
528 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 21, NO. 6, JUNE 1995

Reusing Software: Issues and Research Directions
Hafedh Mili, Fatma Mili, and Ali Mili

Abstruct-Software productivity has been steadily increasing
over the past 30 years, but not enough to close the gap between
the demands placed on the software industry and what the state
of the practice can deliver [22], [39]; nothing short of an order of
magnitude increase in productivity will extricate the software in-
dustry from its perennial crisis [39], [67]. Several decades of in-
tensive research in software engineering and artificial intelligence
left few alternatives but software reuse as the (only) realistic ap-
proach to bring about the gains of productivity and quality that
the software industry needs. In this paper, we discuss the impli-
cations of reuse on the production, with an emphasis on the tech-
nical challenges. Software reuse involves building software that is
reusable by design and building with reusable software. Software
reuse includes reusing both the products of previous software
projects and the processes deployed to produce them, leading to a
wide spectrum of reuse approaches, from the building blocks
(reusing products) approach, on one hand, to the generative or
reusable processor (reusing processes), on the other [as]. We dis-
cuss the implication of such approaches on the organization, con-
trol, and method of software development and discuss proposed
models for their economic analysis.

Software reuse benefits from methodologies and tools to:
1) build more readily reusable software and
2) locate, evaluate, and tailor reusable software, the last being

critical for the building blocks approach.
Both sets of issues are discussed in this paper, with a focus on

application generators and 00 development for the first and a
thorough discussion of retrieval techniques for software compo-
nents, component composition (or bottom-up design), and trans-
formational systems for the second. We conclude by highlighting
areas that, in our opinion, are worthy of further investigation.

Index Term-Software reuse, managerial aspects of software
reuse, software reuse measurements, building reusable compo-
nents, 00 software development, software component retrieval,
adapting reusable components.

I. INTRODUCTION

ESPITE several decades of intensive research, the routine D production of software under acceptable conditions of
quality and productivity remains an unfulfilled promise. While
a great deal of progress has been achieved in understanding the
mechanics of constructing a program fiom a specification, lit-
tle progress has been achieved in improving the practice of
software development accordingly. This predicament stems, in
our opinion, fiom two premises:

0 First, a problem of scale: most of our current knowledge

Manuscript received April 1992; revised August 1993.
H. Mili is with the Departement d’hformatique, universite du Quebec it

Montreal, Boite Postale 8888, Succ “A”, Montreal, Quebec, H3C 3P8 Can-
ada.

F. Mili is with the School of Engineering and Computer Science, Oakland
University, Rochester, MI 483094401,

A. Mili is with the Department of Computer Science, University of Ottawa,
Ottawa, Ontario KIN 6N5 Canada.

IEEECS Log Number S95009.

in program construction deals with minute details about
semantics of programming languages and correctness
formulas; while this knowledge is enlightening and in-
structive, it is rather inadequate to deal with the current
pressures on the software industry (in terms of produc-
tivity and quality).

0 Second, a problem of emphasis: the problem of scale
could in principle be tackled with automated tools if it
were not for the fact that the most crucial decisions that
must be taken in a program construction process, such as
the choice of algorithms, control structures, and data
structures, are also the most difficult to formali-hence
to automate.

As a result, a wide gap exists nowadays between the de-
mands placed on the software industry (by a society that is in-
creasingly dependent on software and increasingly intolerant
of software failure) and what the state of the practice in the in-
dustry can deliver; also the brief history of the field abounds
with instances of failure [191, [38], [67].

Software reuse offers a great deal of potential in terms of
software productivity and software quality, because it tackles
the above issues adequately: By dealing with software prod-
ucts at the component level and by focusing on arbitrarily ab-
stract descriptions of software components, it addresses the
question of scale; on the other hand, by dealing with software
design at the architectural level, rather than the coding level, it
addresses the question of emphasis. However, several factors
hinder reuse, including the infancy of software development as
a scientific [44] or engineering discipline [1441, inadequate
training in software development in general and software reuse
in particular [1591, inadequate management structures and
practices [59], and the lack of methodologies and tools to sup-
port software reuse or software development in general [47].
In this paper, we discuss the most important of these issues and
focus on the methodological and technical aspects.

It is customary to categorize software reuse work based on
what is being reused (the object ofreuse) or on the method of
reuse (see, e.g., [83] and [68]), the two being closely related. It
is customary to distinguish between two general categories of
reuse approaches, the building blocks approach, which is
based on reusing software development products, and the gen-
erative or reusable processor approach, which is based on re-
using the process of previous software development efforts,
often embodied in computer tools (processor) that automate
part of the development life cycle [68]; these are but two ex-
treme approaches on a continuum involving different mixes of
product and process reuse [148]. We refer to both products
and processes as reusable assets. Reuse approaches raise a
number of issues that may be divided into issues related to de-
veloping reusable assets and issues related to developing with
reusable assets. Under the former set of issues, we focus on

0098-5589/95504.00 Q 1995 IEEE

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

=I, MILI, AND MILI: REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 529

00 software development, as an enabling technology for de-
veloping reusable building blocks, and application generators
as an example of a commercially successful application of the
generative approach. Developing with reusable assets raises is-
sues related to providing methodological and computer sup-
port for:

1) locating reusable assets,
2) assessing their relevance to the current needs and
3) adapting them to those needs.

Such issues are anywhere from secondary to irrelevant to the
reusable processor end of the spectrum, but are central to the
building blocks end of the spectrum. Under adaptation, we
discuss a number of techniques for automating the integration
and maintenance of reusable components, with an emphasis on
techniques other than those offered by object orientation,
which are discussed separately, along with other 00 princi-
ples.

In the next section, we attempt to motivate and define so%
ware reuse, and provide a typology of software reuse research,
to be used throughout the paper. In Section 111, we discuss the
overall impact of software reuse on the production of software,
starting with the organizational and methodological impact of
reuse on the development of software, and then discuss
costhenefit models of software reuse. Sections IV and V focus
on the technical challenges and research solutions involved in
building reusable software assets and building with reusable
software assets, respectively. We conclude in Section VI by
outlining areas and issues that, in our view, deserve further at-
tention in the research community.

II. A FRAIvEWORK FOR SOFTWARE REUSE

A. Motivations
Software productivity has been steadily rising for the past

30 years [160]. However, even with the steady rise in the
number of computer professionals [22], it has not kept up with
the rising demand for developing new ever more complex
software systems and for maintaining existing software [22],
[1031. While current software production management prac-
tices leave room for improvement [151, nothing short of an or-
der of magnitude increase in programmer productivity will ex-
tricate the software industry from the current crisis [67]. Ac-
cording to Boehm, the only factor that can yield that kind of
productivity leverage is the number of software source in-
structions that have to be developed to deliver a given func-
tionality [22]: Instead of searching for ways of writing code
faster, we have to look for ways of writing less of it. Automatic
programming, whereby a computer system is capable of pro-
ducing executable code based on informal, incomplete, and in-
coherent user requirements, is decades away, if ever possible
[1361. That leaves us with software reuse as the only realistic,
technically feasible solution: We could reuse the processes and
products of previous development efforts in order to develop
new applications.

Intuitively, savings occur with software product reuse be-
cause reused components do not have to be built from scratch.

Further, overall product quality improves if quality compo-
nents are reused. With software process reuse, productivity in-
creases to the extent that the reused processes are automated,
and quality improves to the extent that quality-enhancing proc-
esses are systematized. Further, there is plenty of duplication
in the applications being developed and maintained nowadays,
and hence plenty of room for reuse. In 1984, for example, the
U.S. software market offered some 500 accounting programs,
300 payroll programs, 150 communication programs, 125
word-processing packages, etc. [77]; the figures are probably
higher today, In the early eighties, Lanergan and Grass0 esti-
mated that 60% of business applications can be standardized
and reused [MI. Generally, potential (estimated) and actual
reuse rates range from 15% to 85% (see, e.g., [59], [103]).
Existing experience reports suggest that indeed good-
sometimes impressive-reuse rates, productivity and quality
increases can .be achieved (see, e.g., [12], [13], [73], [loo]).
However, successes have not been systematic (see, e.g., [59,
[133]), and a lot of work remains to be done both in terms of
“institutionalizing” reuse practice in organizations and in terms
of addressing the myriad of technical challenges that make re-
use difficult [83].

B. The Object of Reuse
The idea of formal software reuse, as first introduced by

McIlroy in his 1968 seminal paper [104], entailed the devel-
opment of an industry of reusable source-code software com-
ponents and the industrialization of the production of applica-
tion software from off-the-shelf components. Software reuse is
now understood to encompass all the resources used and pro-
duced during the development of software (see, e.g., [43],
[50], [1331). Different researchers proposed different categori-
zations of reusable knowledge, but by and large, most classifi-
cations rely on one of three factors or a combination thereof:

1)stage of development at which the knowledge is pro-

2) level of abstraction (e.g., abstract versus con-

3) nature of knowledge (e.g., artifacts versus skills).

Jones identified four types of reusable artifacts [77]:
1) data reuse, involving a standardization of data formats,
2) architectures reuse, which consists of standardizing a set

of design and programming conventions dealing with the
logical organization of software,

3) (detailed) design reuse, for some common business ap-
plications and

4) program reuse, which deals with reusing executable
code. In addition to productlartifact reuse, Horowitz
considered various kinds of reuse based on the utilization
of very high-level program-producing systems [68].

Three general classes of systems that have been commonly
recognized by researchers are:

1) reusable program pattems [191, [68], whereby code or
design pattems are used to instantiate specific code frag-
ments or designs, as in application generators or the Pro-
grammer Apprentice’s clich6s [137],

duced andor used,

cretehplemented) and

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

530 IEEE TRANSACTIONS ON SOFrWARE ENGINEERING, VOL. 21, NO. 6. JUNE 1995

Level

hvironmenta

Supplier-Related Customer-Related
Knowledge Knowledge

Technology transfer Utilization knowl-
knowledge: consists of edge: describes the
knowledge about such business context in
things as the organiza- which the software
tional impact of softwareproduct will be used.
technology, personnel
training, computer liter-
acy, and so forth.

External

It is the environmental level of software development
knowledge that is explicitly lacking from similar life cycle-
based categorizations of reusable information. In his 1987 pa-
per, Freeman identified the reuse of environmental knowledge
as one of the long-term research goals in software reuse [50].
We know of no research effort that has attempted or is attempt-
ing to formalize the reuse of such knowledge since. One area
that has been getting considerable attention recently, however,
is the reuse of application domain knowledge under the form
of domain models (see, e.g., [5], [501, [911, 11321, 11481).
Domain models serve three major purposes:

1) helping developers understand an application domain,
2) serving as the starting point for systems analysis (e.g., by

specializing the domain model) and
3) providing an application-dependent categorization/

classification of existing reusable components (of later
development stages) so that opportunities for reuse can
be identified as early in the development process as pos-
sible [5] , [130], [132].

Domain models should identify:

common to the application domain,
the entities and operations on those entities that are

0 relationships and constraints between the entities and
“retrieval cues,” i.e., properties of objects that are likely
to be used by developers in the process of searching for
reusable components [5], [1321.

We know of few research efforts that include declarative do-
main models that support all three functions described above
(see, e.g., [5], [91]). Neighbors’s DRACO system [121] and
Simos’s work on ASLs [148] achieve much of the same goals
by developing domain-dependent specification languages that
embody an application domain’s common objects and opera-
tions

In the next section, we propose our own ontological cate-
gorization of reusable knowledge. Our categorization is geared
toward highlighting the paradigmatic differences between the
various reuse methods and abstracting what we consider to be
inessential differences between various reusable assets (e.g..
code reuse versus design reuse).

C. The Method of Reuse
We adopt the transformational systems’ view of software

development as a sequence of transformations and/or transla-
tions of the description of the desired system from one lan-
guage (level i description) to another (level i + 1 description)
as shown in Fig. 1. Three levels of knowledge are used in this
translation:

1) knowledge about the source domain (level 9,
2) knowledge about the target domain (level i + l), and
3) knowledge about how objects (entities, relations, struc-

tures) from the source domain map to objects in the tar-
get domain.

For a given level, the knowledge can be seen in linguistic
terms, as consisting of a domain language, and a set of ex-
pressions known to be valid. The domain language consists of

bevelopment knowl- Application-area
edge: deals with the
planning and manage-
ment of software proj-
ects such as cost and
schedule estimation, test
plans, benchmarking,
and others.

kn owledge: deals with
the underlying models
for the application do-
main.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILL REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 53 1

domain entities (or classes) and domain structures. The de-
scription of the various entities and structures can be based on
an enumeration of legal entities and structures, or based on a
set of properties that must be satisfied by either (e.g., consis-
tency checks, composition rules), or a mix of the two. We refer
to the description methods as enumerated and compositional,
respectively. The descriptions of past problem instances con-
stitute the expressions that are known to be valid.

The mapping knowledge consists of a set of transformation
rules, from level i to level i + 1, and a set of known mappings
between problem instances of level i and problem instances of
level i + 1. The transformation rules’ embody what is usually
referred to as process reuse or skill reuse (see, e.g., [133]). We
shall refer to them as the transformation grammar. Note that
this formalism does not distinguish between declarative
knowledge and procedural knowledge as we feel the distinc-
tion to be mainly a representation issue.

Typically, development consists of, first, describing
(specifying) the problem at hand in the language of level i to
obtain a description PDi and, second, transforming that de-
scription into one at level i + l (PD,+,), supposed to be the tar-
get description language (e.g., executable code). With reuse,
one would want to avoid having to manually:

1) specify completely the problem at hand andor
2)transform the entire specification of level i into

Thus, reusable assets include all the kinds of knowledge in-
volved in the development transformation (DT,,i+l), which can
be thought of as the result of applying a generic level-
independent problem-solving method on the relevant knowl-
edge sources. The various reuse approaches can be categorized
based on:

1) the extent to which the language of level i covers the
problem domain of level i and

2) the extent to which the mapping knowledge (Ti,i+l) cov-
ers all the entities and structures (i.e., all the valid ex-
pressions) of the domain of level i.

level i + 1.

1 . These rules do not only ensure syntactic correctness of the result de-
scription of level i + l , but also the preservation of some properties and the
satisfaction of some “development constraints.”

Finer characterizations may be based on the kind of language
description used, along the enumerated versus compositional
dimension. Table I1 shows the characteristics of some of the
approaches commonly referred to in the literature. As we go
down the rows of Table 11, we move from what is generally re-
ferred to as the building blocks approach to increasingly auto-
mated generative approaches. Automation requires the com-
plete “cover” of the source domain language (level i) and the
completeness of the mapping knowledge i + i + 1. In other
words, automation is possible if we can express all new prob-
lems in terms of problems, or combinations of problems, that
have already been solved. We comment below on the various
approaches separately.

With source code components, a new problem is solved by
composing solutions to subproblems. A complete cover of
level i domain would mean that all the components that one
may need have been developed, or, more astutely-but equally
unrealistic-a set of components has been developed such that
every problem can be reduced to subproblems that these com-
ponents can solve. Notwithstanding the issue of finding such a
decompositionheduction, which can be as challenging as
solving the original problem analytically from scratch (see
SectionV.B), the number of required components is most
probably prohibitive [83]. That number depends on:

1) the breadth of the application domain and
2) the composition technique used.
With source code components, composition often takes

place “too late” in the software life cycle: limiting the range of
behaviors that can be obtained from a set of components to
variations on functional composition, as supported by tradi-
tional module interconnection languages (see, e.g., [1291) or
programming languages. Source code components approaches
that support composition of components at a higher level of
abstraction yield a greater range of behaviors (see, e.g., [78],
[149]). Software schemas are similar to source code compo-
nents, except that the reusable artifacts are defined at a higher
level of abstraction, allowing for a greater range of instantia-
tions (through partial generation) and compositions. Further,
the added parameterization makes it possible to build complex,
yet generally useh1 structures (see, e.g., [16]). However, the
artifacts are still not meant to cover all the needs of the appli-
cation domain, and finding and expressing the right composi-
tions are still challenging design problems.

With the remaining three approaches, the source domain
language covers the application domain. Transformational
systems fall short of automation because the mapping knowl-
edge is incomplete or non-deterministic: A transformational
system needs developer assistance in selecting among appli-
c a b l e a n d perhaps objectively equivalent-transformations
[1231. The transformational approach can be used in conjunction
with source code components to assist in the modification and in-
tegration of such components in new applications [113]. Full

2. Booch’s C++ components include 18 implementations of dequeues cor-

the concurrency control algorithm,
the memory allocation algorithm, and
the ordering algorithm [149].

responding to all the possible combinations of choices of

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

532 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

TABLE II
A CATEGORIZATION OF COMMON REUSE APPROACHES

I
Life Cycle

Stage
mostly de-
sign

mostly de-
sign

software
specifi-
cations

I
Description

Type
composi-
tional
(mostly)

composi-
tional
(mostly)

composi-
tional

Mappin!
Covering

partial

partial
(mostly)

partial

howledge
Description

Type
composition
al (mostly)

composi-
tional
(mostly)

composi-
tional

Examples Approach

Source code
components
(see [501,
~ 3 1)

software
schemas (see
e.g. [83], or
referred to as
reusable
program
patterns in
[77])
Reusable
trans-
formation
systems (see
e.g. [191,
[501)

Covering

partial

partial

complete

Spectrum

wide spec-
trum

RSL [27], REBOOT [116], and a number of
other “nameless” tools and approaches (e.g. [85],
[131], [161]). Object-orientation, seen as a de-
velopment methodology for reusable compo-
nents, is discussed in 8IV.C. Problems related to
the use of such components are discussed in
various subsections §V.
The programmer’s apprentice [137], the PARIS
system [SO], and Basset’sJiame-based sofware
engineering, in which an application could be
completely specified and generated using 6ames
[16]. Software schemas are briefly discussed in
the context of 00 technology 9IV.C).

wide spec-
trum

wide-
spectrum

________~ ~

A somewhat outdated survey of transformational
systems is given in [123]; their potential for
quality-preserving maintenance and reuse has
been recognized by a number of researchers, in-
cluding Feather [45], Arango et al. [4], and Bax-
ter [171. They are discussed in more detail in
8V.C.
Unix’s Yacc, a number of commercial tools in
business information processing (see e.g.[69] for
a survey), a number of user interface building
frameworks (see e.g. [1191 for a survey), etc.
Discussed in more detail in 8V.B.

User re-
quirements
complete

complete enumerated
(mostly)

complete narrow, do-
main-
specific

narrow,
domain-
specific

Application
generators
(see e.g.
1831)

software
specifi-
cations

complete Emphatic-
a& com-
posi- tional

complete composi-
tional

depends on
the system

Simos’ ASL are application-specific languages
[148], PAISLey [162] SETL [82] and others are
based on application-independent mathematical
and computational abstractions. T}.TE.LP.ls 2.ce
Table 2. A categorization of common reuse ap-
proaches..LP.sp.PP

Very high-
level lan-

reusable
processor
1771. etc

guages ~ 3 1 ,

automation is achieved with application generators and very high-
level languages. With very high-level languages, automation is
possible at the cost of code efficiency and design quality; very
high-level languages are not intended to implement production
quality software. Automation is possible with application genera-
tors because of a restriction of the application domain.’ The re-
striction has the added advantage of making it practical to enu-
merate a set of template software specifications (or the correspond-

quirements
It is fair to say that as we go down Table U, the focus shi&

fbm components to composition, and the language for expressing
compositions moves up in terms of abstraction. This corresponds
closely to Simos’s “reuse life cycle,” which prescribes an evolution
of reuse approaches within organizations, following the maturing
of both the application domain and the expertise of developers
within that domain [1481.

ing software “Solutions”) parameterized directly with usw re-

The next section deals with the non-technical effects of software

1) its effects on the organizational structure of software produc-

2)measuring reuse effectiveness, both in technical and eco-

3) some reported case studies.

reuse on the production of s o h , including,

ing organizations and on the software life cycle,

nomic terms and

Section IV deals with issues related to building reusable knowl-
edge, with a focus on source code components and application
generators. Section V deals with issues related to building new
applications with reusable knowledge. Such issues are, for the
most part, trivial or irrelevant to the application generators and
very high-level languages approaches. The discussion will thus be
geared toward the building blocks end of the spechum, and we ad-
dress issues related to component retrieval, composition, and adap-
tation. Transformational systems will be discussed to the extent
that they help adapt reusable components in a time-saving, quality-
preserving way.

3. No application generator available today can build a corporate informa-
tion system. However, big chunks of such systems (e.g., report generators)
can be generated using application generators [34].

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILI: REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 533

111. SOFTWARE REUSE AND THE
PRODUCTION OF SOFTWARE

Software reuse provides some feasible remedies to the cur-
rent software crisis, but many questioned the suitability of ex-
isting management practices, organizational structures, and
technologies to support software reuse. There is a general
agreement that a rethinking of software manufacturing is
needed. There is also agreement that the required changes are
managerial, cultural, and technical in nature, as was the case
for other engineering disciplines [l5], [39], [144]. There is no
consensus, however, as to the nature and scope of changes,
both because the changes involve some yet to be proven man-
agement techniques and structures and because the proposed
technological answers are different. In this section, we first
discuss the effect of software reuse on the organization of
software development processes (Section IILA); these changes
depend on the reuse paradigm used, along the building blocks
versus generative spectrum. Next (Section III.B), we discuss
ways to measure software reuse and its impact on productivity
and quality. We conclude in Section 1II.C by discussing the
relation between the qualitative effects and measurable effects
of software reuse and the challenges that stand in the way of
comparing the effectiveness of the various reuse approaches.

A. Software Reuse and Software Engineering
It is fair to say that technological innovations in software

development contributed to enhancing software reusability,
starting with high-level programming languages, up to struc-
tured and modular programming, up to design and analysis
notations and methodologies. The same cannot be said about
the organization and management of software organizations,
which are at best reuse-neutral when they do not hinder reuse
practice. We organize our discussion of the changes required
and implied by reuse practice into,

1) new organizational structures (e.g., staffing structure),
2) new process models (life cycles) and
3) punctual methodological changes.

