Tabled Evaluation with Delaying for General Logic

Programs *
Weidong Chen' David S. Warren?
Computer Science and Engineering Department of Computer Science
Southern Methodist University SUNY at Stony Brook
Dallas, TX 75275-0122 Stony Brook, NY 11794-4400

June 14, 1995

Abstract

SLD resolution with negation as finite failure (SLDNF') reflects the procedural interpre-
tation of predicate calculus as a programming language and forms the computational basis
for Prolog systems. Despite its advantages for stack-based memory management, SLDNF
is often not appropriate for query evaluation for three reasons: a) it may not terminate
due to infinite positive recursion; b) it may not terminate due to infinite recursion through
negation; and c) it may repeatedly evaluate the same literal in a rule body, leading to
unacceptable performance.

We address all three problems for goal-oriented query evaluation of general logic pro-
grams by presenting tabled evaluation with delaying, called SLG resolution. It has three
distinctive features:

(i) SLG resolution is a partial deduction procedure, consisting of seven fundamental trans-
formations. A query is transformed step by step into a set of answers. The use of
transformations separates logical issues of query evaluation from procedural ones. SLG
allows an arbitrary computation rule for selecting a literal from a rule body and an
arbitrary control strategy for selecting transformations to apply.

(ii) SLG resolution is sound and search space complete with respect to the well-founded
partial model for all non-floundering queries, and preserves all three-valued stable
models. To evaluate a query under different three-valued stable models, SLG resolu-
tion can be enhanced by further processing of the answers of subgoals relevant to a

query.

*A preliminary version of this paper appeared as CHEN, W. AND WARREN D.S. Query Evaluation under the
Well-Founded Semantics. In Proceedings of the 12th Annual ACM Symposium on Principles of Database Systems.
ACM, Washington, D.C., 1993, pp. 168-179.

TSupported in part by the National Science Foundation under Grant No. IRI-9212074 and IRI-9314897.

tSupported in part by the National Science Foundation under Grant No. CCR-9102159 and New York State
Science and Technology Foundation under Grant No. RDG-90173.

(iii) SLG resolution avoids both positive and negative loops and always terminates for pro-
grams with the bounded-term-size property. It has a polynomial time data complexity
for well-founded negation of function-free programs. Through a delaying mechanism
for handling ground negative literals involved in loops, SLG resolution avoids the
repetition of any of its derivation steps.

Restricted forms of SLG resolution are identified for definite, locally stratified, and modu-
larly stratified programs, shedding light on the role each transformation plays.

SLG resolution makes many more rule specifications into effective programs. With sim-
ple (user or computer generated) annotations, both SLDNF resolution and SLG resolution
can be used in a single application, allowing a smooth integration of Prolog computation and
tabled evaluation of queries. Furthermore Prolog compiler technology has been adapted for
two efficient implementations of SLG resolution. For all these reasons we believe that SLG
resolution will provide the computational basis for the next generation of logic programming
systems.

Contents

1 Introduction
2 Three-Valued Stable Models
3 Query Evaluation as Partial Deduction
3.1 Partial Deduction of Definite Programs
3.2 Partial Deduction of Stratified Programs
3.3 Handling Negative Loops with Delaying
3.4 Propagation of Delayed Literals
3.5 Simplification of Delayed Literals
4 Transformations
4.1 Systems
4.2 Transformations of Systems of Subgoals 0.
4.3 Derivation and SLG Resolution o oo
5 Soundness and Completeness
5.1 Relating Partial Answers of Subgoals to a Program
5.2 Preservation of Three-Valued Stable Models
5.3 Computation of the Well-Founded Partial Model
5.4 Termination and Data Complexity
6 Restricted SLG Resolution
6.1 Definite Programs
6.2 Locally Stratified Programs oo
6.3 Modularly Stratified Programs oo
7 Discussion
7.1 Variant versus Subsumption Checking oo L.
7.2 Computation Rule and Search Strategies
7.3 Related Work
7.4 Implementations of SLG Resolution
8 Conclusion
References

15
15
17
20

22
22
30
36
38

41
41
42
42
44
44
45

46
48

49

49

HU
LF
HBp
fou,t
1=<J
1CJ

"
LPM(P)

TP
Tn

$T3(P)
WF(P)

P1- P2
p-e

p1 € p2
U{pi: 1 < B}
S

A
S1ES,
p

N(n)
P(S)

GA

I|p
PUP(S)
1P|

Symbols Used in the Paper

a negative literal

the Herbrand universe used for all programs in a query evaluation
a language of function symbols for constructing HiA

the Herbrand base of a program P

truth values, where f < u <t

the truth ordering over interpretations

the information ordering over interpretations

the transformation over interpretations for a program P
an ordinal power of 7p

the least three-valued model of a non-negative program
a variation of 7p

an ordinal power of 7p

the quotient of P modulo /

the set of all three-valued stable models of P

the well-founded partial model of P

a delayed ground negative literal

a delayed positive literal with control annotation

an X-rule — a rule with delayed literals in its body

the head atom of an X-rule

an X-element — an annotated X-rule

an X-sequence (of X-elements)

the concatenation of X-two sequences

the concatenation of p with a singleton sequence containing e
p1 1s a prefix of p,

the least upper bound of a chain of X-sequences

a system

a set of subgoals

a partial order over systems

the maximum number of literals in a rule body in P
the number of distinct atoms with argument sizes < n
the program for X-rules that are not disposed in &

a rule in P(S) corresponding to an X-rule G of subgoal A
an interpretation restricted an interpretation of P

the program that is the union of P and P(S)

the number of occurrences of rules in P

il

1 Introduction

The seminal work by Apt, Van Emden and Kowalski [2, 44] provided a foundation for both
the declarative and the procedural semantics of logic programs. According to [44], a program
rule can be viewed as a procedure declaration, and a literal in a rule body can be viewed as a
procedure call. This operational interpretation is formalized in SLD resolution (Linear resolution
with Selection function for Definite programs), which is sound and complete for positive queries
with respect to the least model semantics of definite programs [2, 44].

Clark [15] extended SLD resolution to SLDNF resolution — SLD resolution with Negation as
finite Failure. A ground negative literal succeeds if its positive counterpart finitely fails, and fails
if its positive counterpart succeeds. SLDNF resolution serves well the purpose of an operational
semantics for predicate logic as a programming language. It has the advantages of goal-oriented
computation and efficient stack-based memory management and is the computation strategy
used in Prolog systems.

Significant progress has been made in understanding default negation, leading to several
variations of SLDNF resolution, including SLS resolution [31] and global SLS resolution [29, 36].
These are ideal procedures for computing the perfect model [31] and the well-founded partial
model [46] of a logic program. Like SLD resolution, SLDNF and (global) SLS resolution use
a top-down goal reduction search strategy. They may not terminate due to infinite recursion
(possibly through negation) even for function-free programs. This prevents them from being used
directly for query evaluation in data and knowledge bases. When they do terminate, repeated
computation of identical subgoals may result in unacceptable performance.

Partial solutions have been proposed to improve the termination properties of top-down
computation and to avoid redundant evaluation of subgoals. Several extensions of SLD resolution
with memoing have been studied, including extension tables [16], OLDT resolution [43], and
QSQR [48]. The main idea is to keep a global table of subgoals and their answers that have
been computed. If a subgoal is identical to or subsumed by a previous one, instead of being
solved using rules in a program, it is solved using answers computed for the previous subgoal.
This avoids infinite branches and redundant computation due to repeated subgoals in the search
space of SLD resolution. These techniques have been generalized to stratified programs [20, 40]
and modularly stratified programs [37].

Non-termination may also occur due to infinite recursion through negation, which has to be
treated differently from infinite recursion in definite programs. A positive loop, such as p « p,
is considered failed as can be seen in the well-founded partial model of p «+ p where p is false.
In contrast, a negative loop, such as p « ~p, is considered indeterminate since p is undefined in
the well-founded partial model of p «— ~p.

Mechanisms for handling infinite recursion through negation have been studied in tabled
evaluation of queries, including WELL! [6] and XOLDTNF resolution [14]. The key idea is to
associate a set of ground negative literals, called the negative context, with each subgoal. The
negative context for the initial subgoal is empty. When a subgoal A in a negative context N
calls a ground negative literal ~B, ~B is replaced with an undefined truth value u if ~B € N.
Otherwise, the truth value of ~B is determined by evaluating B in a larger negative context,
namely N U {~B}. For a function-free program, the Herbrand base is finite and so the size of a
negative context is finite and infinite recursion through negation is avoided. The use of negative
contexts, however, prevents the full sharing of answers of a subgoal across different negative

contexts. In the worst case, a subgoal may be evaluated in a number of negative contexts that
is exponential in the size of the Herbrand base of a function-free programs [11].

Techniques for effective set-at-a-time query evaluation have been studied in deductive
databases, including magic sets [4, 5], magic templates [33] and Alexander templates [39]. The
main idea is to simulate top-down SLD resolution to avoid generation of tuples irrelevant to
the given goal. In fact, tuples of magic predicates correspond to subgoals maintained in OLDT
resolution [43]. For definite programs, it has been shown [8, 39] that the top-down with memoing
and the set-at-a-time approaches are essentially equivalent.

Methods of query processing have been investigated for stratified and modularly stratified
programs [3, 34, 37]. With negation, the major issue becomes maintaining dependencies among
magic tuples (or subgoals) so as to ensure that a positive subgoal be fully evaluated before its
negative counterpart is solved. Kemp et al. [18] developed a technique that computes the well-
founded partial model using a doubled program, one for deriving definitely true answers and the
other for deriving potentially true answers. The doubled program technique may make too many
magic facts true, which means that more subgoals are evaluated than necessary. Morishita [26]
proposed an alternating fixpoint semantics tailored to magic sets computation, which generates
fewer magic facts.

This paper presents a partial deduction framework for query evaluation, called SLG resolution
(Linear resolution with Selection function for General logic programs). SLG resolution addresses
the problems of non-termination and redundant computation of identical subgoals. Rather than
detecting and handling infinite recursion through negation, we focus on the complementary
problem of ensuring the complete evaluation of subgoals. We summarize the main results as
follows.

First, seven fundamental transformations are identified that can be applied to transform a
query step by step into a set of answers with respect to the well-founded partial model. Restricted
forms of SLG resolution are identified for definite, locally stratified, and modularly stratified
programs, shedding light on the role each transformation plays. These programs do not have to
pay the overhead for transformations that are not needed.

Second, the separation of logical issues of query evaluation from procedural ones results in the
maximum freedom in control strategies. SLG resolution allows a programmer or an implementer
to choose an arbitrary computation rule for selecting a literal from a rule body and to choose an
arbitrary strategy for selecting which transformation to apply.

Third, SLG resolution supports answer sharing of subgoals that are variants of each other. A
subgoal is guaranteed to be evaluated only once. SLG resolution terminates for programs with
the bounded-term-size property and has a polynomial time data complexity for well-founded
negation of function-free programs.

Finally, SLG resolution delays ground negative literals that are involved in a loop and sim-
plifies them away when their truth values become known to be true or false. The delaying
mechanism is the key to the maximum freedom in control strategies and enables SLG resolution
to avoid the repetition of any derivation step. More importantly, three-valued stable models,
other than the well-founded partial model, can be computed by further processing the answers
of subgoals relevant to a query, possibly with delayed literals, under the well-founded semantics.
However, it has been shown by Marek and Truszczynski [24] that for propositional logic programs
P, determining whether P has a (two-valued) stable model is NP-complete.

From a software engineering point of view, the major advantage of SL.G resolution is its up-

ward compatibility with existing Prolog systems. Although Prolog is notorious for its non-logical
features, there is a real value in making SLG resolution available to Prolog applications. Several
implementations of SLG resolutions have been carried out, including a Prolog meta interpreter
[13], a partial implementation in a Prolog compiler called XSB [38], and a partial implementation
using Prolog program transformation and Prolog-C interface [35]. Experimental results [35, 38|
have demonstrated that Prolog compiler technology can be adapted for an efficient implemen-
tation of SLG resolution, providing impressive performance for in-memory query evaluation of
deductive databases.

2 Three-Valued Stable Models

This section reviews the notion of three-valued stable models of logic programs [32]. The basic
terminology of logic programs [22] is assumed.

An atom is of the form p(ty,...,t,), where p is an n-ary predicate symbol and ty,...,¢, are
terms. A literal L is either an atom A or its negation ~A. The existential closure of a literal L
is denoted by dL, and the universal closure of L is denoted by VL.

A rule C is of the form:

H«—L,.. L,

where the rule head H is an atom, and Ly, ..., L,(n > 0) in the rule body are literals. If n = 0,
C is also called a fact. A program P is a (possibly infinite) multiset of rules. (Unique labeling or
annotations will be used when there is a need to distinguish between different occurrences of a
rule in P.) An expression, which can be an atom, a literal or a rule, is ground if it is variable-free.

This paper considers query evaluation as a process of partial deduction, which may involve
multiple programs that are possibly infinite, even though the original program is normally finite.
Allowing a program to be infinite makes it possible to consider the intermediate result of partial
deduction as a program. To relate the semantics of one program to another, we use a single
Herbrand universe for all programs.

Specifically, we assume a countable language LF of function symbols. LF contains all func-
tion symbols that occur in programs involved in the evaluation of a query, plus a unary function
symbol f and a zero-ary function symbol ¢’ that do not occur in any of the programs being
considered. The symbols f’ and ¢ are needed to cope with the “universal query problem” [31],
where the semantics of a program containing a single fact, p(a), may imply V.X.p(X) if the Her-
brand universe is {a}. But the empty answer substitution cannot be obtained for p(X) by SLD
resolution. The introduction of new symbols f' and ¢’ eliminates such situations.

The Herbrand universe HU is the set of all ground terms that can be constructed using
function symbols in LF. An instance of an expression, which can be an atom, a literal, or a rule,
is obtained by replacing every variable in the expression with a term constructed from function
symbols in LF and variables.

Let P be a program. The Herbrand instantiation of P is the set of all the ground instances
of rules in P. The Herbrand base of P, denoted by HBp, is the set of all ground atoms that are
constructed using predicates in P and terms in HU.

Let f,u,t be truth values ordered by f < u <t. An interpretation I of a program P is a
mapping from HBp to {f,u,t}. I can be represented by a partition of HBp, Pos(I)J Und(I)U
Neg(I), where Pos(I) (respectively, Und(I), Neg(I)) is the set of ground atoms A such that

I(A) is t (respectively u, f). Any two of these sets will uniquely determine /. [can also be
viewed as the set Pos(I)U {~B|B € Neg(I)} of ground literals.

Definition 2.1 Let P; and P, be programs such that HBp, C HBp,, and let I be an interpre-
tation of P5. Then the restriction of I to Py, denoted by I|p,, is an interpretation of P; whose
mapping is the restriction of the mapping I to HBp, . a

Definition 2.2 [32] Let I be an interpretation of a program P.

e A ground atom A is true in [if A € Pos(I) and is false in [if A € Neg([), and is undefined
it Ae Und(l);

A ground negative literal ~A is true in I if A € Neg(l) and is false in [if A € Pos([),
and is undefined if A € Und(I);

e The existential closure 3L of a literal L is true in I, denoted by [= 3L, if some ground
instance of L is true in [; and 3L is false in [if all ground instances of L are false in [;

e The universal closure VL of a literal L is true in I, denoted by I | VL, if every ground
instance of L is true in [; and VL is false in I if some ground instance of L is false in 1.

o A ground rule, H « Ly,..., L,, is true in [if

— H is true in I when all L;’s in the rule body are true in I; and

— at least one of the L;’s in the rule body is false in I when H is false in 1.

e A rule G is true in [if every ground instance of (G is true in [, and is false in I if some
ground instance of (7 is false in [.

I is a model of P if every rule in P is true in [. a

Definition 2.3 [32] Let / and J be interpretations of a program P. There are two natural
orderings between interpretations, namely the truth ordering < (also called Fitting-ordering)
and the information ordering C, where

o [X Jif Pos(I) C Pos(J) and Neg(l) O Neg(J);
e [C Jif Pos(I) C Pos(J) and Neg(l) C Neg(J).

Models that are least in the sense of the truth ordering < are called least models. Models that
are smallest in the sense of information ordering C are called smallest models. O

Associated with each program P there is a mapping 7p over interpretations. It is a general-
ization of the immediate consequence operator in [44].

Definition 2.4 [32] Let P be a program and [be an interpretation of P. Then 7p([) is an
interpretation of P such that for every H € HBp,

o H € Pos(7p(l)) if and only if there is a rule, H « L4, ..., L,, in the Herbrand instantiation
of P and every L;(1 <7 < n)is true in [;

o H € Neg(7p(I)) if and only if for every rule with H in the head, H « L4,..., L,, in the
Herbrand instantiation of P, some L;(1 <7 < n) is false in I.

Let () be the least interpretation of P, in which all ground atoms in HBp are false. The powers
of 7p are defined as follows:

70 =0
Tp" = Tp(TpT(n_l)) if n is a successor ordinal
= L{T4" : k< n} if n i1s a limit ordinal

where U is the least upper bound operation of interpretations of P with respect to the truth
ordering <. O

We assume that there is a special ground atom u. Atom u is always undefined, i.e., u €
Und(I). It can appear only in rule bodies in a program. A non-negative program is a multiset
of rules whose bodies do not contain any negative literals, but may contain atom u.

