvd), and another
one exist for method signatures. There is additional machinery for IS-A and subclass relationships,
and for equality maintenance.

The closure axioms tie all these predicates together to implement the semantics of F-logic. In
particular, they take care of the following features:

• Computing the transitive closure of “ :: ” (the subclass relationship). A runtime check warns
about cycles in the subclass hierarchy.

• Computing the closure of “ : ” with respect to “ :: ”, i.e., if X :C,C ::D then X :D.

• Performing monotonic and non-monotonic inheritance.

• Making sure that scalar methods are, indeed, scalar.

Templates for the files that implement these axioms reside in the subdirectory closure/ and
have the suffix .fli. These files are called trailers because they are typically included at the

D INSIDE FLORA-2 80

end of the compiled program. There are three kinds of trailers: the no-equality trailer (the file
closure/flrtrailer.fli), which maintains no equality, the basic trailer (closure/flreqltrailer.fli),
which maintains only the standard equality axioms, and the trailer (closure/flrscalareql.fli),
which, in addition, maintains the F-logic axioms for scalar methods.

When a FLORA-2 program is compiled, the compiler includes the trailers into the .P file.
However, there also is a need to be able to load the trailers dynamically. First, this is needed in the
system shell, because the shell is not represented by any particular user program and so there is no
place where we can include the trailer. Second, the user might enter the executable instruction

?- equality {basic|flogic|none}

at the shell prompt and user programs can contain these instructions as part of their code. Pre-
compiled, loadable trailers for the default module main are stored in the trailer/ subdirectory.
This is done at the system build time. When an equality maintenance instruction is executed for
a particular module, the trailer for that module must be compiled dynamically. (The need for
this compilation will become clear after reading about the implementation of the module system.)
These trailers are stored in the user home directory in the subdirectory .xsb/flora/.

The above is a much simplified picture of the inner-workings of FLORA-2 . The actual transla-
tion into Prolog and the form of the closure rules is very complex. Some of this complexity exists
to ensure good performance. Other complications come from the need to provide a module system
and integrate it with the underlying Prolog engine. The module system serves two purposes. First,
it promotes modular design for FLORA-2 programs, making it possible to split the code into sep-
arate files and import objects defined in other modules. Second, it allows FLORA-2 programs to
communicate with Prolog by using the predicates defined in Prolog programs and letting Prolog
programs use FLORA-2 objects. Some of these implementation issues are described in [12].

The module system. The module system is implemented by providing separate namespaces for
the various predicates used to encode F-logic formulas. First, all predicates have a weird prefix to
make clashes with other Prolog programs unlikely. The prefix is defined in includes/header.flh
and currently is $ $ flora. The user, of course, does not need to worry about it, unless she runs
FLORA-2 programs in a very unfriendly Prolog environment in which other programs also use this
prefix. In this case, the prefix can be made even harder to match.13

Apart from the general prefix, each predicate name’s prefix contains the module name where
this predicate is defined. Since the same F-logic program can be loaded into different modules,
the FLORA-2 compiler does not actually know the real names of the predicates it is producing.
Instead, it dumps code where each predicate is wrapped with a preprocessor macro. For instance,
the predicate fd would be dumped as

FLORA THIS WORKSPACE(FLORA USER WORKSPACE,fd)
13 It is necessary to ensure that the resulting predicate names are symbol strings acceptable to the Prolog compiler.

Look at the macros FLORA THIS WORKSPACE and FLORA THIS FDB STORAGE in includes/flrheader.flh to see what is
involved.

D INSIDE FLORA-2 81

When the program, myprog.P, compiled by the FLORA-2 compiler needs to be loaded into a user
module, say main, the preprocessor, gpp, is called with the macro FLORA USER WORKSPACE set to
main. Gpp replaces all macros with the actual values, includes the necessary files, and then pipes
the result to the Prolog compiler. The latter produces the object myprog.xwam file where all the
predicate names are wrapped with the user module name, as described above. This object file is
renamed to myprog main.xwam. If later we need to compile myprog.P for another user module,
foo, gpp is called again, but this time it sets FLORA USER WORKSPACE to foo. When Prolog finally
compiles the program into the object file, the file is renames to myprog foo.xwam.