A. 1. New Organizational Structures
Software reuse relies on the availability of a base of reus-

able software in all forms (Section IV). Wegner argues that
software companies should treat software as capital goods and
their organization, including team structures and cost imputa-
tions, should reflect that [1551. This is true whether we are
dealing with the building blocks approach or with the genera-
tive approach: in both cases we have to divert resources, both
human and financial, into building a common base of reusable
software assets to be amortized over several uses, be they ap-
plication generators or source code components. It is widely
accepted that, in addition to the typical project team structure
of software organizations, a team responsible for building and
maintaining a base of reuse capital is needed. Different authors
proposed different divisions of labor between project teams
and “reuse capital” teams. Within the building blocks ap-
proach, the component library team would, minimally, be re-
sponsible for packaging (e.g., documenting) and controlling

the quality of what gets added to the reuse base [13 I]. The li-
brary team could also play an active role in creating reusable
s o h a r e of all forms. Barnes studied the economic models for
two such arrangements [IO]:

1) a pure producer-consumer relationship between the li-
brary team and project teams, where the library team is
solely responsible for producing reusable components,
and

2) a shared arrangement where project teams contribute to
and consume what is in the library.

Caldieri and Basili [28] proposed a more software factory-like
approach [40]. In their model, project teams do no program-
ming (see Fig. 2). They are responsible for requirements and
design specifications-which they submit to the experience
factory-and for integration and integration testing [28]. The
experience factory’s activities can be divided into:

1) Synchronous activities, which are activities initiated fol-
lowing requests from project teams, and can range from a
simple look-up to building the required components from
scratch. Such activities are subjected to project teams’
schedules.

2) Asynchronous activities, consisting of creating compo-
nents that are likely to be requested (anticipating future
demands), or reengineering components generated by the
synchronous activities to enhance their reusability.

In [12], Basili et al. report on experiences at the Software
Engineering Laboratory (SEL), funded and operated by the
University of Maryland, NASA, and the Computer Sciences
Corp., in which the above structure has evolved over the years.

The experience factory was responsible mainly for process (vs.
product) development and reuse [12], [13]. Over a period of
five years, reuse rates increased from 26% to 96%, the cost per
delivered statement decreased by 58%, a 138% increase in
productivityQ - a n d the number of errors decreased by a factor
of four [12]. It is not clear how a pure producer-consumer re-
lationship between the experience factory and the project
teams would have worked. With the building blocks approach,
there are a number of motivational and managerial challenges
to putting into place such a structure, including putting the

4. The experiments reported in [12] used a project implemented in Fortran
as a baseline for errors and cost. Subsequent projects were implemented in
Ada The numbers mentioned here used the first year data with Ada projects
as a baseline, instead of the Fortran project. When the Fortran project is used
as a baseline, we obtain smaller decrease of cost of delivered statement (35%
instead of 58%), but a greater decrease in error rates (a factor of eight, instead
of a factor of four), which is to be expected.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

534 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

most qualified developersS in the least satisfying tasks
(experience factory) [28] and redistributing responsibility and
control of individual projects in a way that may diffuse ac-
countability. Such a division of labor is less problematic with
the application generators approach where the skills required
from application developers are markedly different from those
required of application generator developers: The former have
to be versed in the application domain, possibly end users,
while the latter have to be both domain experts and software
development experts [89]. Less revolutionary divisions of la-
bor exist in more traditional organizations where the job of
system administrators and support staff often evolves into
building and supporting custom-tailored development tools-
embodying reusable processes-or at Japanese software fac-
tories, based essentially on a tighter management and meas-
urement of software activities and products (see, e.g., [99],
[1001).

A.2. New Process Models
A software life cycle is a model for organizing, planning,

and controlling the activities associated with software devel-
opment and maintenance [124]. For the most part, a life cycle
identifies development tasks and identifies and standardizes
intermediary work products (deliverables) and review and
evaluation criteria. The known life cycles may be classified
based on the kind of development tasks and work products in-
volved, and the organization of such tasks. For example, the
waterfall life cycle, the spiral model [21], and to some extent
prototyping, all involve some measure of analysis, design,
coding, and testing. However, while the waterfall life cycle
implies that an entire system is analyzed before any part of it is
designed or implemented, both the spiral model and prototyp-
ing prescribe the analysis ++ testing cycle on system incre-
ments [13. Newer development paradigms usually shorten the
analysis t+ testing cycle by automating one or more steps
along the cycle [2]. When we talk about software reuse, there
are two life cycles to consider

1) the life cycle for developing reusable assets and
2) the life cycle for developing with reusable assets.

Issues to consider include whether the two life cycles are dif-
ferent and whether the availability of a base of reusable assets
modifies the underlying life cycle. This depends on both the
reuse approach used-along the building blocks ++ genera-
tive dimension-and on the development methodology used.

With the building blocks approach, both the reusable assets
and the products developed with them are software compo-
nents. Reusable components may be developed either concur-
rently or separately from specific product development, corre-
sponding closely to the synchronous and asynchronous activi-
ties, respectively, of the experience factory in Caldieri and
Basili’s model (see above). When they are developed concur-
rently, they follow the same life cycle as non reusable compo-
nents, except that greater care may go into building and pack-

5 . In the SEL at the Univ. of Maryland, the experience factory was mainly
staffed by researchers [12]. However, they spent their time mainly collecting
and analyzing data and proposing process enhancements, rather than develop-
ing variants of sort algorithms or stack structures!

aging them. When a separate activity is set aside for develop-
ing them, we talk about domain analysis and domain engineer-
ing. One of the major inputs of domain analysis is a set of al-
ready developed systems within the domain, whose common
features are identified, abstracted, implemented, and then
packaged [1321. The identification and abstraction of common
features can take place at the earliest development stage for
which there is adequate documentation. For example, if good
quality analysis documents for the existing systems are avail-
able, the common features can be recognized at the analysis
level. If not, one needs to look at existing designs or even code
fiagments, perform some measure of reverse-engineering to
recover requirements of individual systemskomponents, iden-
tify common features, abstract them, and forward-engineer
them

Building new applications with reusable components need
not follow a radically different life cycle fiom building new
applications without reusable components (see, e.g., [6], [27],
[76], [131]). One of the criticisms leveled at the waterfall life
cycle is that each life cycle stage is mainly influenced by the
previous stages (top-down), while the existence of reusable
components requires some sort of a look-ahead procedure to
identify opportunities for reuse and take advantage of them
[66], [148]. We believe this to be mainly a documentation is-
sue: Reuse has traditionally meant reuse of small code frag-
ments that have little or no life cycle documentation; if analy-
sis information were stored in components libraries, for ex-
ample, analysts could identify opportunities for reuse at the
analysis level without looking at the actual code of reusable
components. The point has been made, though, that 00 soft-
ware development, the reuse methodology par excellence, re-
quires a mix of top-down and bottom-up approaches6 [66].
This is explained by the premise that an 00 development life
cycle needs to combine application and domain engineering in
order to attain reuse objectives [66]. The application engineer-
ing part of the life cycle proceeds in a top-down fashion from
requirements gathering to high-level system design. Domain
engineering consists of building “clusters” (libraries or layers
[107]) of classes, starting with the lowest level (building
blocks) which would most likely be needed no matter what the
final system design is like, and moving up to application-
specific classes, looping back on system design or even analy-
sis [66]. Other 00-induced life cycle changes have been pro-
posed in the literature that are motivated by considerations
other than reuse, such as managing the risks inherent in
switching to a new development technology [125].

The situation is markedly different with the generative ap-
proach. Application generators, which experienced some
commercial success, have been studied in the literature (see,
e.g., [89], [98]). However, by and large, the process of build-

6. The terms top-down and bottom-up are used in software. engineering to
mean two things. They may refer to the direction used to go through the
stages of a life cycle. For the waterfall life cycle, top-down means going ftom
requirements to testinghtegration. The terms are also used to refer to con-
struction paradigms, the analytical (top-down) versus synthetic (bottom-up).
Things get confused because synthesizing systems from components suggests
that detailed design is done before system design, e.g., and the two meanings
overlap.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILL REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 535

ing “reusable processors” has not earned a lot of attention,
perhaps because most of the executable specification lan-
guages are research prototypes. A notable exception is Simos’s
work on application-specific specification languages (ASL),
and what he calls domain life cycle [148]. He sees ASLs as the
culmination of the maturation of an application domain, or of
an organization’s expertise in that domain. The maturation
starts with small reusable code components and moves toward
more abstract representations and more complex constructs
until an entire application domain is “covered” (Section 1I.C)
[1481. The effect of using the generative approach for software
development is much easier to assess: The generative approach
shortens traditional life cycles through automation (see, e.g.,
[98]). Application generators, for example, obviate the need
for specifying the software requirements, designing, coding,
and testing, of big chunks of applications [89]. Executable
specification languages and transformational systems obviate
the need for designing, coding, and testing, but developers still
need to produce precise formal specifications of the desired
system [11.

A.3. Eflects on Development Method
Software development can be considered as a problem-

solving activity, the problem being that of finding a software
implementation that satisfies a set of user requirements. Cog-
nitive scientists and AI theorists alike consider recall as an es-
sential part of human problem-solving (see, e.g., [88], [141]).
Broadly speaking, when faced with a problem, we first per-
form a “rote recall” to see if we haven’t solved the problem
before [MI. When that fails, we start looking for analogical
(similar) problems that we might have already solved and
adapt their solution to the problem at hand [29]. When that
fails, we fall back on general analytic problem-solving knowl-
edge and skills [881. Traditional development methodologies
(e.g., SNSD [124]) are analytical in nature and fall back im-
mediately on general problem-solving knowledge and heuris-
tics such as divide and conquer and successive refinements.
Researchers recognize that “informal reuse” (i.e., in devel-
oper’s head) has always been taking place, whereby the base
of reusable knowledge is “acquired” individually by develop-
ers through experience (see, e.g., [ll]). To some extent,
“formal” software reuse in general and the building blocks ap-
proach in particular recognize the earlier recall-based phases
of problem-solving and aim at formalizing them and providing
computer support for them.

Challenges to supporting reuse within development meth-
odologies include:

1) identifying reuse tasks and the skills required to perform

2) providing methodological and tool support for these tasks

3) integrating reuse activities into the normal workflow of

The reuse tasks depend heavily on the reuse approach used
along the building blocks vs. generative axis. With the genera-
tive approach, the reuse tasks consist of specifying the desired
application in a high-level language (executable specification

those tasks (see, e.g., [95]),

(see, e.g., [1 131, [1 16]), and

developers (see, e.g., [47] and [113]).

language, 4GL, etc.), and the required cognitive skills need not
be different fiom those required of traditional development
methods. With the building blocks approach, developers try to
build a system that satisfies a set of requirements by using as
many existing components (or developing as little code) as
possible. For any part of the target system, developers must
(see, e.g., [471, [951, [I 131, [W) :

1) formulate the requirements of the part in a way that sup-
ports retrieval of potentially useful reusable components,

2) understand the retrieved components and
3) if the retrieved components are sufficiently %10Se” to the

needs at hand and are of sufficient quality, then adapt them.

If no component is found that matches perfectly or closely the
given requirements, developers may fall back on general-
purpose analytical heuristics to decompose the system (or part
thereof) into smaller parts for which steps 1 to 3 may be reit-
erated [1 3 51.

The search and retrieval problem benefits fiom a large
body of work in the area of document retrieval and will be dis-
cussed in more detail in Section V.A. For the time being, we
note that in the context of reuse, we need more than an algo-
rithm that tries to match a requirement to a single component;
we need a retrieval system that is capable of synthesizing a set
of building blocks into a single component that satisfies the
developer’s requirement. This is what is commonly referred to
as bottom-up development. This is perhaps the most challeng-
ing problem in the building blocks approach, and where com-
puter assistance is much needed. Yet, there have been few
concrete proposals (see, e.g., [62], [79]). Component synthesis
and aggregation is discussed in more detail in Section V.B.

Component/program understanding represents an important
part of both the mental effort and the cost factor, in reuse [47],
[95] and m a i n t e n ~ c e ~ [103]. Component understanding can
mean three things:

1) understanding what it does,
2) understanding how it does it and
3) understanding how to modify it in such a way that it does

In a r euseand maintenancwontext, some abstract
(implementation independent) component documentation
should accommodate step 1, obviating the need for reusers to
browse through actual codei .e . , obviating the need for
step 2. For components whose evolution/adaptation and ex-
tension has been properly planned, the amount of knowledge
needed for step 3 can be very small, compared to what it
would take to explain how the component works, i.e., step 2;
the knowledge required for step 3 corresponds to documenting
what Krueger called the variable part of component abstrac-
tions [83]. It is reasonable to assume that if a component is to
be modified in an unanticipated (or not properly parameter-
ized) fashion, one might need to delve into the minute details
of the component, and the knowledge required for step 3 may
be comparable to that required for step 2. However, studies
have shown that reusers are able to edit and adapt components

7. A 1979 study done at IBM revealed that “maintainen” spend at least

something a little different.

30% of their time trying to understand the code to be modified [103].

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

536 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

with only a sketchy understanding of how they work [95];
whether that is desirable or not is another issue.*

Program understanding involves the recognition of high-
level abstract patterns amid complex and detailed structures.
Studies have shown that experts and novices use different ap-
proaches to program understanding9 suggesting that reusers
and maintainers may need training in program understanding
or the support of tools that help them understand programs
1471, [951, [103l.

Component understanding is the first step toward compo-
nent adaptation. Unplanned component adaptation constitutes
a textbook case in analogical problem-solving [29]. Analogi-
cal problem-solving is used when the mapping from problem
to solution cannot be characterized intensionally, but such that
some <problem,solution> pairs are known for which elements
in the solution space (software artifacts) can be traced to ele-
ments in the problem space (requirements). A new problem Np
is solved by first matching it to a known problem-solution pair
<KP, KS>, and then using the difference between NP and KP
to infer the difference between KS and the actual solution of
NP (NS). Analogical problem-solving is unsound in the sense
that a problem solution NS is not guaranteed to solve the
problem NP; if we modify a component using this kind of rea-
soning, we lose any assurances that the modified version does
what it says (verification), and what we want it to do
(validation). It is inherently unsound because it relies on an in-
complete knowledge (partial extension) of the problem + so-
lution mapping. This kind of technique is only used in the
constrained context of transformational systems (see, e.g., [171
and Section V.C) or for informal software artifacts for which
there is not much else that can be done (see, e.g., [94]).

In terms of tool support and integration, there is a fairly
wide consensus that tools for reuse tasks should integrate
seamlessly into CASE environments (see, e.g., 1471, [94],
[113], [1 161). Typical reuse hctionalities such as search,
copy, and edit should be available to developers in a modeless
fashion, and should not distract them from their normal work-
flow (see, e.g., [113]). Broadly speaking, reuse-oriented CASE
environments should be viewed as problem-solving aids, to be
used as extensions of developer’s mental workspace, rather
than a rigid formalism requiring constant translation back and
forth to that mental workspace. This entails, among other
things, enabling developers to custom-tailor their development
environments and providing them with proactive development
aids/tools [47]. The former is made possible by offering fine-
grained development functionalities which developers may
combine and sequence at will [1 161. The latter remains a re-
search goal, although some knowledge-based systems made
some headway in that direction (see, e.g., [1471).

8. Such reuse does away with the quality incentive, and may cost resources
for debugging and testing.

9. It was found that experts classify program segments along functional
lines, while novices classify program segments along syntacticdsuperfcial
similarities. Also, experts use a mix of a bottom-up phase, collecting enough
clues to formulate a hypothesis (a pakrn), followed by a top-down predic-
tiveherification phase during which they check whether the remaining clues
fit in the pattem, while novices use a straight bottom-up strategy, trying to
understand programs one line at a time [95].

B. Measuring Software Reuse
Economic considerations are at the center of any discussion

of software reuse. Indeed, the most vaunted advantages of
software reuse are:

1) an increase of the productivity of software development,
which translates directly into monetary terms and

2)an improvement of the quality of the products, which
may mean less corrective maintenance, easier perfective
maintenance, greater user satisfaction, and so forth, all of
which translate into monetary gains.

There are also different costs associated with software reuse,
both capital setup (up-front) costs and proportional costs (cost-
per-use). Further, different technical approaches to reuse have
different investment and return on investment profiles (see,
e.g., [42], [148]). Economic models and software metrics are
needed that quantify the costs and benefits of reuse. Only re-
cently have researchers started to tackle this problem (see, e.g.,
[7], [lo], [1 13). Such studies will not only help convince man-
agement of the advantages of software reuse-in case there are
any-but will also guide the choice of the technical ap-
proaches, and improve the management of the introduction of
reuse work methods within organizations [121, [lS].

Traditional software metrics that estimate (predict) or
measure (after the fact) effort, size, and the relation between
them (productivity) need to be amended to account for soft-
ware reuse. For example, reusable components that accommo-
date several uses tend to be bigger in size than a version that
accommodates a single use, and more complex (see, e.g., [7],
[97]). Further, reuse practice presents managers and develop-
ers with choices whose implications have to be measured at the
organization, project, and task levels. We recognize three such
decisions:

1) the decision to launch an organization-wide software re-
use program (a long-term, capital investment-like deci-
sion [1 13, [52], [128]),

2) the decision to develop a reusable asset (a domain engi-
neering decision [52]) and

3) the decision to (re)use a reusable asset in an application
currently under development (an application engineering
decision [52]).

In the next three sections, we discuss the work relevant to
these decisions. Because of the dependencies between some of
the metrics and models, we proceed in reverse order. We con-
clude in Section 1II.D by discussing the weaknesses of the ex-
isting methods and suggesting areas for research.

B. 1. Reuse Instance Costs
A reuse instance means different things whether we are

talking about the building blocks approach or the generative
approach. In the context of the building blocks approach, a re-
use instance is a point in the development where a developer
has the option of building a component from scratch, but
chooses instead to try to reuse a component from the library.
With the generative approach, a reuse instance corresponds to
an entire project life cycle, or a significant part thereof, as the
decision to reuse-in this case, generate-modifies the life

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILL AND MILI: REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 531

cycle in significant ways (see Section 1LI.A). Models appro-
priate for the generative technology are needed that estimate
(or measure) the cost of generative development (see, e.g.,
[98], [154]) and thatcompare it to the cost of more traditional
development (see, e.g., [114]). In this section, we focus on
studies that dealt with the building blocks approach.

Barnes and Bollinger recognized the existence of two kinds
of building blocks reuse, namely, black box reuse, whereby the
component is integrated in its host environment without modifi-
cations, and white box reuse, whereby the component is adapted
and integrated into its host environment [ll]. The average cost
of attempting reuse can be formulated as follows:

[Search + (l-p) x Development]
where Search is the cost of performing a search operation on the
database, Development is the cost of developing the component
from scratch, and p is the probability that the component is
found in the database. The reuse option is attractive only if:

[Search + (l-p) x Development]
e Development,

or Search e p x Development.
To favor reuse, we must have an adequate coverage of the library
(large p) and make sure that developers can, quickly, either find
the component they need or be fairly confident that it does not ex-
ist. Obviously, the more complex the reusable component, the
more worthwhile it is for a developer to keep searching.

In the context of white box reuse, the developer must weigh the
cost of producing a component h m scratch against the cost of at-
tempting to reuse one, possibly after modifying it. The average cost
of developing with intent to reuse can be formulated as follows:

[Search + (l-p) x (ApproxSearch
+ q x Adaptation

+ (1 3) x Development)]
where p is the probability that the component is found in the
database, q is the probability that a satisfactory approximation
of the component can be found, ApproxSearch is the cost of
performing the approximate search, Search is the cost of per-
forming an exact search operation on the database, Develop-
ment is the cost of developing the component from scratch,
and Adaptation is the cost of adapting the component to its
host environment [11 1. The reuse option is attractive i f

Search + (l-p) ApproxSearch
+ (l-p) q Adaptation I

(1)
If we consider that the fact that a satisfactory approximation of
the component is found means that Adaptation I Develop-
ment,1° then a sufficient (but not necessary) condition for reuse
to be attractive is given by:

(p + (l-p) q) Development

10. A study by Woodfield and Embley suggested that developers would not
consider reusing if they estimate the cost of adaptation to be 70% or higher
than the cost of developing from scratch [159]. They also found that develop
ers systematically underestimate adaptation effort by about 15%. which
means that what they perceive to be 70% may actually be 85%. Thus, all in
all, developers are reasonably trustworthy as far as ensuring that they don't
adapt reusable components in cases where they should develop from scratch.

Search + (l-p) ApproxSearch 5 p Development (2)
which means the overall cost of search, whether a satisfactory
component is found or not, is less than the savings that actually
result from those (100 x p) % cases where a satisfactory com-
ponent is found.

This inequality has to be understood in the context of ex-
perimental evidence to the effect that the cost of adapting a
component for the purpose of software reuse jumps very fast
as the portion of code to be modified goes up [23]; e.g., the
cost of modifying 20% of the code of a component is esti-
mated at near 90% the cost of developing the component from
scratch [23]. Margono and Rhoads argued that adaptation
costs depended on whether a component was reused within or
across application domains and on whether a component was
developed in-house or acquired externally [97]. It is fair to say
that, in general, white box reuse is cost-effective if it is re-
stricted to those cases where modifications are very minor or
already planned andor parameterized. That being said, ine-
quality (2) can be used as a baseline for developing component
libraries and retrieval systems, where we should replace p
above by p x recall," which represents the probability that a
component exists that satisfies the needs and that is found by
the retrieval system. Putting more components in the library
increases its coverage @), but may increase search time
(Search and ApproxSearch) by returning more irrelevant com-
ponents that need to be studied by developers. Putting in big-
ger components (higher development costs) increases also the
cost effectiveness of the library. We discuss the marginal costs
of adding a component to a library in the next section.

