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Reusing Software: Issues and Research Directions 
Hafedh Mili, Fatma Mili, and Ali Mili 

Abstruct-Software productivity has been steadily increasing 
over the past 30 years, but not enough to close the gap between 
the demands placed on the software industry and what the state 
of the practice can deliver [22], [39]; nothing short of an order of 
magnitude increase in productivity will extricate the software in- 
dustry from its perennial crisis [39], [67]. Several decades of in- 
tensive research in software engineering and artificial intelligence 
left few alternatives but software reuse as the (only) realistic ap- 
proach to bring about the gains of productivity and quality that 
the software industry needs. In this paper, we discuss the impli- 
cations of reuse on the production, with an emphasis on the tech- 
nical challenges. Software reuse involves building software that is 
reusable by design and building with reusable software. Software 
reuse includes reusing both the products of previous software 
projects and the processes deployed to produce them, leading to a 
wide spectrum of reuse approaches, from the building blocks 
(reusing products) approach, on one hand, to the generative or 
reusable processor (reusing processes), on the other [as]. We dis- 
cuss the implication of such approaches on the organization, con- 
trol, and method of software development and discuss proposed 
models for their economic analysis. 

Software reuse benefits from methodologies and tools to: 
1) build more readily reusable software and 
2) locate, evaluate, and tailor reusable software, the last being 

critical for the building blocks approach. 
Both sets of issues are discussed in this paper, with a focus on 

application generators and 00 development for the first and a 
thorough discussion of retrieval techniques for software compo- 
nents, component composition (or bottom-up design), and trans- 
formational systems for the second. We conclude by highlighting 
areas that, in our opinion, are worthy of further investigation. 

Index Term-Software reuse, managerial aspects of software 
reuse, software reuse measurements, building reusable compo- 
nents, 00 software development, software component retrieval, 
adapting reusable components. 

I. INTRODUCTION 

ESPITE several decades of intensive research, the routine D production of software under acceptable conditions of 
quality and productivity remains an unfulfilled promise. While 
a great deal of progress has been achieved in understanding the 
mechanics of constructing a program fiom a specification, lit- 
tle progress has been achieved in improving the practice of 
software development accordingly. This predicament stems, in 
our opinion, fiom two premises: 

0 First, a problem of scale: most of our current knowledge 
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in program construction deals with minute details about 
semantics of programming languages and correctness 
formulas; while this knowledge is enlightening and in- 
structive, it is rather inadequate to deal with the current 
pressures on the software industry (in terms of produc- 
tivity and quality). 

0 Second, a problem of emphasis: the problem of scale 
could in principle be tackled with automated tools if it 
were not for the fact that the most crucial decisions that 
must be taken in a program construction process, such as 
the choice of algorithms, control structures, and data 
structures, are also the most difficult to formali-hence 
to automate. 

As a result, a wide gap exists nowadays between the de- 
mands placed on the software industry (by a society that is in- 
creasingly dependent on software and increasingly intolerant 
of software failure) and what the state of the practice in the in- 
dustry can deliver; also the brief history of the field abounds 
with instances of failure [ 191, [38], [67]. 

Software reuse offers a great deal of potential in terms of 
software productivity and software quality, because it tackles 
the above issues adequately: By dealing with software prod- 
ucts at the component level and by focusing on arbitrarily ab- 
stract descriptions of software components, it addresses the 
question of scale; on the other hand, by dealing with software 
design at the architectural level, rather than the coding level, it 
addresses the question of emphasis. However, several factors 
hinder reuse, including the infancy of software development as 
a scientific [44] or engineering discipline [ 1441, inadequate 
training in software development in general and software reuse 
in particular [ 1591, inadequate management structures and 
practices [59], and the lack of methodologies and tools to sup- 
port software reuse or software development in general [47]. 
In this paper, we discuss the most important of these issues and 
focus on the methodological and technical aspects. 

It is customary to categorize software reuse work based on 
what is being reused (the object ofreuse) or on the method of 
reuse (see, e.g., [83] and [68]), the two being closely related. It 
is customary to distinguish between two general categories of 
reuse approaches, the building blocks approach, which is 
based on reusing software development products, and the gen- 
erative or reusable processor approach, which is based on re- 
using the process of previous software development efforts, 
often embodied in computer tools (processor) that automate 
part of the development life cycle [68]; these are but two ex- 
treme approaches on a continuum involving different mixes of 
product and process reuse [148]. We refer to both products 
and processes as reusable assets. Reuse approaches raise a 
number of issues that may be divided into issues related to de- 
veloping reusable assets and issues related to developing with 
reusable assets. Under the former set of issues, we focus on 
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00 software development, as an enabling technology for de- 
veloping reusable building blocks, and application generators 
as an example of a commercially successful application of the 
generative approach. Developing with reusable assets raises is- 
sues related to providing methodological and computer sup- 
port for: 

1) locating reusable assets, 
2) assessing their relevance to the current needs and 
3) adapting them to those needs. 