It is important to keep in mind that only the predicate names are wrapped with the FLORA PREFIX
macro and a module name. Predicate arguments are not wrapped and thus, the space of object
Ids is shared among modules. However, this is not a problem and, actually, is very convenient: we
can easily refer to objects defined in other modules and yet the same object can have completely
different sets of properties in each separate module. This does not preclude the possibility of en-
capsulating objects, because only the methods need to be encapsulated — oids do not carry any
meaning by themselves.

To provide encapsulation for HiLog predicates, they are also prepended with the module name.
In particular, this implies that HiLog atomic formulas have different representation than HiLog
terms: a formula p(a,f(b)) would be encoded as

FLORA THIS WORKSPACE(FLORA USER WORKSPACE,apply)(p,a,FLORA PREFIX’apply(f,b))

The same term would be encoded differently if it occurs as an argument of a predicate of another
functor:

FLORA PREFIX’apply(p,a,FLORA PREFIX’apply(f,b))

Thus, FLORA-2 implements a 2-sorted version of HiLog [4].

The updatable part of the database. All objects and facts that are explicitly inserted by the
program are kept in the special storage trie associated with the user module where the program
is loaded. A tries is a special data structure, which is well-suited for indexing tree-structured
objects, like Prolog terms. This workhorse does much of the grudge work in the Prolog engine.
To manipulate the storage tries, FLORA-2 uses the XSB package called storage.P, which is
described in the XSB manual. This package was originally created to support FLORA-2 , but it
has independent uses as well.

All primitives in this package take a Prolog symbol, called a triehandle, a Prolog term, and
some also return status in the third argument. Here are some of the most relevant predicates:

storage insert fact(Triehandle,Term,Status)
storage delete fact(Triehandle,Term,Status)
storage insert fact bt(Triehandle,Term,Status)
storage delete fact bt(Triehandle,Term,Status)

D INSIDE FLORA-2 82

The first two methods insert and delete in a non-backtrackable manner, while the last two are
backtrackable.

FLORA-2 associates a separate triehandle (and, thus, a separate trie) with each module. The
mechanism is similar to that used for predicate names:

FLORA THIS FDB STORAGE(FLORA USER WORKSPACE)

As explained earlier, when Prolog compiles the file generated by the FLORA-2 compiler, the macro
FLORA USER WORKSPACE gets replaced with the module name and out comes a unique, hard to
replicate triehandle.

Unfortunately, putting something in a trie does not mean that Prolog will find it there automat-
ically. That is, if you insert p(a) in a trie, it does not mean that the query ?- p(a) will evaluate
to true, and this is another major source of complexity that the FLORA-2 compiler has to deal
with. To find out if a term exists in a trie, we must use the primitive

storage find fact(Triehandle,Term)

If the term exists in the trie identified by its triehandle, then the predicate succeeds; if the term
does not exist, then it fails. The above primitive can be used to query tries in a more general way,
with the second variable unbound. In this case, we can backtrack through all the terms that exist
in the trie.

Suppose we insert a fact, a[m->v], represented by the formula fd(a,m,v). Since this formula
is inserted in the trie and Prolog knows nothing about it, we need to connect the trie to Prolog
through a rule like this:

fd(O,M,V) :- storage find fact(triehandle,f(O,M,V)).

Of course, the name of the triehandle and the predicate names must be generated using the
macros, as described above, so that they could be used for any module. In FLORA-2 such rules
are called patch rules.

Since F-logic uses only about a dozen of predicates to represent F-molecules, we can create
such rules statically and let gpp wrap them with the appropriate prefixes on the fly. The problem
arises with first-order predicates, because they need to be collected by the compiler and a sepa-
rate rule needs to be created for each first-order predicate. The static patch rules are located in
genincludes/flrpatch.fli (from which flrpatch.flh is generated during the installation). The
patch rules for the first-order predicates are dumped directly into the .P file of the main program
generated by the FLORA-2 compiler.

A similar problem arises when the user enters a firstorder directive to the shell. In this case,
a patch rule must be generated dynamically and asserted into the system.

One complication is that the file flrpatch.flh must be compiled for the right module, so the
preprocessor macro FLORA USER WORKSPACE can be given value only when we load the patch rules
into a specified module. If the directory genincludes that holds flrpatch.flh is not writable by
the user (which is often the case, if XSB is installed in a shared public directory on the server)

D INSIDE FLORA-2 83

then it will not be possible to run any FLORA-2 programs at all. For this reason, a copy of the
patch rules is stored in the user’s home directory, .xsb/flora/, in the file patch.P, so patch rules
are always compiled in the user’s home directory.