Theorem 2.1 ([32]) Let P be a non-negative program. Then P has a unique least three-valued
model, denoted by LPM(P). Furthermore, Tp has a least fized point, which coincides with Tp"
and LPM(P).

An interpretation I can also be determined by specifying Pos(I) and Und(I). Let P be a
non-negative program and I be an interpretation of P. We define 7p(I) such that for every

H € HBp,

e H € Pos(rp(1)) if and only if there is a rule, H « Ly, ..., L, in the Herbrand instantiation
of P and every L;(1 <7 < n)is true in [;

o H e Und(rp(l)) it H ¢ Pos(tp(1)) and there is a rule, H « Ly, ..., L,, in the Herbrand
1

instantiation of P and every L;(1 < < n) is either true or undefined in /.

The powers of 7p are defined as those of 7p.

Lemma 2.2 Let P be a non-negative program and I be an interpretation of P. Then Tp(l) =
7p(I). If P is a non-negative program, then 7p has a least fizpoint, which coincides with T]Tjw and

LPM(P).

Proof: Notice that Pos(7p(I)) = Pos(tp(l)), and H € Neg(7p(I)) if and only if H ¢
Pos(tp(1)) U Und(rp(I)). Thus Tp(I) = 7p(I). The rest of the lemma follows from Theorem
2.1. |

Definition 2.5 [32] Let P be a program and [be an interpretation of P. The quotient of P
modulo I, denoted by % is the non-negative program obtained from the Herbrand instantiation

of P by:
o deleting every rule with a negative literal in the body that is false in I; and

o deleting every negative literal in a rule body that is true in I; and

e replacing with u every negative literal in a rule body that is undefined in 1.

1 is a three-valued stable model of P if I = LPM(%). The set of all three-valued stable models
of P is denoted by ST3(P). a

The notion of three-valued stable models is a generalization of both the well-founded partial
model [46] and the two-valued stable models [17].

Theorem 2.3 ([32]) Let P be a program, and WF(P) be the well-founded partial model of P.
Then WF(P) is the smallest three-valued stable model of P. Stable models as defined by Gelfond

and Lifschitz coincide with two-valued stable models.

3 Query Evaluation as Partial Deduction

Partial deduction is a program transformation technique that specializes a logic program with
respect to a query to produce a more efficient or simpler program [21, 23]. The new program
should be equivalent to the original one as far as the query is concerned. This paper uses partial
deduction for query evaluation with respect to the well-founded partial model. The primary
motivation for using partial deduction is to understand the fundamental transformations involved
in query evaluation, and to separate the logical issues from the procedural ones.

Recall that unification can be viewed as a process of transforming a system of equations
from a general form into a solved form [25]. Each transformation preserves all solutions or
unifiers. We follow a similar approach to query evaluation, which is considered a process of
transforming a system of subgoals with associated rules into one that contains only answers of
subgoals. This section introduces by examples the representation of systems of subgoals and
various transformations.

3.1 Partial Deduction of Definite Programs

Without loss of generality, we consider queries that are represented as atoms, and use “subgoal”
as a synonym for “atom”. For definite programs, the partial deduction of a subgoal corresponds
to SLD resolution with tabling such as OLDT resolution [43].

Consider an atomic query ¢(X) with respect to the following program:

(C1) q(X) « p(X).
(C2) q(a).
(C3) p(X) « q(X).

In all the examples, we will always label each rule in a program for convenience of reference, and
assume a left-to-right computation rule.

A system is a set of pairs of the form (A : p), where A is a subgoal and p is a sequence of
annotated rules for A. No two pairs in a system have the same subgoal, where two subgoals are
considered the same if they are renaming variants of each other. The sequence p of annotated rules
represents the history of the addition and/or deletion of rules for subgoal A. The annotation
of each rule in p indicates where the rule is derived from and whether some rule is disposed.
Intuitively, a rule is disposed when it no longer has anything to contribute to the derivation. In

general, the sequence p can be transfinite, which is necessary because the well-founded partial
model of a program may be transfinite.

Initially, the system is empty. The query atom ¢(X) is introduced as the first subgoal. The
initial sequence of ¢(.X) is an arbitrary sequence of all rules obtained by resolving ¢(X) « ¢(X)
on ¢(X) in the body with rules in the program. The following is the system after ¢(X) is

introduced:
(oo {00300 G}

An annotated rule of the form G(C), where C is (the label of) a rule in a program, means that
(G is obtained by resolution with rule C' in the program. The sequence of a subgoal is written
as a set of pairs a : AG where « is an ordinal and AG is an annotated rule. In general, the
annotation in AG indicates where the rule in AG is derived from — a rule in a program or an
earlier rule in the sequence, and in the latter case, whether the earlier rule in the sequence is
disposed.

For each non-disposed rule in the sequence of a subgoal, the head captures variable bindings
that have been accumulated, and the rule body contains literals that remain to be solved in order
to derive an answer for the subgoal. A rule with the empty body is an answer, e.g., ¢(a) in the
above sequence of ¢(X). For a rule with a non-empty body, a literal is selected from the rule body
by a computation rule. The atom of the selected literal is added as a new subgoal if it is not in
the current system. In the example above, p(X) is selected from the body of ¢(X) « p(X) and
is added as a new subgoal. Like ¢(X), p(X) has its own sequence of annotated rules obtained
by resolution of p(X) « p(X) on p(X) in the body with rules in a program. So the system

becomes:
e 0: X) —p(X C1
q<): { 1: f]ga)) P() 202? }

p(X): {01 p(X)—q(X) (C3)]

The selected atom of p(X) « ¢(X) is ¢(X), which is a subgoal already in the current system.
Thus it is solved using only answers of the subgoal ¢(X), such as ¢(a) in the sequence of ¢(X).
This avoids repeated evaluation of identical subgoals.

By solving the selected atom of p(X) « ¢(X) using the answer ¢(a), the sequence of p(X) is

extended as follows:
0: p(X)«q(X) (C3) }

p(X) :

(IR (0,4(a)
The annotated rule p(a)(0, ¢(a)) means that p(a) is obtained from an earlier rule in the sequence
of p(X), namely p(X) « ¢(X) corresponding to ordinal 0, by solving the selected atom using
an answer ¢(a). Continuing in a similar way, p(a) is an answer and is used to solve the selected
atom p(X) in ¢(X) <« p(X). The sequence of ¢(X) is extended by adding the resulting rule:

0: ¢(X)«p(X) (C)
g(X):q 1: q(a) (C2)
2: q(a) (0,p(a))
The rule g(a) corresponding to ordinal 2 in the sequence of ¢(X) is an answer. But it is a

redundant answer and so is not used to solve the selected atom ¢(X) in the rule p(X) « ¢(X)
for p(X).

At this point, all answers have been derived for subgoals relevant to a query. No new subgoal
can be introduced and no annotated rule can be added to the sequence of any subgoal in the
system. For definite programs, all annotated rules with a selected atom can be disposed at the
end, leaving only answers of subgoals relevant to the original query. The final system of our
example is as follows:

0: qEX))HP(X) égli
' 1: q(a 2
105 90 gla) (0, pla)
3: disposed (0)
0: p(X) < q(X) (C3)
p(X): 1: pla) (0,q(a))
2: disposed (0)

where disposed({a) for some ordinal « indicates that an earlier rule corresponding to « in a
sequence of annotated rules is simply disposed.

Given a finite program P, an atomic query A, and a system of subgoals that is constructed
during the partial deduction of A with respect to P, the set of all rules that are not disposed in
the system constitutes an intermediate program for subgoals relevant to A. When a final system
is reached in which all rules that are not disposed are answers, partial deduction becomes query
evaluation in the sense that the program for subgoals corresponding to the final system contains
only answers.

3.2 Partial Deduction of Stratified Programs

A subgoal B is completed when all the rules in its sequence that are not disposed are answers.
For stratified negation, a ground negative literal ~B succeeds only if B is completed and has
no answers. However, when there is mutual recursion among subgoals, these subgoals may have
rules in their sequences that have selected atoms but are not disposed, even though they cannot
possibly have any answers. These rules with selected atoms have to be disposed so that the
subgoals become completed and their negative counterparts can succeed.

Consider an atomic query m with respect to the following stratified program:

(C1) m «— ~q(b).
(C2) q(X) « p(X).
(C3) q(a).

(C4) p(X) « ¢(X).

The first subgoal in the system is the initial atomic query m:

{m: {O: m «— ~q(b) <Cl>}}

The selection of ~¢(b) in the rule body of m « ~g(b) for m results in a new subgoal ¢(b). The
new subgoal ¢(b) is processed as in definite programs, leading in two transformation steps to the
following system:

m: %0: m «— ~q(b) <C’1>£
q(b): 1 0: ¢(b) < p(b) (C2)
p(b): {0 p(b) —q(b) (C4) }

Notice that neither ¢(b) nor p(b) can have any answers. But they are not completed since
they have rules in their sequences that have a selected atom and are not disposed. On the other
hand, ~¢(b) cannot succeed unless ¢(b) is completed without any answers.

We introduce the COMPLETION transformation to handle this situation. It is applied to a
non-empty set of subgoals. It checks rules in the associated sequences of annotated rules of the
subgoals and, under certain conditions, disposes all rules that are not answers. For the set of
subgoals, {¢(b), p(b)}, two properties are satisfied, both of which are required by the COMPLETION
transformation.

First, neither of them has a rule that has a selected negative literal but is not disposed.
Second, all non-disposed rules that have a selected atom have been processed using all answers
of the selected atom. The first condition ensures that the situation is similar to tabled evaluation
of definite programs, and the second condition guarantees that all answers of a selected atom
have been returned.

In the case of {¢(b), p(b)}, neither ¢(b) nor p(b) has any answer. The COMPLETION transfor-
mation is applied to {¢(b),p(b)} and all rules of ¢(b) and p(b) that are not answers are disposed:

me {02 me gty (C1))
0: q(b) < p(b) (C2

(I(b) : 1: z]lgs;?oseg() §0> >
0: p(b) «q(b) (C4

p(b) 1: ngl)nosefl() §0> |

7

Both ¢(b) and p(b) are now completed without any answers. By negation as failure, ~¢(b) can
be removed so that the rule for m is disposed and an annotated answer m is added, leading to
a final system of subgoals:

. { 0: m e ~q(b) (C1) }
1: m <O>
[0: q(b) —p(b) (C2)
q(b) : 1: cqlisposez (0)
0: p(b) «—q(b ¢4
p(b) 1: ngg)msecql() §0> |

The annotated rule m(0) in the sequence associated with m means that the rule corresponding
to ordinal 0, namely m «— ~q(b), is disposed.

3.3 Handling Negative Loops with Delaying

With recursion through negation, a set of subgoals may be waiting for each other in a circular
fashion through selected negative literals. FEach of them may be waiting for others to become
completed in order to solve the selected negative literals in its own rules, but none of them can
be completed. We introduce the DELAYING transformation to skip selected negative literals that
are ground so that computation can proceed.

Consider an atomic query s with respect to the following program:

(C1) s «— ~t.
(CZZ) 1t «— ~s.

The evaluation of subgoal s leads to a system as follows:

{ {08 st <01>}}

t: {0: t— ~s <CQ>}

In the sequences associated with subgoals, rules that have a selected literal can be viewed
as directed edges in a dependency graph of subgoals. Each edge is labeled positive or negative
according to whether the selected literal is an atom or the negation of an atom. In the system
above, the rule s « ~t in the sequence for subgoal s can be viewed as a negative edge from s to
t, and the rule t « ~s in the sequence of subgoal ¢ can be viewed as a negative edge from ¢ to s.
There is a loop among s and ¢ in the dependency graph involving negative edges. Such a loop is
called a negative loop. Each of s and t is waiting for the other to be completed in order to solve
the selected negative literal in the body of its rule, which keeps either from ever proceeding.

Our approach is to delay selected negative ground literals so that computation can proceed.
Delayed literals will not be selected by a computation rule, even though they may be simplified
away later if their truth values become known to be true or false. Each delayed literal is annotated
by the corresponding subgoal, e.g., ~s°. The notion of rules is extended to allow delayed literals
in rule bodies. When the selected ground negative literal of a rule is delayed, the rule is disposed
and replaced with a new rule that has a delayed literal in the body. Suppose that ~t is delayed
in the rule for s. We derive the following system:

5 {0: § — ~t <Cl>}
' L: s« ~th (0)
t: {O:t<—~3 <02>}

where s « ~t*(0) in the sequence of s means that the rule corresponding to ordinal 0 in the
sequence of s is disposed and replaced with s « ~¢.

A rule with only delayed literals in its body is considered an answer. Subgoal s becomes
completed since all its rules that are not disposed are answers. However, subgoal s neither
succeeds with an answer that has an empty body, nor fails without any answers. Accordingly
the selected negative literal ~s in the rule for ¢ neither succeeds nor fails. Our approach is to
delay ~s too, which results in a new system:

S

0: s«—n~t (C1)
1: 5« ~t! <0

‘. 0: te—nr~s (C2)
' L: te~s* (0)
This is also the final system since no further processing can be done. Neither of the subgoals

succeeds or fails. In fact, both s and ¢ are undefined in the well-founded partial model of the
given program.

3.4 Propagation of Delayed Literals

When an answer is used to solve the selected atom in a rule body, the variable bindings accumu-
lated in the head of the answer are propagated by unification with the selected atom. But the

10

answer may have delayed literals in its body and there is a question whether they should also be
propagated. In our approach they are not. We next illustrate how answers with delayed literals
are used to solve the selected atom of a rule. After that we give an example that shows that
propagating delayed literals of answers may cause an exponential explosion.

Consider the evaluation of an atomic query p(X) with respect to the following program:

(C1) 5 — ~1.

(C2) t «— ~s.

(C3) p(X) —q(X,Y),r(Y).

(C4) q(a,Y) « ~s.

(€35) r(b).
Following the procedures discussed in previous subsections (and assuming a left-to-right compu-
tation rule), the evaluation of the query p(X) leads to the following system:

p(X) ?): p(X) — q(X,Y),r(Y) (C3) })
(X, Y): 0: g(a,Y) «— ~s C>}

) 0: s ~t
5 1: s ~tt <
‘. {0:t<—~3 (C2)
' L: ¢t e ~s* (0)

Subgoal s is completed with an answer that has a delayed literal ~¢*. Since s neither succeeds

7/

nor fails, the negative literal ~s in the rule of ¢(X,Y) is also delayed. The sequence associated
with ¢(X,Y) is extended as follows:

0 gla,Y) —~s (C4)
(X, Y) { 1: g(a,Y) e« ~s* (0) }

The annotated rule ¢(a,Y) « ~s°(0) means that the rule corresponding to 0, namely ¢(a,Y’) «—
~s, is disposed and replaced with ¢(a,Y’) « ~s°.

By definition, ¢(a,Y) < ~s® is an answer for subgoal ¢(X,Y’) as it contains only delayed
literals in its body. This answer should be used to solve the selected atom ¢(X,Y’) in the rule
for p(X). Our approach does not propagate the delayed literal ~s° in the body of the answer.
Instead, we introduce a positive delayed literal. The sequence of annotated rules associated with
p(X) is extended as follows:

f 0 p(X) — q(X,Y),r(Y) (C3)
R Rl SO v

where ¢(a,Y)? E)) represents a positive delayed literal whose truth value depends upon the truth
value of some answer of subgoal ¢(X,Y) with ¢(a,Y) in the head. The annotation (0, ¢(a,Y"))
means that the corresponding rule is obtained by solving the selected atom of an earlier rule
corresponding to 0 using some answer with ¢(a,Y) in the head. Since variable bindings in the
head of an answer have been propagated through unification, a delayed positive literal serves only
as a place holder that can be simplified away if and when its truth value later becomes known.
The annotation in a delayed positive literal provides control information for such simplification.

11

Recall that a computation rule cannot select a delayed literal. Thus r(Y") is selected in the
body of p(a) « q(a,Y)! Ea Y)),T(Y). A new subgoal r(Y) is added to the system; its initial
sequence contains one rule obtained by resolution with rule labeled C5 in the program.

Y):{ 0: r(b) (C5) }

The rule r(b) is an answer. It is used to solve the selected atom r(Y) in the rule corresponding
to 1 in the sequence of p(X). The sequence of p(X) is extended to:

0: p(X) —q(X, Y) r(Y) (C3)

p(X): {1 p(@) =l YOG () (0, 0(a)
2: pla) = gla,)iy (L,7(b))
Now the COMPLETION transformation can be applied to the set {p(X)} of subgoals, which

produces a final system in which all subgoals are completed:
p(X) — q(X,Y),r(Y) (C3) \
pla) = q(a V)03 7 (Y) (0.9(,Y)
pla) o ala B (L7(b))
disposed (0
disposed (1
q(a,Y) «— ~s
q(a,Y) « ~s°

o

~—.

p(X):

)
)
(X, Y):

-

r(Y):

—_ O = O = O W N

7/

o
=
~—
k)
S—
T~
Q%
ot
S
N

There are two reasons that we do not propagate delayed literals in the body of an answer
when the answer is used to solve the selected atom of a rule. First, it is not necessary to
propagate delayed literals for well-founded negation. We are interested in only whether an atom
is definitely true or false in the well-founded partial model, not in how many ways an atom may
depend upon other literals. Second, for a subgoal A, there may be many answers for A that
have the same atom in the head, but different delayed literals in the body. Propagating delayed
literals may generate an exponential number of distinct answers for a subgoal, as the following

example shows.