We conclude our discussion by pointing out that a devel-
oper who is fairly familiar with the contents of a component li-
brary can locate what shehe needs more quickly and knows
,when not to bother even looking. This has the effect of reduc-
ing the cost of individual searches (Search and ApproxSearch)
and their relative frequency, which in case of perfect knowl-
edge about the contents of the library, go down from 1 to p for
exact search and from l-p to q for approximate search.

B.2. Building a Reusable Asset
Building a reusable asset represents a more or less major

investment, depending on the reuse approach used. With the
building blocks approach, building components is a regular,
recurring activity, whose implications, positive or negative, are
minor. By contrast, building a generator is an extraordinary
and costly decision, on which the success or failure of a reuse
program may depend. For the case of application generators,
the biggest challenge is to recognize opportunity: When is a
generator appropriate [98]. This depends on both the stability
of the application domain and the number of systems that need
to be developed and maintained within that domain (see, e.g.,
[34], [89]). The second question has to do with the extent of
application development that should be automated. Levy ar-
gued that deciding the coverage of the generator should be

11. Simply put, the recall of a search on a retrieval system is the probability
that a relevant item to the search is retrieved by the system The recall of a re-
trieval system is the statistical average over a sample of representative
searchedqueries.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

538 IEEE TRANSACTIONS ON SOlTWARE ENGINEERING, VOL. 21, NO. 6. JUNE 1995

based on rational economic decisions, namely, on the marginal
costs of automating an extra E % of applications, relative to the
marginal benefits expected from automating that extra E %
[89]. In particular, he noted that the 20/80 rule holds, namely,
incrementally automating the development of applications gets
much harder as we come close to full automation [89]. The
cost increments have to be measured against (amortized over)
the number of systems to be developed and maintained during
the “life expectancy” of the generator, which depends on the
stability of the application domain.

With the building blocks approach, the decision to build a
reusable component should take into account several cost fac-
tors:

1) the initial cost of development,
2) the direct and indirect costs of including the component

3) the cost of integrating and/or adapting the component and
4) the expected usage frequency of the component.

Barnes argued that organizations should consider acquiring re-
usable components from other vendors, and the decision
should be purely economical. As a rule of thumb, build reus-
able components in-house for local expertise, and purchase re-
usable partslZ in external expertise. But how to estimate the
cost of developing a reusable component? There is a wide
consensus that reusable components cost more to develop than
nonreusable components with comparable functionality, but
estimates range from 50% more [128] to twice the cost or
more [97]. The extra cost could be due to a more demanding
requirements identification stage (domain analysis), lengthier
or more complex codeI3 (see, e.g., [7]) , or more demanding
testing and packaging. Balda and Gustafson explored a CO-
COMO-like empirical cost model for software projects that
accounts for both reusing reusable components and developing
reusable components [7] . They argued that reusable compo-
nents tend to be longer and more complex than their nonreus-
able counterparts, and that the differences depend on the ap-
plication domain, but offered no detailed breakdown of the
extra costs [7] . Rhoads and Margano tracked software projects
in which reuse-mainly within project-was a priority and
found that 60% of overhead costs for building reusable com-
ponents were incurred during the detailed design of the com-
ponents [97]. In their study, reusable components were built as
a byproduct of application development, and not in the context
of a stand-alone domain engineering activity, for which differ-
ent cost profiles may hold.

Once a reusable component is built, it needs to be included
in a repositoryllibrary of reusable components. In addition to
the obvious (and negligible) costs associated with storage and
degraded time performance, there are a number of insidious
retrieval costs that are more significant and harder to measure.
For a thorough assessment of the result of adding a reusable
component to an existing library, we have to see the effects on
the reuse instance cost equation:

into a library of reusable components,

12. This explains in part why mathematical and statistical packages have
gained wide acceptance in the software market: Few companies have an in-
house mathematician or statistician.

13. E.g., using conditional compilation (extra code) or more parameteriza-
tion (more complex) to offer several variants of the same functionality.

[Search + (1-p) x (ApproxSeurch
+ q x Adaptation
+ (1-q) x Development)]

In principle, adding a component increases the coverage of the
component library and thus increases both probabilities p
and q and modifies the averages Adaptation and Development
(depending on the new component size relative to the average
component size in the library and the average component size
“outside the library”). It will also probably increase the costs
Search and ApproxSearch. For instance, with document re-
trieval systems, there is a three-way trade-off between recall,
precision,14 and simplicity of the encoding and search strate-
gies [142]. Increasing the size of the document collection de-
grades the performance of the retrieval system both in absolute
terms (e.g., for the same precision level, the user has more ir-
relevant items to examine) and in relative terms (e.g., “higher
resolution” encoding is required to describe components, and
thus more complex queries are required to retrieve them with
equal precisionI5). It is widely recognized in the literature that
bigger libraries are not necessarily better (see, e.g., [73]).
Thus, components should be added only after very careful
consideration (see, e.g., [28]) and should be taken out of the
library, if they have poor reuse record; in [73], Isoda reports
on an experimental reuse program at “IT where components
were withdrawn from libraries if they haven’t been used in
three years. In that same experiment, where the components in
the library ranged in size from 50 lines or fewer to several
thousand lines, it was found that modules of 50 lines or fewer
accounted for 48% of the reuse instances and 6% of the reuse
volume, while modules 1,OOO lines or larger accounted for
only 6% of the reuse instances, but of 56% of the reuse volume
[73]. Unfortunately, no statistical distribution of module size is
provided in [73], but we would not be surprised if pulling
those small components out of the library would have actually
increased its effectiveness, whereby the loss of coverage is
more than offset by enhanced search performance.

B.3. Setting Up a Reuse Program
The question is not so much whether to set up a reuse pro-

gram or not, but how. There are a number of intertwined or-
ganizational and technological choices to be considered, with
different cost/benefit characteristics, and managers must have
the tools to evaluate and compare them. In this section, we dis-
cuss the most salient choices, and any reuse-specific measur-
ables (or measures) proposed in the literature that are relevant
to these choices. As shown in SectionIII.A, reuse practice
benefits from new organizational structures and managerial
practices. Accounting for such changes in the costhenefit
analysis would be no different from that in any business proc-
ess re-engineering effort, and won’t be discussed below. We
organize our discussion around the steps of a reuse adoption
process proposed by Davis [42]:

14. Precision is the average ratio of retrieved and relevant items out of the
retrieved items.

15. The readers can convince themselves of the above using intuitive in-
formation-theoretic arguments: to encode and distinguish between @recision)
n items, we need codes of length hg(n) . The more items we have, the longer
the codes.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILI: REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 539

Initiate reuse program development: This step includes
identifying organizational objectives (e.g., productivity and
quality objectives) and reuse opportunities [42]. An organiza-
tion may be active in different application domains, and the
reuse potential in each of these domains must be estimated. It
is widely recognized that MIS applications are fairly stable and
high reuse rates are possible, while systems software and pro-
gramming environments, e.g., offer few opportunities for reuse
(see, e.g., [85], [loo]). However, there is no easy way of find-
ing out how much reuse is possible within an application do-
main without actually doing it over a period of years or per-
forming some extent of domain analysis.

Define reuse program: This step includes:

1) defining the scopdcoverage of the reuse program,
2) establishing “reasonable” reuse targets and
3) identifying alternative reuse adoption strategies.

Scoping the reuse program consists of choosing an application
domain, or a subdomain thereof, that offers the most reuse
potential, the lowest risks, the fastest returns on investment,
etc. Once the scope is identified, organizations must establish
reuse objectives that they can attain with reasonable effort, de-
pending on a self-assessment of their managerial and technical
processes [42]. Davis proposed a reuse capability model
which defines reuse objectives in terms of three measures:

1) reuse proficiency, which is the ratio of the value of the
actual reuse opportunities exploited to the value of po-
tential reuse opportunities,

2) reuse eficiency, which measures how much of the reuse
opportunities targeted by the organization have actually
been exploited and

3) reuse egectiveness, which is the ratio of reuse benefits to
reuse costs [42].

Note that all three measures assume that a reuse program is al-
ready in place. Davis pointed out that these measures are not
metrics that organizations must be able to calculate at the out-
set, but are objectives to be attained once a program has
started [42].

As mentioned above, it is difficult to precisely quantify the
reuse potential of an application domain, and thus, reuse pro-
ficiency is only an indicative measure. There has been some
interest in the literature for measures of reuse eficiency, al-
though mostly as target reuse rates, i.e., as a target percentage
of reused code in new projects (see, e.g., [12], [99], [IOO]).
However, there are a number of problems in measuring reuse
rates by comparing code sizes, as reflected by the sometimes
surprisingly low productivity increases that resulted from im-
pressive reuse rates (see, e.g., [59]). First, there are difficulties
in applying such measures for the generative approaches to re-
use, where the generated code does not necessarily correspond
to what a developer might write, either in style or in size [34].
Second, as shown earlier, reusable components tend to be
larger than their nonreusable counterparts, inflating the per-
centage of reused code within projects. This is exacerbated in
the case of the black-box reuse of modules that offer several
functionalities: One cannot separate the needed features from
those that are not needed (e.g., with 00 components) and

count them separately. Third, there are also difficulties with
defining what constitutes an instance of reuse (see, e.g., [1281):
A reusable component that is imported (used) in several client
modules should be counted only once. To alleviate these
problems, functional (versus size) metrics, such as function
points, could be used instead. For each project developed un-
der the reuse program, let firor and JpNw be the function points
of the entire project, and of the new code developedfor the
project, respectively; the functionali~ reuse rate may be de-

fined as: *“‘ - *WW . The trouble with such a measure is that

a function points count cannot be entirely automated. Further,
while function points are additive for coarse-grained mod-
ules,I6 they may lose significance when we are dealing with
low-level components.

FinalG, reuse efectiveness can be measured directly-and
globally-from observables. A naive approach would consist
of measuring productivity levels before and after the introduc-
tion of reuse. Productivity can be measured as the time average
of the ratio of delivered functionality per expended resources.
Because reuse involves both proportional recurring costs and
one-time fixed costs, productivity studies must necessarily ac-
count for different amortizing schedules and account, implic-
itly or explicitly, for various product line life expectancies.
Most of the work on metrics and economic models for soft-
ware reuse takes into account the time-varying aspects of pro-
ductivity and explores different return on investment scenarios

Analyze reuse adoption strategies: The identification of re-
use objectives (in the previous step) suggests a number of
candidate reuse adoption strategies, whose costs and benefits
are analyzed at this step. An adoption strategy may be seen as
a combination of a technical approach and a deployment strat-
egy (e.g., starting at the project level vs. department level,
pace of introduction of the technology, etc.). For example, the
building-blocks approach may be suited to a low-investment
and low-risk, incremental reuse adoption strategy. It also has
some inherent limitations in terms of attainable reuse effi-
ciency and effectiveness. A generative approach, on the other
hand, supports a high-risk, high-payoff strategy.

Plan reuse adoption strategy: Based on the comparative
analysis of the various adoption strategies, one or a combina-
tion of strategies may be chosen. At this stage, a detailed de-
ployment plan is produced. Decisions such as how much of the
reusable domain to cover the first year, the pace of acquiring
the reusable assets, etc. are made here. Detailed cost models
such as those discussed in Section III.B.l and Section III.B.2
are needed.

Implement and monitor reuse program: Monitoring in-
volves collecting data to support the various metrics.

In summary, setting up a reuse program is a major capital
investment decision and has been recognized as such by a
number of researchers. The economic models proposed in the

*tor

(see, e.g., [I 11, P21, [891, [W) .

16. I.e., are such that for a given two modules M1 and M2, FP(M1 + M2) =
FP(M1) + FP(M2).

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

540 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21. NO. 6, JUNE 1995

literature address fairly adequately the economics of reuse at
the organization level and at the project level, by integrating a
set of elementary cost variables in an encompassing model
(see, e.g., [ll], [52], [128]). However, it is often those elemen-
tary cost variables, or the observables used to derive them, that
are hard to measure or interpret, undermining the forecasting
or explanatory abilities of these models.

B.4. Discussion
A lot of progress has been achieved on the analysis of the

software reuse processes and the derivation of cost estimation
models for these processes, and a great deal more is needed.
We feel that future efforts should be concentrated on address-
ing the following aspects:

In relation to reuse instance costs: We need more precise
effort and cost models for adapting reusable software. Existing
empirical evidence suggests that small changes-which defeat
the quality advantage-require substantial efforts [23]-
defeating the productivity advantage. We need a better break-
down of those efforts (e.g., trying to understand the code ver-
sus implementing the actual change) to focus technical re-
search on those aspects that are most costly. We also need a
better characterization of which adaptation efforts are costly
and which are not. For example, changing the type of a pa-
rameter of a procedure is probably less costly than changing
the outcome of a control sequence. Such knowledge may help
us develop better techniques for modularizing and parameter-
izing reusable components and computer tools to support the
adaptation process (see, e.g., [94]). We also need a finer char-
acterization and a better integration of retrieval costs in the
cost equation (Sections III.B.1 and III.B.2).

In relation to the cost of building reusable assets: It is
widely recognized that reusable components are costlier to de-
velop than their nonreusable counterparts. However, there is
no agreement over how much more, and there are very few
studies about the distribution of “reusability overhead” (see,
e.g., [7]); more are needed. There is already recognition in the
literature that the extra cost depends on the domain (see, e.g.,
[7], [97]). Other factors could include the parameterization
range, the implementation technique, and associated adapta-
tionfinstantiation techniques, etc.

In relation to project-level and organization-level meas-
ures: This is perhaps the area where most work is needed.
First, we need more accurate and practical measures of reuse
rates. As shown above, code reuse rates are difficult to meas-
ure accurately and do not reflect either effort or savings. Fur-
ther, they apply only to code reuse and cannot be used to
measure design reuse, e.g. We showed that functional metrics
are useful, but impractical. We could ignore reuse rates (a
means) altogether and look directly at productivity gains (an
end). But then, how much of the productivity gains are due to
reuse, how much are due to process improvement? How much
are due to enhanced communication between developers be-
cause teams get smaller? For example, the greatest productiv-
ity gains with 4GL tools occur for those projects that become
small enough to handle for a single developer [98]. These are

not moot questions because we need precise indicators to help
us improve those aspects of the reuse plan that can (or should)
be improved.

Until (most of) these concerns are properly addressed, there
can be no objective basis for comparing different reuse ap-
proaches, especially those that fall on different segments of the
building blocks t+ generative axis. The various approaches
discussed in the remainder of this paper will only be compared
for the extent to which they address specific issues. Where ap-
propriate, we will guesstimate their likely relative effective-
ness, but we will not, and cannot, go any further.

IV. ACQUIRING REUSABLE ASSETS

We saw in Section II.B that all the artifacts, both used and
produced, and the processes of past software development ac-
tivities are reusable. We choose the word “acquire” to encom-
pass purchasing, building, and various degrees of re-
engineering or otherwise transforming existing assets. We dis-
cussed the economics of acquiring reusable assets in Sec-
tion III.B.2. In this chapter, we deal with the technical aspects
of acquiring reusable assets. We first discuss general issues
related to the acquisition and packaging of reusable assets,
with a focus on building blocks. In Section IV.B, we discuss
application generators as an example of a commercially suc-
cessful application of the generative approach. In Sec-
tionIV.C, we discuss 00 software development, as an ena-
bling technology for developing reusable blocks.

A. Overview
What makes a software component reusable? We see reus-

ability as a combination of two attributes, (re)usefulness,
which means that the component addresses a common need, or
provides an often requested service, and usability, which
means that the component is of good enough quality and easy
enough to understand and use for new software developments.
The two are often at odds because the generality of a compo-
nent (its usefulness) entails abstracting the details specific to
its individual uses, which often means that these details have to
be somehow put back in to use the component, making it less
usable. New abstraction techniques in programming and de-
sign enable us to reach new optimums but do not change the
basics of the trade-off (see, e.g., [72], [83]). This is part of
what makes the development of reusable assets more challeng-
ing than that of custom-made components.

Acquiring reusable components involves various mixes of
new developments and use of existing assetdraw resources,
depending on their usability, reusefulness, and desired level of
computer support for unit reuse tasks (search, understanding,
and adaptatiodintegration). Approaches that rely on existing
resources include:

providing access to existing “assets,” which could be as
simple as grouping existing computer files in publicly ac-
cessible directories, or providing indexing and search
tools, browsers, etc. (see, e.g., [113]),
re-engineering and preemptive maintenance (enhancing
the maintainability and the reuse worth of components),

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILL MILI, AND MILI: REUSING SORWARE: ISSUES AND RESEARCH DIRECTIONS 54 1

reverse engineering (recovering “implicit” development

or, more generally, transforming available software knowledge
that is otherwise too specific (usable but not reuseful) or too
diffuse (reuseful but not usable) into a level of abstraction that
makes it (re)useful and usable.

Domain analysis and engineering may involve any or a
combination of the above approaches to identify the basic en-
tities, relations, and operations of the application domain (see,
e.g., [132]). Domain analysis is a relatively new activity, and
there is some disagreement as to what it involves, both in
terms of procesdactivities and in terms of outputdwork prod-
ucts. However, most researchers agree that a critical (and no-
toriously difficult) step in domain analysis is the identification
of the boundaries of the domain [5], [loll, [130]. Lest we
oversimplify, domain analysis follows a process similar to that
in developing specific software systems. Namely, it involves
requirements, analysis, and the production of domain-wide re-
usable components [5], [loll, [130]. The outputs, however,
differ from traditional system development in that reusable
components typically include standards and guidelines (i.e.,
semantic knowledge), as well as generic, but concrete compo-
nents such as domain models (i.e., generic functional architec-
tures), generic design architectures and templates, and even
generic code fragments [130]. For the case of DRACO [121]
and ASLs [148]), however, the output of domain analysis is a
domain-dependent executable specification language that em-
bodies the domain objects and operations on those objects.

One of the limitations of “recycling” existing components
is that the quality requirements for reusable artifacts exceed
those for custom-developed components, and few of the exist-
ing components will qualify to be included in a base of reus-
able assets or will be worth expending effort on. Thus
“recycling” is only cost-effective if it can be automated, fully,
or to a large extent [28]. Indexing, searching and browsing
tools play an important role by organizing existing software
knowledge for the purposes of (as an input to) domain engi-
neering (see, e.g., [113]), but do not providdgenerate compo-
nents that are directly usable. In our own work, we built a set
of tools that extract a structured representation of software
components suited for a reuse-driven CASE tool from diverse
and disconnected sources of documentation [113]. However,
the added value provided by such tools remains to be proven
in a practical setting [1 131.

In the remainder of this section, we will focus on methods
for building new reusable assets, namely, application genera-
tors and 00 components. Some of the issues related to index-
ing, retrieval, and browsing, as they relate to software compo-
nents, will be discussed in various subsections of Section V.A.
The interested reader can consult the literature on reverse-
engineering; a good starting point is the Jan. 1990 issue of
IEEE Sofnyare.

B. Building Application Generators
Generally speaking, an application generator may be de-

fined as a tool or a set of integrated tool, that inputs a set of
suecifications and generates the code of an aDDlication within

knowledge).
an implementation language. What distinguishes application
generators from compilers of high-level and very high-level
languages or automatic programming systems are the
“specifications” or “programs” input by the developer, which
are:

1)partial-the tool completes them by a set of domain-

2) partially or totally nonprocedural-declarative, graphi-

Martin enumerated a number of mostly behavioral properties
that application generators should exhibit, including

dependent reasonable defaults and

cal, etc. [98].

1) user-friendliness,
2) usable by nonprofessional programmers,
3) support for fast-prototyping,
4) applications take an order of magnitude less time to de-

It is next to impossible to give a more precise operational
definition of what constitutes an application generator without
excluding known classes of application generators. This is due
to the fact that the specification language used-and hence the
generation techniqudepends very heavily on the application
domain. For the same reasons, it is difficult to design a devel-
opment methodology for application generators that is appro-
priate for all application generators, and the development of
application generators in general received little attention in the
literature; by contrast developing with application generators
has received a fair amount of attention (see, e.g., [114], [154]).
The material presented below is based mostly on the work of
Levy [89] and Cleaveland [34], describing work at AT&T Bell
Labs.

Viewed as translators, applications generators have a fairly
standard architecture (system design). Further, the program-
ming techniques for implementing translators (detailed design)
are well-understood and fairly standardized. In fact, the design
and implementation of translators are so well-understood and
standardized that application generators themselves can be
built using application generators [34] ! The major difficulties
in building generators reside in:

1) recognizing cases when they are appropriate 1341, [891,
2) defining their requirements, in terms of defining the input

language, the output language, and the “transformation
grammar” [34], [89] and

3) validating their outputs, i.e., verifying that the code gen-
erated does what it is supposed to do [72].

The first two difficulties are methodological in nature. Defin-
ing the input language involves striking the proper balance
between a language that is sufficiently abstract to be usable by
noncomputer experts, but also concrete enough so that execu-
table code can be efficiently generated. Validating the gener-
ated code poses a number of technical-and theoretical-
challenges [72].

Levy identified a c o m e three-step methodology for devel-
oping with application generators (what he calls metapro-
gramming [tis]):

velop than with traditional development, etc. [98].

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

542 IEEE TRANSACTIONS ON SOFrWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

1) identifying the requirements of the generator,
2) building the generator and
3) using the generator.