D.2 System Architecture

The overall architecture of FLORA-2 is depicted in Figure 2. The program is first tokenized
and then the composer combines the disparate tokens into terms. Since, due to the existence
of operators, not everything looks like a term in the source program, the composer consults the
operator definitions in the file flroperator.P to get the directives on how to turn the operator
expressions into terms. Next, the parser checks the syntax of the rules and of the various other
primitives (e.g., the aggregates, updates, module specifications, etc.). The output of the parser is a
canonic term list, which represents the entire parsed program. The canonic term is taken up by the
intermediate code generator, which generates abstract code. This code is represented in a form that
is convenient for manipulation and is not yet Prolog code. The compiler might add additional rules
(such as patch rules) and Prolog instructions. The compiled program is converted into (almost)
Prolog syntax by the coder. As mentioned previously, the code produced by the compiler is full of
preprocessor macros, so before passing it to Prolog it must be preprocessed by GPP. GPP pipes
the result to Prolog, which finally produces the byte code program that can run under the control
of the Prolog emulator.

The following is a list of the key files of the system.

• flrshell.P: The top level module that implements the FLORA-2 shell — a subsystem for
accepting user commands and queries and passing them to the compiler. See Section 2 for a
full description of shell commands.

• flrlexer.P: The FLORA-2 tokenizer.

• flrcomposer.P: The FLORA-2 composer, which parses tokens according to the operator
grammar and does other magic.

• flrparser.P: The FLORA-2 parser.

• flrcompiler.P: The generator of the intermediate code.

• flrcoder.P: The FLORA-2 coder, which generates Prolog code.

• flrutils.P: Miscellaneous utility predicates for loading programs, checking if files exist,
whether they need to be recompiled, etc.

Additional system libraries are located in the syslib/ subdirectory. These include the various
printing utilities, implementation for aggregates, update primitives, and some others. The compiler
determines which of these libraries are needed while parsing the program. When a library is needed,
the compiler generates an #include statement to include an appropriate file in the syslibinc
directory. For instance, to include support for the avg aggregate function, the compiler copies the
file syslibinc/flraggavg inc.flh to the output .P file. Since syslibinc/flraggavg inc.flh

D INSIDE FLORA-2 84

Figure 2: The architecture of the FLORA-2 system.

contains the code to load the library syslib/flraggavg.P, this library will be loaded together with
that output file. The association between the libraries and the files that need to be included to
provide the appropriate functionality is implemented in the file flrlibman.P, which also implements
the utility used to load the libraries.

While syslib/ directory contains the libraries implemented in Prolog, the lib/ directory con-
tains libraries implemented in FLORA-2 itself. Apart from that, the two types of libraries differ in
functionality. The libraries in syslib/ implement the primitives that are part of the syntax of the
FLORA-2 language itself. In contrast, the libraries in lib/ are utilities that are part of the system,
but not part of the syntax. An example is the pretty-printing library. Methods and predicates
defined in the libraries in lib/ are accessible through the @flora(lib-name) system module and
(unlike user modules) they are loaded automatically at startup.

There are several subdirectories that hold the various files that contain definitions included at
compile time. These will be described in a technical document.

A number of other important directories contain the various included files (many of which
include other files). The directory flrincludes/ contains the all-important flora terms.flh file,
which defines all the names used in the system. These names are defined as preprocessor macros, so
that it would be easy to change them, if necessary. The directory genincludes/ currently contains
the already mentioned patch rules. The file flrpatch.fli is a template, and flrpatch.flh, which

D INSIDE FLORA-2 85

contains the actual patch rules, is generated from flrpatch.fli during the installation.

The directory includes/ contains the header file, which defines the macros (e.g., FLORA THIS WORKSPACE)
that wrap all the names with prefixes to separate the different modules of the user program. The
directory headerinc/ is another place where the template files are located. Each of these files
contains just a few #include statements, mostly for the files in the closure/ directory (which,
if you recall, contains pieces of the trailer). When the system is installed certain combinations of
these files are concatenated and dumped into the trailer/ directory. Recall that the files in the
trailer/ directory are trailers that implement the closure axioms (there are three trailers: without
equality, with standard equality, and with F-logic equality). This double-indirection is needed to
simplify the installation procedure and to eliminate code duplication among the various trailers.