Example 3.1 Let n be an arbitrary positive integer. Consider the following program:

max(n)

suce(0,1). suce(l,2) suce(n — 1,n)
p(X) — suce(X,Y),r(X),p(Y)

p(X) — max(X),r(X)

r(X) e ~q(X,a)

r(X) & ~q(X,b)

q(X,a) < r(X)

(X, b) — r(X)

12

Notice that each 7(i), where 0 < i < n, has two answers. One is r(i) « ~q(i,a)?"%, and
the other is r(i) « ~q(i,0)?"). For the evaluation of subgoal p(0), our approach generates a
polynomial number (in n) of answers for relevant subgoals. In contrast, propagating delayed
literals of answers of each r(¢) would have led to an exponential number (in n) of answers for

p(0). O

3.5 Simplification of Delayed Literals

Not all delayed literals are undefined in the well-founded partial model of a program. Some of
them may become known to be true or false later and should be simplified away. Simplification
of delayed literals is necessary so that when a subgoal is completed, a ground instance of the
subgoal is true in the well-founded partial model if and only if it is an instance of the head of
an answer that has an empty body, and is false if and only if it is not an instance of the head of
any answer of the subgoal.

Suppose that p is evaluated with respect to the following program:

(C1) p — p.
(C2) P — ~s.
(C3) 5 — ~r.
(C4) T~ T

Assuming a left-to-right computation rule, the evaluation of p leads to the following system after
the introduction of several subgoals:

0: — C1
P {1:§<—is 202?}
S {O: S — ~r <C’3>}
T {0:

There is a negative loop involving subgoals s and r. The DELAYING transformation is applied
to each of the selected negative literals, namely ~s and ~r. This results in a new system:

0: p—p (C1)
p: l: pe—=n~s (C2)
2: pe~st (1)
‘ 0: se—~r (C3)
5 L: s« ~r" (0)
‘ 0: rer~s,r (C4)
i L: re~s*r (0)

Subgoal p has an answer with delayed literals, namely p <+ ~s°. The answer is returned
to the selected atom p in the rule p «— p. The sequence of annotated rules of p is extended as

follows:
0: p—p (C1)
l: pe—=n~s (C2)
P 2: pe~st (1)
3: pe=p (0,p)

The singleton set {p} of subgoals is completely evaluated by definition. All rules of p that
are not answers are disposed by the transformation COMPLETION:

0: pe—p (C1)
p—r~s (C2)
pe—r~st (1)
pe=rps (0,p)
disposed (0)

= W DN =

The singleton set {r} of subgoals is completely evaluated by definition. All rules of subgoal
r that are not answers are disposed by the transformation COMPLETION. The final sequence of
annotated rules associated with r is as follows:

0: renr~s,r (C4)
r:S 1 ren~s*r (0)

2: disposed (1)

Since subgoal r is completed without any answers, all occurrences of the delayed literal ~r”
can be deleted. In particular, the sequence of annotated rules of subgoal s is extended to the
following:

0: s—n~r (C3)
s:¢ 1 se—n~r" (0)
2: s (1)

Subgoal s succeeds with an answer that has s in the head and an empty body. The rule

p «— ~s° of subgoal p can be disposed.

0: pe—p (C1)

l: pen~s (C2)
)20 pen~st (1)

Py s pem (0p)
4 disposed (0)
5: disposed (2)

The only answer for p is p < pf. In the well-founded semantics of the original program, p is
false. Notice that the answer p « pl was derived because of the answer with a delayed literal,
p < ~s°. Even though p « ~s® has been deleted, p < pf remains. We introduce another
transformation, called ANSWER COMPLETION, which deletes answers with some positive delayed
literals under certain conditions (to be defined later). For the example above, the final sequence
of annotated rules of p is as follows:

pep
per~s |
pe~st |
p—ry
disposed
disposed
disposed

S
DU W~ O

where the answer p < pf has been disposed. Thus subgoal p is completed without any answers.

14

4 Transformations

This section presents the formal definitions of systems and transformations of systems.

4.1 Systems

Definition 4.1 A subgoalis an atom. Two subgoals are considered the same if they are renaming
variants of each other.

A negative delayed literal is of the form ~B®, where B is a ground atom. A positive delayed
literal is of the form B#, where B, H and A are atoms such that B is an instance of H and H
is an instance of A. If § is a substitution, then (Bj})6 is defined as (B6)%. 0

As we have discussed in Section 3, a positive delayed literal of the form B# is created when
the selected atom of a rule is solved using an answer of a subgoal A that has H in its head and
some delayed literals in its body, in which case H must be an instance of A. The annotations A
and H in Bj; provide control information for the later simplification of the delayed literal later.

Definition 4.2 An X-rule (G is of the form:
H— L ..L,

where H is an atom, and each L;(1 <i < n) is an atom, the negation of an atom, or a delayed
literal, and n > 0. If n =0, G is called a fact. If every L;(1 < ¢ < n,n > 0) is a delayed literal,
G is called an answer.

A computation rule is an algorithm that selects from the body of an X-rule G a literal L that
is an atom or the negation of an atom (if there is any). L is called the selected literal of G. If L
is an atom, it is also called the selected atom of G. O

Notice that a computation rule never selects a delayed literal. However, it may select a
negative literal that is not ground. We try to solve a non-ground negative literal by negation as
failure if it is sound to do so.

Definition 4.3 Let P be a finite program, C be a rule in P, G be an X-rule, a be an ordinal,

and H be an atom. Then an X-element is of the form G(C), G{a), G{a, H), or disposed{c).
An X-sequence p is a mapping from all ordinals that are smaller than some ordinal « to the

set of X-elements. The ordinal « is the length of p. a

Each subgoal in a system has an associated X-sequence. The X-sequence captures the history
of the addition/disposal of X-rules for the subgoal during its partial deduction (as shown in the
examples in Section 3). Each X-element in the X-sequence indicates from where an X-rule is
derived — a rule in a program or an X-rule earlier in the X-sequence — and/or whether the
X-rule earlier in the X-sequence is disposed.

More specifically, let p be the X-sequence of a subgoal A. Let 3 be an ordinal such that
p(B) = e for some X-element e, and « be an ordinal such that o < f.

o If e is of the form G(C), where G is an X-rule and C is a rule in a program, then G is
created by resolving A «+ A on A in the body with C'

15

e If e is of the form G{a), where G is an X-rule, then the X-rule corresponding to « in p is
disposed and replaced by G;

o If e is of the form G{«, H), where (G is an X-rule and H is an atom, then G is obtained by
solving the selected atom of the X-rule corresponding to « in p using an answer with H in

the head;
o If e is disposed{a), then the X-rule corresponding to « in p is simply disposed.

We consider two main operations over X-sequences: concatenation and the least upper bound
of an increasing chain of X-sequences. The former is used to extend the X-sequence of a subgoal
in a system, and the latter is needed for the transfinite definition of the notion of SLG derivation
given in Section 4.3 later.

Definition 4.4 Let p; and p; be X-sequences of length a; and ay respectively. The concatena-
tion of p; with py, denoted by p1-p2, is an X-sequence of length a4z such that (p1-p2)(2) = p1(7)
for every 1(0 <7 < 1), and (p1 - p2)(a1 + J) = p2(7) for every (0 < j < ay).

The X-sequence p; is said to be a prefiz of p; - pa. If py is a sequence of length 1 such that

p2(0) = e for some X-element e, we also write p; - py as p; - €.
O

There is a natural prefix partial order over X-sequences. Let p; and p; be X-sequences. Then
p1 C po if py is a prefix of py. An X-sequence p of length a can also be viewed as a set of pairs
{(z,p(?)) | 0 < i < a}, in which case the prefix relation reduces to the subset relation.

Definition 4.5 Let [be an ordinal and p;(0 < ¢ < () be an increasing chain of X-sequences
(with respect to C), and let a be an ordinal such that the length of each p;(0 < i <) is less
than «. Then the least upper bound of the chain p;(0 < i < 3), denoted by U{p;|0 < i < S},
exists since the length of each p;(0 < ¢ <) is less than «. It is the X-sequence that is the union
of all p;(0 < ¢ <) when an X-sequence is viewed as a set. a

The intermediate state of the partial deduction of a query is represented by a system.

Definition 4.6 Let P be a finite program, and R be a computation rule. A system S is a set of
pairs of the form (A : p), where A is a subgoal and p is its X-sequence, such that no two pairs in
S have the same subgoal. A subgoal A is said to be in S if (A : p) € S for some X-sequence p.
Let (A: p) € S, where A is a subgoal and p is its X-sequence. Let G be an X-rule and « be
an ordinal. G is said to be the X-rule of A corresponding to « in S if p(«) is either G(C), G (1),
or G(t, H), where C is a rule in P, ¢ < a, and H is an atom.
Let G be an X-rule of A corresponding to « in §. Then

e (i is disposed if for some j > a, p(y) is either disposed{a) or G'(a) for some X-rule G';
e (7is an answer of A if G is not disposed and all literals in the body of (G are delayed literals;
o (7 is an active X-rule of A if G is not disposed and has a selected literal.

A subgoal A in § is completed if all X-rules of A that are not disposed are answers.

16

4.2 Transformations of Systems of Subgoals

Starting with the empty system of subgoals, each transformation transforms one system into
another. The initial X-sequence of a subgoal is obtained by resolution with rules in a program.
Without loss of generality, we consider only atomic quertes that contain a single atom.

Definition 4.7 [X-resolution] Let G be an X-rule, of the form H « L4,...,L,, and L; be the
selected atom of G for some (1 < ¢ < n). Let C be a rule and C’, of the form H' «— L},..., L
be a variant of C' with variables renamed so that G and C’ have no variables in common. Then

(G 1s X-resolvable with C if L; and H' are unifiable. The X-rule:
(H — Ll, ceey Li—h Lll, ceey L'/rru Li—l—h ceey Ln)g

is the X-resolvent of G with C', where 6 is the most general unifier of L; and H'.
O

The selected atom in the body of an X-rule can be solved by an answer that may or may not
have delayed literals. If the answer does have delayed literals, X-factoring is used to propagate
variable bindings captured in the head atom of the answer and create a positive delayed literal
for propagating the truth values of the delayed literals in the body of the answer.

Definition 4.8 [X-factoring] Let S be a system. Let G, of the form H « Ly, ..., L,, be an active
X-rule of a subgoal A in &, and let L; be the selected atom of G for some (1 < < n). Suppose
that L; is a subgoal in § and C' is an answer of L; in S, and C”, of the form H' — L{,...,L! |is a
variant of C' with variables renamed so that G and C’ have no variables in common, and m > 0.
Then the X-rule:

HO — L0, ...,Li_10,(L0)%,, Lis10, ..., L0

is the X-factor of G with C', where 6 is the most general unifier of L; and H'. a

The selected negative literal, possibly containing variables, in the body of an X-rule can be
solved if the positive counterpart succeeds (without binding any variables) or fails. A delayed
literal can be simplified if it is successful or failed.

Definition 4.9 Let S be a system.

o A subgoal A in S succeeds if A has an answer that has A in the head and an empty body,
and fails if A is completed in & without any answers;

o A ground negative delayed literal ~B? is successful if subgoal B fails, and is failed if subgoal
B succeeds;

o A positive delayed literal Bi is successful if subgoal A has an answer that has H in the
head and an empty body, and is failed if subgoal A is completed and does not have any
answer with H in the head.

a

The transformation COMPLETION requires the notion of a set of subgoals that are completely
evaluated so that it can dispose their active X-rules that are not answers.

17

Definition 4.10 Let S be a system and A be a non-empty set of subgoals in S, none of which is
completed. A is said to be completely evaluated if for every subgoal A € A, where (A : p) € S for
some X-sequence p, either A succeeds, or for every active X-rule GG of A corresponding to some
ordinal « in &, there exists an atom A; such that:

o A is the selected atom of GG; and
e A; is a subgoal in § that is either completed or in A; and

o for every atom H that is the head of some answer of A; in §, there exists an ordinal ¢ > «

and an X-rule G’ such that p(¢) = G'{«, H).

O

The transformation ANSWER COMPLETION is needed to get rid of answers of subgoals that
have positive delayed literals in their bodies, provided that they are not supported in the following
sense.

Definition 4.11 Let S be a system, A be a subgoal in & and H be an atom that occurs in the
head of some answer of A. Then H is supported by A in S if

(i) either A is not completed; or

(ii) there exists an answer C of A that has H in the head such that for every positive delayed
literal (Bl)éll in the body C', H; is supported by A;.

No atom is supported by A in § unless it follows from (i) and (ii). a

Notice that if a subgoal A in a system & has an answer C that has an atom H in the head
and only negative delayed literals in the body, then H is supported by A in §.

Let P be a finite program, R be an arbitrary but fixed computation rule, and () be an atomic
query. The following are all the transformations of systems, each of which transforms a current
system § into a new one.

e |[NEW SUBGOAL| Let A be a subgoal that is not in & and that satisfies one of the following
conditions:

— A is the initial atomic query @); or

— there is an active X-rule of some subgoal in & whose selected literal is either A or ~A.

Let Co,C4,...,Cx_1(k > 0) be all rules in program P with which A « A is X-resolvable,
and G;(0 <7 < k) be the X-resolvent of A «— A with C;. Let p be the X-sequence of length
k such that p(¢) = G;(C;)(0 <% < k). Then

s
SU{(A:p)

Remark: Repeated subgoals are not solved by resolution with rules in a program.

18

e |[POSITIVE RETURN | Let (A : p) € S, where A is a subgoal and p is its X-sequence. Let G
be an active X-rule of A corresponding to an ordinal o in &. Let A; be the selected atom
of GG, and let C be an answer of subgoal A; in & that has H in its head. If there is no
ordinal ¢ > « such that p(i) = G1{«a, H) for some X-rule GGy, then

S
S—{(A:p) U{(A:p-(Gofa, H))}

where (G5 is the X-resolvent of G with C' it C' has an empty body and is the X-factor of
with C' if C' has some delayed literals in its body.

Remark: A; may have multiple answers with the same atom H in the head. Only one of
them is used by POSITIVE RETURN to solve the selected atom A; in GG. So, in particular,
redundant answers are not used.

e |[NEGATIVE RETURN | Let (A : p) € S, where A is a subgoal and p is its X-sequence. Let GG
be an active X-rule of a subgoal A corresponding to an ordinal « in &, and let ~A; be the

selected literal of GG, where A; either succeeds or fails. Then
S
S—{(A) UA(A: - disposedla)}
S—{(A: A} U{(A: p-Grla)]
where G’ is G with the selected literal ~A; deleted.

) Let (A: p) € S, where A is a subgoal and p is its X-sequence. Let G be an

active X-rule of subgoal A corresponding to an ordinal « in §, and let ~B be the selected
literal of GG such that ~B is ground. Then

if Ay succeeds

if A; fails

S
S—{(A:p)yU{(A:p-(G"())}

where (i is obtained from G by replacing ~B with ~B®.

Remark: Non-ground negative literals are not delayed.

e [COMPLETION | Let A be a non-empty set of subgoals in S that is completely evaluated.
Then
S

for every A € A, replace (A, p) € S with (A, p-p')

where p' is an arbitrary sequence of all X-elements of the form disposed{a), where « is an
ordinal such that the X-rule of A corresponding to « in p is an active X-rule.

Remark: COMPLETION does not depend upon any a prior: stratification ordering of predi-
cates or atoms. Instead, a set of subgoals is inspected and completed dynamically.

e [SIMPLIFICATION]| Let (A : p) € S, where A is a subgoal that is completed and p is its
X-sequence. Let G be the X-rule of A corresponding to an ordinal a in § that is not

19

disposed and that has a delayed literal L in its body which is either failed or successful.
Then S

S AP UTCA: - disposed())]

S—{(A:)} UL(A: p-Grla))]
where GG’ is G with L deleted from its body.

Remark: simplifying a positive delayed literal does not generate variable bindings. The

if L is failed

if L is successful

reason is that variable bindings have already been propagated by X-factoring in POSITIVE
RETURN when a positive delayed literal is generated.

e [ANSWER COMPLETION | Let (A : p) € S, where A is a subgoal that is completed and p
is its X-sequence. Let H be the head atom of some answer of A in § such that H is not
supported by A. Then

S
S—{(A:p)u{(A:p-p'}

where p is an arbitrary sequence of all X-elements of the form disposed{c), where « is an

ordinal such that the X-rule of A corresponding to « in p is an answer that is not disposed

and that has H in the head.

4.3 Derivation and SLG Resolution

Definition 4.12 Let P be a finite program, R be an arbitrary but fixed computation rule, and
() be an atomic query. An SLG derivation for () is a sequence of systems Sg, Sy, ..., S, such that:

o Sy is the empty system {};

o for each successor ordinal 3+ 1 < «a, Sgyq is obtained from Sz by an application of one
of the transformations, namely, NEW SUBGOAL, POSITIVE RETURN, NEGATIVE RETURN,
DELAYING, COMPLETION, SIMPLIFICATION, or ANSWER COMPLETION,;

e for each limit ordinal 8 < «, Sg is such that (A : p) € Sg if A is a subgoal in S; for some
i< fand p=U{p|(A:p) €S, and 5 < B}.

If no transformation is applicable to S,, S, is called a final system of ().
SLG resolution is the process of constructing an SLG derivation for a query () with respect
to a finite program P under a computation rule R. O

To show that a final system always exists, we prove that each SLG derivation is a monoton-
ically increasing sequence of systems with respect to some partial ordering and each system in
an SLG derivation is bounded in size by some ordinal.