Cleaveland proposed a breakdown of the requirements phase
into six subphases briefly summarized below [34]:

Recognizing domains: This step consists of assessing
whether an application generator approach is appropriate or
not. According to Levy, applications generators are appropri-
ate for applications that embody a “complex synthetic set of
rules” [89]; complex in the sense that no notation is known
within which they can be described succinctly, and synthetic in
the sense that they are man-made. This entails that the rules
cannot be had right the first time, and they will keep evolving.
This makes it appropriate for prototyping. Or, if we look at the
full half of the cup instead, application generators are needed
when several similar systems have to be built and maintained.
This makes it suitable for stable and well-understood applica-
tion domains. Cleaveland proposed a number of
“appropriateness heuristics” including [341 :

1) recognizing recurring patterns between applications
(code, design, architecture),

2) a “natural” or “emergent” separation between the func-
tional (declarative) requirements and the implementation
(procedural) of applications, or

3) a fairly systematic procedure to go from one to the other.

Defining domain boundaries: This consists of identifying
the parts of applications that will be generated, the parts that
will have to be built by hand, and the interfaces between the
two [34]. There is a trade-off between the range of applica-
tions that can be built with the generator (breadth) and how
much of these applications will be automated (depth); the de-
cision should be based on economic considerations [34], [89].

Defining an underlying model: This step consists of defin-
ing an abstract computational model for the application do-
main. It is abstract in the sense that it does not depend on a
particular implementation technique. Different computational
models are appropriate for different application domains [89].
For example, a computational model appropriate for reactive
systems could be finite state machines, while one appropriate
for database applications could be relational calculus or alge-
bra. Computational models are important for consistency, un-
derstandability, and validation [34]. They also make it easier
to systematize the implementation of a generator and the gen-
eration of a family of generators.

Defining the variant and the invariant parts: the invariant
part of an application family consists of the implementation
details of the application and all of the defaults assumed by the
generator; the variant part consists of those aspects that the de-
veloper has to specify. The variant part includes input specifi-
cations as well as code escapes [34]. Code escapes are used
when a part of the application cannot be captured--concisely
or at all-within the computational model; they defeat some of
the advantages of generators (maintainability at the specifica-
tion level, traceability, testability, etc.) and should be avoided
whenever technically possible [34] and economically justifi-
able [89].

Defining the specification input method: The input method
is essentially the user(deve1oper)-interface of the generator.
Input methods depend on the underlying computational model
and the target user (developer) community. Input methods in-
clude:

1) textual inputs (expressions),
2) graphical inputs (e.g., for user-interface builders [119]),
3) interactive template-filling, etc. [34].

Defining the products: Generators can generate programs,
documentation, tests programs or data, and even input to other
generators [34]. Issues such as packaging for readability
and/or integration and performance, e.g., are important for
code fragments [341.

A major concern with application generators is their testing:
checking that they do generate the correct code. One of the
ways programs are usually tested is by comparing their actual
outputs to expected outputs. With program generators, we are
not certain that the expected output is correct: it, itself, has to
be tested. This additional level of indirection makes it that
much harder to validate generators [72]. The problem is more
acute than with traditional high-level language compilers
which translate imperative code into imperative code, and
where there is an easier correspondence between source code
and-nonoptimized-target code.

C. Object Oriented Programming
In the past decade, object oriented programming has come

to be considered a panacea to all computing aches. Software
engineers view object orientation (00) as the answer to their
numerous and intractable problems: enhancing software qual-
ity, reusability, and providing a seamless development meth-
odology (see, e.g., [35], [38], [106]). Database researchers
recognize that 00 allows modeling the semantic behavior of
data by encapsulating data with the procedures that manipulate
them [25]. In the knowledge-based systems arena, 00 reincar-
nates old ideas such as procedural knowledge representation,
inheritance, and distributed control [1411. While researchers
may not agree on the specifics of the tenets of object orienta-
tion, there is a fairly wide consensus that it is an enabling tech-
nology for creating interchangeable and reusable software
components. We first provide a brief tutorial on 00. Next, we
discuss reusability issues across the 00 life cycle, i.e., analy-
sis, design, and programming. This is by no means a survey of
00 research; our focus is on those aspects of 00 that make
reuse inevitable, possible, or difficult.

C. 1. Object Orientation IO1
The concept of “object” in programming was introduced by

Dah1 and Nygaard in their language SIMULA [41]. SIMULA
was designed as a language for simulating dynamic physical
systems. Physical objects were modeled by structures contain-
ing state variables and procedures used to manipulate them.
Using today’s jargon, we would say that objects are compila-
tion units that encapsulate data with the procedures that ma-
nipulate them. One of the advantages of such structures, from a
programming language point of view, was to separate the

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILI REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 543

visibility of variables from their lifetime, i.e., a variable could
be active outside the scope of its visibility. This is the basic
idea behind information hiding. Information hiding enables us
to build modules that are easier to understand and more reus-
able. Because of information hiding, “objects” can only be
manipulated through public interfaces-sometimes called
protocols or simply interfaces-i.e., a set of procedures that
are “publicly” visible. This makes it possible to change the im-
plementation details of an object without affecting its clients.

Intuitively, a class is (the description of) a collection of ob-
jects that share the same data structure and support the same
operations. The description of a class includes a data template
and a definition of the operations supported by the objects-
called instances-of the class. In some 00 languages and
modular languages (e.g., Modula and Ada), a distinction is
made between the spec$cation of a class (e.g., package
specpcation in Ada) and its implementation (e.g., implemen-
tation module in Modula). Typically, the specification of a
class corresponds to its public interface.” An abstract class is
a class that has a specification but no implementation. Over-
loading makes it possible for several classes to of-
fedimplement the same operations; the compiler disambigu-
ates operation references using the parametedoperand types.
Polymorphism makes it possible for a variable to hold objects
belonging to different classes. Dynamic binding delays the
resolution of operation references until run-time when the ac-
tual type of the variable is known; this allows for greater
flexibility in programming [1061. Overloading and polymor-
phism make it possible to develop general-purpose client code
that is indifferent to the reimplementation and extension of
server code. Classes can be organized along hierarchies sup-
porting different kinds of “inheritance.” The parallel with natu-
ral taxonomies, whereby a natural category “inherits” a num-
ber of properties from its ancestors, is tempting, sometimes
useful, and often misleading [72]. For the time being, let us
just say that inheritance in programming languages is a built-in
code-sharing mechanism that, without polymorphism and dy-
namic binding, would not be much different from various
module import mechanisms in traditional languages.

In addition to its programming significance, 00 is also a
modeling paradigm. As a computational model, 00 represents
a significant departure from traditional process-oriented
modeling approaches in which there is a clear divide between
process and data. In process-oriented approaches, data are
viewed as static entities, whose domain-dependent dynamic
semantics are buried into processes which embody applica-
tion-dependent tasks. Complexity in modeled systems is then
reflected in the procedures. By contrast, 00 encapsulates data
with their domain-wide dynamic semantics, and complexity in
the modeled systems is reflected in the data instead. Presuma-
bly, this makes for partial models (components) that are reus-
able across various applications within the same domain [106].
Further, because procedures evolve faster than data in do-
mains, 00 models tend to be more resilient to change [1061.

17. This is the case in the Modula and Ada families of languages. In Ctt ,
however, the specification must list the procedures and data variables that are
not visible outside, but say so.

The modeling potential of 00 found its way into analysis
and design (see, e.g., [1401, [1461, [1571). 00 proponents ar-
gue that 00 models, in addition to their reusability and resil-
ience to change, are easier to understand and to communicate
to end-users (see, e.g., [35]). Typically, 00 analysis is con-
cerned with the derivation of two views of a system:

1) a static or structural model, describing the objects of the
domain and their relationships and

2) a dynamic or behavioral model, describing the functional
and control aspects of the system as embodied in individ-
ual object operations and interobject interactions (see,
e.g., partial surveys in [461, [ISS]).

Objects that have the same properties and exhibit the same be-
havior are grouped in classes. Class hierarchies start taking
shape where classes that share application-signijicant data and
application-meaningfu2 external behavior are grouped under
more general classes. Identifying generalizations of classes at
this level has several advantages, including:

1) enhancing the understandability of the models by reduc-
ing the number of independent concepts that an ana-
lysthser has to deal with,

2) providing a cross-check with data dictionaries to enforce
consistency within the model and

3) identifying opportunities for code reuse [351, [1401,
[157].

The last is justified by the intuitive realization that similar re-
quirements in terms of external behaviors-an analysis-level
product-generally lead to similar implementations.

Object oriented design binds domain-level classes-a re-
quirement-into computational structures that, in addition to
“implementing” the required functionality, maximize code
sharing and satisfy environmental and performance constraints
(see, e.g., [31], [70], [140]). System (architectural) design in-
cludes partitioning a system into subsystems andor layers,
choosing an overall control paradigm (e.g., event-driven ver-
sus hierarchical), and distributing data and processing (see,
e.g., [1401). Class (detailed) design includes:

1) representation issues (e.g., of attributes, associations, and

2) algorithms, which are tightly coupled into representation

3) object control paradigm [31], [140], [146].

collections),

issues, and

There are a number of advantages to keeping design (and im-
plementation) class hierarchies close to analysis-level hierar-
chies, including:

1) traceability [36],
2) conceptual clarity (see, e.g., [39]),
3) reuse of interfaces (see, e.g., [37]) and
4) potential for reusing application-meaning1 computa-

tions-by contrast to structure-manipulation operations
which are inherently representatiodimplementation de-
pendent.

Methodologists recognize that in some cases, environ-
mental considerations may dictate different representations for
behaviorally similar classes, leading to either suboptimal code

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

544 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

reusdsharing or, if we insist, unsavory class hierarchies (lots
of cancellations, unsafe inheritance, methods having awkward
names, etc. [37]). They also suggest looking into alternatives
to inheritance (e.g., delegation) that achieve the same goals
[1401. In general, the transition from design to implementation
is fairly straightforward. For the case of control-intensive (e.g.,
real-time) applications, the transformation can even be auto-
mated (see, e.g., [1051).

C.2. Reusability Issues in Object Oriented Analysis
The proponents of 00 attribute a number of qualities to 00

analysis and to the resulting models, most of which are sup-
posed to favor reuse. We will discuss these as well as other
tenets of 00 analysis that may impact reuse positively or
negatively.

An often-cited advantage of 00 analysis and 00 models is
what Hoydalsvik and Sindre called problem orientation [70],
i.e., the models are cast into terms of the problem domain.
This makes models easily communicable to the target user
community and favors greater user involvement in develop-
ment and hence greater satisfaction with the final product (see,
e.g., [35], [36]). We share the view that this is only true in
data-rich, processing-poor application domains where objects
are intuitive and easy to identify [3] and where most of the
processing consists of associative data access; these are do-
mains where more traditional data modeling techniques are al-
ready known to be more appropriate than process-oriented
techniques [46]. In control-intensive applications, objects are
synthetic (artificial) service providers rather than natural data
holders, and most of the complexity is embedded in the dy-
namic model, which uses the same notations as those used in
process-oriented techniques.

A second related advantage of 00 models is their-
presumed-resilience to evolution. Presumably, in application
domains, processes change more often and faster than the enti-
ties of the domain, and hence a model structured around the
data of the problem domain will be more stable [1061. To this,
we add the fact that:

1) information hiding minimizes the impact of data structure

2) hierarchical classification enables us to handle data spe-

Lubars et al. set out to test the claim that 00 models are
stable [go]. They define model stability in terms of three prop-
erties:

1) localization, i.e., changes should be localized in the
model, even if they require considerable rework in a lo-
calized area,

2)conservative extension, meaning that the effect of a
change on the work already done should be minimal, i.e.,
we should, as much as possible, extend existing work but
not redo it and

3) model independence, in the sense that changes to struc-
tural (data) models have little impact on behavioral
models, and vice-versa.

The authors modeled the ATM application using Rumbaugh et

changes and

cialization and extension quite handily.

al.’s object modeling technique (OMT [1403) and considered
two “small change” scenarios to assess the stability properties.
They observed that the structural model-called object model
in OMT-was well-behaved, but that the behavioral models1*
were not. They also observed that the models were somewhat
interdependent because in one scenario, changes to the behav-
ioral models led to revising the object model [go]. The authors
recognized that theirs was not a controlled experiment and that
no definitive conclusions could be drawn. We believe that
some of the difficulties were specific to OMT, and to data-
driven methods in general,IY but concur with their observation
that ease of evolution may conflict with ease of description.
The authors mentioned two modeling “tricks” that would have
stabilized the models:

1) the use of abstract classes to leave room for future spe-

2) the use of ‘“ixins”2° to separate concerns and reuse them
cialization or factoring of existing classes and

independently;
both techniques have no meaning to the end user [go].

A third advantage of 00 analysis is that it lends itself natu-
rally to domain analysis (versus single application analysis)
and thus leads to more widely reusable components. This is
attributed as much to the notation as it is to the process. For
example, once it has been recognized that the class Checkin-
account is part of an application, it is difficult not to think of
operations to deposit, withdraw, and give balance, even when
the application at hand requires only one or two operations.
Further, data-driven methodologies (e.g., OMT [1401) explic-
itly prescribe that analysts should rely on their knowledge of
an application domain to complement the statement of the
problem as a source for identifying the relevant ob-
jectdclasses. However, this approach has been criticized for
being open-ended, i.e., analysts do not know when to stop
adding objects and classes that may be relevant to the domain,
but could be irrelevant to the application at hand, and thus un-
duly burdening the project at hand (see, e.g., [74], [125]). Use-
cuse driven or scenario-driven methodologies are supposed to
alleviate this problem by focusing on the objects that partici-
pate in useful system behavior (see, e.g., [74], [138]). And fi-
nally, generalization enables developers to factor out the
shared data and behavior between classes in (abstract) classes
which are even more reusable than the actual (concrete)
classes. We find it surprising that, despite the importance of
the analysis-level hierarchical organization of classes on the
00 development life cycle, and the long-established research
tradition in classification in artificial intelligence, there have
been relatively few efforts to provide automated or semi-
automated tools for building or maintaining class hierarchies

18. Oh4T uses several complementary notations to represent behavior, in-
cluding event flow diagram to =present messages exchanged between ob-
jects, and Haref statecharts for individual objects to represent objects’ indi-
vidual behaviors.

19. A method is considered to be data-driven if modeling starts by identify-
ing the objects of the domaidapplication, before analyzing any desirable be-
havior the system has to have.

20. Broadly speaking, mixins correspond to “mixing in” the featum inher-
ited from two different superclasses (multiple inheritance), each representing
a view of the class.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILI REUSING SORWARE: ISSUES AND RESEARCH DIRECTIONS 545

(see, e.g., [18], [37], [S I , and [56] for a brief literature survey
on classification techniques in 00 analysis). Notable weak-
nesses of existing hierarchical classification methods include
the fact that most methods do not take into account behavior
[56]. Further, nearly all classification methods are limited to
“naive” factorizations in the sense that they assume that every
attribute or operation is defined in only one place, ignoring re-
definition (extension or specialization) at lower levels; this
leads to factorizations that are either oversimplifications
(unsound) or suboptimal (incomplete) [56].

Some aspects of 00 analysis have also been criticized for
hindering reuse or for underusing the potential of 00 for reus-
ability. One of the thorniest problems resides in the specifica-
tion of interobject behavior (see, e.g., [3], [46], [158]). An un-
spoken corollary of 00 is that any behavior that an object
system may exhibit must be attached to an objectlclass within
the system. This forces us to specify-and implement-the
interaction between two objects as an operation on one of the
two, i.e., it forces us to assign responsibility for a behavior in-
volving two objects to one of the two objects. If that behavior
(or the interaction underlying it) is contextual (specific to) a
given application, the object made responsible for the joint be-
havior is not reusable across applications [109]. This led a
number of researchers to propose dynamic entities, other than
state-bearing application objects, that embody interobject be-
havior (e.g., relationships [1391, constraints [1091, contracts
[65], etc.). Recognizing the need for such constructs has not
made the identification of “behavioral boundaries” between
objects any easier (see, e.g., [3], [log], [1581).

A second set of problems deals with the related issues of
view modeling and multiple inheritance. Multiple inheritance
occurs when a class has two or more nonhierarchically related
ancestor classes. Multiple inheritance may occur in natural
taxonomies and has been supported by a number of knowledge
representation languages (e.g., KL-ONE [24] and its deriva-
tives). Further, automatic hierarchical classification (class
factoring) algorithms that avoid redundancy may generate lat-
tices rather than trees (see, e.g., [37], [56]). Multiple inheri-
tance, which is a powerful modeling concept, becomes a pro-
gramming language nightmare when the transition is made to
implementation. Further, it often results from integrating dif-
ferent roles that objects may play within the same application.
Forcing all the roles on the same class definition has a number
of disadvantages [63]. First, the models tend to be hard to read
and understand. For instance, generalization relationships be-
come hard to understand as a class may descend from two un-
related superclasses, each representing a different role. Fur-
ther, a unified nomenclature must be found for all the roles, in-
evitably losing meaning and significance. Second, this leads to
suboptimal reuse as the individual roles cannot be reused
(extended and/or specialized) independently [63]. The prob-
lem of providing different views of objects has been addressed
in 00 programming languages for some time (see, e.g., [1451,
and C++’s three visibility/access modes for class features
[152]). Views as a modeling concept have been getting more
attention recently (see, e.g., [63], [1221).

C.3. Reusability Issues in Object Oriented Design
In 00 software development the same basic set of concepts

is used to describe the products of analysis, design, and im-
plementation [66]. Presumably, this helps make a seamless
transition between analysis and design (see, e.g., [31], [35]).
The advantages of such a seamless transition are numerous and
have been thoroughly documented*’ (see, e.g., [35] and Sec-
tion IV.B.l). It has been known for some time that the mere
use of an object notation is not sufficient to ensure a seamless
transition from analysis to design, and that additional care
must be taken to ensure that it is (see, e.g., [31], [Sl]). For in-
stance, it is widely recognized that 00 design involves more
than adding detail to analysis-level models, and analysis-level
class hierarchies may need to be reorganized to take into ac-
count environmental and performance factors (see, e.g., [66],
[11 11, [1401). This may lead to design models where classes
that have the same external (application-meaningful) behavior
are no longer hierarchically related, leading to suboptimal
code reuse [11 11. Worse yet, if we insist on maximizing code
reuse, we may end up with two hierarchically related classes
that do not share application semantics. This may lead to unsa-
vory class hierarchies, with lots of cancellations, unsafe inheri-
tance, awkward method names, unpredictable behavior, et.
[37], [8 13. Most methodologies recognize the problem, but
don’t do much about it beyond suggesting aggrega-
tioddelegation as an alternative to inheritance for code sharing
(see, e.g., [140]).

We believe that concerns for reusability and safety need not
be contradictory if we view class design as consisting of two
distinct and possibly asynchronous activities:

1) the development of computational structures that support
generic, application-independent structure manipulations
with given performance characteristics and

2) choosing, for a given application-meaningful analysis-
level class, the structure that best matches its require-
ments.

To some extent, the above problems are due to the fact that
computational structures are essentially designed one applica-
tion class at a time and are, in a sense, prematurely bound to
the semantics of application classes by both data types and
names, i.e., before they can be refined and reused. Shlaer and
Mellor recognize this problem, and the design phase of their
methodology includes three steps:

1) building a system-wide design policy,
2) building mechanisms and code templates to support this

3) populate the templates with analysis-level models [105],

However, while they insist that code templates are highly reus-
able, they provide no formal mechanisms for their reuse?*

policy and

[146].

21. Hoydalsvik argued that because analysis models should be prob-
ledapplication-oriented and design models should be solution-oriented, then
any methodology that claims to bridge the two is not doing analysis comt ly

22. The CASE tools that support Shlaer and Mellor may offer specific
[701.

functionalities that support editing existing templates.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

546 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

In [l l l] , we proposed a design framework that makes it

1) reuse interfaces and application-meaningful behavior
between design-level classes that do not share the same
representation and

2) reuse representation and structure manipulation code to
the fullest, without jeopardizing the interface confor-
mance of two hierarchically related design-level classes.

possible to:

Our solution to the first challenge relies on:
1) defining a flavor of inheritance restricted to method in-

heritance, excluding memory structurez3 and
2) enforcing a strict discipline in designingkoding applica-

tion-meaningful logic in a way that does not bind it to the
representati~n.~~

Our solution to the second challenge relies on:
1) defining reusable design templates, including data struc-

ture definition and manipulation and
2) developing a mechanical procedure for “instantiating” a

design-level class by mapping an analysis-level class
over a design template [1 1 11.

Our design templates may be seen as generic data structures
parameterized by both data component types and data compo-
nent (field) names. A design template may be extended by
adding new data components and/or operations. Because data
component names are meaningless parameters, developers
need to specify parameter mappings in case of ambiguity or
multiple inheritance/extension [1 1 11.

We have not had reliable practical experience with our
methodology to ascertain its effectiveness. For example, it is
not clear how much of an application’s logic can be coded (in
an object-flavored PDL [1 1 1 1) without referring to an internal
representation. Further, from a theoretical point of view, thomy
subtyping issues with generic types are made even worse by the
name parameterization [l l l] . It does build, however, on the
proven principle that greater reuse can be achieved by delaying
binding component specification to component realiza-
tiodilementation and exemplifies the progressive move from a
pure building-blocks approach, to one that includes some genera-
tion (see, e.g., [1491 and Section II.C).

C.4. Reusability and Object Oriented Programming
Naturally, any impediments to reuse that may appear during

analysis and design persist when the components are actually
implemented. Implementation further binds components to a
particular programming language and style, inevitably reduc-
ing their applicability. There is disagreement among method-
ologists whether language considerations should come into
play during design or not (see, e.g., [140] vs. [31]). This is an
important question because different languages support differ-
ent sets of 00 features (e.g., typed vs. untyped polymorphism,

23. Theoretically, this flavor is nothing but subtyping. From a programming
language point of view, it is a mix of class inheritance and delegation.