The directory p2h contains (the only!) C program in the system. It implements conversion of
Prolog terms to HiLog and back. Finally, the pkgs/ directory is empty. Some day it will contain
add-on programs, such as Internet access, etc.

REFERENCES 86

References

[1] A.J. Bonner and M. Kifer. Transaction logic programming. In International Conference on
Logic Programming, pages 257–282, Budapest, Hungary, June 1993. MIT Press.

[2] A.J. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer Science,
133:205–265, October 1994.

[3] A.J. Bonner, M. Kifer, and M. Consens. Database programming in transaction logic. In
A. Ohori C. Beeri and D.E. Shasha, editors, Proceedings of the International Workshop on
Database Programming Languages, Workshops in Computing, pages 309–337. Springer-Verlag,
February 1994. Workshop held on Aug 30–Sept 1, 1993, New York City, NY.

[4] W. Chen and M. Kifer. Sorted HiLog: Sorts in higher-order logic programming. In Int’l
Conference on Database Theory, number 893 in Lecture Notes in Computer Science, January
1995.

[5] W. Chen, M. Kifer, and D.S. Warren. HiLog: A foundation for higher-order logic programming.
Journal of Logic Programming, 15(3):187–230, February 1993.

[6] K. Clark. Negation as failure. Logic and Databases, pages 293–322, 1978.

[7] J. Frohn, G. Lausen, and H. Uphoff. Access to objects by path expressions and rules. In
VLDB, pages 273–284, 1994.

[8] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceedings of the
ACM SIGMOD International Conference on the Management of Data, pages 393–402, New
York, June 1992. ACM.

[9] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42:741–843, July 1995.

[10] A. Van Gelder. The alternating fixpoint of logic programs with negation. In ACM Principles
of Database Systems, pages 1–10, New York, 1989. ACM.

[11] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

[12] G. Yang and M. Kifer. Implementing an efficient DOOD system using a tabling logic engine.
In First International Conference on Computational Logic, DOOD-2000 Stream, July 2000.

Index

∼
meta-unification operator, 32

${...}
reification operator, 32

\+, 56
@, 19
*+>>, 42
*->->, 42
+>>, 42
->->, 42
expunge, 35
flLoadedModule/1, 20

abolish all tables, 45, 52
aggregates

avg, 41
collectbag, 41
collectset, 41
count, 41
max, 41
min, 41
multi-valued methods, 42
sum, 41

aggregation
aggregate operator, 41
grouping, 41

anonymous oid, 43
anonymous variable, 4
arithmetic expression, 14
atom

data, 7
isa, 8
signature, 8

atomic formula
in F-logic, 7

attribute
inheritable, 38
non-inheritable, 38

backtrackable update, 50
btdelete, 50
btdeleteall, 50
bterase, 50

bteraseall, 50
btinsert, 50
btinsertall, 50

base part of predicate, 46
boolean method

inheritable, 43
bulk delete, 49
bulk insert, 47

canonic term, 83
character list, 11
check undefined/1, 58
check undefined/2, 58
class, 9

instance, 9
subclass, 9

closure axioms, 79
comment, 12
compiler directive, 61

arguments, 29, 61
equality, 61
expunge, 61
firstorderall, 35, 61
firstorder, 35, 61
hilogtable, 44
index, 61
op, 12, 61
table, 44
equality, 36

Constraint solving, 57
cuts in FLORA-2, 46
cutting across tables, 46

data atom, 7
debugger, 73
debugging, 58
delete

bulk, 49
derived part of predicate, 46
do-until, 54
don’t care variable, 4
dynamic module, 37

87

INDEX 88

equality, 36
escaped character, 10

F-molecule, 9
flDump/1, 67
FLIP, 1
flNoTrace, 73
floating number, 11
FLORID, 1
flP2H/2, 22, 33
flTrace, 73
flTraceLow, 74