Definition 4.13 Let P be a finite program, and &; and S; be systems. Then §; C S, if for
every (A : p1) € &1, there exists (A : p2) € S, such that p; C py, i.e., p1 is a prefix of p,. O

Theorem 4.1 Let P be a finite program, R be an arbitrary but fized computation rule, and ()
be an atomic query. Then

20

a. there exists some ordinal A such that for any system S in any SLG derivation for (), the
length of the X-sequence of each subgoal in S ts bounded by A;

b. every SLG derivation of () is a monotonically increasing sequence of systems with respect
to C; and

c. there exists some SLG derwation for @), So, S, ..., S, for some ordinal o such that S, s
a final system.

Proof: Let IIp be the maximum number of literals in the body of a rule in P.

(a) Let S be any system in an SLG derivation for @), and (A : p) be any pair in S, where
A is a subgoal and p is its X-sequence. The length of p is bounded based upon the following
observations:

e When subgoal A is added to a system, its initial X-sequence contains the X-rules that are
obtained by resolving A «+ A on A in the body with rules in P. The number of literals in
the body of each X-rule is bounded by Ilp. Since P is finite, the initial X-sequence of A is
finite.

e When a transformation extends the X-sequence of A, X-elements are appended to the end
of the X-sequence. Let a be an ordinal and let G be the X-rule of a subgoal A corresponding
to a. We discuss the possible forms of X-elements e that are appended.

(i) If e is disposed{a), then G is disposed and can be disposed at most once by the
construction of an SLG derivation;

(ii) If e is of the form G'{«), where G’ is an X-rule, then G is disposed and replaced by
(' (in NEGATIVE RETURN, DELAYING, or SIMPLIFICATION).

(iii) If e is G'{a, H), where G is an X-rule and H is an atom, then G’ is obtained from
G by solving the selected atom of G with an answer that has H in the head, and G’
has one literal less than G that is not delayed. The number of such X-rules G’ that
can be obtained from G by POSITIVE RETURN is bounded by the number of distinct
atoms (that are not variants of each other), which is countable.

Therefore for each X-rule G of a subgoal A corresponding to an ordinal «, the number of X-rules
G’ that can be obtained directly from G is bounded by the number of distinct atoms, which is
countable. In both (ii) and (iii), either ' and G have the same number of literals in the body
and G’ has fewer literals that are not delayed, or G’ and G have the same number of literals that
are not delayed and GG' has fewer literals that are delayed. For any chain of X-rules, G, Gy, ..., G,
where each G;41(0 < j < [) is obtained from G by some transformation, [< 2IIp. Thus there
exists some countable ordinal A by which the length of the X-sequence p of A in § is bounded.
The ordinal A depends upon only the finite program P and the language LF (defined in Section
2) that is countable, and is applicable to the X-sequence p of any subgoal A in any system S in
an arbitrary SLG derivation for ().

For (b), let Sg, S1, ..., So be an SLG derivation for (). By definition, Sy is the empty system
{}. For each successor ordinal ¢« + 1(0 < ¢ + 1 < «a), §; C S;41 since each transformation
either adds a new subgoal to S; or extends the X-sequences of some subgoals in §;. For a limit

21

ordinal (0 < ¢ <), (A : p) € S, if and only if A is a subgoal in §; for some j < ¢ and
p=U{p|(A:p') €S, and j <i}. By (a), there exists some ordinal A by which the length of p’
for (A : p') € S; for each j < i@ is bounded. Thus U{p'|(A : p') € §; and j < i} is well defined.
Clearly S; C S, for every j < i. This concludes the inductive proof of (b).

For (c), the size of a system is bounded since the number of distinct subgoals (that are not
variants of each other) is countable and the length of the X-sequence of a subgoal in a system is
bounded. As each transformation increases the size of a system, and each SLG derivation for @)
is a monotonically increasing sequence of systems, there must exist some SLG derivation for ()
that ends with a final system. a

Theorem 4.1 shows that some final system can be derived for an atomic query @), given a
finite program P and an arbitrary but fixed computation rule R. It turns out that for any final
system S for (), either every subgoal in § is completed or some active X-rule of some subgoal in
S has a selected negative literal that is not ground.

Definition 4.14 Let P be a finite program, and S be a system. S is completed if every subgoal
in § is completed, and S is floundered if for some active X-rule G of some subgoal in §, GG has a
selected negative literal that is not ground. O

Lemma 4.2 Let P be a finite program, R be an arbitrary but fired computation rule, and () be
an atomic query. Then for every final system S for (), S is either completed or floundered.

Proof: Follows from the definitions of transformations and floundered and completed systems.
O

5 Soundness and Completeness

This section establishes the soundness and search space completeness of SLG resolution. First,
SLG resolution is shown to preserve all three-valued stable models. Second, SLG resolution
computes the well-founded semantics in the sense that in a final system that is completed, a
ground instance of a subgoal is true if and only if it is an instance of the head of some answer
of the subgoal that has an empty body, and is false if and only if it is not an instance of the
head of any answer of the subgoal. Third, we establish the termination of SLG resolution for
programs with the bounded-term-size property and the polynomial time data complexity of SLG
resolution for function-free programs.

5.1 Relating Partial Answers of Subgoals to a Program

Let P be a finite program, R be an arbitrary but fixed computation rule, and & be a system in
an SLG derivation for an atomic query. For each subgoal A in §, the multiset of X-rules of A
in § that are not disposed constitutes the set of partial answers for A. The head of each X-rule
contains relevant variable bindings that have been accumulated; delayed literals in the rule body
are partially solved and may be simplified away later; and the remaining literals in the rule body
are yet to be solved with respect to the original program P.

To relate P to X-rules of subgoals in a system &, we introduce some new predicates. But
first, let us consider an example.

22

Example 5.1 Suppose that an atomic query p(X) is evaluated with respect to the following
program:

(C1) pla).
(C2) p(X) < ~s,p(a).
(C3) 5« ~s, 8.

Assuming a left-to-right computation rule, the following intermediate system & may be con-

structed:
o w (e |
I: p(X) e« ~s,pla 2
P N 20 p(X) e st pla) (1)
3: p(X) e ~s* (2,p(a))

pa) : { 0: p(a) (C1) }
L: pla) < ~s,p(a) (C2))
where ~s has been delayed in X-rules of subgoals p(X) and s.

There are two observations on the treatment of X-rules of subgoals. First, X-rules of different
subgoals are treated independently, even if they are subgoals of the same predicate. For instance,
subgoal p(a) may be completed before subgoal p(X) since p(a) already succeeds. Second, X-rules
of a subgoal that have distinct head atoms are treated independently, especially in POSITIVE
RETURN and SIMPLIFICATION and ANSWER COMPLETION. In POSITIVE RETURN, when the
selected atom A in the body of an X-rule has multiple answers that have the same head atom,
only one of them is used to solve A. However, if A has two answers with distinct head atoms,
both will be used to solve A, even if the head atom of one answer subsumes the other. In both
SIMPLIFICATION and ANSWER COMPLETION, answers with the same head atom are grouped
together, in order to determine whether a delayed literal is successtul or failed, or whether the
head atom of an answer is supported. a

In relating a finite program P to X-rules of subgoals in a system &, we introduce new pred-
icates in a way that reflects the independent treatment of X-rules of different subgoals and the
independent treatment of X-rules of the same subgoal that have different head atoms. Specif-
ically, for every subgoal A in § and for every instance H of A, we introduce a new predicate
whose arity is the number of distinct variables in H. Atoms of the new predicate will be written
as B#, where B is an instance of H. They are derived using X-rules of A in S that are not
disposed and that have H in the head. There is a one-to-one correspondence between ground
atoms of the new predicate and ground instances of H.

Definition 5.1 Let P be a finite program, R be an arbitrary but fixed computation rule, and
() be an atomic query. Let & be a system in an SLG derivation for).

Let (i, of the form H « Ly, ..., L,, be an X-rule of a subgoal A in S. Then we denote by G4
the rule of the form, H# « L', ..., L', where for each i(1 < i < n),

o Llis L;if L; is not a delayed literal;

o ['is ~BE if L; is a negative delayed literal of the form ~ B?;

23

o L'is Bf if L; is a positive delayed literal of the form B4#.

We denote by P(S) the program that is the multiset of all rules G*, where G is an X-rule of a
subgoal A in § that is not disposed. O

Example 5.2 For the system & in Example 5.1, the corresponding program P(S) is as follows:
/* from non-disposed X-rules of p(X) */

X
p(a)gga))r
p(X)ix) — ~st.pla)
X .
p(X)igX; = S,

/* from non-disposed X-rules of s */

S S
8y« ~vs;, 8.

/* from non-disposed X-rules of p(a) */

, p(a)
p(a) a)*

»(
p(a)ggzg — ~s,p(a).
In general, P(S) depends upon the original program, unless S is completed. O

For technical reasons, we include in the Herbrand base HBpyp(s)y and HBp(s) all ground atoms
of the form Bj} for every subgoal A in S and for every instance H of A and for every ground
instance B of H. (An alternative is to introduce useless rules in P(S) such that H# « Hj for
every subgoal A in § and every instance H of A.)

Definition 5.2 Let P be a finite program, R be an arbitrary but fixed computation rule, and
() be an atomic query. Let S be a system in an SLG derivation for (). We associate with S a
set of ground literals I(S) of P U P(S) as follows:

o if a subgoal A in § has an answer that has an atom H in the head and an empty body,
then for every ground instance B of H, B € I(S) and Bf € I(S);

o if a subgoal A in S is completed and H is an instance of A and A has no answers with H
in the head, then ~B# € I(S) for every ground instance B of H;

o if a subgoal A in § is completed and B is a ground instance of A such that B is not an
instance of the head of any answer of A, then ~B € I(S) and ~Bj} € I(S) for every
instance H of A such that B is an instance of H.

a

The set 1(S) of ground literals captures subgoals that succeed or fail and delayed literals that
are successful or failed. For example, if a subgoal A succeeds in §, then every ground instance
of Aisin I(S), and if a subgoal A fails, then ~B € I(S) for every ground instance B of A.
Similarly, if a positive delayed literal B# is successful, then every ground instance of B4 is in
I(S), and if B4 is failed, then the negation of each ground instance of B# is in I(S). As we shall
see later, for any system & in an SLG derivation for an atomic query, I(S) is an interpretation of
PUP(S), i.e., I(S)is consistent. At this point, we define I(S) simply as a set of ground literals.

24

Lemma 5.1 Let P be a finite program, R be an arbitrary but fired computation rule, and () be
an atomic query. Let Sy, S1,...,Ss be an arbitrary SLG dertvation of (), where « s an ordinal.

Then 1(So) € I(S1) C ... C I(S.).

Proof: The lemma follows from two observations. One is that an answer of a subgoal that has
an empty body is never deleted by any transformation. The other is that when a subgoal A is
completed, answers of A can be simplified, but no new answer can be added whose head atom is
distinct from the head atom of any existing answer of A. a

Let P be a finite program and S be a system in an SLG derivation for an atomic query @).

To relate the semantics of P(S) to that of P, we look at the least partial model LPM(PU?(S)),

where J is an interpretation of P U P(S) and w is the quotient of P U P(S) modulo J. For
every ground instance B of a subgoal A in &, we compare the truth value of B with those of

atoms of the form B# in LPM(%%S)), where H is an instance of A and B is also an instance of

H, provided that J satisfies certain conditions. The correctness of transformations is expressed

in terms of some symmetry of LPM(%), which is defined as follows.

Definition 5.3 Let P be a finite program, R be an arbitrary but fixed computation rule, and @)
be an atomic query. Let & be a system in an SLG derivation for (). Let J be an interpretation
of PU P(S).

J is partially symmetric if for every ground subgoal B in S, J(B) = J(BE). J is symmetric
on a subgoal A in § if for every ground instance B of A,

e J(B)=tif and only if J(B#) = t for some instance H of A; and
e J(B) =fif and only if J(B#) = f for every instance H of A.

J is a symmetric interpretation of P U P(S) if J is symmetric on every subgoal in §. S is a
symmetric system if for every interpretation J of P U P(S) such that J is partially symmetric
and I(S) C J, LPM(%) is symmetric. O

The correctness of P(S) of a system S with respect to a program P is specified by the notions
of symmetric systems and symmetric interpretations. In comparing P(S) with P in the least
partial model LPM(%), where J is an interpretation of P U P(S), J is required to satisfy
two conditions. The condition /(S) C .J originates from the observation that rules in P(S) are
essentially derived from rules in P by solving subgoals that succeed or fail and by simplifying
delayed literals that are successful or failed. As mentioned previously, /(S) represents subgoals
that succeed or fail and delayed literals that are successful or failed. The other condition that J
is partially symmetric is due to DELAYING, where a ground negative literal of the form ~B may
be replaced by ~B? in the body of a rule. Recall that a negative delayed literal ~B? is viewed
as ~BE in P(S). In P(S), all negative literals are either of predicates in P or of the form ~BE,
where B is a ground subgoal. In particular, when S is completed, all negative literals in P(S),
if any, are of the form ~BZE, where B is a ground subgoal in S.

Recall that %%S) is a ground non-negative program that is obtained from the Herbrand
instantiation of P U P(S) by replacing every ground negative literal with its truth value in J.

PuUP

For each rule B « ¢ in J(S), ¥ 1s a possibly empty conjunction of atoms and the special atom

25

u. Also notice that %%S) = ? U @. In the following, we establish several key properties
relating g to @, which will be used later for proving the soundness and completeness of SLG

resolution.

Lemma 5.2 Let P be a finite program, R be an arbitrary but fized computation rule, and () be
an atomic query. Let Sy, Sy, ...,So be an arbitrary SLG dertvation of (), where « s an ordinal.
Then for every 1(0 < ¢ < «), and for every partially symmetric interpretation J of P U P(S;)
such that Uo<;<;1(S;) C J, and for every subgoal A that is not completed in S; and for every
ground instance B of A, if B «— ¥ is a rule in % then Bjy «— i is a rule in @ for some
instance H of A such that B is a ground instance of H.

The intuition of Lemma 5.2 is as follows. Given a subgoal A that is not completed, its initial
X-rules are obtained by X-resolution with rules in P. For each non-disposed X-rule G of A, if GG
has a selected atom, then (G is never disposed except by COMPLETION, and if (G has a selected
negative literal, say L, then either L is solved by NEGATIVE RETURN, or L is delayed by DELAYING
(if L is ground), or GG remains a non-disposed X-rule of A. The assumption about J ensures that
Lemma 5.2 continues to hold after an application of NEGATIVE RETURN or DELAYING. Notice
that in Up<;j<;I(S;) C J, if 7 is a successor ordinal of the form 3 + 1, then Up<;il(S;) = 1(Sp)
due to Lemma 5.1. Lemma 5.2 is used in the next subsection to establish one direction in the

symmetry of LPM(%(&)).

Proof of Lemma 5.2: The proof is based upon an induction on :. The basis case, ¢ = 0, holds
trivially since Sy is the empty system and has no subgoals.

Let ¢ be a successor ordinal S+ 1. Then §; is obtained from Sg by one of the transformations.
The cases of COMPLETION, SIMPLIFICATION, and ANSWER COMPLETION are trivial since they
affect only X-rules of subgoals that are completed in S;. The case of NEW SUBGOAL follows from
the use of the most general unifier in X-resolution in deriving the initial X-rules of a new subgoal.
The case of POSITIVE RETURN follows from the inductive hypothesis since POSITIVE RETURN
adds another X-rule to a subgoal that is not completed.

Let A be a subgoal in Sg and G be an active X-rule of A corresponding to an ordinal +, and
let ~A; be the selected literal of .

e NEGATIVE RETURN. If A; succeeds, then G is disposed in §;. By definition, A; must

have an answer in Sg that has A; in the head and an empty body. Then for every ground
instance By of Ay, By € I(S5) and (Bl)ﬁi € I(S3). By assumption, By € J.

If A; fails, then G is replaced with G’ that is G with ~A; deleted. By definition, A; is
completed in Sg without any answers. Then for every ground instance B; of Ay, ~B; €
1(8Sp), and so ~B; € J by assumption.

e DELAYING. If ~A; is ground, then G is replaced with G’ that is G except that ~A; is
replaced with ~(A4;)4t. In P(S;), a ground negative delayed literal ~(A;)* is viewed as
N(Al)ﬁi- Since J is partially symmetric, J(A;) = J((Al)ﬁi).

P(Sp)

P(S) _ PBs) 414 the lemma holds

In each of the cases for NEGATIVE RETURN and DELAYING, —5 7,

by inductive hypothesis.

26

Let ¢ be a limit ordinal. If A is a subgoal in &; that is not completed, then A is a subgoal in
Sp for some B < 1, and is not completed in every Sg such that 3 < 1 and A is a subgoal in Sg.
For every ground instance B of A and for every rule B « % in ?, let G' be an X-rule with the
fewest negative literals in its body that are not delayed such that for some 3 < ¢,

e (G is an X-rule of A in Sg, and

P(Sp)

= that is obtained from a ground instance of G4, where

e there exists a rule B « 1 in

H is the head atom of G.