24. Roughly speaking, we use a stricter version of the private mechanism
as used in C++. Our version makes sure that data fieldslstructures are private
to the methods used to access them; no other method, even ones belonging to
the same class, can access them [11 11.

single versus multiple inheritance), with different reusability
characteristics that may tip design trade-offs. For example, if
we want to maximize code-sharing in a language that does not
support multiple inheritance, it is not enough to “linearize” a
lattice that maximizes code-sharing; in order to keep the same
class hierarchy at design and implementation, we have to con-
sider language features at the design level [37], [56].

In addition to the loss of reusability due to language power,
some of the very basic tenets of 00 programming go against
reusability. First, encapsulation and information hiding replace
the traditional stamp coupling between modules, by common
coupling” within modules [156]: All the methods within a
class are common-coupled via the structure of the class. Fur-
ther, inheritance in 00 programming languages violates en-
capsulation and information hiding [150]. For instance, in
most 00 languages, a class has access to all the implementa-
tion details of its superclasses. Thus, methods can be-and
often are-written in such a way that they depend on the im-
plementation details of their superclasses: When those change,
the entire class hierarchy beneath them may be affected. The
C++ language addresses this problem by providing three ac-
cess levels for attributes and methods:

1)private attributes and methods are accessible only to the

2) protected attributes and methods are accessible to the

3)public attributes and methods which are accessible to all

These access levels are further modulated through the acces-
sibility/visibility of the subclass relationship itself: A client
objectA may be prevented from using knowledge that
server B is a subclass of C, thereby preventing him from using
facilities (e.g., operations) that B inherited from C [152].
Meyer argued that inheritance in class libraries is a mechanism
that is useful only to the component builder, but that the com-
ponent user (client) need not and should not be aware of in-
heritance relationships [1071. When the programming lan-
guage does not have the built-in mechanisms to discipline the
use of inheritance, programmer discipline (“always use access
functions to read/write objects’ attributes”) or language pre-
processors are needed [1 1 13.

C.5. Current Trends
As object technology matures, the distinction between what

it guarantees-no matter what-what it enables-if additional
guidelines are used-and what it cannot deliver, becomes
clearer. Object oriented programming guarantees very little, in
and of itself. It is mostly an adequate packaging technology for
reusable components. The major obstacles and opportunities
for building reusable components remain at the analysis and

methods of the defining class,

methods of the defining class and its subclasses and

objects/methods [1521.

25. Two modules are stamp-coupled if they interact through a visible com-
plex data structure, as when a procedure invokes another one whose parame-
ters include a record. Two modules ace common-coupled if they interact
through a hidden complex data structure, as when two procedures access the
same “global” complex data structure. Common-coupling is less desirable
than stamp-coupling because the dependency between the modules is hidden,
making changes to the modules error-prone.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI. MILI. AND MILI: REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 541

design level. Research efforts in analysis and design shift from
notations to processes. There are marked weaknesses in
analysis and design heuristics and increasing demands for
more formal processes, with verifiable properties (see, e.g.,
[3], [31], [70]). One of the still open, yet fundamental issues
that have a direct bearing on the reusability of components has
to do with the identification of object’s behavioral boundaries
and the elicitation and representation of interobject behavior
(see, e.g., [3], [157], [158]). Succinctly put, given a high-level
specification of the behavior of an object system (whose com-
ponent objects may be known or not), how to distribute the
behavior among component objects in a way that maximizes a
given quality criterion-in this case, reusability. The answer to
this and related questions may build on existing work on for-
mal specification techniques for reactive systems [a] . It is
also becoming clear that not all global behaviors can be effec-
tively distributed among objects (see, e.g., [70]) and there is
increasing interest in multi-paradigm programming, e.g.,
combining logic and 00 programming (see, e.g., [96]).

A second major thrust in 00 research was motivated by
practical experience, as it quickly became clear that classes
and methods are too fine-grained reuse units to provide any
substantive leverage and bigger reusable units need to be con-
sidered. For instance, objects seldom offer any interesting be-
havior on their own and it is often in combination (interaction)
with other objects that any useful functionality is achieved
[75]. The idea of objectframeworks [43], as design-level col-
lections of interactiqg and interchangeable objects, captured
significant attention recently.26 The idea of reusable software
(micro-)architectures is not new. However, object orientation’s
abstraction, parameterization and code-sharing mechanisms
support elegant ways for developing and using frameworks
(see, e.g., [72]). 00 frameworks have been developed and
used successfully in the area of graphical user interfaces (see,
e.g., [43], [58], [l lo]). A lot of attention has been devoted re-
cently to the documentation of frameworks, both formally, in
terms of specifying interobject interactions (see, e.g., [65]),
and informally, to describe their applicability and illustrate
their use (see, e.g., discussions about pattern languages [51],
[75], [87]). It is interesting to note that, according to Krueger’s
classification of reuse approaches [83], the emphasis on 00
frameworks moves the reuse of 00 software from a pure com-
ponent-oriented approach to a combination of “software sche-
mas” and “software architectures” approach, i.e., occurring at
a higher level of abstraction and providing much greater reuse
leverage [83].

v. BUILDING WITH REUSABLE SOFTWARE

In this section, we discuss issues related to developing with
reusable software. We focus on issues related to the building-
blocks approach because, as mentioned in Section III.A.2 and
Section III.A.3, the generative approach does not affect much

26. For example, IEEEs Computer started a new department called
Frameworks in the March 1994 issue. An entire conference is devoted to the
documentation of frameworks. The seven-year-old Software Frameworks As-
sociation is a self-help nonprofit organization. For info, e-mail to
info@frameworks.org.

the steps that it does not automate. We will discuss in turn
component retrieval, component composition and component
adaptation. In component retrieval, we look at the problem of
matching a set of requirements for a component to a database
of component descriptions. The matching seeks a monolithic
component that satisfies the requirements. With component
composition, the matching seeks a combination of components
(such as functional composition) that satisfies the require-
ments. Finally, we shall discuss component adaptation from
the perspective of transformational systems.

A. Software Component Retrieval
Given a set of requirements, the first step in building with

reusable components consists of finding a component that sat-
isfies the requirements, either in its present form, or modulo
minor modifications. When the number of components in the
library is large, developers can no longer afford to examine
and inspect each component individually to check its appro-
priateness. We need an automated method to perform at least a
first-cut search that retrieves an initial set of potentially useful
components. Such a method would match an encoded descrip-
tion of the requirements against encoded descriptions of the
components in the library. The choice of the encoding meth-
ods, for both the requirements and the components, and of the
matching algorithms involves a number of trade-offs between
cost, complexity, and retrieval quality. We start by formulating
the retrieval problem from a software reuse perspective. Next,
we discuss some of the trade-offs involved in the choices
mentioned above. Finally, we briefly describe a representative
subset of related work in the literature.

A.1. The Component Retrieval Problem
We can formalize the component retrieval problem as fol-

lows. We make the distinction between a problem space and a
solution space, where the problem consists of the developer’s
needs. We can further divide the problem space into:

1) actual problem space, as opposed to,
2) problem space as understood by the developer and
3) query space, which consists of the developer’s perceived

need’s translation into a “query” that the component re-
trieval system can understand (see Fig. 3).

I

Fig.3. A model of component retrieval.

We use the term query to mean an expression of the devel-
oper’s need. It can be as simple as a string fed into a string
search command or as complex as a Z specification of the
component. Depending on the level of expertise of the devel-
oper, hidher understanding of the need can be as close to the

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

mailto:info@frameworks.org

548 IEEE TRANSACTIONS ON SOlTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

actual need as possible. Also, depending on the expressiveness
of the language used to formulate queries, the developer (or
some other agent) can translate those needs as accurately as
possible.

From the solution space end, we can identify three sub-
spaces:

1) component instances space,
2) component classes space and
3) codeshndices space.

The component instances space consists of components some
of which may be equivalent in some respect. For example, two
stable in-situ sorting algorithms are functionally equivalent.
Two quicksort programs coded in exactly the same way, but
such that variable names differ are functionally equivalent and
performance equivalent-they generate the same machine
code. Within the class space, these two components will be
represented by the same class. The class space is the space of
equivalence classes. The equivalence relationship may include
functional equivalence (same input-output relation), perform-
ance equivalence (same time and space requirements), etc. The
codes space consists of the descriptions of the component
classes using an encoding or indexing language. In practice,
the encoding step inevitably results in a loss of information. In
the best case, “indexing” encodes only a subset of the proper-
ties of a component class, as when the encoded description of
a program module does not state all the potential uses of the
program. Depending on the relative size of that subset, index-
ing would project more or fewer distinct component classes
into the same codes (or indices). Worse yet, the encoding can
assign properties to classes that don’t have them.

Matchers compare an encoded description of the devel-
oper’s needs (query) to the encoded descriptions of the com-
ponents in the library. The languages for describing queries
and components should be identical or homomorphic. Given
the number of translations and their complexity, there are am-
ple opportunities for inaccuracy and ambiguity, and it is a
wonder any needs get satisfied! Any one of the above steps
have kept information retrieval (IR) researchers busy for years.
A full survey of IR research is beyond the scope of this paper.
We explore below the relation between encoding languages
and methods and the corresponding matching algorithms, in
general, and from a software reuse perspective.

A developer query may be seen as a predicate Q(.) that re-
trieves software components X such that Q(X) is true. Each
class C in the class space is characterized by a description rep-
resented as a predicate D d .) such that all (and only) instances
Y of the class C are such that DdY) is true. As mentioned
above, encoding generally results into a loss of information by
replacing the actual description Dc of a class C by a “simpler”
description Dc(.). Accordingly, retrieval takes place by com-
paring Q(.) (the developer query) to the approximate descrip-
tions of component classes (Dc(.) s). We distinguish between
two basic matching approaches:

1) partial-order-based retrieval: The retrieval algorithm
returns classes of items such that Dd.) LT Q(.), for some

partial-order relation LT. Notice that in practice
Ec() will be used for comparison. If LT is a logical
implication, the algorithm returns classes C such that
OX.) +Q(.). In this case, for all X such that DdX)
(Dc(X)) is true, we are assured that Q(X) is true.

2) distance-based retrieval: The retrieval algorithm returns
classes of items such that Dist(Dd.), Q(.)) (Dist Bc() ,
Q(.))) is smallest, where Dist is generally a metric that
satisfies the following property:

[D(.) LT Q(.)l + [Dist(D(.), Q(.N = 01
Intuitively, Dist. measures the extent by which D c () (D c ())

fails the partial-order relation. Needless to say, in either case,
the quality of retrieval depends on the quality of indexing, i.e.,
the relation between 0, (-) and Dc (-) .

Independently of the retrieval used, queries seldom return
software components that fit the needs exactly, especially
when those needs are not very precise in the beginning. Thus,
most likely, the components retrieved will have to be adapted,
and the assessment stage consists of evaluating the retrieved
components for the efforts required to modify them. We con-
sider assessment to be an integral part of retrieval. For in-
stance, developer queries should be seen from the following
perspective:

Find components that satisfy the functional requirements Q(.)
OR are eusy to modi@ so that they satisfy e(.).
In other words, a binary predicate IsEasyToAdaptTo(., Q(.))

should be appended, implicitly or explicitly, to any developer
query. What makes a component Y easy to adapt to the set of
requirements Q(.)? There are two kinds of criteria that make a
component easy to adapt:

1) some general criteria related to the intrinsic quality of the

2) differences between the retrieved component and the re-

In other words, the predicate IsEasyToAdaptTo(., Q(.)) can be
seen as the conjunction of two predicates:

ZsEasyToAduptTo(X, e(.)) E EasyToModifyInGeneral(X) A
[CostOfI mplementingDifference(DClm of X(.), Q(.))

on X is small]

where Dclass of x(.), or DA.) for short, is the description of X’s
properties.

Criteria that make a component easy to understand and
adapt include the complexity of the component (size, cyclo-
matic complexity, number of inputs and outputs, etc.) and the
quality of its documentation [28], [131], [159]. Estimating the
cost of implementing the difference between DA.) and Q(.) on
X poses two major difficulties. First and foremost, we have to
develop a procedure that, based on the difference between two
descriptions DA.) and Q(.), tells what kind of changes need to
be incurred to components with description DA.) so that they
fit in (satisfy) the description Q(.). In fact, distance-based re-
trieval is fairly useless if the measure Dist doesn’t correlate

component to be adapted and

quirements Q(.).

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILI: REUSING SOITWARE: ISSUES AND RESEARCH DIRECTIONS 549

somehow to the amount of effort required to adapt the compo-
nent; this issue is discussed in more detail in the next section.
Second, we need a way to estimate the costs of making various
kinds of changes to a program. Changing a program may in-
volve modifying its interface, its (internal) structure, or both.
Clearly, the cost of adaptation depends on the scope of change
(interface alone, versus internal logic) and extent of the
change. As mentioned in Section III.B.4, more work is needed
in this area.

A.2. Evaluating Retrieval Pe$ormance
Traditionally, retrieval quality is measured by recall and

precision. Recall measures the ratio of number of retrieved and
relevant items to the total number of relevant items in the in-
formationhowledge base. Precision measures the ratio of the
number of retrieved and relevant items to the number of re-
trieved documents. Such measures are only adequate for par-
tial-order-based retrieval, which assumes that relevance is a
Boolean function, and have been widely criticized for this rea-
son. We add to this the concern for estimating the effort re-
quired to adapt a component that doesn’t match the devel-
oper’s requirements. In this section, we study the properties
that the encoding schemes and retrieval algorithms need to
have to address these problems.

First, it is interesting to discuss the conditions under which
we can achieve 100% recall and 100% precision. With partial-
order-based retrieval, perfect precision (only items that truly
satisfy the query are returned) implies that indexing/encoding
should be such that:

(AI) (vC)[(Dc(.) LT e(.)) 4 (Dc(.) LT Q(.))]
The reader can check that condition (Al) is satisfied if for all
C, Dc(.) LT Dc(.). If the partial order is logical implication,
the condition [D, + E,] means that all that have been en-

coded (“said”) about classes is accurate. We say that the en-
coding is sound. For perfect recall, encoding should be such
that:

(vC)[(0, (.) LT e(.)) + (0, (.) LT e(.))] (A2)

Condition (A2) is satisfied if for all C, E,(.) LT D,(.). If LT
stands for logical implication, this says that all that is true
(and functionally signacant) about a class C, and possibly
more (erroneously), has been encoded in E,(.). Not surpris-
ingly, to achieve perfect recall and precision, we need equiva-
lence between the actual intension of classes (Dd.)) and their
encoding (E, (.) 1; logical equivalence if LT is logical impli-
cation. In practice, neither is possible, as mentioned in the
previous section. With distance-based retrieval, we don’t need
logical equivalence but the encoding process should be such
that the ranking produced by Dist using E,(.) is similar to that
which would have been produced using the actual Dd.). The
following must hold:

Condition (Bl) means that if an item C1 is presented to the de-
veloper before item C,, then it is truly more relevantz7 than Cz.
Condition (B2) means that if C1 is more relevant than Cz, then
it will be presented to the developer before Cz. The reader can
check that because, for a given query, Dist defines a total order
on the class space, the two conditions are actually equivalent.

Another way of interpreting condition (Bl) (or (B2)) is to
say that encoding is monotonic, or, introduces a consistent
bias. A cautionary note is, however, in order:

In a reuse context, the thoroughness of component
encoding is limited by the developer’s willingness to
formulate long and precise queries; there is no point in
encoding every bit of relevant information about a com-
ponent if a developer barely has the patience for typing
string search regular expressions!
We now look at the issue of estimating the cost of adapting

a component that does not match exactly the needs of the de-
veloper. Notwithstanding cases where a component fails to
match the query on nonessential (nonfunctional) properties,
distance-based retrieval implicitly assumes that the measure
Disc somehow correlates to the effort required to adapt the
component to match the query. It is fair to assume that the ef-
fort is related to the extent of structural changes needed to
change the component. A component may be described by ei-
ther its function (input-output relation, the “what”) or its
structure (the “how”). Typically, a developer queries the li-
brary for a component that fulfills a given purpose (“what”),
i.e., by specifying its functional properties rather than by speci-
fying or sketching its structure; the former being, supposedly,
easier than the latter. Hence, for matching purposes, compo-
nent classes are described by their functional properties.
Therefore, in order to estimate the structural changes needed
to apply to a component that fails a developer query, we need
to have a model of the relation between functional require-
ments (function, types of inputs/outputs, etc.) and component
structure.

27. The left-hand si& of (Bl) has strict inequality (e) because we don’t
care what happens for cases where oist(EC, (.), e(.)) = oist(EC, (.),q(.)),

since encoding natucaUy maps distinct classes to equivalent codes.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21. NO. 6, JUNE 1995

The kind of knowledge needed to model a stnicture-function
relationship is not much different from that needed in auto-
matic programming. For instance, if we can characterize the
structures that implement a given function, we are only one
step away from generating those structures automatically based
on the specification of the function! It is extremely difficult to
characterize such structures, in no small measure because sev-
eral algorithms, e.g., can implement the same function, and the
same algorithm can implement several “functions,” depending
on the data it manipulates. However, we should mention that
automatic programming systems do not generate all the possi-
ble programs that can satisfy a given set of requirements; one
that does suffices. Further, we do not need to characterize the
full range of (function, structure) pairs, but rather the structural
modifications associated with “small” functional differences.
In other words, if FS is the mapping that associates to a func-
tionfa set of structures {s i } i = FSO, we do not need a charac-
terization of FS, but rather of FS(f+ AB - FSO. This reduces
the problem to finding types of functional differences that can
be accommodated by (measurably) small structural differ-
ences?* knowing that several kinds of structural differences
can accommodate a given functional change. In the next sec-
tion, we will comment on the extent to which the encoding and
retrieval methods discussed address this problem in one form
or another.

A.3. A Survey of Existing Approaches
Existing approaches to software component retrieval cover

a wide spectrum of component encoding methods and search
or matching algorithms. The encoding methods differ with re-
spect to their soundness, completeness, and the extent to which
they support an estimate of the effort it takes to modify a com-
ponent. Striving for any of these qualities makes encoding
more complex and costlier. It also makes it possible to support
more sophisticated retrieval, provided queries of equal rich-
ness and expressiveness to that of the encoding scheme are
used. In practice, there is a limit to how complex queries can
be for component search and reuse to be worthwhile
(Section 1II.B. 1). Accordingly, overly complex encoding
schemes are wasteful unless reusers are provided computer
assistance in formulating equally complex queries. The ap-
proaches discussed below strike different balances between
complexity and cost on one hand and retrieval quality on the
other. Further, some are immediately practicable and have
been used in a production setting, while others are mere theo-
retical explorations. We discuss three major classes of encoding
and retrieval approaches, by increasing order of complexity:

1) text-based “encoding” and retrieval,
2) lexical descriptor-based encoding and retrieval and
3) specijication-based encoding and retrieval.
With text-based encoding and retrieval, the textual repre-

sentation of a component is used as an implicit functional de-
scriptor: Arbitrarily complex string search expressions sup-
plied by the reuser are matched against the textual representa-

28 For example, we can compare graphical representations of programs
obtained through data and control flow analysis, see, e.g., [86].

tion (see, e.g., [1131). The main advantage of such an approach
is related to cost: No encoding is required, and queries are
fairly easy to formulate. Its disadvantages have been thor-
oughly investigated in the information retrieval literature [20].
Simply put, plain-text encoding is neither sound nor complete.
Short of a full-fledged language understanding system that
takes into account the context, the presence of a concept (term
or phrase) in the text does not imply that the component is
about that concept (e.g., “Unlike quicksort, this procedure...”).
Conversely, the absence of a concept from the text does not
mean that the component is not about that concept, as different
developers and documenters may use a different terminology.

Plain text encoding and search, and variants thereof, have
been used in a number of software libraries (e.g., [481, 1931,
[113]), alone or in conjunction with other search methods, and
had fairly good recall and precision rates. In a controlled ex-
periment performed at the Software Productivity Consortium,
Frakes and Pole found that more sophisticated methods (see
below) had no provable advantage over plain text retrieval in
terms of recall and precision [49]. However, they found that
developers took 60% more time than with the best method to
be satisfied that they had retrieved all the items relevant to
their queries. This accounts for both the speed with which in-
dividual search statements/expressions can be formulated and
the number of distinct search statements that had to be submit-
ted to answer the same query. With traditional document re-
trieval systems such as library systems, longer search times are
a mere annoyance. In a reuse context, bigger search times can
make the difference between reusing and not reusing
(Section III.B.l).

With lexical descriptor-based encoding, each component is
assigned a set of key phrases that tell what the component “is
about.” We could define a two-place predicate ZsAbout (.,.),
where key phrase K is assigned to a component (or component
class) C iff ZsAbour(K, C). If C is assigned a set of phrases
{ Kl, ..., K,,), then IsAbout(C, K l) h...h ZsAbout(C, K,,) is true,
and the one-place predicate ZsAbout(., K l) A...A ZsAbout(., K,,)
may be considered as the description of the component
(class) C (Section V.A.2). Typically, subject experts inspect
the components and assign to them key phrases taken from a
predefined vocabulary that reflects the important concepts in
the domain of discourse (see, e.g., [6], [27], [113], [1311).
Notwithstanding the possibility of human error and the coarse-
ness of the indexing vocabulary, such encoding is sound, as
opposed to plain-text encoding. Further, because a key phrase
need not occur in a component’s textual representation to be
assigned to it, it is also more complete29 than plain text encod-
ing. Reusers formulate their queries as Boolean expressions of
key phrases. Let Q = E(K‘ sub 1, ..., K‘ sub m), a Boolean ex-
pression with terms PI, ..., K‘,. A component C with key
phrases K,, ..., K,, is considered relevant to the Boolean ex-
pression (query) Q iff IsAbout(., K1) h...h IsAbout(., K,,) +
E(ZsAbout(., r1), ..., [sAbout(., K‘,)), or, equivalently, if K1
A...K,, + Q = E(K‘1, ..., K‘,,,). Boolean retrieval, as it is called,
corresponds to what we called partial-order-based retrieval.