HiLog, 30
translation, 30
unification, 30

HiLog to Prolog conversion, 33
hilogtable, 44

I/O
port-based, 64
stream-based, 64

Id-term, 7
if-then-else, 54
inheritance

behavioral, 38
non-monotonic, 38
structural, 38

insert
bulk, 47

integer, 11

loading files, 20
logical expressions, 14
loop-until, 55

meta, 29, 62
meta signature of a predicate, 29
meta-programming, 31
meta-unification operator ∼, 32
method, 7

boolean, 43
inheritable, 43

multi-valued, 7
procedural, 45
scalar, 7
self, 26

set-valued, 7
single-valued, 7

module, 16
@, 19
expunge, 35
flLoadedModule/1, 20
flora(modulename), 24
prologall modulename, 21
prologall(), 21
prologall(modulename), 21
contents, 16
name, 16
Prolog, 17, 21
rules for, 18
system, 17, 24, 63
user, 17
compilation of, 19
reference to, 17

molecule
logic expressions, 14
object value, 28
truth value, 28

multi-valued methods
aggregation, 42

non-backtrackable update, 47
delete, 49
deleteall, 49
erase, 49
eraseall, 49
insert, 47
insertall, 47

number, 11
numbered anonymous oid, 44

object
base part of, 46
derived part of, 46

object constructor, 7
object identifier, 7
oid, 7

anonymous, 43
numbered, 44

operators, 12
precedence level, 12
type, 12

INDEX 89

patch rules, 82
path expression, 25

in rule body, 25
in rule head, 27

predicate
base part of, 46
derived part of, 46
first-order, 34
HiLog, 34

predicate meta signature, 29
Prolog module, 17, 21
Prolog to HiLog conversion, 33

reification, 29
reification operator ${...}, 32

signature
in F-logic, 8

spying, 73
string, 11
subclass, 9
symbol, 10
syntactic object, 30, 62
system module, 17, 24, 63

table, 44
tabling, 44
tnot, 56
tracing, 73
triehandle, 81
type checking, 60

unless-do, 54
until, 54, 55
update, 46

backtrackable, 50
non-backtrackable, 47

updates
and tabling, 52

user module, 17

variable
anonymous, 4
don’t care, 4

well-founded semantics, 40
while-do, 54
while-loop, 55

	Introduction
	FPD1OT1cmrcmrmmnnLORA-2 Shell Commands
	F-logic and FPD1OT1cmrcmrmmnnLORA-2 by Example
	Basic FPD1OT1cmrcmrmmnnLORA-2 Syntax
	F-logic Vocabulary
	Symbols, Strings, and Comments
	Operators
	Logical Expressions
	Arithmetic Expressions

	Multifile Programs
	FPD1OT1cmrcmrmmnnLORA-2 Modules
	Calling Methods and Predicates Defined in User Modules
	Finding the Current Module Name
	Loading Files into User Modules
	Calling Prolog from FPD1OT1cmrcmrmmnnLORA-2
	Calling FPD1OT1cmrcmrmmnnLORA-2 from Prolog
	FPD1OT1cmrcmrmmnnLORA-2 System Modules
	Including Files into FPD1OT1cmrcmrmmnnLORA-2 Programs
	More on Variables as Module Specifications

	Path Expressions
	Path Expressions in the Rule Body
	Path Expressions in the Rule Head

	Truth Values, Object Values, and Meta Signatures
	HiLog and Related Issues
	Meta-programming, Meta-unification, and Reification
	Passing Arguments between FPD1OT1cmrcmrmmnnLORA-2 and Prolog
	First-Order Predicates and HiLog Predicates
	Expunging of First-Order Predicates

	Equality Maintenance
	Inheritance
	Aggregates
	Aggregation and Set-Valued Methods

	Boolean Methods
	Anonymous Oids
	FPD1OT1cmrcmrmmnnLORA-2 and Tabling
	Tabling in a Nutshell
	Procedural Methods
	Cuts

	Updates
	Non-backtrackable Updates
	Backtrackable Updates
	Updates and Tabling
	Updates and Meta-programming

	Control Flow Statements
	Some Subtleties of the Semantics of the Loop Statements

	Negation
	Constraint Solving
	Debugging User Programs
	Checking for Undefined Methods and Predicates
	Type Checking

	Optimizations
	Summary of Compiler Directives
	FPD1OT1cmrcmrmmnnLORA-2 System Modules
	Pretty Printing
	Input and Output
	Storage Control
	System Control

	A Note on Programming Style
	Bugs in Prolog and FPD1OT1cmrcmrmmnnLORA-2: How to Report
	Authors
	A BNF-style Grammar for FPD1OT1cmrcmrmmnnLORA-2
	The FPD1OT1cmrcmrmmnnLORA-2 Debugger
	Emacs Support
	Installation
	Functionality

	Inside FPD1OT1cmrcmrmmnnLORA-2
	How FPD1OT1cmrcmrmmnnLORA-2 Works
	System Architecture