The existence of G is ensured by the inductive hypothesis.
There are two cases:

o if G has a selected atom or is an answer, then (G is also an X-rule of A in §; since GG can
be disposed only by COMPLETION or SIMPLIFICATION and A is not completed in &;. The
lemma holds by inductive hypothesis;

o if (G has a selected negative literal, then either G remains an X-rule of A in &;, in which
case the lemma holds, or NEGATIVE RETURN or DELAYING has been applied to G. The
latter case, however, contradicts the assumption that GG has the fewest negative literals in
its body that are not delayed.

Lemma 5.3 Let P be a finite program, R be an arbitrary but fired computation rule, and () be
an atomic query. Let Sy, S1,...,Ss be an arbitrary SLG derwvation of (), where « is an ordinal.
For every 1(0 < ¢ < «) and for every partially symmetric interpretation J of P U P(S;) such
that Up<j<il(S;) € J, and for every subgoal A that is not completed in S; and for every ground
instance B of A, if B «— ¢ is a rule in @ for some instance H of A, then B «— 1 is a rule
in g such that
Undelay(¢) C v and b — Undelay(¢) C Uo<jciI(S;)

where Undelay(¢) = {B1|B1 or (Bl)éll occurs in ¢ for some subgoal Ay and some instance Hy
of A1}, and i is viewed as a set of atoms.

Lemma 5.3 reflects how the selected atom A; in the body of an X-rule GG of a subgoal A is
processed. Suppose that C' is an answer of A; with an atom Hj in the head. An application of
POSITIVE RETURN to (G using C' has two possibilities.

If C has an empty body, then every ground instance of Hy is in Ug<;<;I(S;). An X-rule G’
is generated from G by X-resolution with C', where GG’ is an instance of G, of the form G8, with
A10 deleted, and 6 is the most general unifier of A; with (a new variant of) H;. The condition
Y — Undelay(¢) C Uo<;<iI(S;) means that every atom in ¢ that does not occur in ¢ must be
(true) in Up<jci I(S;).

If C'" has some delayed literals in its body, then an X-rule G’ is generated from G by X-
factoring with C', where G’ is an instance of G, of the form (G, except that A;6 is repalced
with (Alﬁ)éll, and 6 is the most general unifier of A; with (a new variant of) H;. The condition
Undelay(¢) C @ means that every atom that is delayed or unsolved in ¢ must come from .

27

Lemma 5.3 is used in the next subsection to establish one direction in the symmetry of

LPM(%(&)), especially in the case of POSITIVE RETURN which introduces a new rule in P(S;).

Proof of Lemma 5.3: The proof is based upon an induction on :. The basis case, ¢+ = 0, is
trivial since Sp is the empty system and has no subgoals.

Let ¢ be a successor ordinal S+ 1. Then §; is obtained from Sg by one of the transformations.
The cases of COMPLETION, SIMPLIFICATION, and ANSWER COMPLETION are trivial since they
affect only X-rules of subgoals that are completed in S;. The case of NEW SUBGOAL follows from
the use of the most general unifier in X-resolution in deriving the initial X-rules of a new subgoal.
If S; is obtained from Sg by NEGATIVE RETURN or DELAYING, then @ = @ holds following
the same argument in the proof of Lemma 5.2, based upon the assumption that J is partially
symmetric and Up<;j<;/(S;) € J. The lemma holds by inductive hypothesis.

For the case of POSITIVE RETURN, let A be a subgoal in Sg and G be an active X-rule of
A corresponding to an ordinal 7, and let A; be the selected atom of GG. Let C' be an answer of
subgoal Ay in Sg. If C has an empty body, let G’ be the X-resolvent of G with C; if C' has some
delayed literals in its body, let G’ be the X-factor of G with C'. Let H be the head atom of G
and H' be the head atom of G, and B be a ground instance of H'.

Suppose that Bfj, « ¢ is a rule in @ that is obtained from a ground instance of (G')4.
Then by the definition of POSITIVE RETURN, there exists a rule, Bfj « ¢, in @ that is obtained

from a ground instance of G4 such that Undelay(¢') C Undelay(¢) and ¢—Undelay(4') C I(Sg).
By inductive hypothesis, there exists a rule, B « %, in ? such that Undelay(¢) C ¢ and
Y—Undelay(¢) C Up<j<pl(S;). Therefore Undelay(¢') C v and v —Undelay(¢') C Uo<ij<pl(S;).
The lemma holds.

Let ¢ be a limit ordinal. If A is a subgoal in &; that is not completed, then A is a subgoal in
Sp for some B < 1, and is not completed in every Sg such that 3 < ¢ and A is a subgoal in Sg.
By definition, every X-rule GG of A that is not disposed in §; must be an X-rule of A that is not

disposed in Sg for some < ¢. The lemma follows by inductive hypothesis. a

Lemma 5.4 Let P be a finite program, R be an arbitrary but fixred computation rule, and () be
an atomic query. Let Sy, S1,...,Ss be an arbitrary SLG derwvation of (), where « is an ordinal.
Then for every i1(0 < ¢ < «) and for every partially symmetric interpretation J of P U P(S;)
such that Up<j<il(S;) C J, and for subgoal A in S; that is not completed, let (A : p) € S; and
the following holds: For every X-rule G of A corresponding to some ordinal o in S;, of the form

H «— Left, Ay, Right

where Ay is the selected atom of G, and for every atom Hy such that G'{c, Hy) is an X-element
in p for some X-rule G', there exists some non-disposed X-rule G* of A in S; such that for every
rule in ﬂ%l of the form

Bf[— ¢left7 Bl; ¢right

obtained from a ground instance of G* such that By is a ground instance of H, (and A;), there

exists a rule in P(fi), obtained from a ground instance of (G*)*, of the form

By — Grese, bright

28

or
Blf}’ — ¢left7 (Bl)éfll 9 ¢Tight

where H' is the head atom of G*.

Recall that in the sequence p of annotated X-rules associated with a subgoal A, G'{«, Hy)
means that POSITIVE RETURN has been applied to an X-rule of A corresponding to some ordinal
a by using an answer with H; in the head. In Lemma 5.4, the X-rule G* is either G’ or some
X-rule that is derived, directly or indirectly, from G’ by solving or delaying some negative literals
in the body of G'. Lemma 5.4 describes essentially the relationship between an active X-rule G
that has a selected atom A; and X-rules that are derived from GG by POSITIVE RETURN. It is
used in the next subsection to prove the correctness of COMPLETION.

Proof of Lemma 5.4: The proof is based upon an induction on :. The basis case, ¢ = 0, is
trivial.

Let ¢ be a successor ordinal S+ 1. Then §; is obtained from Sg by one of the transformations.
For the case of NEW SUBGOAL, the initial X-rules of a new subgoal, say A, are derived by
X-resolution with rules in the program P. Transformation POSITIVE RETURN has not been
applied to any initial X-rule of A that has a selected atom. The lemma holds by inductive
hypothesis. The cases of COMPLETION, SIMPLIFICATION, and ANSWER COMPLETION hold by
inductive hypothesis, because they affect only X-rules of subgoals that are completed in S;. For
the cases of NEGATIVE RETURN and DELAYING, since J is partially symmetric and Ug<;<gI(S;) C

J, it can be verified that ﬂ%l = @. Thus the lemma holds by inductive hypothesis.
For POSITIVE RETURN, let (G be an active X-rule of A in Sg, of the form

H «— Left, Ay, Right

where Ay is the selected atom. Let C' be an answer of A; with an atom H; in the head in Sg
such that POSITIVE RETURN is applied to G by using C' when §; is derived from Sg. Let G’
be the X-resolvent of G with C' if C' has an empty body, and be the X-factor of G with C it C
has some delayed literals in its body. Then G’ satisfies the properties of G* as specified in the
lemma, and the lemma holds by inductive hypothesis.

If 7 is a limit ordinal, let A be a subgoal in S; that is not completed and let (A : p) € S,.
Let G be an active X-rule of A in S; with a selected atom A;, and H; be an instance of A; such
that G'({«, Hy) is an element of p for some X-rule G'. Then for some < i, both G and G’ are
non-disposed X-rules of A in Sg.

Let G* be an X-rule with the fewest negative literals that are not delayed in its body such
that for some 8 < 1,

e (* is a non-disposed X-rule of A in Sg; and

e for every rule
Bf[— ¢)left7 Bl; ¢right

P(Sﬁ), obtained from a ground instance of G4, there exists a rule

=

B#, — Gresi, bright

29

or
B]{—4[' — ¢left7 (Bl)éll 9 ¢'right
P(Sp)

in —5%, obtained from a ground instance of (G*)A, where H' is the head atom of G*.

The existence of G* is guaranteed by G'.

If G* has a selected atom or is an answer, then G* remains in §; since A is not completed in §;,
in which case the lemma holds by inductive hypothesis. Otherwise, G* has a selected negative
literal. Either G* remains in &;, in which case the lemma holds by inductive hypothesis; or
NEGATIVE RETURN or DELAYING has been applied to G*. In the latter case, since J is partially
symmetric and Up<;j<gl(S;) € J, there exists some ordinal -y, where § < v < %, and some X-rule
in S, that satisfies all the properties of G*, but has one less negative literal that is not delayed,
a contradiction. a

5.2 Preservation of Three-Valued Stable Models

The following key theorem shows that every system in an SLG derivation for an atomic query @)
is a symmetric system.

Theorem 5.5 Let P be a finite program, R be an arbitrary but fized computation rule, and () be
an atomic query. Let Sg, Sy, ..., S, be an arbitrary SLG derivation for (), where o is an ordinal.

Then for every 1(0 <i < «a), I(S;) CWF(PU P(S;)) and S; is a symmetric system.

Proof: The proof is based upon an induction on ¢. For the basis case, 1 = 0, Sy is the empty
system and [(Sp) is the empty set and P(Sp) is the empty program. The lemma holds trivially.
For the inductive case, we prove the following:

(a) LPM(%(&)) is symmetric for every partially symmetric interpretation J of P U P(S;)
such that Up<;<;1(S;) C J;

(b) I(S;)) CSWF(PUP(S)).

Let J be an arbitrary partially symmetric interpretation of P U P(S;) such that I(S;) C J. Then
Uo<j<il(S;) € J by Lemma 5.1. Thus (a) implies that S; is a symmetric system. We show that
(a) implies (b) and then prove (a).

(a) = (b). By inductive hypothesis, I(S;) C WF(P U P(S;)) for every j(0 < j <). Since P
is independent of P(S;) for every j(0 < j <), and I(S;) C I(S;) by Lemma 5.1, it follows that

Uogj<il(S;) S WF(P U P(Si))
We construct a partially symmetric interpretation J of P U P(S;) as follows:
o Jlp =WF(P);
e for every ground subgoal B in S;, J(B) = J(BE);
e for every subgoal A in §; and every instance H of A and every ground instance B of H, if

B# € Up<j<i1(S;), then Bff € J, and if ~Bf; € Uo<j<il(S;), then ~Bfy € J.

30

Clearly Up<;j<;I(S;) C J. The existence of J is ensured by the fact that Up<;<;1(S;) C WF(P U
P(S)).

Let M = LPM(%). Since J|p = WF(P) and P is independent of P(S;), M|p =
WF(P) as WF(P) is a three-valued stable model of P. By (a), M is symmetric. By the
definition of 1(S;), every literal of the form B# or ~Bi in I(S;) is in M and in WF(P U P(S;)),
where A is a subgoal in §;, H is an instance of A, and B is a ground instance of H. Since M is
symmetric, [(S;)|p € M|p = WF(P). Thus I(S;) CWF(P U P(S))).

Now that we have established that (a) implies (b), we prove (a). Let ¢ be a successor ordinal
B+ 1. Then S; is obtained from Sz by one of the transformations. By Lemma 5.1, I(Sz) =

Uo<j<il(S;). Let My = LPM(%(S’S)) and M, = LPM(%). By inductive hypothesis, M;
is a symmetric interpretation of P U P(S3). We prove that M, is symmetric by a case analysis
of the transformations.

NEW SUBGOAL: Suppose that A is a new subgoal that is introduced and B is an arbitrary
ground instance of A. Then the Herbrand instantiation of P contains a rule of the form B « ¢
if and only if the Herbrand instantiation of P(S;) contains a rule of the form Bj} « ¢ for some
instance H of A. Therefore M; is symmetric on A. Subgoals in Sz are not affected, and (a)
holds by inductive hypothesis.

NEGATIVE RETURN and DELAYING: Since J is a partially symmetric interpretation of P U
P(S8;) and Up<j<il(S;) C J, it can be verified that @ = @. Thus My = M; and (a) holds
by inductive hypothesis.

SIMPLIFICATION: Let A be a subgoal that is completed in Sg and G be an answer of A that
is not disposed. Let L be a delayed literal in the body of G. If L is a negative delayed literal,
it can be verified that @ = @, based upon the assumption on J. Thus My = M; and (a)
holds by inductive hypothesis.

If L is a positive delayed literal of the form Bfﬁ, where A, is a subgoal in Sg, H; is an instance
of Ay, and B is an instance of H;, there are two cases. If L is successful, then A; has an answer
C' in S that has H; in the head and an empty body. Then L is deleted from the body of G.
Clearly for every ground instance h of B, héll can always be derived using C41 in P(S;). Thus
M, = M; and (a) holds by inductive hypothesis. The case that L is failed is similar.

ANSWER COMPLETION: Let U be the set of all pairs (A, H) in Sg such that A is a subgoal
and H is the head atom of some answer of A and H is not supported by A. Then S; is obtained
from Sj by deleting all the answers of A that have H in the head, for some (A, H) € U.

By definition, for every pair (A, H) € U, A is completed, and for every answer GG of A that
has H in the head, there exists a positive delayed literal in the body of GG, of the form (Bl)ffl,
where H; is not supported by A;. Then for every ground instance B of H, ~B# € M, and
~Bf#i € M,. Hence My = M; and (a) holds by inductive hypothesis.

POSITIVE RETURN: First, POSITIVE RETURN does not affect subgoals that are completed in
Ss. In particular, for every completed subgoal A in Sg and every answer ' of A that is not
disposed in &g, and for every positive delayed literal in the body of €, of the form Bfﬁ, Ay is
also completed. The reason is that a positive delayed literal is created by POSITIVE RETURN
from an active X-rule with a selected atom, and an active X-rule of a subgoal with a selected
atom is disposed only by COMPLETION. By inductive hypothesis, M; remains symmetric on all

completed subgoals in §;, which are precisely completed subgoals in Sp.

31

Second, let A be an arbitrary subgoal in §; that is not completed, and let B be an arbitrary
ground instance of A. By Lemma 5.2, B € M, implies Bff € M, for some instance H of A, and
if ~B# € M, for every instance H of A, then ~B € M.

For the other direction, let P’ = %5—1 Recall that M, = TP, . We show by induction on
k that for every £ > 0, and for every subgoal A in §; and every ground instance B of A, if
Bf € Und(T]lef) for some instance H of A, then B € Und(M,)U Pos(M,), and if Bf; € POS(TP,)
for some instance H of A, then B € Pos(Ms).

The basis case, k = 0, is trivial since T]T;? = (), in which every ground atom is false. For the
inductive case, k + 1, consider any rule of the form B# « ¢ in P’ for some instance H of A.
By Lemma 5.3, there is a rule B « % in P’ such that Undelay(¢) C ¢ and ¢ — Undelay(¢) C
Uo<j<il(S;) = 1(Sp). By the definition of I(Sp), every literal in I(Sg) of the form (Bl)éll
or N(Bl)éll is in M;, where A; is a subgoal in S and H; is an instance of A; and B is a
ground instance of B;. Since Mj is symmetric by inductive hypothesis, every ground atom in
W — Undelay(qb) isin My. As Mi|p = M,|p, every ground atom in ¢ — Undelay(¢) is in M; too.
If Bf ¢ Und(TP, ') due to a rule Bf « ¢, then B is in Und(Ml) U Pos(M3) due to the rule
B « 1 by inductive hypothesis. Similarly, if B4 € POS(TP, '), then B € Pos(M,).

This concludes the induction on k. Thus for every subgoal A that is not completed in §; and
for every ground instance B of A, if Bff € M, for some instance H of A, then B € M,, and if
~B € My, then ~B# € M, for every instance H of A.

This concludes the proof that M, is symmetric, and so (a) holds.

COMPLETION: Following the same argument as in POSITIVE RETURN, COMPLETION does not
affect subgoals that are completed in Sz. In particular, M; and M; coincide on all literals of the
form Bfj or ~B#, where A is a subgoal that is completed in Ss. In addition, M;|p = Ms|p. By
inductive hypothesis, M; remains symmetric on all subgoals that are completed in Sg.

By definition, COMPLETION disposes all active X-rules of some subgoals (that are not an-
swers), and so P(S;) can be obtained from P(Sgz) by deleting some rules. Therefore My < M,
(with respect to the truth ordering). Lemma 5.2 together with My < M; implies by inductive
hypothesis that M, is symmetric on all subgoals that are not completed in ;.

Let A be a non-empty set of subgoals that are completely evaluated in Sz such that all active
X-rules of subgoals in A are disposed by COMPLETION. It remains to show that M, is symmetric
on subgoals in A. Let P’ = % Since My < My and M,|p = M;|p, it suffices to prove that
for every k > 0, and for every subgoal A € A and every ground instance B of A,

(1) if Be Und(TP,) then BA € Und('rp,) U Pos(TP,) for some instance H of A; and

(2) if B € Pos(7}%), then Bft € Pos(7}) for some instance H of A.