29 An encoding scheme can be considered complete only if it says every-
thing of consequence about the component; that is hard to define.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILI REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 55 1

In practice, the method presented above is refined in many
ways. In one refinement, instead of using the one generic rela-
tion ZsAbout(.,.) between components and descriptors, several
specific relations are used such as HasFunction(.,.), Applica-
bleToDomain(.,.), Operateson(.,.), etc. 1271, [112], [131]; this
is commonly referred to as multifaceted classification in the
information retrieval literature, where each facet corresponds
to a relation, and the descriptions for each facet are logically
ANDed. For example, if we use the facets HasFunction and
Operateson, a routine that sorts both arrays and linked lists
may be described by the one-place predicate [HasFunc-
tion(., Sorting)] A [Operateson (., Array) A Operates-
On(., LinkedList)]. Similarly, reuser queries are now formu-
lated using a conjunction of Boolean expressions, one for each
facet on which the reuser wishes to search.

A second set of refinements amend the retrieval algorithm
itself to handle approximate matches. We illustrate them for
simple (single-facet) indexing; extending them to multifaceted
indexing is fairly straightforward. First, if there is a partial or-
der between key phrases themselves, the partial order may be
used to extend queries. Assume for example that the key
phrases are organized in a taxonomy. Let Kl and K2 be two
phrases such that KI has an “is-a” relation with K2. By defini-
tion, any component C that is about K1 (ZsAbout(C, K l)) , by
default, is also about KZ (ZsAbout(C, Kz)). However, the re-
verse is not true. Thus, in the process of looking for compo-
nents that are about K2, the ones that are about Kl-and KZ’S
descendants in general-would also do. This approach is used
in MEDLINE [102], an on-line medical literature retrieval
system operated and maintained by the (U.S.) National Library
of Medicine. Two additional refinements turn Boolean re-
trieval-which is partial-order-based-into distance-based re-
trieval. The first ranks components by decreasing number of
key phrases that match phrases from the query [1421. The sec-
ond method is used when key phrases are organized in a tax-
onomy (see, e.g., [134]) or a weighed semantic net in general
(see, e.g., [131]). The former has been used in the European
ESPRIT Practitioner (software reuse) project (see, e.g., [1131).
The latter has been more widely used in software libraries (see,
e.g., [27], [48], [131]). In Softclass, a prototype CASE tool
with integrated support for reuse, we implemented three
classes of lexical descriptor-based component retrieval algo-
rithms that combine the above features with weighed facets
and a number of fuzzy bells and whistles [1121. We are cur-
rently setting up a series of experiments to compare the differ-
ent methods. However, we don’t expect significant improve-
ments to result from some of the refinements mentioned above.

Lexical descriptor-based encoding and retrieval suffers
from a number of problems. First, an agreed (or agreeable) vo-
cabulary has to be developed. That is both labor-intensive and
conceptually challenging. Sorumgard et al. reported a number
of problems developing and using a classification vocabulary
[15 13. They experienced known problems in building indexing
vocabularies for document retrieval, including trade-offs be-
tween precision and size of the vocabulary and the choice be-
tween what is referred to as precoordinated or post-

coordinated indexing,M with the confusion that may result
from mixing the two [151]. Software-specific challenges in-
clude the fact that one-word or one-phrase abstractions are
hard to come by in the software domain [83], [151].

Further, it is not clear whether indexing should describe the
computational semantics of a component, as in “this procedure
returns the record that has the highest value for a float field,
among an array of records,” or its application semantics31 as in
“this procedure finds the highest paid employee within the
employees file” [1511. Characterizing computational semantics
is important for reuse across application domains. However,
reusers may have the tendency to formulate their queries in
application-meaningful terms. Formal specification methods
suffer from the same problem, but to a lesser extent, since
application semantics show up specifically as terminal symbols
in the specification language. Finally, neither the encoding
mechanism nor the retrieval algorithm lend themselves to as-
sessing the effort required to modify a component that does
not match the query perfectly. This is so because the descrip-
tors have externally assigned (linguistic) meanings and bear no
relationship to the structure of the components. For example,
what does it mean for a component C to have the function
Sort, i.e., what does it mean to have HasFunction(C, Sort)? it
only means what we wish the symbol “Sort” to mean to us, and
any relation between two symbols has to be posited by us,
rather than proven by a formal proof system.

From the reuser’s point of view, a familiarity with the vo-
cabulary is needed in order to use a component retrieval sys-
tem effectively [142]; a hierarchical (e.g., taxonomical) or-
ganization of the key phrases and proper browsing tools can
alleviate the problem significantly [1 131. Further, queries tend
to be fairly tedious to enter, especially for the case of multi-
faceted encoding. In Softclass, where software components
are grouped into component categories, each with its own fac-
ets, queries are entered by filling out a simplified component
template that stands for the prototypical component the devel-
oper wishes to retrieve [113]; the filled out template is then
internally translated into a Boolean query and matched against
the component base. While this format does not handle all
kinds of queries efficiently, we believe that it handles the most
common queries efficiently [1 131.

Specification-based encoding and retrieval comes closest to
achieving full equivalence between what a component is and
does and how it is encoded. With text and lexical descriptor-
based methods, retrieval algorithms treat queries and codes as
mere symbols, and any meaning assigned to queries, compo-
nent codes, or the extent of match between them is external to
the encoding language. Further, being natural language-based,
the codes are inherently ambiguous and imprecise. By contrast,
specification languages have their own semantics within which

30. (Very) roughly speaking, with precoordinated indexing, several phrases
for the same facet are to be interpreted disjunctively, while with post-
coordinated indexing, they should be interpreted conjunclively; see [112].

3 1. Using our approach to object-oriented design (seec Section IV.C.3 and
[11 11). generic design templates would be described by their computational
semantics. Application data structures would be characterized explicitly by
their application semantics, and implicitly, through the generic design tem-
plate to which they map, by their computational semantics.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21. NO. 6. JUNE 1995

the fitness of a component to a query can be formally estab-
lished [32], [108], [161], and “mismatches” between the two
can be formally interpreted [108], [1611. Typically, the formal
specification-based methods correspond to what we called
partial order-based retrieval, using a partial-order relationship
between specifications. This partial order is often used to pre-
organize the components of the library to reduce the number of
comparisons between specifications-an often prohibitively
costly operation [108], [115]. The methods discussed in the
literature differ in the expressiveness of the specification lan-
guage. Also, different retrieval algorithms take advantage
more or less fully of the power of the specification language.
The subset of the language used for retrieval o j h has no ef-
fect on recall, but degrades precision, as in using operations’
signatures instead of using signatures and pre- and post-
conditions.

In [108], A. Mili et al. describe a method for organizing
and retrieving software components that uses relational speci-
fications of programs and refinement (contravariance) ordering
between them. Any given program is correct with respect to
(satisfies) the specification to which it is attached, as well as
the specifications that are “above” it. Hence, a specification
retrieves the programs attached to it, as well as those attached
to specifications that are “below” it. A theorem prover is used
to establish a refinement ordering between two specifications.
Two forms of retrieval are defined: exact retrieval, which
fetches all the specifications that are more refined than a re-
user-supplied specification, say K , and approximate retrieval,
which is invoked whenever the exact retrieval fails, and which
retrieves specifications that have the biggest “overlap”32 with
K [108]. One nice property about approximate retrieval is that,
while it does not directly assess the effort required to modify a
component, the difference actually means something (e.g., a
program is found that gives the desired outputs for a subset of
the inputs) and may suggest a way of modifying the returned
programs to make them satisfy the requirements or use several
of them in combination [108].

Chen et al. proposed a similar approach that uses algebraic
specifications for abstract data types and an implementation
partial ordering between them [32]. Reusable components,
which may be seen as abstract data types, are specified by both
their signature and their behavioral axioms. However, while
the implementation relationship takes into account the behav-
ioral axioms, the retrieval algorithm uses only signatures,
modulo a renaming of the “types” of the components to match
those of the query [32]; the authors did envision using an
“interactive system [read semiautomatic] for algebraic imple-
mentation proofs” [32]. Moorman-Zaremski and Wing pro-
pose an approach based exclusively on signature matching
[161]. The major advantage of their approach is that the in-
formation required for matching can be extracted directly from
the code. They first define exact matches between function
signatures, to within parameter names, and then define module
signatures and partial matches between modules using various
generalization and subtyping relationships [1611. They too

envision taking into account behavioral specifications in future
versions, using LARCH (cf. [60]) specifications-which
would then have to be encoded manually.

None of the formal specification-based methods we know
about addresses directly (or successfully) the issue of assessing
the effort required to modify a component returned by ap-
proximate retrieval (inexact match). Further specification-
based methods that include behavioral specifications (and not
just signatures) suffer from considerable costs. First, there is
the cost of deriving and validating formal specifications for the
components of the library (see also [1151). This cost is recov-
erable because it could be amortized over several trouble-free
uses of the components and is minimal if specifications are
written before the components are implemented, which is the
way it should be (and seldom is) done. The second cost has to
do with the computational complexity, if not outright undeci-
dability, of proof procedures. This cost can be reduced if ac-
tual proofs are performed only for those components that
match a simplified form of the specifications, e.g., the signa-
ture; not much else can be done about the inherent complexity
of proof procedures or their undecidability without sacrificing
specification power. Last but not least, there is the cost for the
reuser to write full-fledged specifications for the desired com-
ponents. Because there is no evidence that specifications are
either easier or shorter to write than programs, reusers need
motivations other than time-savings, or computer assistance, to
write specifications for the components they need. We believe
that formal specification-based matching will remain a theo-
retical curiosity for the time being and will integrate only in
the more formal development methods that address application
domains such as reactive and real-time systems.

B. Component Composition

issues:
Under component composition, we address two dual sets of

1) Given a set of components, and a schema for composing
them, check that the proposed composition is feasible
(veriBcation) and satisfies a given set of requirements
(validation); we refer to this as the composition verifica-
tion and validation problem and

2)given a set of requirements, find a set of components
within a component library whose combined behavior
satisfies the requirements; we refer to this as the bottom-
up design problem.

The first problem benefits from a large body of work that is
not often associated with reuse. A thorough coverage of this
problem is beyond the scope of this paper. We will be content
to highlight the general issues and describe a representative
sample of work in this area (SectionV.B.1). The second
problem, discussed in Section V.B.2, benefits from work on
verification and validation of compositions, but presents chal-
lenging search problems of its own.

32. The overlap between two specifications is determined using the “meet”
lattice operation [108].

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI. AND MILI REUSING SOFrWARE: ISSUES AND RESEARCH DIRECTIONS 553

B.l. Composition Verification and Validation

three challenges:
Component composition verification and validation poses

1) designing a language for describing compositions of
components that lends itself to verification and valida-
tion,

2) performing verification and
3) performing validation.

There are two general methods for describing compositions of
components. If we think of a component as consisting of a
specification and a realization (or a set of realizations, see,
e.g., [83]), then composition may occur either at the specifica-
tion level or at the realization (implementation) level (see also
Section V.B.3). Specification languages usually provide built-
in composition operators with well-defined semantics. For ex-
ample, with relational specifications, any of the set theoretic
and relational operations may be seen as a composition. In this
case, we might say that the set of specifications is closed under
composition, and verifying or validating a composition of
specifications or validating it against a target specification is
not different from verifying any individual specification or
validating it against another specification. With regard to vali-
dation, we can expect the same challenges discussed for speci-
fication-based component encoding and retrieval
(Section V.A.3). The problem with specification-level com-
position is that it is often difficult to characterize specification-
level manipulations by manipulations on the actual realizations
(programs) of these specifications [1081.

When composition takes place at the component realization
level, we obtain a (much) smaller range of behavioral compo-
sitions, but we are assured that these compositions are feasible
without additional development. Component compositions are
usually described using the so-called module interconnection
languages [61], [129]. A module may be seen as having an
internul structure, consisting of a set of data structures and a
set of procedures that reference them, and an external inter-
face specifying the external entities the module depends on
and the internal entities the module exports. Module intercon-
nection languages describe component (module) compositions
by specifying:

1) the obligations of the individual participants and
2) the interactions between the components.

The specification of the obligations of the individual compo-
nents consists, minimally, of the signatures of the operations
they need to support; this is similar to Ada’s constrained ge-
nerics, where generic packages list the operations that type pa-
rameters have to support [106]. It could also include the
specification of the behavior of the operations. This is the ap-
proach followed in Helm et al.’s contracts [65] and a number
of algebraic specification-based interconnection languages
such as Goguen’s library interconnection language (LIL [57])
and other derivatives of OBJ or LILEANNA [153], e.g., an
application of LIL’s concepts to ANNotated Ada packages.
One of the interesting features of LIL is that obligations are
specified in terms of theories, and a given module (in this case,
an abstract data type) may satisfy a theory in different ways,

called views [57]. This has the advantage of ignoring operation
names during verification, by focusing on their behavioral se-
mantics instead.

The specification of the interactions between the compo-
nents varies from simple call dependencies [61] to a full-
fledged behavioral specification including interaction logic,
aggregate-wide preconditions, postconditions, invariants, etc.
(see, e.g., [61], [65], [log]). Behavioral interactions between
components can also be specified implicitly in logic-based (or
logic-flavored) languages. One such language is MELD, an
00 language developed by Kaiser and Garlan [78]. In MELD,
classes are represented by features. Methods are represented
by ~emideclarative~~ constructs called action equations. When
the same methods are implemented by two features, their ac-
tion equations are merged. In case the merge creates depend-
encies, a topological sort determines which action equations
are to be executed first [78]. This constitutes, in our opinion,
MELD’S most interesting feature for reuse by composition as
it automates code-level integration. Validating the behavior of
a composition of modules against a desired behavioral specifi-
cation is generally a difficult problem [84], [163]. One of the
major difficulties is due to the fact that it is difficult to get a
closed form expression for the behavior of the aggregate. This
is due to the fact that the language used for describing com-
positions is different from that used for specifying individual
components (see, e.g., [1631).

B.2. Bottom- Up Development
Top-down development consists of decomposing the re-

quirements for a module into requirements for a set of
(simpler, more reusable, etc.) submodules and patterns of in-
teractions between them. Informal requirements analysis and
specification methods use informal heuristics to guide the de-
composition process. Formal methods use various reduction
and factoring mechanisms to decompose specifications (see,
e.g., [30], [33]). In both cases, the decomposition is guided by
properties that the component submodules and their patterns of
interactions have to have. For non-trivial requirements, a vir-
tually limitless number of solutions of equal quality could be
found. With bottom-up development, the major requirement is
that the decomposition yields specifications for which compo-
nents have already been developed. This is generally a very
difficult problem.

Enumerating compositions of components within a library
“until one is found that has the desired behavior” seems un-
thinkable at first. In practice, a number of practical and theo-
retical considerations can make the number of compositions to
explore manageable. In [62], Hall describes a component re-
trieval method that explores combinations of components
when none of the individual components matches the user
query. Users specify the desired behavior by giving an exam-
ple input-output pair 4, 0 >. The idea of retrieving compo-
nents based on the output they actually produce when executed
on a user-supplied input was first proposed by Podgurski and
Pierce [127]. Hall extends Podgurski and Pierce’s work by

33. Action equations am. essentially predicates. However, they do contain
some control information such as iteration and sequencing.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

exploring compositions of components when no single compo-
nent is found that returns 0 given I . For example, if all the
components in the library are single-parameter functions
fi, ...,fa, then if for all i, f,(l) f 0, we try out jjU;(l)), for all
1 S i, j I n, and if none is found that returns 0, we try three
levels deep function compositions, etc. [62]. Hall showed that,
in general, the number of compositions of components of
depth d or less is doubly exponential in d , i.e., of the form
O(n("")). However, a number of techniques help reduce that
number considerably, without missing any potential solutions.
Type-compatibility requirements considerably restrict the
range of possible compositions. More dramatic results are ob-
tained by dynamic programming: When generating composi-
tions of depth d U;,o ... of,"), apply new components to all the
combinations of distinct return values of depth d - 1, rather
than all combinations of distinct programs of depth d - 1.

Hall tested his algorithm on a library of 161 Lisp functions.
The retrieval system itself is written in Common Lisp. He lim-
ited the depth of compositions to three, with the level three
functions limited to those that have a single input. Fifteen
queries took an average of 20 seconds, and a maximum of 40
seconds, running on a SUN SPARC 11. In one example, a
query provoked 2,400 component executions instead of a po-
tential 10l6 executions [62]. While more testing is needed to
assess the efficiency of the algorithm, the processing times re-
main reasonable for a reasonably large library and show that
the method could indeed be computationally practical. How-
ever, as Hall pointed out, this method could not be applied to
retrieving nonexecutable reusable components [62]. A less se-
rious engineering difficulty has to do with multiplatform librar-
ies, components that raise exception while being tested out or
loop endlessly, and components with side-effects, all of which
pose challenging but tractable engineering problems [62].

@) ... """"."-..."."_-.__.__.I_.______.." ._-_._ "" (a) .."_"_"." "..._ ""...."...." _.

.... -._...- "" .-._ -̂ -- ---- - --.--.__ :"..--..*...."..".."""" ..--.. "........".....:
..__.".I."."_ " "
j-1

j 1 T ' T ..-_ "-_""_""............̂ .."I "__..I

w ... \-,

(a)

Fig. 4. Altemative compositions that could be considered by the composition
retrieval algorithm.

We have started work on a combination of Hall's work and
Moorman-Zaremski and Wing's work on signature matching
[161]. Assume that a developer is looking for a component
that takes an input variable of type TI and produces an output
variable of type T2. Failing to find such a component, an al-
gorithm could find any of the compositions shown in Fig. 4,
that "concatenates" components based on type compatibility
between their inputs and outputs. The function realization
problem, as we called it, consists of finding all the composi-
tions of functions (signatures) that consume no more than the
inputs specified by the developer's query and produce at least
the outputs specified by the developer's query [112]. We
showed in [1121 that the set cover problem, which is known to

be NP-complete [54], could be reduced to the function reali-
zation problem. Worse, we know of no heuristic that guaran-
tees a solution value within a constant factor of the optimum
cover of a set [54], which suggests that none could be found
for the function realization problem either. Fortunately, finding
out whether a function signature has a realization or not can be
done in polynomial time [112]; bear in mind, though, that a
realization does not necessarily exhibit the desired behavior.
Because several realizations could be equivalent, we defined a
"minimal" form for realizations called normal realization,
where each function is needed (i.e., without it the composition
would not be a realization), and where each function has the
minimal possible depth, i.e., is "called as soon as all its inputs
are available." We developed an algorithm for finding normal
realizations and implemented it in Lisp [112].

Our method has the advantage of not requiring component
execution, and like Moorman-Zaremski and Wing's method
[161], the information required for search can be extracted
from components themselves. However, programming lan-
guage types alone can be hopelessly nondiscriminatory. A li-
brary written in a weakly typed language (e.g., C) is likely to
have a handful of types, and the algorithm will have a dismal
precision. Application-oriented definitions of types can
sharpen the search but may miss out on some valid realizations
[62]. We are currently testing the algorithm on a library of data
manipulation functions (string manipulation, data conversion,
etc.). While we do not expect a good precision, we are hoping
that an inspection of the results will help us recognize classes
of realizations or subrealizations that should be pruned out of
the search, thereby increasing the efficiency of the algorithm.
However, we expect most of the gains to come from using
richer semantics for types and type compatibility, and we are
pursuing work in that direction as well.

C. Adapting Reusable Components
We use the term adaptation to refer to what happens to a

component between the time a decision is made to reuse it and
the time it has become part of the product. We recognize three
potential subtasks,

1) what Krueger called selection [83]: if a reusable compo-
nent has a variable part or explicitly enumerated alterna-
tive implementations, select (the) one that is appropriate
for the problem at hand,

2) modification: in case the component or any of its variants
cannot be used as is and

3) integration, which is essentially a verification step that
checks whether the component is compatible with its en-
vironment.

One of the major differences between selection and modifica-
tion is that with selection, the changes to the component have
been planned ahead of time. This is generally done using vari-
ous parameterization and abstraction techniques and will be
discussed briefly below. With modification, the changes are
often unanticipated or poorly planned. As mentioned in Sec-
tions III.A.3 and 1II.B. 1, modifying reusable components may
defeat both the quality and the productivity advantages of re-
use. Hence, it should be automated as much as possible to save

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILI: REUSING SOFTWARE: ISSUES AND RESEARCH DIRECTIONS 555

time and ensure that the modifications are quality-preserving.
We discuss modification in the context of transformational
systems. As for the integration of reusable components, what is
not addressed by module interconnection languages discussed
in Section V.B.l is not specific to the reusability of the com-
ponents and will not be discussed further here.

C.I. Selection
Two commonly used selection mechanisms are specializa-

tion and instantiation of abstract software components. Ab-
straction has been supported by programming language con-
structs for some time [143]. At the most basic level, declaring
program constants or using variable-dimension arrays is a form
of parameterized programming. Conditional compilation is
another more sophisticated form of parameterized software,
whereby different code sequences are compiled based on a
number of system and environmental parameters. In this case,
adaptation consists simply of setting the right environmental
parameters. In general the mechanisms involved depend on the
nature and complexity of the parameters, ranging from a sim-
ple compile or linkage-time binding (e.g., of an unresolved
reference to a type T to a specific type), to a mix of substitu-
tions, conditional compilation and code generation as in [16],
and template-based approaches in general (see, e.g., [85],
[1371).

Object oriented languages support a number of abstraction
and selection mechanisms, including generic classes, abstract
classes, and metaclasses with metaprogramming [721.
Genericity supports the development of complex data struc-
tures with parameterized component types. For example, one
could define a generic list structure LIST[TI whose node val-
ues (or "data" fields) are of a generic type T that supports
comparison operators. In this case, selection consists of using
the (e.g., declaring a variable of) data type LIST[< >I by speci-
fying an actual type instead of the parameter T. The obliga-
tions of the type T may be specified explicitly in the specifica-
tion of the generic type (called constrained genericity [1061) or
implicitly based on what types will actually compile or exe-
cute. With abstract classes (Section 1V.B. l), selection consists
of choosing among several concrete subclasses that conform to
the behavior of the abstract class, or creating a subclass of our
own, to address the specific needs of the application at hand
[72]. Note that subclassing alone does not guarantee that a
class conforms to its superclasses, i.e., that the types they im-
plement are in a subtype relationship. We showed in Sec-
tion 1V.B .3 how design-level considerations may lead to situa-
tions where subclasses do not implement subtypes, and vice-
versa. Unfortunately, few programming languages (e.g., Eiffel
[106]) ensure that subclasses implement types that are in a
subtype relationship, and subclassing remains essentially a
code-sharing mechanism, with the problems we discussed in
Sections IV.B.3 and IV.B.4. Finally, the use of metuclasses
with metaprogramming may be seen as an 00 packaging
(design) for program generators (Section IV.2) and will not be
discussed further here; the reader is referred to [72] for a more
thorough discussion.

C.2. Mod$ication
Modification is required when a retrieved component has to

be reworked to accommodate the needs of the application at
hand. The need for modification may become clear during re-
trieval: The encoded description of the component does not
match perfectly the query. Alternatively, a closer inspection of
a component whose encoded description did match the query
may reveal inadequacies. The latter case is possible because
encoding is often incomplete: The encoded description leaves
out some functional properties of the component. We saw in
Section V.A.2 that the mismatch between a query and the en-
coding of a component may be more or less revealing as to the
(extent of the) changes that need to be incurred to the compo-
nent, depending on the completeness of the encoding. For the
purposes of presentation, we consider the two situations as in-
stances of the same problem: Given the specification of a de-
sired component SO, the "closely matching" specification SC of
an existing component C, and its realization Rc (i.e., imple-
mentation), find the realization for the desired component-
call it RD; the additional problem of working our way back
from differences between encoded (partial) description used
for retrieval to actual functional specifications raises similar
issues because in both cases we have to walk our way back,
upstream of an information-losing mapping (see Fig. 5).

?
."..--"-..""""""""""-"-"-."~

h i i d l e co ponent
specitcation

Fig. 5. The component modification problem.

This problem is best understood in the context of a trans-
formational view of software development. Software develop-
ment is seen as a (possibly long) sequence of transformations,
starting with more or less formal specifications, leading even-
tually to executable code [11. Fig. 6 shows the typical software
life cycle for transformational systems. In such systems, soft-
ware development consists of two major steps:

1) deriving formal specifications from user require-
ments-if the transformations to be applied are to do any
substantive work and

2) applying a set of transformations on the formal specifica-
tions, gradually building a computer program, in either a
target programming language or in a readily translatable
language [123].

An important characteristic of transformational systems is the
potential for maintaining software systems at the specifications
level [8]. According to this view, the complexity of software
development lies not in the individual transformations, but in
applying the "right" transformation when several alternatives

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 21, NO. 6, JUNE 1995

are possible. Existing transformational systems provide vary-
ing levels of support for selecting the “right” transformations,
ranging from simply enacting/executing transformations cho-
sen by the developer to full automation [8], [1231.

Fig. 6. Typical software life cycle in transformational system. Adapted from [l].

Regardless of the “intelligence” of the transformations (e.g.,
their knowledge about their own appropriateness), the trans-
formational approach has the following advantages:

1) relieving developers from labor-intensive, knowledge-

2) virtually eliminating clerical errors,
3) ensuring correctness of the resulting programs by con-

4)maintaining a record of development choices, their ra-

It is this last characteristic of transformational systems that
concerns us most in this paper, namely, the potential for soft-
ware reuse. Maintenance has been recognized by a number of
researchers as a particular form of reuse (see, e.g., [141). Bal-
zer et al. recognized transformational systems’ potential for
enhancing software reuse, whereby reusable components are
maintained and modified at the specification level rather than
at the implementation level [8]. While a number of researchers
have recognized the importance of recording development de-
cisions for reuse purposes, the transformational approach to
software development makes explicit computer-supported use
of those decisions to maintainheuse existing software.

The transformational approach makes maintenance and re-
use easier, not only because it makes development easier in
general, but also because “similar” inputs (e.g., formal specifi-
cations or any other intermediary form) often call for the same
transformations to be applied. Cases where the same sequence
of transformations cannot be replayed, e.g., the preconditions
of one of the transformations fail to hold as a result of a modi-
fication, developer intervention is only needed from that point
onward. Baxter studied the commutativity and dependencies
between transformations to minimize the scope of modifica-
tions [171. Take the example of a program P that was derived
from a specification S using the chain of transformations
T, o ... o Ti o ... o TI and assume that S was modified into S’
such that all transformations up to, not including, Ti (i.e.,
TI, ..., were applied successfully. Normally, a developer
would have to intervene to choose an alternative transforma-
tion to Ti and proceed from that point to the end. However, if it
is known that some transformation T,, for i c j S n, commutes
with (thus, independent of) Ti, then it could be moved
(applied) ahead of Ti, and the developer would have fewer
transformations to consider. Generally speaking, replaying de-

poor tasks,

struction and

tionale, or both for maintenance purposes.

sign histories is not foolproof. The level of confidence in the
replayed process depends on the knowledge embodiedlused in
selecting transformations (e.g., completeness and soundness of
preconditions) and the responsiveness of the transformation
selection algorithm to specification changes. One can easily
imagine a case where an innocuous change in specifications
might require a significant change in program structure to
maintain a similar level of performance.

Transformational systems have been criticized by some re-
searchers for their limited range of applicability [123]. The
programs generated with this approach were mostly toy ex-
amples, as was the case with other AI-oriented automatic pro-
gramming systems [9]. While, in principle, the transforma-
tional approach is not limited to small programs, the amount of
knowledge that needs to be encoded to handle large software
systems is prohibitively large. Most of the earlier transforma-
tional systems embody basic, domain-independent, program-
ming knowledge. More recent efforts such as the DRACO
system [12 11 support domain-specific specification languages,
and transformations embody some form of domain knowledge.
Software reuse research may well benefit from relaxing the
formal correctness-preserving nature of transformations and
fromusing more heuristic rules such as analogical reasoning
[29], especially when we deal with informal or poorly struc-
tured software products (see, e.g., [94]). Alternatively, we
could settle for localized or partial transformational ap-
proaches, as opposed to ones covering the entire specification
+ program cycle.

To the extent that software reuse benefits from automati-
cally propagating software changes across development stages,
work on configuration management systems and program de-
pendencies is eminently relevant. Configuration management
systems are concerned primarily with maintaining the integrity
of software systems and the interoperability of components as
they undergo change [1201. Minimally, such systems help lo-
calize the effects of changes [92]. On a different scale, work
on program dependencies is concerned primarily with the local
effects of change, typically within a procedure. Typically, data
and control flows within a program are analyzed, thereby
identifying the parts that depend on a particular datumlcontrol
statement. Such analyses support reuse in many ways:

1) localizing the effects of changes [117], [126], thus guid-
ing reusers in the process of adapting retrieved compo-
nents to their needs,

2) simplifying program structures [7 13, which enhances
program readability and understandability and

3) “slicing” programs to extract specific functionalities [53],
[71], in case the retrieved component does more than
what is required.

The latter is an interesting dual to reuse by composition (see
Section V.B). We should mention, however, that reliable flow
analysis depends on a number of restrictive assumptions, such
as the absence of side-effects and “global variables” (see, e.g.,
[1171, [1261). On the positive side, they help increase the reuse
worth of code fragments by automating some of the code
modification tasks and do not require the availability of design
or analysis information. A combination of macroscopic con-

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI, MILI, AND MILI REUSING SOFrWARE: ISSUES AND RESEARCH DIRECTIONS 551

figuration management and microscopic program flow analysis
can help reduce the cost of maintaining and reusing software.

VI. SUMMARY AND DISCUSSION

Reuse is the default problem-solving strategy in most hu-
man activities [S I , and software development is no exception.
Software reuse means reusing the inputs, the processes, and
the outputs of previous software development efforts. Software
reuse is a means toward an end: improving software develop-
ment productivity and software product quality. Reuse is based
on the premise that educing a solution from the statement of a
problem involves more effort (labor, computation, etc.) than
inducing a solution from that to a similar problem, one for
which such efforts have already been expended. While the in-
herent complexities in software development [26] make it a
good candidate for explorations in reuse, it is far from obvious
that actual gains will occur. The challenges are structural, or-
ganizational, managerial, and technical. In this paper, we dis-
cussed some of the most important issues, with an emphasis on
the technical ones.

Economic considerations, and costhenefit analyses in gen-
eral, must be at the center of any discussion of software reuse.
Notwithstanding differences between reuse approaches along
the building blocks-generative dimension, it is useful to think
of software reuse research in terms of attempts to minimize the
average cost of a reuse occurrence (see Section III.B.l):

[Search + (1 - p) X (ApproxSearch + q
x Aduptationold + (1 - q) x Developmentn,)]

where Search(ApproxSearch) is the average cost of formulat-
ing a search statement to a library of reusable components, and
either finding one that matches exactly (approximatively) the
requirements, or be convinced that none exists, Adaptation,,,
is the average cost of adapting a component returned by ap-
proximate retrieval, and Development,, the average cost of
developing a component that has no match, exact or approxi-
mate, in the library. For reuse to be cost-effective, the above
must be smaller than:

p X Development,,,, + (1-p) X q
X Development,,,,ox + (1 - p)
x (1 - q) X Development,,)

where Development,,,, and Development,,, represent the
average cost of developing custom-tailored versions of com-
ponents in the library that could have been used as is or
adapted, respectively. Note that all these averages are time av-
erages and not averages on individual components, i.e., a reus-
able component will be counted as many times as it is used.

Work on developing reusable software aims at maximizing
p (probability of finding an exact match) and q (probability of
finding an approximate match)--i.e., maximizing the coverage
of the application domain-and minimizing Aduptationold for a
set of common mismatches, i.e., packaging components in
such a way that the most common mismatches are handled
easily. Increasing p and 4 does not necessarily mean putting
more components in the library; it could also mean putting

components that are more frequently needed. Because adding
components increases search costs (see Section 1II.B. l), we
could use a two-pronged approach:

1) identify components that are generally useful and
2)try to cover the same set of needs with fewer compo-

Identifying the components that are generally useful is some-
times called domain analysis and is an important activity for
both application generator development (Section IV.B) and
00 software development (Section IV.C). Covering the same
set of needs using fewer components involves two paradigms:

1) abstraction, essential to application generators, and very

2) composition, which is central to 00 software develop-

Composition supports the creation of a virtually unlimited
number of aggregates from the same set of components and
reduces the risk of combinatorial explosion that would result
from enumerating all the possible configurations (cf. Sec-
tion II.C and [149]). In general, the higher the level of ab-
straction at which composition takes place, the wider the range
of systems (and behaviors) that can be obtained (see Sec-
tion V.B). The combination of abstraction and composition
provides a powerful paradigm for constructing systems from
reusable components and constitutes the major thrust behind
research in 00 frameworks. It also exemplifies the ways in
which software reuse addresses the scalability and focus issues
in software engineering (see Section I).

Work on developing with reusable software aims at mini-
mizing the cost of search (exact and approximate) and the cost
of adaptation. Minimizing the cost of searches involves a
number of trade-offs between the cost of formulating searches
(Search and ApproxSearch) and the quality of the retrieval.
For instance, the coverage probabilities p and q above should
be replaced by smaller probabilities to take into account the
less than perfect recall of search methods (see Secti0nV.A).
Further, a search method that is not precise (i.e., returns irrele-
vant components) increases the cost of finding a component by
forcing the developer to examine irrelevant components. As a
rule of thumb, given a fixed amount of effort to be spent on
formulating queries, we can achieve higher recall values only
at the expense of lower precision, and vice-versa. To enhance
both recall and precision, more effort should be spent formu-
lating queries. We discussed a range of approaches that strike
different balances between query complexity and retrieval
quality (c.f. SectionV.A.3). However, there is an inherent
practical limit to how complex queries can be, beyond which
developers will not bother searching. As for adaptation, em-
pirical evidence showed that the cost of modifying components
in non-anticipated ways goes up very quickly with the scope
and extent of the modifications [23]. The two major cost fac-
tors are:

nents.

important to 00 software development and

ment.

1) understanding what changes need to be made and
2) verifying and validating the component after the change.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21. NO. 6, JUNE 1995

Transformational systems reduce the first cost by enabling de-
velopers to make changes directly at the requirements level
and reduce the second cost by propagating such changes in a-
mostly-correctness-preserving way [171 (cf. Section V.C).

How far can we reduce the cost of reuse occurrences? If we
achieve full coverage (p = 1) and develop a query language
that is perfectly precise and that has perfect recall-that is
called a specification language!-then we have achieved wide-
spectrum automatic programming! The generative approach
and the building blocks approach to software reuse approach
full coverage from two different, but complementary direc-
tions, The generative approaches often have a perfect coverage
within a subarea of the application domain and need to be ex-
tended “horizontally” to cover the entire domain. In order to
maintain performance characteristics (e.g., code optimality),
different modeldgenerators may be needed to cover a given
domain. Conversely, the building blocks approach has the po-
tential to cover an entire domain, but only sparsely so. To fill
in the gaps, so to speak, abstract language constructs (e.g.,
module interconnection languages) are often added, yielding a
coarse application-specific specification language whose at-
oms are concrete application components. As language con-
structs are added and increasingly abstract representations of
components are used, we move progressively toward genera-
tive approaches based on very high-level languages [148]. Fi-
nally, it is interesting to note that in the context of the building
blocks approach, perfect retrieval and effortless adaptation are
only possible if the relation between specifications and imple-
mentations has been completely formalized. To some extent,
software reuse turns the automatic programming problem into
several optimization subproblems, allowing us to tackle soft-
ware automation piecewise.

ACKNOWLEDGMENTS

Some of the material in Sections III.A.3 and IV.C benefited
from discussions and joint work with Robert Godin (professor
of computer science, University of Quebec at Montreal), Gre-
gor Bochmann (professor of computer science, University of
Montrtal), and Piero Colagrosso (Bell Northern Research).

Some of the background material for Section V.B was col-
lected and compiled by Hassan Alaoui, a PhD student; the
complexity results and algorithms for finding function realiza-
tions based on types are due to Odile Marcotte (professor of
computer science, University of Quebec at Montrkal).

H. Mili was supported by grants from the Centre de Tech-
nologie Tandem de Montreal (C’ITM), a division of Tandem
Computers Inc., Cupertino, Calif, the Natural Sciences and
Engineering Research Council (NSERC) of Canada, and the
Fonds pour la Creation et 1’Aide B la Recherche (FCAR) of
Qutbec, and Centre de Recherche en Informatique de Mon-
trtal (CRIM) through the MACROSCOPE initiative and the
Quebec Ministry of Higher Education’s SYNERGIE pro-
gramme (IGLOO Project).

F. Mili was supported by grants from the National Science
Foundation, and the School of Engineering and Computer Sci-
ence, Oakland University.

A. Mili was supported by grants from NSERC and the
School of Graduate Studies and Research of the University of
Ottawa (Ottawa, Canada).

REFERENCES

W.W. Agresti, “What are the new paradigms?,” New Paradigms for
Software Developynt. ed. W.W. Agresti, pp. 6-10, IEEE, 1986.
William W. Agresti, “Framework for a flexible development process,”
New Paradigms for Software Development, William W. Agresti, ed.,

M. Aksit, and L. Bergmans, “Obstacles in 00 software development,”
Proc. OOPSLA ’92, Vancouver, B.C., Canada, Oct. 18-22.1992.
G. Arango, Ira Baxter, P. Freeman and C. Pidgeon, “Software mainte-
nance by transformation,” IEEE Softwure, pp. 27-39, May 1986.
G. Arango, “Domain engineering for software reuse,” PhD thesis, Dept.
Information and Computer Science, Univ. of California, 1988.
S.P. Arnold and S.L. Stepoway, “The reuse system: Cataloguing and re-
trieval of reusable software,” Proc. COMPCON S’87, IEEE CS Press,

D.M. Balda and D.A. Gustafson, “Cost-estimation models for the reuse
and prototype software development,” ACM SIGSOJT, pp. 42-50, July
1990
R. Balzer, T. Cheatham Jr., and C. Green, “Software technology in the
1990s: Using a new paradigm,” Computer, Nov. 1983, pp. 39-45
R. Balzer, “A 15 year perspective on automatic programming, IEEE
Trans. Software Engineering, pp. 1,257-1,268, Nov. 1985.
B. Barnes, T. Durek, J. Gaffney, and A. Pyster, “A framework and eco-
nomic foundation for software reuse,” Proc. Workshop Software Reus-
abiliry and Muintuinabiliry, 1987.
B.H. Barnes and T.B. Bollinger, “Making reuse cost-effective,” IEEE
Software, vol. 8, no. 1, pp. 13-24, Jan. 1991.
V.R Basili, G. Caldiera, F. McGany, R. Pajerski, G. Page, and S. Wali-
gora, “The software engineering laboratory-an operational software
experience,” Proc. 14th lnt ‘1 Con5 Softwure Engineering, Melbourne,
Australia, pp. 370-381, May 11-15,1992.
V.R. Basili and S. Green, “Software process evolution at the SE,”
IEEE Sofrwure, pp 58-66, July 1994.
V.R. Basili, “Viewing maintenance as reuse-oriented software develop-
ment,” IEEE Softwure, vol. 7, no. 1, pp. 19-25, Jan. 1990.
V. R. Basili, and J.D. Musa, “The future engineering of software: A
management perspective,” IEEE Computer, , vol. 24, no. 9, pp. 90-96,
Sept. 1991.
P.G. Bassett, “Frame-based software engineering,” IEEE Softwure,

I.D. Baxter, “Design maintenance dystems,” Comm ACM, vol. 35,

P. Bergstein and K.J. Lieberherr, “Incremental class dictionary leaming
and optimization,” Proc. ECOOP ’91, Geneva, Switzerland, pp. 377-
395.
T.J. Biggerstaff, and C. Richter, “Reusability framework, assessment,
and directions,” IEEE Softwure, pp. 41-49, July 1987.

pp. 11-14, IEEE, 1986.

pp. 376-379. 1987.

pp. 9-16, July 1987.

no. 4, pp. 73-89, Apr. 1992.

[20] D. Blair and M.E. Maron, “An eviuation of retrieval effectiveness for a
full-text,” Document-Retrieval System Comm ACM, vol. 28, no. 3,

[21] B. Boehm, “A spiral model of software development and enhancement.”
Computer, vol. 21, no. 5, pp. 61-72, May 1988.

[22] B. Boehm,, “Improving software productivity,” IEEE Softwure, pp. 43-
57, Sept. 1987.

[23] B.W. Boehm, “Megaprogramming,” Keynote speech, ACM Computer
Science Con$. Phoenix, Ariz., Feb. 1994,

[24] R.J. Brachman and J.G. Schmolze, “An overview of the KL-ONE
knowledge representation system,” Cognitive Science, vol. 9, pp. 171-
216, 1985.

[25] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein,
E.H.Williams, and M. Williams, ‘The Gemstone data management
system,” Object Oriented Concepts, Databases, and Applications,
pp. 283-308, W. Kim, ed., Addison Wesley 1989.

pp. 289-299, Mar. 1985.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILI. MILI, AND MILI: REUSING SOmWARE: ISSUES AND RESEARCH DIRECTIONS 559

[26] F. Brooks, “No silver bullet: Essence and accidents of software engi-
neering,” Computer, , pp. 10-19, Apr. 1987.

[27] B.A. Burton, R.W. Aragon, S.A. Bailey, K.D. Koehler, and L.A. Mayes,
“The reusable software library,” IEEE Software, pp. 25-33, July 1987.

[28] G. Caldiera, and V.R. Basili, “Identifying and qualifying reusable soft-
ware components,” Computer, vol. 24, no. 2, pp. 61-70, Feb. 1991.

[29] J. Carbonell, “Derivational analogy in problem solving and knowledge
acquisition,” Proc. Int’l Machine Learning Workshop, Monticello, Ill.,
June 1983.

[30] D. Carrington, D. Duke, I. Hayes, and J. Welsh, “Deriving modular de-
signs from formal specifications,” Software Engineering Notes, Proc.
First ACM SIGSOFT Symp. Foundations mf Software Engineering,
vol. 18, no. 5, pp. 89-98, Los Angeles, Calif., Dec. 7-10, 1993.

[31] D. de Champeaux, D. Lea, and P. Faure, “The process of 00 design,”
Proc. OOPSLA ’92, Vancouver, B.C., Canada Oct. 18-22.1992

[32] P.S. Shicheng Chen, R. Hennicker, and M. Jarke, “On the retrieval of
reusable components,’’ Selected Papers from the Second Int ‘1 Workshop
on Software, Reusability Advances in Software, ReuseLucca, Italy

[33] S.C. Cheung, and J. Kramer, “Enhancing compositional reachability
analysis with context constraints,” Software Engineering Notes, Proc.
First ACM SIGSOFT Symp. on the Foundations of Sofrware Engineer-
ing, vol. 18;pp. 115-125, Los Angeles, Calif., Dec. 7-10, 1993.

[34] C.T. Cleaveland, “Building application generators,” IEEE Sofrware,

[35] P. Coad and E. Yourdon, Object Oriented Analysis. Prentice Hall,
1991, second edition.

[36] P. Coad, “RE On the purpose of 00 analysis,” Proc. OOPSLA’93,
Washington, D.C. Sept. 26 - Oct. 1, 1993.