The basis case, k = 0, is trivial since 7 = §. For the inductive case, suppose that B €

Und(T]ny) U POS(T]T;, 1), and the derivation of B uses a rule of the form B «— ¢ € P'. However,
B «— ¢ is also a rule in %(Sﬁ). By Lemma 5.2, Bff «— ¢ is a rule in %(Sﬁ)

If B4 « ¢isarulein P, then (1) and (2) hold by inductive hypothesis. Otherwise, since A is
in A, either A succeeds, in which case (1) and (2) hold, or A has an active X-rule GG corresponding

to some ordinal « in Sg of the form

H «— Left, Ay, Right

32

with a selected atom A;, and B# « ¢ is obtained from a ground instance of G* and is of the
form

B#t — Giese, Bry bright

where B; is a ground instance of A;. By assumption on B, B; € Und('r]yf) U POS(T]T;]/C). By
inductive hypothesis on k, (1) and (2) hold for B; and (Bl)f}fl for some instance H; of Aj.
Since A is completed in S;, H; must be the head atom of some answer of A in S; that is not
disposed. By the definition of A, the X-sequence of A in Sg must contain an X-element of the
form G'{a, Hy) for some X-rule . By Lemma 5.4, there exists some instance H' of A such that

B — Gresi, bright

or
A
Blf}’ — ¢left7 (BI)H117¢Tight

is a rule in @.

The number of positive literals in the body of an active X-rule is bounded by the maximum
number of literals in the body of a rule in P, which is finite. By repeatedly applying the same
argument for Bfl — ¢ to Bfl, — Olefts (Bl)éll,qﬁnght, we will eventually obtain some Bf]* for
some instance H* of A such that (1) and (2) hold for B and Bi.. This concludes the induction
on k.

This concludes the proof for the case of COMPLETION.

The other inductive case for ¢ is that ¢ is a limit ordinal other than 0. Let M = LPM(%).

Let A be a subgoal that is completed in S;. Then A must be completed in Sg for some 3 < 1,
and A remains completed in §; for all j(# < j < i). After A becomes completed in Sz, the
only transformations that can be applied to A are SIMPLIFICATION and ANSWER COMPLETION,
which either delete some answers of A or deletes some successful delayed literals in the body of

an answer of A. The following two properties hold:

o l'irst, the answers of A in §; that are not disposed can be obtained from those of A in Sg
by repeatedly applying SIMPLIFICATION and ANSWER COMPLETION.

e Second, by the argument for the case of a successor ordinal, LPM(%(S])) and
LPM(%) coincide on all ground literals of the form Bf} or ~B#, where 8 < j < i

and A is a subgoal that is completed in Sp.

Thus M coincides with LPM(%(S’S)) on all literals of the form Bjfj or ~Bj, where A is a
subgoal in S; that is completed, H is an instance of A and B is a ground instance of H.

Let A be a subgoal that is not completed in §;, and let B be an arbitrary ground instance
of A. By Lemma 5.2, B € M, implies By € M, for some instance H of A, and if ~B# € M, for
every instance H of A, then ~B € M,. For the other direction, let P’ = %(Si). The argument
is the same as in the case of POSITIVE RETURN, by using Lemma 5.3 and an induction on k
in T]T;]f, with an additional observation. That is, for each B# in Und(ﬁyf) U POS(T]T;]f), there is a

corresponding derivation represented as a finite sequence of rules rg,...,r; in P’ such that

e the head of r; is Bj}; and

33

e for each r;(0 < j <), every atom in the body of r; is either u or is the head of r; for
some j' < j.

Since [is finite, there exists some 3 < ¢ such that every rule r;(0 < j <) is a rule in PUZ(S’S).

Then B# is in Und(LPM(%(S'B))) U POS(LPM(%(SKS))). The inductive step in the induction

PUP(Sp)

on k holds since LPM (%) is symmetric by the inductive hypothesis.

O

Theorem 4.1 shows that some final system S can be derived for an atomic query @), given
a finite program P and an arbitrary but fixed computation rule R. By Lemma 4.2, § is either
completed, i.e., every subgoal in § is completed with only answers, or floundered, i.e., some
subgoal in § has an active X-rule with a selected non-ground negative literal. The following
theorem shows by using Theorem 5.5 that every three-valued stable model of P is preserved
when a completed system is reached. We discuss later in Section 7.2 how floundering may be
avoided by imposing certain conditions on a program and the computation rule.

Theorem 5.6 Let P be a finite program, R be an arbitrary but fized computation rule, and ()
be an atomic query, and S be a final system for () that is completed. Then

(a) for every I € ST3(P), there exists a symmetric interpretation M of P U P(S) such that
M|p =1 and M|p(5) € STS(P(S)),

(b) for every I € ST3(P(S)), there exists a symmetric interpretation M of PU P(S) such that
M|p(5) =1 and M|p € ST3(P)

Proof: Since § is a final system that is completed, all X-rules of subgoals in & that are not
disposed are answers. Thus P(S) and P are independent of each other. By Theorem 5.5, § is a
symmetric system.

For (a), let I € ST3(P). By Theorem 2.3, WF(P) C I. By Theorem 5.5, I(S) C WF(P
P(S)). Since P and P(S) are independent of each other, WF(PUP(S)) = WF(P)UWF(P(S)
Thus I(S)|p € WF(P) C I. We construct a partially symmetric interpretation J of P U P(S)
as follows:

U
).

o J|p=1; and
e for every ground subgoal B in S, J(B) = J(BE); and

The existence of J is ensured by the fact that (S) C WF(P U P(S)) and WF(P) C I.
Notice that I(S) C J. Let M = LPM(%%S)). By Theorem 5.5, S is a symmetric system
and so M is symmetric. Since P and P(S) are independent of each other, M|p = LPM ()

Jlp
and M|p(s) = LPM(Jflgfg)). As J|p=1¢e8T3(P), M|p = 1.

Both M and J are partially symmetric and M|p = J|p = [. Thus for every ground subgoal
Bin S, M(BE) = J(BE) = I(B). Since S is completed, all negative literals occurring in P(S)
are of the form ~BE. Thus P8 — P Hence M|psy = LPM(P(S))= LPM(P(S)), and

Jp(s) M|ps) Jp(s) M|ps)
SO M|p(5) € ST3(P(S)).

34

This concludes the proof for Part (a) of the lemma, and we now show that Part (b) of the
lemma holds. Let I € ST3(P(S)). First, we show that there exists a symmetric interpretation
My of P U P(S) such that M|ps) = 1.

By Theorem 2.3, WF(P(S)) C I. By Theorem 5.5, I(S§) C WF(P U P(S)). Since P and
P(S) are independent of each other, WF(P U P(S)) = WF(P)UWF(P(S)). Thus I(S)|ps) €
WF(P(S)) C I. Let J be an interpretation of P U P(S) such that

o Pos(J)= Pos(I(S))U {B,BE|BE ¢ Pos(1) for some ground subgoal B in §}; and
e Neg(J)= Neg(I(S))U{B, BE|BE € Neg(I) for some ground subgoal B in S}.

The existence of J is ensured by the fact that [(S) C WF(P U P(S)). Also notice that J is
partially symmetric and [(S) C J.

Let My = LPM(%). By Theorem 5.5, My is symmetric. Since P and P(S) are inde-
pendent of each other, My|ps) = LPM(P(5)). Notice that for every ground subgoal B in S,

Jlp(s)
J(BE) = I(BE). Therefore]T(S) = 25) and so Molps) = LPM(@). Since I € ST3(P(S)),
Mo|psy = 1. ‘

Jp(s) I
We partition the Herbrand universe HBp into H; U Hy, where H; is the set of all atoms
B € HBp such that B is a ground instance of a subgoal in S, and Hy = HBp — H;. We

construct a symmetric interpretation M of P U P(S) as follows:

® M|psy =1; and
e M(B)= My(B) for every B € H;, where B is a ground instance of a subgoal in S.

For atoms in H,, their truth values in M are chosen as follows. We construct a program Py,
from the Herbrand instantiation of P by

o deleting every rule whose head is an atom in Hy;

e deleting every rule whose body contains a positive literal B such that B € H; and M(B) =
f.

?

o deleting every rule whose body contains a negative literal ~B such that B € H; and

M(B) =t;
e replacing each positive literal B in the body of a rule with u if B € H; and M(B) = u;
e replacing each negative literal ~B in the body of a rule with u if B € H; and M(B) = u.

Consider each ground atom in Pj;,,,; as a new propositional symbol, and let M; be an arbitrary
three-valued stable model of Py, viewed as a propositional program. Then for every atom

B e HQ,
e if B occurs in Py, M(B) = Mi(B);

e otherwise, M(B) =f.

35

Notice that M is a symmetric interpretation of P U P(S) such that M|ps) = I and I(S) C

M. Let M' = LPM(%%S)). By Theorem 5.5, M’ is symmetric. We show that M = M'.
First, since M|ps)y = I and I € ST3(P(S)) and P and P(S) are independent of each other,
M'|psy = I = M|p(s). Second, for every atom B € Hy, M'(B) = M(B) as both M and M' are
symmetric and M'|psy = M|ps). Third, for every atom B € H,, M'(B) = M(B), which can be
verified by the construction of Py, and the usage of a three-valued stable model M; of Py
in the definition of M. Thus M = M’.

Since M = M' = LPM(%%S)) and P and P(S) are independent of each other, M|p =
LPM(MLLD), which implies that M|p € ST3(P). Furthermore, M|p(s)y = I and M is symmetric,
and so (b) holds.

O

5.3 Computation of the Well-Founded Partial Model

The primary purpose of SLG resolution is to compute answers of a query with respect to the
well-founded partial model of a finite program. Let S be a final and completed system that is
derived for an atomic query with respect to a finite program P. We show that WF(P) coincides
with WF(P(S)) as far as ground instances of subgoals in S are concerned. Moreover, for every
ground instance B of any subgoal A in S, B is true in WF(P) if and only if B is an instance
of the head of an answer of A that has an empty body, and B is false in WF(P) if and only
if B is not an instance of the head of any answer of A. In other words, the truth values of
ground instances of subgoals relevant to a query can be determined directly from the answers
in §, without any further derivation. Finally we show that SLG resolution satisfies the most
general answer property in the sense that if for some instance H of an atom (), VH is true in the
well-founded partial model, then there is an answer of () whose head has H as an instance and
whose body is empty.

Theorem 5.7 Let P be a finite program, R be an arbitrary but fized computation rule, and () be
an atomic query, and S be a final system for () that is completed. Then there exvists a symmetric

interpretation J of P U P(S) such that J|p = WF(P) and J|pisy = WF(P(S)).

Proof: By Theorem 2.3, WF(P) € ST3(P). By Theorem 5.6, there exists a symmetric inter-
pretation M of P U P(S) such that M|p = WF(P) and M|ps) € ST3(P(S)). By Theorem 2.3,
WF(P(S)) C M|p(5). Therefore for every subgoal A in § and for every ground instance B of A
inS,
e if Bjj € WF(P(S)) for some instance H of A, then Bjj € M|p(s). Since M is symmetric,
B e M|p =WF(P); and

o if ~Bjj € WF(P(S)) for every instance H of A, then ~B# € M|p sy for every instance H
of A. Since M is symmetric, ~B € M|p = WF(P).

For the other direction, WF(P(S)) € ST3(P(S)). By Theorem 5.6, there exists a symmetric
interpretation M of PU P(S) such that M|ps) = WF(P(S)) and M|p € ST3(P). By Theorem
2.3, WF(P) C M|p. Therefore for every subgoal A in § and for every ground instance B of A
inS,

36

o if B € WF(P), then B € M|p. Since M is symmetric, there exists an instance H of A
such that B# € M|psy = WF(P(S));

o if ~B € WF(P), then ~B € M|p. Since M is symmetric, for every instance H of A,
~Bjy € Mlps) = WF(P(S))

Let J be an interpretation of P U P(S) such that J|p = WF(P) and J|ps) = WF(P(S)).
Then J is a symmetric interpretation by the arguments above.
O

Theorem 5.7 says only that the set of answers in a final system S preserves the well-founded
partial model as a whole as far as instances of subgoals relevant to a query are concerned. The
following theorem establishes further that the truth values of ground instances of subgoals in the
well-founded partial model of the original program can be determined by simply looking at the
syntactic format of the set of answers in &, without any further derivation.

Theorem 5.8 Let P be a finite program, R be an arbitrary but fized computation rule, and ()
be an atomic query, and S be a final system for () that is completed. Then for every subgoal A
in § and every ground instance B of A,

a. B € WF(P) if and only if B is an instance of the head of an answer of A in S that has
an empty body; and

b. ~B € WF(P) if and only if B is not an instance of the head of any answer of A in S.

Proof: Let I be the interpretation of P(S) such that I = I(S)|p(s). By Theorem 5.7, it suffices
to prove that I = WF(P(S)). Clearly I C WF(P(S)) by the definition of /(S) in Definition
5.2.

For the other direction, it suffices to show that I € ST3(P(S)),i.e., [= LPM(ﬂIﬂ). Since §
is a final system, no transformation can be applied. For every negative literal ~BE that occurs
in P(S), since ~B? cannot be simplified using SIMPLIFICATION, /(BE) = u. Since ANSWER
COMPLETION cannot be applied to S, for every subgoal A in § and for every atom H that occurs
in the head of some answer of A, H is supported by A. Let J = LPM(ﬂIﬂ). By a structural
induction over the definition of H being supported by A,

e J(Bj}) =t for every ground instance B of H if and only if A has an answer that has H in
the head and an empty body;

e J(Bj}) = u for every ground instance B of H if and only if A has some answers that have
H in the head and all answers of A that have H in the head have some delayed literals.

Therefore [= J and I € ST3(P(S)). By Theorem 2.3, WF(P(S)) C 1. O

SLG resolution produces answers of queries that may contain variables. The following theorem
shows that if the universal closure, VH, of some instance H of a subgoal A is true in the well-
founded partial model, then SLG resolution is able to derive an answer of A that is at least as
general as H, provided that a completed final system can be constructed.

37

Theorem 5.9 Let P be a finite program, R be an arbitrary but fized computation rule, and ()
be an atomic query, and S be a final system for () that is completed. Then if for some instance

H of a subgoal A in S, VH is true in WF(P), then there is an answer of A in S whose head has

H as an instance and whose body is empty.

Proof: Recall that the Herbrand universe HU is constructed from a language LF that contains
all function symbols in P and (). In addition, LF contains a unary function f’ and a constant
¢ that do not occur in P or (). Let Xy,..., X,, be all the distinct variables in H, and H* be the
ground atom obtained from H by replacing each variable X; with the term (f")*(¢’). Then H* is
true in WF(P) since VH is true in WF(P). By Theorem 5.8, there is an answer C of subgoal
Ain § whose head has H* as an instance and whose body is empty. Since f’ and ¢’ never occur
in any SLG derivation, the head of €' must also have H as an instance. a

5.4 Termination and Data Complexity

SLG resolution terminates for all function-free programs, and more generally, all programs with
the bounded-term-size property [45]. The following definition is adapted from [45], with the
difference that every variable is treated as of size 1 due to variant checking of subgoals.

Definition 5.4 [Bounded-Term-Size Property] The size of a term is defined recursively as fol-
lows:

e The size of a variable or a constant is 1.

e The size of a compound term f(¢1,...,%,) is one plus the sum of the sizes of its arguments.

A finite program P has the bounded-term-size property if there is a function f(n) and a (com-
putable) computation rule R such that whenever an atomic query @) has no arguments whose
sizes exceed n, no atom in any X-rule of any subgoal in § has an argument whose size exceeds
f(n), where § is any system in any SLG derivation for () with respect to P. O

Definition 5.5 Let P be a finite program. Then |P| denotes the number of rules in P, and 1lp
denotes the maximum number of literals in the body of a rule in P. Let s be an arbitrary positive
integer. Then N (s) denotes the number of atoms of predicates in P that are not variants of each
other and whose arguments do not exceed s in size. a

Theorem 5.10 (Termination) Let P be a finite program with the bounded-term-size property,
R be an arbitrary but fired computation rule, and () be an atomic query. Then a final system for
Q can be constructed in O(N(s) x |P| x N'(s)117) transformation steps for some s > 0.

Proof: Let n be the maximum size of arguments in (). Let S be any system in an SLG derivation
for (). By definition, no atom in any X-rule of any subgoal in & has an argument whose size
exceeds f(n) for some function f. Let s = f(n).

The number of distinct subgoals in § is bounded by N (s). For each subgoal A in S, the
length of the initial X-sequence for A introduced by NEW SUBGOAL is bounded by |P|. Let G be
an X-rule GG of a subgoal A in § that is not disposed. The number of literals in the body of G
is bounded by IIp. This is due to the fact that delayed literals of an answer are not propagated
in POSITIVE RETURN. The number of X-rules that can be generated directly from G is

38

e at most NV (s) if G has a selected atom, and
e at most 1 otherwise.
Each of the resulting X-rules that is generated directly from G either

e has the same number of delayed literals as G and has one literal less than G that is not
delayed; or

e has the same number of literals that are not delayed as G and has one delayed literal less

than G.

Finally each X-rule corresponding to an ordinal in the X-sequence of A in § can be disposed
only once. Therefore the size of a system S is bounded by O(N(s) x |P| x N(s)117). As each
transformation increases the size of a system, a final system can be constructed in O(N(s) x
|P| x N(s)!'#) steps.