[37] W.R. Cook, “Interfaces and specifications for the Smalltalk-80 collec-
tion classes,” Proc. OOPSLA’92, 1992, Vancouver, B.C., Canada,

[38] B.J. Cox, Object Oriented Programmhg: An Evolutionary Approach.
Reading, Mass..: Addison Wesley, 1987.

[39] B.J. Cox, “Planning the software revolution,” IEEE Sofrware, vol. 7 ,
no. 6, pp. 25-35, Nov. 1990.

[40] M.A. Cusumano, “The software factory: A historical interpretation,”
IEEESoftware, pp. 23-30, Mar. 1989.

[41] M.B. Dahl and K. Nygaard, “Simula common base language,” Techni-
cal report S-22, Norvegian Computing Center, 1970.

[42] T. Davis, ‘The reuse capability model: A basis for improving an organi-
zation’s reuse capability,” Advances in Sofmare Reuse, Selected Papers
from the Second Int’l Workshop on Software Reusability Advances in
Soffware Reuse, pp. 126-133, Lucca, Italy Mar. 24-26.1993.

[43] L.P. Deutsch, “Design reuse and frameworks in the Smalltalk-80 pro-
gramming system,” Software Reusability, vol. Il , A.J. Perlis, ed., ACM
Press, 1989.

[44] E.W. Dijkstra, “On the cruelty of really teaching computer science,”
Comm ACM, vol. 32, no. 12, pp. 1,398-1.404, Dec. 1989.

[45] M.S. Feather, “Reuse in the context of a transformation-based method-
ology,” l7T Proc. Workshop on Reusability in Programming, pp. 50-58,
1983.

[46] R.G. Fichman and C.F. Kemerer, “Object oriented and conventional
analysis and design methodologies: Comparison and critique,” Com-
puter, vol. 25, pp. 22-39, Oct. 1992.

[47] G. Fischer, “Cognitive view of reuse and design,” IEEE software, pp.

[48] W.B. Frakes and B. A. Nejmeh, “An information system for software
reuse,” Software Reuse: Emerging Technology, IEEE CS Press, 1990,

[49] W. B. Frakes and T. Pole, “An empirical study of representation meth-
ods for reusable software components,” Tech. Report, Software Produc-
tivity Consortium, Hemdon, Va. May, 1992.

[50] P. Freeman, “Reusable software engineering: Concepts and research di-
rections,” Tutorial: Software Reusability, P. Freeman, ed., pp. 10-23,
1987.

[511 R.P. Gabriel, “The failure of pattem languages,” J. Object Orientedri-
ented Programming, pp. 84-88, Feb. 1994.

Mar. 24-26.1993.

July 1988, pp. 25-33.

Oct. 18-22.

60-72, July 1987.

pp. 142-151.

[52] J. E. Gaffney and R.D. Cruickshank, “A general economics model of
software reuse,” Proc. 14th Int’l Con$ Software Eng., pp. 327-337,
ACM Press, Melbourne, Australia, May 11-15. 1992.

[53] K.B. Gallagher and J.R. Lyle, “Using program slicing in software
maintenance, IEEE Trans. Software Engineering, vol. 17, no. 8,

[54] M. Garey and D Johnson, Computers and intractability. San Francisco:
Freeman, 1979.

[55] S . Gibbs, D Tsichritzis, E. Casais, 0. Nierstrasz, and X. Pintado, “Class
management for software communities,” Comm. ACM, vol. 33, no. 9,

[56] R. Godin and H. Mili, “Building and maintaining analysis-level class
hierarchies using galois lattices,” ACM S I G P M Notices, OOPSLA ‘93
Proc., vol. 28, pp. 394-410, Washington, D.C. Sept. 26 -Oct. 1, 1993,.

[57] J.A. Goguen, “Reusing and interconnecting software components,”
Computer, pp. 16-28, Feb. 1986,.

[58] A. Goldberg, “Information models, views, and controllers,” Dr. Dobb’s,
July 1990.

[59] G. Gruman, “Early reuse practice lives up to its promise,” IEEE Sop-
ware, pp. 87-91, Nov. 1988.

[60] J.V. Guttag, J.J. Homing, and J.M. Wing, “An overview of the Larch
family of specification languages,” IEEE Sofrware, vol. 2, no. 5, pp. 24-
36, Sept. 1985.

[61] P. Hall and R. Weedon, “Object oriented module interconnection lan-
guages,”Selected Papers from the Second Inr ’ I Workshop on Sofrware
Reusability Advances in Software Reuse, IEEE C S Press, pp. 29-38,
Lucca, Italy, Mar. 24-26.1993.

[62] R.J. Hall, “Generalized behavior-based retrieval,” Proc. 15th Int’l Con$
Software Eng., ACM Press, pp. 371-380, Baltimore, Md., May 17-21,
1993.

[63] W. Harrison and H. Ossher, “Subject-oriented programming: A critique
of pure objects,” SIGPLAN Notices Proc. OOPSLA ’93, vol. 28, no. 10,
pp. 411-428, Washington D.C., Sept. 26 - Oct. 1,1993.

[64] B. Harvey, H. Kilov, and H. Mili, “Specification of behavioral seman-
tics in 00 information modeling: Workshop report,” OOPS Messenger
Addendum to the OOPSLA ’93 Proc., ACM Press.

[65] R. Helm, I. Holland, and D. Gangopadhyay, “Contracts: Specifying be-
havioral compositions in 00 systems,” Proc. OOPSLA ’90, ACM Press,

[66] B. Henderson-Sellers and J.M. Edwards, “The 00 system life cycle,”
CO“. ACM, vol. 33, no. 9, pp. 143-159, Sept. 1990.

[67] R.C. Holt, T. Stanhope, and G. Lausman, “Object oriented computing:
Looking ahead to the year 2000,” ITRC TR-9101, Apr. 1991, Informa-
tion Technology Research Center, Univ. of Toronto.

[68] E. Horowitz and J.B. Munson, “An expansive view of reusable soft-
ware,” IEEE Trans, Software Engineering, vol. 10 , no. 5, pp. 477-487,
1984.

[69] E. Horowitz, A. Kemper, and B. Narasimhan, “A survey of application
generators,” IEEESoftware, vol. 2, no. 1, Jan. 1985.

[70] G. M. Hoydalsvik and G. Sindre, “On the purpose of 00 analysis,”
Proc. OOPSLA ’93, ACM Press, pp. 240-255, Washington, D.C.,
Sept. 26-Oct. 1, 1993.

[71] J. C. Huang, “State constraints and pathwise decomposition of pro-
grams,” iEEE Trans. Software Engineering, vol. 16 , no. 8, pp. 880-
898, Aug. 1990.

[72] Y. Intrator and H. Mili, “Getting more out of your classes: Building
families of programs in OOP,” Tech report no. 234, Dept. Maths and
Computer Science, Univ. of Quebec at Montreal, May 13, 1994.

[73] S . Isoda, “Experience report on a software reuse project: Its structure,
activities, and statistical results,” Proc. 14th Int’l Con$ Software Engi-
neering, pp. 320-326, Melboume, Australia, May 11-15, 1992.

[74] I. Jacobson, Object Oriented Software Engineering: A Use Case Driven
Approach. ACP Press, 1992..

[75] R.E. Johnson, “Documenting frameworks using patterns,” Proc.
OOPSLA ’92 , ACM Press, pp. 63-76, Vancouver, B.C., Oct. 18-22,
1992.

[76] G. Jones, “MethodologylEnvironment Support for Reusability,” Soft-
ware Reuse: Emerging Technology, Will Tracz, ed., IEEE CS Press, pp.

pp. 751-761, Aug. 1991.

pp. 90-103, 1990.

Ottawa, Canada, Oct. 22-25.1990..

190-193, 1990.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

[77] T. Capers Jones, “Reusability in programming: A survey of the state of
the art,” IEEE Trans. Software Engineering, vol. 10, no. 5, pp. 488-494,
Sept. 1984.

[78] G.E. Kaiser and D. Garlan, “Melding software systems from reusable
building blocks,” IEEE Software, pp. 17-24, July 1987.

[79] K.C. Kang, “A reuse-based software development methodology,” Sop-
ware Reuse: Emerging Technology, Will Tracz, ed. , pp. 194196, IEEE
CS Press 1990.

[80] S. Katz, C. Richter, and K.4. The, “PARIS: A system for reusing par-
tially interpreted schemas,” Proc. Ninth Int’l Con$ on Software Eng.,

[81] G. Kiczales and J. Lamping, “Issues in the design and documentation of
class libraries,” Proc. OOPSLA ’92 SIGPLAN Notices, ACM Press, vol.
27, no. 10, pp. 435-451, Vancouver, B.C. Oct. 18-22.1992.

[82] P. Kruchten, E. Schonberg, and J. Schwartz, “Software prototyping us-
ing the SETL programming language,” IEEE Software, vol. 1, no. 4,

[83] C.W. Krueger, “Software reuse,” ACM Computing Surveys, ACM Press,
vol. 24, no. 2, pp. 131-183, June 1992.

[84] S.S. Lam and A.U. Shankar, “Specifying modules to satisfy interfaces:
A state transition system approach,” Distributed Computing, vol. 6, pp.

[85] R.G. Lanergan and C.A. Grasso, “Software engineering with reusable
designs and code,” IEEE Trans. Software Engineering, vol. 10, no. 5,
pp. 498-501, Sept. 1984.

[86] J. Laski and W. Szermer, “Regression analysis of reusable program
components,” Selected Papers from the Second Int’l Workshop on
Software Reusability Advances in Software Reuse, IEEE CS Press,
pp. 134-141, Lucca, Italy, Mar. 24-26, 1993.

[87] D. Lea, “Christopher Alexander: An introduction for 00 designers,”
Software Engineering Notes, vol. 19, no. 1 , pp. 39-46, Jan. 1994.

[88] D.B. Lenat, R.V. Guha, K. Pittman, D. Pratt, and M. Shepherd, “CYC:
Toward programs with common sense,” Comm. ACM, special issue on
Natural Language Processing, vol. 33 , no. 8, pp. 30-49, Aug. 1990.

[89] L.S. Levy, “A metapcogramming method and its economic justifica-
tion,” IEEE Trans. SofWure Engineering, vol. 12, no. 2, pp. 272-277,
Feb. 1986.

[90] M. Lubars, G. Meredith, C. Potts, and C. Richter, “Object oriented
analysis for evolving systems,” Proc. 14th Int’l Conference on Software
Engineering, pp. 173-185, May 11-15, 1992 Melbourne, Australia,
ACM Press.

[91] M.D. Lubars, “Wide-spectrum support for software reusability software
reuse: Emerging technology,” pp. 275-281, ed. W. Tracz, IEEE CS
Press, 1990.

[92] Luqi, “A Graph Model for Software Evolution,” IEEE Trans. Software
Engineering, vol. 16, no. 8, pp. 917-927, Aug. 1990.

[93] Y.S. Yoelle S. Maarek, D.M. Berry, and G.E. Kaiser, “An information
retrieval approach for automatically constructing software libraries,”
IEEE Trans. Software Engineering, vol. 17, no. 8, pp. 800-813,
Aug. 199 1.

[94] N.A. Maiden and A.G. Sutcliffe, “Exploiting reusable specifications
through analogy,” Special issue on CASE, Communications of the
ACM, vol. 35 no. 4, pp. 55-64, Apr. 1992.

[95] N.A. Maiden and A. Sutcliffe, “People-oriented software reuse: the very
thought,” Proc. Second Int’l Workshop on Software Reuse, Computer,
pp. 176-185, PressLucca, Italy March 24-26, 1993.

[96] J.H. Maloney, A. Boming, and B.N. Freeman-Benson, “Constraint
technology for user-interface construction in ThingLab 11,” pp. 381-388,
Proc. OOPSLA ’89, ACM Press, Oct. 1989.

[97] J. Margono and T.E. Rhoads, “Software reuse economics: cost-benefit
analysis on a large-scale ada project” Proc. 14th Int’l Conference on
Software Engineering, pp. 338-348, May 11-15. Melbourne, Australia,

[98] J Martin, “Fourth Generation Languages-Volume I: Principles,” Pren-
tice-Hall 1985.

1991 Y. Matsumoto, “A Software Factory: An Overall Approach to Software
Production Tutorial: Software Reusability,” pp. 155-178, d. P. Free-
man, EEE Press, 1987.

pp. 377-385, 1987.

pp. 66-75, Oct. 1984.

39-63,1992.

,

[100]Y. Matsumoto, ‘%Experiences from software reuse. in industrial process
control applications,” Selected Papers from the Second Int’l Workshop
on Software Reusability Advances in Sofrivare Reuse, pp. 186-195,
Lucca, Italy, March 24-26,1993 IEEE CS Press.

[101]R. McCain, “A software development methodology for reusable compo-
nents Proc. 18th Hawaii Conference on Systems Sciences, Hawaii, Jan.
1985.

[102]D.B. McCam, “MEDLINE: an introduction to on-line searching,” J.
American Society for Information Science, vol. 31 , no. 3, pp. 181-192,
May 1980.

[103]C. McClure, “The three R s of software automation: re-engineering, re-
pository, Reusability, ” Prentice-Hall, 1992.

[104]D. McIlroy, “Mass produced software components,” Software Engineer-
ing Concepts and Techniques, 1968 NATO Conference on Software
Engineering, pp. 88-98, eds. J. M. Buxton, P. Naur, and B. Randell,
PetrocelWCharter, New York 1969.

[105]S. Mellor, “The Shlaer-Mellor Method,” Tutorial notes, OOPSLA’93,
Washington, D.C. Sept. 26 - Oct. 1, 1993 ACM Press.

[106]B. Meyer, “Object oriented software construction,” ed. Prentice-Hall
Int’l, 1988. ,

[107]B. Meyer, “Lessons from the design of the eiffel libraries,” Communi-
cations of the ACM,. vol. 33, no. 9, pp. 69-88, Sept. 1990.

[lo81 A. Mili, R. Mili, and R. Mitlenneir, “Storing and retrieving software
components: a refinement-bad approach,” Proc. 16th Int’l Con$ on
Software Engineering, Sorrento, Italy, May 1994.

[109]H. Mili, J. Sibert, and Y. Intrator, “An 00 model based on relations,” J.
Systems and Software, vol. 12, pp. 139-155,1990.

[llO]H. Mili, A. E. El Wahidi, and Y. Intrator, “Building a graphical inter-
face for an 00 tool for software reuse,” Proc. TOOLS LISA ‘92, ed. B.
Meyer, Aug. 2-6.1992, Santa Barbara, Calif.

[111]H. Mili and H. Li, “Data abstraction in softclass, an 00 case tool for
software reuse,” Proc. TOOLS ’93, pp. 133-149, Santa-Barbara. CA
Aug. 2-5, ed. B. Meyer, Pcentice-Hall.

[112]H. Mili, 0. Marcotte, and A. Kabbaj, “Intelligent component retrieval
for software reuse,” Proc. 3rd Maghrebian Con$ on Artificial Intelli-
gence, and Software Engineering, pp. 101-114, Apr. 11-14, 1994, Ra-
bat, Morocco.

[113]H. Mili, R. Rada, W. Wang, K. Strickland, C. Boldyreff, L. Olsen,
J. Witt, J. Heger, W. Schecr, and P. Elzer, “Practitioner and Softclass: A
Comparative Study of Two Software Reuse Research Projects,” J. Sys-
tems and Software, vol. 27, May 1994.

[114]S.K. Misra and P.J. Jalics, ‘“Third-generation versus fourth-generation
development,” Software, vol. 5, no. 4, pp. 8-14, July 1988.

[115]Th. Moineau, and M.C. Gaudel, “Software reusability through formal
specifications, Proc. 1st Int’l Workshop on Software Reusability, Uni-
versitaet Dortmund 1991.

[116]J.M. Morel and Jean Faget “The REBOOT environment,” Selected Pa-
persfrom the 2nd Int’l Workshop on Software Reusability Advances in
Software, pp. 80-88, ReuseLucca, Italy, March 24-26, 1993, IEEE CS
press.

[117]M. Moriconi, and T.C. Winkler, “Approximate reasoning about the se-
mantic effects of program changes,” IEEE Trans. Software Engineer-
ing, vol. 16, no. 9, pp. 980-992, Sept. 1990.

[118]J. Mostow, M. Barley, “Automated reuse of design plans,” Proc. Int’l
Con$ on Engineering Design, Boston, MA 1987.

[119]B.A. Myers, “User-Interface Tools: Introduction and Survey,” Software,
pp. 15-23, Jan. 1989, Special issue on user interfaces.

[120]K. Nacayanaswamy, W. Scacchi, “Maintaining configurations of
evolving software systems,” IEEE Trans. Software Engineering,
vol. 13, no. 3, pp. 324-334, March 1987.

[121]J.M. Neighbors, “The DRACO approach to constructing software from
reusable components,” IEEE Trans. Software Engineering, pp. 564-
574, Sept. 1984.

[122]H. Ossher and W. Harrison, “Combination of inheritance hierarchies,”
SIGPLAN Notices, Proc. OOPSLA’ 92.. vol. 27 no. 10, pp. 25-40,
Oct. 18-22, 1992, Vancouver, B.C., Canada,

[123]H. Partsch and R. Steinbruggen, “Program transformation systems,”
Computing Surveys, vol. 15 no. 3, pp. 399-236, Sept. 198.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

MILL MILI, AND MILI: R E U S I ~ G S O ~ W A R E : ISSUES AND RESEARCH DIRECTIONS 561

the 2nd. int’l workshop on software reus-
, pp. 52-166, ReuseLucca, Italy, March 24-

26,1993, IEEE CS P

’87, pp. 23-29.1987, I
[131]R. Prieto-Dim and P. , “Classifying software for reusability

Somare , pp. 6-16, J

June 13-15.1990.

no. 3, pp. 61-66, May 1

pp. 145-1154, Aug. 19
tic programming: myths and prospects

p. 48-62, Sept. 1992.
c constructs in an 00 language,”

ani, F. Eddy, and W. Lorensen,

entation in memory,” Center for

n to Modem Information Re-

4-8, 1987, ACM Press.

ign, ’ Prentice Hall, 1991.

iscipline of Software,” Sop-

[151]L.S. Sorumgard, G. Sindre, and F. Stokke, “Experiences from applica-
tion of a faceted classification scheme,” Selected papers from the 2nd
Int’l Workshop on Sofrware Reusability Advances in Sofnuare, pp. 116-
124, ReuseLucca, Italy, March 24-26.1993. IEEE CS Press.

[152]B. Stroustrup, “The C++ programming languages,” Addison-Wesley
1986.

[153]W. Tracz, “LILEANNA A parameterized programming language,” Se-
lected Papersfrom the 2nd Int’l Workshop on Software Reusability Ad-
vances in Sofrware, pp. 66-78, ReuseLucca, Italy, March 24-26, 1993
IEEE cs Press.

[1541 J. Vemer and G. Tate, “Estimating size and effort in fourth-generation
development,” Sofrware, vol. 5, no. 4, pp. 5-22, July 1988.

[155]P. Wegner, “Varieties of reusability tutorial: Software reusability, ed.
Peter Freeman, pp. 24-38, 1987.

[156]P. Wegner, “Dimensions of 00 modeling, 00 computing,” Computer,
CS Press, vol. 25 no. 10, pp. 2-20, Oct. 1992.

[157]R. Wirfs-Brock, B. Wilkerson, and L. Wiener, “Designing 00 soft-
ware,” Prentice-Hall: 1990.

[158]R. Wirfs-Brock and R.E. Johnson, “Surveying current research in 00
design,” Communications of the ACM, vol. 33, no. 9, pp. 105-124. ,
Sept. 1990.

[159]S.N. Woodfield, D.W. Embley, and D.T. Scott, “Can programmers reuse
software,” Sofrware, July 1987, pp. 52-59.

[160]E. Yourdon, “Decline & fall of the american programmer,” Prentice-
Hall: Englewood Cliffs, N.J. 1992.

[161]A.M. Zaremski and J.M. Wing, “Signature matching: A key to reuse
software engineering, Notes, Ist ACM SIGSOFT Symp. on the Founda-
tions of Software Engineering, vol. 18, pp. 582-190, 1993.

[162]P. Zave, W. Schell, “Salient features of an executable specification lan-
guage and its environment,” IEEE Trans. Sofrware Engineering, vol.
12, no 2, pp. 312-325, Feb. 1986.

[163]P. Zave and M. Jackson, “Conjunction as composition,” ACM Transac-
tions on Sofrware Engineering and Methodology, vol. 2, no. 4, pp. 379-
411. Oct. 1993.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995

Hafedh Milli is an associate professor of computer
science at the University of Quebec in Motreal,
Canada He holds an engineering diploma from the
Ecole Central de Paris, Paris, France, which was
awarded in 1984, and a PhD in computer science
from George Washington University, Washington,
DC, which he earned in 1988

His research interests include object orientation,
software reuse, information retrieval, and knowledge
representation He has been leading or participating

in a number of government- and industry-sponsored (BNR, IBM, DEC, Tan-
dem Computers, CAE Electronics, DMR Group, National Bank of Canada,
etc) R&D projects in the area of object orientation and software reuse

He is founder and president of INFORMILI, Inc , a computer services com-
pany that specializes in training and consulting in 00 and software reuse.

Fatma Mili is an associate professor at Oakland
University, Rochester, Michigan. Her research inter-
ests are in software engineering, formal methods,
and scientific databases She holds a doctorate de-
gree from the University Pierre et Marie Curie in
France

Computer Society
Prof Mili is a member of the ACM and the IEEE

Ali Mili holds a PhD from the University of Illinois
at Urbana-Champaign (earned in 1981). He earned a
doctorat es science d’etat frow the University of
Grenoble, France, in 1985.

His research interests are in software engineering,
ranging from the technical to the managerial aspects
of the discipline.
His latest book, coauthored by J. Desharnais and F.

Mili, deals with the mathematics of program con-
struction. It is published by Oxford University Press,
New York.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