O

In the framework of deductive databases, a query can be represented by an intensional
database (IDB), P;, which can be any finite function-free program. The predicates that oc-
cur in the rule bodies in Pr, but not in the rule heads in P;, are the extensional database (EDB)
predicates. An EDB is represented as a finite set of ground atoms over the EDB predicates.
Given an EDB P, we can form a program P; U Pg. P; can be viewed as a function that maps
Pg to the well-founded partial model WF(P; U Pg).

Van Gelder et al. [46] has shown that for function-free programs, computing the well-founded
semantics has a polynomial time data complexity. The notion of data complexity, as defined by
Vardi [47], is the complexity of evaluating a database query when the query is fixed and the
database is regarded as input.

Definition 5.6 [46] The data complezity of an IDB is defined as the computational complexity
of deciding the answer to a ground atomic query as a function of the size of the EDB; in the
context of well-founded semantics, this means deciding whether the ground atom is positive in
the well-founded partial model. a

Theorem 5.11 Let Py be an IDB that is an arbitrary finite function-free program, Py be a finite
EDB, and P be PrU Pg. Let R be an arbitrary but fired computation rule, and @) be a function-
free ground atomic query. Then a final system S for () can be constructed in polynomial time in

the size of the KDB.

Proof: For function-free programs and atomic queries, the size of each argument is 1. Then N (1)
denotes the number of distinct function-free atoms that are not variants of each other. Since the
number of predicates in P and their arities are fixed, N'(1) is a polynomial in the size of Pg. By
Theorem 5.10, a final system S for) can be constructed within O(N (1) x |P| x N'(1)17) steps.
Let k = N (1) x |P| x N (1)"'7. We show that the total time for constructing S is polynomial in
the size of Pg.

We assume that a global table of subgoals and their answers are maintained. Answers of the
same subgoal that have the same atom in the head are grouped together since only one of them
is used in POSITIVE RETURN. Thus the time for searching and inserting a subgoal is O(logA (1)).

39

Similarly it takes time O(logN (1)) to insert an answer and check whether the inserted answer
has the same head atom as some previous answer already in the table.

Since the EDB Py is a finite set of ground facts, all literals of EDB predicates can be solved
directly and so subgoals of EDB predicates do not have to be maintained. In the following all
subgoals refer to subgoals of IDB predicates.

Each application of NEW SUBGOAL takes time O(logN (1)) for checking whether a subgoal
is new and a constant amount of time to construct all initial X-rules of a subgoal (since Pj is
fixed).

Each application of POSITIVE RETURN and NEGATIVE RETURN can be carried in a data-
driven manner. When an X-rule G is generated that has a selected atom A, POSITIVE RETURN
is performed on G with all existing answers of A. When an answer for A is derived whose
head atom is distinct from that of all previous answers, POSITIVE RETURN can be performed on
all active X-rules that have a selected atom A using the new answer. Thus the time for each
application of POSITIVE RETURN or NEGATIVE RETURN is at most O(logA (1)) if we include the
time to check whether a newly generated answer of a subgoal has a head atom that is distinct
from all previous answers. Similarly each application of DELAYING is at most O(logN (1)).

By definition, the transformation SIMPLIFICATION is applied to only subgoals that are com-
pleted. It can be done in a data-driven manner based upon whether a delayed literal is successful
or failed. The time for each application of SIMPLIFICATION is a constant.

We assume that COMPLETION is postponed until no other transformation can be applied to
subgoals that are not completed. A linear traversal of all active X-rules of all subgoals that are
not completed can determine subgoals that are not completely evaluated, i.e.,

e a subgoal that has an active X-rule with a selected negative literal;

e asubgoal that has an active X-rule whose selected atom A is a subgoal that is not completely
evaluated.

The complement of the set of subgoals that are not completely evaluated, with respect to the
set of all subgoals that are not completed, gives the largest possible set of subgoals that are
completely evaluated. Thus the time of one application of COMPLETION is O(k). The total
number of applications of COMPLETION is O(N (1)), and so the total time spent on COMPLETION
is O(N (1) x k).

We assume that ANSWER COMPLETION is postponed until no other transformation is appli-
cable. A linear traversal of all answers of subgoals that are completed can determine all pairs
(A, H), where H is the head of an answer of a subgoal A and H is supported by A. Then
answers of a completed subgoal A whose heads are not supported by A are deleted by ANSWER
COMPLETION. The time of one application of ANSWER COMPLETION is O(k). The total number
of applications of ANSWER COMPLETION is the total number O(N (1)) of distinct subgoals times
the total number O(N(1)) of distinct head atoms in answers of a subgoal. Hence the total time
spent on ANSWER COMPLETION is O(N(1)? x k).

In summary, the time for constructing a final system & is O(kxlogN (1)+N (1) xk+N(1)? x k),
where k = N(1) x |P| x N(1)!'7 and it is polynomial in the size of Pg. Notice that P; in
P = Py U Py is fixed, and so |P]| is linear in the size of Py and Ilp is a constant since every rule
in Pg is a ground fact, with an empty body. In addition, N (1) is polynomial in the size of Pg.

O

40

In practice, efficient incremental algorithms have been developed that detect subgoals that are
completely evaluated or are possibly involved in loops through negation in a constant amount of
time [11]. We believe that the freedom of choosing an arbitrary computation rule and choosing an
arbitrary strategy of selecting transformations in SLG resolution offers the maximum flexibility
for practical implementations.

6 Restricted SLG Resolution

SLG resolution provides a general framework for effective query evaluation of logic programs
with respect to the well-founded partial model. In this section, we show that SLG resolution can
be simplified for restricted classes of programs without compromising its soundness and search
space completeness. In particular, we consider definite programs, locally stratified programs, and
modularly stratified programs. For any program in these classes, the well-founded partial model
is two-valued and is the only stable model of the program.

6.1 Definite Programs

Definite programs are programs without negation. The well-founded partial model [46] of a def-
inite program coincides with the least Herbrand model [44]. Any transformation that deals with
negative literals is no longer needed. Without negation, no delayed literals will be introduced.
Thus all X-rules in a system are just rules.

The following transformations are needed and sufficient for definite programs:

e NEW SUBGOAL for introducing a new subgoal and resolution with rules in a program;

e POSITIVE RETURN for solving the selected atom of an X-rule using an answer (that has an
empty body);

e COMPLETION for disposing active X-rules of subgoals that are completely evaluated.

The results in Section 5 can be specialized to definite programs and the corresponding least
Herbrand model semantics.

Since COMPLETION does not affect answers of subgoals, all applications of COMPLETION for
definite programs can be postponed until the last step. Even then, it is not necessary since all
answers have already been generated. That is, only NEW SUBGOAL and POSITIVE RETURN are
really necessary for definite programs. This restriction of SLG resolution to definite programs
results in a query evaluation strategy that is equivalent to OLDT [43] and SLD-AL [49], modulo
differences in variant checking or subsumption checking of subgoals.

In practice, if a subgoal is completed, there is no need for a choice point for potentially
new answers of the subgoal. That is, active X-rules that have a selected atom A, where A is
completed, can be disposed after all answers of A have been used in POSITIVE RETURN to solve
the selected atom. The use of COMPLETION may allow early disposal of such active X-rules.

41

6.2 Locally Stratified Programs

Stratified programs are programs in which there is no negation through recursion [1]. Przy-
musinski [28] extended the class of stratified programs to a wider class, called locally stratified
programs, and introduced the perfect model semantics. There is no infinite recursion through
negation in locally stratified programs. The perfect Herbrand model of a locally stratified pro-
gram coincides with the well-founded partial model.

Let P be a finite program. P is locally stratified [28, 37] if there is an assignment of ordinal
levels to ground atoms such that whenever a ground atom appears negatively in the body of an
instantiated rule, the head of the ground rule is of strictly higher level, and whenever a ground
atom appears positively in the body of an instantiated rule, the atom in the head has at least
its level.

Due to stratification, for every selected ground negative literal ~B, subgoal B can be com-
pleted before ~B needs to be solved using NEGATIVE RETURN. Since the well-founded partial
model of a stratified program is two-valued, B either succeeds or fails when it is completed. Thus
DELAYING is not needed.

In summary, the following transformations are necessary and sufficient for locally stratified
programs:

e NEW SUBGOAL for introducing a new subgoal and resolution with rules in a program;

e POSITIVE RETURN for solving the selected atom of an X-rule using an answer (that has an
empty body);

® NEGATIVE RETURN for solving the selected ground negative literal of an X-rule when its
positive counterpart either succeeds or fails;

® COMPLETION for disposing active X-rules of subgoals that are completely evaluated.

By an induction on the strata of ground subgoals, it can be shown that all ground subgoals
can be completed and either succeed or fail before the corresponding negative literal is solved
by NEGATIVE RETURN. Thus the results in Section 5 can be specialized to locally stratified
programs and the corresponding perfect Herbrand model.

Extensions of OLDT [43] and SLD-AL [49] have been developed for stratified programs [20,
40]. Our restriction of SLG resolution to locally stratified programs differs in that a single system
of subgoals is maintained, which guarantees that each subgoal be evaluated only once.

6.3 Modularly Stratified Programs

Ross [37] studied a more general class of programs that can be evaluated in a subgoal-at-a-time
fashion, called modularly stratified programs. Consider the well known game-playing program

[17]:
win(X) «— move(X, Y), ~win(Y).

where X is a winning position if there is a move from X to Y that is not a winning position.
The program is not locally stratified in general. However, if move is acyclic, the program is

42

modularly stratified. For modularly stratified programs, the same transformations of locally
stratified programs can be used, except that a certain computation rule must be assumed.

Let P be a program. We say that a predicate p calls a predicate ¢ if there is a rule in P such
that p occurs in the head and ¢ occurs in the rule body. Let DG be the corresponding calling
graph of P. The set of predicates in P can be partitioned into equivalence classes according to the
strongly connected components of DG. A program P can be broken into complete components
following the partition of predicates. There is a natural partial ordering < over components,
where Fy < F if some predicates in £ call directly or indirectly some predicates in Fj.

Definition 6.1 [Modular Stratification[37]] Let P be a finite program and < be the partial
ordering over complete components of P. P is modularly stratified if, for every component F' of

P

?

e There is a total well-founded model M for the union of all components F’ < F', and
e The quotient of ¥ modulo M, %, is locally stratified.

O

For query evaluation of modularly stratified programs, we must ensure that literals whose
predicates are defined in a lower component be solved first. Therefore, an arbitrary but fixed
computation rule does not work. Consider a query p with respect to the following program:

P~ ~p,~q.
q.

If the computation rule selects ~p, there will be an infinite negative loop, in which case delaying
transformation must be applied. To avoid delaying, we need to use a computation rule that
selects literals of lower components first.

Ross [37] introduced the notion of left-to-right modularly stratified programs. Each modularly
stratified program can be converted into a left-to-right modularly stratified program by putting
in the body of each rule all literals of lower components before literals of the same component
as the head of the rule.

Let P be a left-to-right modularly stratified program, and R be the left-to-right computation
rule and @) be an atomic query. Then the same transformations for locally stratified programs
are necessary and sufficient for constructing SLG derivations for () with respect to P under R.

By an induction on the level of components and the levels of ground atoms in each component,
it can be shown that all ground subgoals can be completed and either succeed or fail before the
corresponding negative literal is solved by NEGATIVE RETURN. Thus the results in Section 5 can
be specialized to left-to-right modularly stratified programs under a left-to-right computation
rule.

All modularly stratified programs are also weakly stratified [27], but the converse is not true
[37]. The major difference between modularly stratified and weakly stratified programs is in the
notion of components. In modularly stratified programs, components are defined in terms of the
dependency relationship among predicates, while in weakly stratified programs, components are
defined in terms of the dependency relationship among ground atoms. As a result, when a query
is evaluated with respect to a finite non-ground program, literals in rule bodies of a modularly

43

stratified programs can be put in a sequential order so that literals of lower components are
always solved first. Such a static ordering is not possible for weakly stratified programs because
the level of a component to which a literal belongs depends upon the variable bindings at run
time. Therefore the full SLG resolution is needed for query evaluation of (non-ground) weakly
stratified programs.

7 Discussion

This section discusses two decisions that are made in the design of SLG resolution, namely
variant checking of subgoals and answers and an arbitrary computation rule. We compare with
related work and present experiences in three implementations of SLG resolution that have been
developed.

7.1 Variant versus Subsumption Checking

To guarantee termination, SLG resolution checks for repeated subgoals and repeated answers.
Repeated subgoals are solved using only answers from previous calls and repeated answers are
not returned to solve the selected atom of an X-rule. In SLG resolution, variant checking is used
to detect both repeated subgoals and repeated answers. Two subgoals are identical if they are
variants of each other. If two answers of the same subgoal have head atoms that are variants
of each other, only one of them is used in POSITIVE RETURN to solve the selected atom of an
X-rule.

Another approach is to use subsumption checking for subgoals and answers. If a subgoal B is
an instance of a previous subgoal A, then B is solved using answers of A. Similarly if an answer
is subsumed by a previous one, only the more general answer is kept.

The choice of variant checking in SLG resolution is motivated by two advantages. One is that
variant checking allows easier and efficient implementation of indexing of tables of subgoals and
answers. By using a ground representation of variables, variant checking of atoms can be reduced
to equality of ground atoms. An efficient table lookup operation is crucial to the efficiency of an
implementation of SLG resolution. The other advantage of variant checking of subgoals is that
Prolog-style meta programming using builtin predicates such as var/1 can be supported.

The main disadvantage of variant checking is repeated computation among subgoals that
subsume each other.

Example 7.1 Consider the following simple program:

edge(a,b). edge(b,c). edge(e,d). edge(d, a).
path(X,Y) « edge(X,Y).
path(X,Y) « edge(X, Z), path(Z,Y).

Suppose that a query path(X,Y) is evaluated and a left-to-right computation rule is used. Then
the following set of subgoals of path/2 will be evaluated:

{path(X,Y), path(b,Y), pathe,Y), path(d,), patha, ¥)}

Clearly answers of path(X,Y') include those of the other subgoals of path/2. O

44

Even with subsumption checking of subgoals, repeated computation cannot be fully avoided
in general when a more specific subgoal, say p(X, X), is encountered before a more general one

such as p(X,Y).

7.2 Computation Rule and Search Strategies

SLG resolution allows an arbitrary computation rule for selecting a literal from a rule body.
Given a finite program P, an arbitrary but fixed computation rule R, and an atomic query (),
it is possible that a non-ground negative literal ~B may be selected by R from a rule body
during the evaluation of () with respect to P. Such a situation may lead to floundering. SLG
resolution is able to solve ~B only if either B has an answer that has B in the head and has
an empty body, or subgoal B is completed without any answers. Without mechanisms such as
constructive negation [9, 10, 30, 42], non-ground negative literals cannot be solved in general. In
SLG resolution, a final system for () with respect to P may not be completed and may contain
active X-rules that have a selected non-ground negative literal.

One may reduce floundering by using computation rules that select positive literals before
negative ones. One may also avoid floundering by imposing conditions on programs. A finite
program is range restricted if for every rule in the program, all variables in the rule head must
occur in the rule body, and every variable that occurs in a negative literal in the rule body must
also occur in a positive literal in the rule body. By using a computation rule that always selects
positive literals before negative ones, floundering can be avoided for range restricted programs.

SLG resolution avoids imposing any restrictions on the computation rule an implementation
may use or on programs with respect to which queries may be evaluated. The main reason is
that an implementation of SLG resolution is free to choose any computation rule, such as the
left-to-right computation rule in Prolog systems. In left-to-right modularly stratified programs
[37], for example, the left-to-right computation rule must be used to guarantee that literals of
predicates from lower components be selected first. This may or may not be consistent with
requirements that positive literals be selected before negative ones. Also programmers can use
their knowledge of the computation rule in an implementation to control floundering and to write
more efficient programs. Negative literals may be used as guard conditions to determine if some
expensive computation in the rest of a rule body should be evaluated.

SLG resolution also allows an arbitrary strategy for selecting which transformation to apply
when multiple transformations are applicable to a system. In other words, the definition of SLG
resolution does not dictate any particular strategy that should be used. In several implementa-
tions [13, 35, 38], a greedy strategy is used in which

e whenever a new answer C' of a subgoal A is created, POSITIVE RETURN is applied using C
to every X-rule in the system that has a selected atom A; and

e whenever an active X-rule GG of a subgoal is created that has a selected atom A, POSITIVE
RETURN is applied to (G using every existing answer of A; and

e whenever a new subgoal A is encountered, its initial X-rules are generated by NEW SUBGOAL
and are transformed.

This greedy strategy is close to the top-down tuple-at-a-time computation.

45

A different strategy has been implemented in a version of XSB [38], which computes as
many answers as possible for a subgoal before any of the answers is returned through POSITIVE
RETURN. This strategy is close to the bottom-up set-at-a-time computation in ordered_search
[34].

Different implementations may choose different search strategies, according to specific appli-
cations, and SLG resolution offers the flexibility of such choices.

7.3 Related Work

SLS resolution is the early work on an operational procedure for the well-founded semantics
[29, 36]. It does not incorporate any tabling mechanism. Every selected atom is solved by res-
olution with program rules, and every selected ground negative literal is solved by computing
the corresponding positive literal up to a fixpoint. Without tabling, it serves only as an ideal
top-down procedural semantics since it may go into infinite loops even for function-free pro-
grams. Without tabling, it requires a positive and negatively parallel computation rule in order
to guarantee search space completeness (for non-floundering queries). That is, positive literals
are selected before negative ones, and when only negative literals remain in a rule body, all the
negative literals are selected and evaluated. The latter is required because the evaluation of one
ground negative literal may go into an infinite loop while the evaluation of another may fail.

WELL! [6] and XOLDTNF resolution [14] represent a simple modification of SLS resolution
with tabling to handle loops through negation. By maintaining a negative context with each
subgoal, both can detect loops through negation, treat the ground negative literal involved in
such a loop as undefined, and avoid non-termination. An answer consists of both an atom and
a truth value that can be either t or u. The use of negative contexts, however, prevents the
full sharing of answers across different negative contexts. In the worst case, a subgoal may be
evaluated in an exponential number of distinct negative contexts.

Two methods of query evaluation have been developed for left-to-right modularly stratified
programs. One is an extension of SLS resolution, called QSQR/SLS by Ross [37], and the other
is an extension of supplementary magic templates, called ordered_search [34]. Both maintain sub-
goal dependency information to check whether subgoals are completely evaluated. Ross showed
[37] that QSQR/SLS procedure has the same complexity as supplementary magic rewriting.

An interesting aspect of bottom-up computation such as magic templates [33] is that its
checking of repeated subgoals is neither variant nor subsumption checking. Subgoals that have
the same binding patterns are treated the same. For the program and query in Example 7.1,
subgoals path(b,Y'), path(c,Y), path(d,Y’) and path(a,Y) all have the same binding pattern,
while path(X,Y) has a different binding pattern. Subgoals of the same binding pattern will
share the same table of answers. For programs with function symbols, an argument is considered
bounded if one of the variables in the argument is bounded. Thus subgoals ¢(f(¢(Y))) and
q(f(g(a))) may be treated as calls of the same binding pattern when they are obtained from
q(f(X)) by binding X to ¢(Y') and g(a) respectively, even though one subsumes the other.

For general programs, the magic-sets transformation does not always preserve the well-
founded semantics [18]. The proposed solutions in [18, 19] use a doubled program, one for
computing definitely true facts and the other for computing not definitely false facts. The sep-
arate computation of these two classes of facts may cause redundant inferences since the sets of
not definitely false facts are decreasing, but are computed in an increasing manner. The doubled

46

program method also tends to make too many magic facts true, which means that more subgoals
are evaluated than necessary. An alternating fixpoint tailored to magic-sets in [26] alleviates
this problem, but still generates many irrelevant magic facts in the initial stages of the fixpoint
computation [11].

An extension of ordered_search to compute the well-founded semantics, called well-founded
ordered search, was developed by Stuckey and Sudarshan [41]. Both SLG resolution and well-
founded ordered search support goal-oriented query evaluation and allow an arbitrary computa-
tion rule. The main difference is in the treatment of negative literals possibly involved in loops
through negation. Our implementation of SLG resolution checks only potential loops through
negation and may delay ground negative literals more than necessary. But it avoids repeated
computation by keeping delayed literals explicitly and simplifying them later. In contrast, well-
founded ordered search maintains precise dependency information among subgoals, by essentially
run time re-organization of a stack of subgoals, and is able to detect genuine loops through nega-
tion. For portions of programs that involve loops through negation, it uses alternating fixpoint
computation such as [26], which may repeat certain steps of computation.

In [7], a method of top-down tabulated resolution for well-founded semantics was presented.
Like SLG resolution, it uses several transformations to construct a search forest, which corre-
sponds to our notion of a system of subgoals. There are some majors differences, though, between
SLG resolution and tabulated resolution in [7].

In SLG resolution, let G be an X-rule of a subgoal and ~B be the selected negative literal of
GG. When ~B is solved in NEGATIVE RETURN or DELAYING, (5 is disposed and possibly replaced
by another X-rule. In other words, G has at most one child due to the selection of ~B. Even
when ~B is delayed, it is never selected again by the computation rule. A delayed negative
literal is only simplified later when its truth value becomes known.

In the tabulated resolution in [7], let G be a node in a search forest and ~B be the selected
ground negative literal of G. Then G may have two child nodes. One is derived through extension
by u-assumption, in which ~B is essentially replaced with the undefined truth value u. The other
is derived through extension by negation as failure, in which B is known to be successful or failed
and ~ B is solved by negation as failure. As a result, the conjunction of the remaining literals in
the body of G may have to be evaluated twice.

Another difference between SLG resolution and the tabulated resolution in [7] is in the treat-
ment of non-ground negative literals. SLG resolution selects a non-ground negative literal only
once and tries to solve it when it can be solved by negation as failure. In contrast, the tabulated
resolution in [7] may select a non-ground negative literal twice, once when it is initially selected
and the other when the non-ground negative literal becomes ground later. In addition, an an-
swer may contain non-ground negative literals in its body. These non-ground negative literals
are propagated when the answer is used to solve the selected atom of a node. A small varia-
tion of Example 3.1 can be used to show that propagation of non-ground negative literals may
cause an exponential number of distinct conditional answers for a subgoal. Thus the polynomial
data complexity of the well-founded semantics for function-free programs is not preserved by the
tabulated resolution in [7].

A unique feature of SLG resolution is the handling of ground negative literals that may
be involved in loops by using DELAYING, SIMPLIFICATION and ANSWER COMPLETION. There
are several advantages. First, DELAYING provides SLG resolution the freedom of an arbitrary
computation rule without compromising the soundness and search space completeness of SLG

47

resolution. Even when the truth value of a ground negative literal cannot be decided, e.g., in the
case of loops through negation, DELAYING allows SLG resolution to proceed and solve remaining
literals in a rule body. In a certain sense, it achieves the same effect of the positivistic and
negatively parallel computation rule in (global) SLS resolution [29, 36], yet without imposing
any condition on the computation rule. Second, by maintaining delayed literals explicitly and
simplifying them later, no derivation steps in SLG resolution are repeated. Finally, SLG keeps
delayed literals in answers of subgoals that are undefined in the well-founded semantics. This
allows query evaluation with respect to other three-valued stable models by further processing
of the answers under the well-founded semantics.

The decision in SLG resolution not to propagate negative delayed literals in the bodies of
answers is necessary in order to guarantee the polynomial data complexity of SLG resolution for
function-free programs. On the other hand, this leads to the creation of positive delayed literals
in POSITIVE RETURN, and the need for ANSWER COMPLETION to delete, under certain condi-
tions, answers that have positive delayed literals in their bodies. The transformation ANSWER
COMPLETION is an expensive operation since it may require traversing the answers of subgoals.
An interesting topic for future work is to investigate conditions under which the use of ANSWER
COMPLETION can be avoided or minimized.

7.4 Implementations of SLG Resolution

Perhaps the most important aspect of SLG resolution is the availability of its implementations
and their performance. All of them use the left-to-right computation rule.

The first implementation is a Prolog meta interpreter [13]. A major implementation issue is
to detect subgoals that are completely evaluated for COMPLETION and potential loops through
negation for DELAYING. The latter is needed so that DELAYING can be avoided when ground
negative literals can be solved using NEGATIVE RETURN. Both require the dependency informa-
tion about subgoals in a system. It turns out that with DELAYING and SIMPLIFICATION it is not
necessary to compute precisely loops through negation in a system, which is likely to be very
expensive at run time. Instead we have developed an efficient approximate algorithm for incre-
mental maintenance of the dependency information of subgoals [11]. The top-down framework of
SLG resolution leads to a stack of subgoals based upon the sequence in which they are encoun-
tered and lends it naturally to incremental maintenance of dependencies among subgoals. By
inspecting the dependency information of a single subgoal A, it is possible to determine whether
all subgoals from the top of the stack to A are completely evaluated or are possibly involved in
loops through negation. The performance of the meta interpreter implementation is competitive
with others that handle arbitrary negation.

The second implementation is a Prolog compiler, called XSB [38]. XSB modifies the War-
ren Abstract Machine (WAM) of Prolog to implement SLG resolution restricted to modularly
stratified programs. By taking advantage of WAM technology and efficient indexing of tables of
subgoals and answers at WAM level, XSB has demonstrated impressive performance for query
evaluation of deductive databases [38].

The most recent implementation uses source program transformation and tabling primitives
external to Prolog WAM [35]. A program P is transformed into another program P’ by inserting
tabling primitives, and Prolog execution of P’ yields SLG resolution. The tabling primitives are
independent of the underlying Prolog WAM. They maintain tables of subgoals and answers and

48

implement the control strategy that is needed for SLG resolution. It is much more efficient than
the meta interpreter and portable across different Prolog systems.

All three implementations support an integration of SLG resolution and Prolog computation.
A distinction can be made between predicates that are solved using SLG resolution and those that
are solved as in Prolog. Ordinary Prolog computation can be incorporated into SLG resolution
in a simple manner, without any overhead. In the other direction, predicates solved by SLG
resolution can also be called by Prolog predicates.

& Conclusion

SLG resolution serves as both a foundation and a practical framework for computing the well-
founded semantics of logic programs. Theoretically, a number of fundamental transformations
are identified, cleanly separating logical issues from procedural information. Restricted versions
of SLG resolution have been developed for programs with limited uses of negation, including
definite, locally stratified, and modularly stratified programs. These programs do not have to
pay for the overhead of transformations that are not needed. This sheds light on the role that
each transformation plays. SLG resolution preserves all three-valued stable models, including the
well-founded partial model as a special case. It terminates for all programs with the bounded-
term-size property.

SLG resolution guarantees the polynomial time data complexity for well-founded negation
of function-free programs. It can be enhanced by further processing of the answers of subgoals
relevant to a query under the well-founded semantics to deliver answers that are specific to other
three-valued stable models [12].

Practically, SLG resolution is upward compatible with existing Prolog systems. This facil-
itates the integration of SLG resolution with Prolog applications. More importantly, Prolog
compiler technology can be adapted for an efficient implementation of SLG resolution.

We firmly believe that SLG resolution will have an important impact on the theory and
practice of logic-based computational systems. Its termination properties on stratified function-
free programs make it a good strategy for deductive database query processing; its ability to be
integrated seamlessly with Prolog evaluation makes it a good logic programming strategy, and
its polynomial data complexity for handling nonstratified programs makes it a good strategy for
nonmonotonic reasoning in knowledge based systems.

References

[1] K.R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 89-148. Morgan
Kaufmann Publishers, Los Altos, CA, 1988.

[2] K.R. Apt and M.H. Van Emden. Contributions to the theory of logic programming. Journal
of ACM, 29(3):841-862, July 1982.

[3] 1. Balbin, G.S. Port, K. Ramamohanarao, and K. Meenakshi. Efficient bottom-up compu-
tation of queries on stratified databases. Journal of Logic Programming, 11:295-344, 1991.

49

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways to
implement logic programs. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 1-15, March 1986.

C. Beeri and R. Ramakrishnan. On the power of magic. In ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 269-283, San Diego, CA,
March 1987.

N. Bidoit and P. Legay. WELL!: An evaluation procedure for all logic programs. In Intl.
Conference on Database Theory, pages 335-348, 1990.

R. Bol and L. Degerstedt. Tabulated resolution for well founded semantics. In Intl. Logic
Programming Symposium, October 1993.

F. Bry. Query evaluation in recursive databases: Bottom-up and top-down reconciled. In
Intl. Conference on Deductive and Object-Oriented Databases, December 1989.

D. Chan. Constructive negation based on the completed database. In Robert A. Kowalski
and Kenneth A. Bowen, editors, Proc. 5th Int. Conf. and Symp. on Logic Programming,
pages 111-125, 1988.

W. Chen and L. Adams. Constructive negation of general logic programs. Technical Re-
port 94-CSE-16, Department of Computer Science and Engineering, Southern Methodist
University, April 1994.

W. Chen, T. Swift, and D.S. Warren. Efficient top-down computation of queries under the
well-founded semantics. Journal of Logic Programming, 1994. to appear.

W. Chen and D.S. Warren. Computation of stable models and its integration with logical
query processing. [EEFE Transactions on Knowledge and Data Engineering, 1994. to appear.

W. Chen and D.S5. Warren. The SLG System, August, 1993. available by anonymous FTP

from seas.smu.edu or cs.sunysb.edu.

W. Chen and D.S. Warren. A goal-oriented approach to computing well founded semantics.
In Joint Intl. Conference and Symposium on Logic Programming, November 1992. also

available as SMU Technical Report 92-CSE-9.

K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases,
pages 293-322. Plenum, New York, 1978.

S.W. Dietrich and D.S. Warren. Extension tables: Memo relations in logic programming.
Technical Report 86/18, Department of Computer Science, SUNY at Stony Brook, 1986.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R.A.
Kowalski and K.A. Bowen, editors, Joint Intl. Conference and Symposium on Logic Pro-
grammang, pages 1070-1080, 1988.

50

[18]

[19]

[24]
[25]

[26]

28]

[29]

31]

32]

David B. Kemp, Peter J. Stuckey, and Divesh Srivastava. Magic sets and bottom-up eval-
uation of well-founded models. In Intl. Logic Programming Symposium, pages 337-351,
1991.

David B. Kemp, Peter J. Stuckey, and Divesh Srivastava. Query restricted bottom-up
evaluation of normal logic programs. In Joint Intl. Conference and Symposium on Logic
Programmaing, pages 288-302, 1992.

D.B. Kemp and R.W. Topor. Completeness of a top-down query evaluation procedure for
stratified databases. In Joint Intl. Conference and Symposium on Logic Programming, pages

178-194, 1988.

J. Komorowski. Towards a programming methodology founded on partial deduction. In
Proceedings of the Furopean Conference on Artifictal Intelligence, 1990.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York, second edition,
1987.

J.W. Lloyd and J.C. Shepherdson. Partial evaluation in logic programming. Journal of
Logic Programmaing, 11:217-242, 1991.

W. Marek and M. Truszczynski. Autoepistemic logic. Journal of ACM, 38(3):588-619, 1991.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4(2):258-282, 1982.

S. Morishita. An alternating fixpoint tailored to magic programs. In Proceedings of the
Deductive Database Workshop at Joint International Conference and Symposium on Logic
Programmaing, 1992.

H. Przymusinska and T.C. Przymusinski. Weakly perfect model semantics for logic pro-
grams. In R.A. Kowalski and K.A. Bowen, editors, Joint Intl. Conference and Symposium
on Logic Programming, pages 11061120, 1988.

T.C. Przymusinski. On the declarative semantics of deductive databases and logic programs.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages
193-216. Morgan Kaufmann Publishers, Los Altos, CA, 1988.

T.C. Przymusinski. Every logic program has a natural stratification and an iterated least

fixed point model. In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 11-21, 1989.

T.C. Przymusinski. On constructive negation in logic programming. In North American
Conference on Logic Programming, October 1989.

T.C. Przymusinski. On the declarative and procedural semantics of logic programs. Journal

of Automated Reasoning, 5:167-205, 1989.

T.C. Przymusinski. The well-founded semantics coincides with the three-valued stable se-
mantics. Fundamenta Informaticae, 13:445-463, 1990.

51

33]

[34]

[35]

[36]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

R. Ramakrishnan. Magic templates: A spellbinding approach to logic programs. Journal of
Logic Programmaing, 11:189-216, 1991.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Controlling the search in bottom-up
evaluation. In Joint Intl. Conference and Symposium on Logic Programming, pages 273287,

1992.

R. Ramesh and W. Chen. A portable method of integrating SLG resolution into prolog
systems. In Intl. Logic Programming Symposium, November 1994.

K.A. Ross. A procedural semantics for well founded negation in logic programs. In ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 22-33,
1989.

K.A. Ross. The Semantics of Deductive Databases. PhD thesis, Department of Computer
Science, Stanford University, August 1991.

K. Sagonas, T. Swift, and D.S5. Warren. XSB as an efficient deductive database engine. In
ACM SIGMOD Conference on Management of Data, pages 442-453, 1994.

H. Seki. On the power of Alexander templates. In ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 150-159, March 1989.

H. Seki and H. Ttoh. A query evaluation method for stratified programs under the extended
CWA. In Joint Intl. Conference and Symposium on Logic Programming, pages 195211,
1988.

P. Stuckey and 5. Sudarshan. Well-founded ordered search. In Proceedings of the 13th
Conference on Foundations of Software Technology and Theoretical Computer Science, 1993.
LNCS 761.

P.J. Stuckey. Constructive negation in constraint logic programming. In Proceedings of the
6th IEEE Annual Symposium on Logic in Computer Science, pages 328-339, 1991.

H. Tamaki and T. Sato. OLD resolution with tabulation. In Intl. Conference on Logic
Programmaing, pages 84-98, 1986.

M.H. Van Emden and R.A. Kowalski. The semantics of predicate logic as a programming

language. Journal of ACM, 23(4):733-742, October 1976.

A. Van Gelder. Negations as failure using tight derivations for general logic programs.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages
149-176. Morgan Kaufmann Publishers, Los Altos, CA, 1988.

A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for general logic
programs. Journal of ACM, 38(3), July 1991.

M. Vardi. The complexity of relational query languages. In ACM Symposium on Theory of
Computing, pages 137-146, May 1982.

52

[48] L. Vieille. A database-complete proof procedure based upon SLD-resolution. In Intl. Con-
ference on Logic Programming, 1987.

[49] L. Vieille. Recursive query processing: The power of logic. Theoretical Computer Science,

69:1-53, 1989.

33