Such issues are anywhere from secondary to irrelevant to the 
reusable processor end of the spectrum, but are central to the 
building blocks end of the spectrum. Under adaptation, we 
discuss a number of techniques for automating the integration 
and maintenance of reusable components, with an emphasis on 
techniques other than those offered by object orientation, 
which are discussed separately, along with other 00 princi- 
ples. 

In the next section, we attempt to motivate and define so% 
ware reuse, and provide a typology of software reuse research, 
to be used throughout the paper. In Section 111, we discuss the 
overall impact of software reuse on the production of software, 
starting with the organizational and methodological impact of 
reuse on the development of software, and then discuss 
costhenefit models of software reuse. Sections IV and V focus 
on the technical challenges and research solutions involved in 
building reusable software assets and building with reusable 
software assets, respectively. We conclude in Section VI by 
outlining areas and issues that, in our view, deserve further at- 
tention in the research community. 

II. A FRAIvEWORK FOR SOFTWARE REUSE 

A. Motivations 
Software productivity has been steadily rising for the past 

30 years [160]. However, even with the steady rise in the 
number of computer professionals [22], it has not kept up with 
the rising demand for developing new ever more complex 
software systems and for maintaining existing software [22], 
[ 1031. While current software production management prac- 
tices leave room for improvement [ 151, nothing short of an or- 
der of magnitude increase in programmer productivity will ex- 
tricate the software industry from the current crisis [67]. Ac- 
cording to Boehm, the only factor that can yield that kind of 
productivity leverage is the number of software source in- 
structions that have to be developed to deliver a given func- 
tionality [22]: Instead of searching for ways of writing code 
faster, we have to look for ways of writing less of it. Automatic 
programming, whereby a computer system is capable of pro- 
ducing executable code based on informal, incomplete, and in- 
coherent user requirements, is decades away, if ever possible 
[ 1361. That leaves us with software reuse as the only realistic, 
technically feasible solution: We could reuse the processes and 
products of previous development efforts in order to develop 
new applications. 

Intuitively, savings occur with software product reuse be- 
cause reused components do not have to be built from scratch. 

Further, overall product quality improves if quality compo- 
nents are reused. With software process reuse, productivity in- 
creases to the extent that the reused processes are automated, 
and quality improves to the extent that quality-enhancing proc- 
esses are systematized. Further, there is plenty of duplication 
in the applications being developed and maintained nowadays, 
and hence plenty of room for reuse. In 1984, for example, the 
U.S. software market offered some 500 accounting programs, 
300 payroll programs, 150 communication programs, 125 
word-processing packages, etc. [77]; the figures are probably 
higher today, In the early eighties, Lanergan and Grass0 esti- 
mated that 60% of business applications can be standardized 
and reused [MI. Generally, potential (estimated) and actual 
reuse rates range from 15% to 85% (see, e.g., [59], [103]). 
Existing experience reports suggest that indeed good- 
sometimes impressive-reuse rates, productivity and quality 
increases can .be achieved (see, e.g., [12], [13], [73], [loo]). 
However, successes have not been systematic (see, e.g., [59, 
[133]), and a lot of work remains to be done both in terms of 
“institutionalizing” reuse practice in organizations and in terms 
of addressing the myriad of technical challenges that make re- 
use difficult [83]. 

B. The Object of Reuse 
The idea of formal software reuse, as first introduced by 

McIlroy in his 1968 seminal paper [104], entailed the devel- 
opment of an industry of reusable source-code software com- 
ponents and the industrialization of the production of applica- 
tion software from off-the-shelf components. Software reuse is 
now understood to encompass all the resources used and pro- 
duced during the development of software (see, e.g., [43], 
[50], [ 1331). Different researchers proposed different categori- 
zations of reusable knowledge, but by and large, most classifi- 
cations rely on one of three factors or a combination thereof: 

1)stage of development at which the knowledge is pro- 

2) level of abstraction (e.g., abstract versus con- 

3) nature of knowledge (e.g., artifacts versus skills). 

Jones identified four types of reusable artifacts [77]: 
1) data reuse, involving a standardization of data formats, 
2) architectures reuse, which consists of standardizing a set 

of design and programming conventions dealing with the 
logical organization of software, 

3) (detailed) design reuse, for some common business ap- 
plications and 

4) program reuse, which deals with reusing executable 
code. In addition to productlartifact reuse, Horowitz 
considered various kinds of reuse based on the utilization 
of very high-level program-producing systems [68]. 

Three general classes of systems that have been commonly 
recognized by researchers are: 

1) reusable program pattems [ 191, [68], whereby code or 
design pattems are used to instantiate specific code frag- 
ments or designs, as in application generators or the Pro- 
grammer Apprentice’s clich6s [137], 

duced andor used, 

cretehplemented) and 
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Level 

hvironmenta 

Supplier-Related Customer-Related 
Knowledge Knowledge 

Technology transfer Utilization knowl- 
knowledge: consists of edge: describes the 
knowledge about such business context in 
things as the organiza- which the software 
tional impact of softwareproduct will be used. 
technology, personnel 
training, computer liter- 
acy, and so forth. 

External 

It is the environmental level of software development 
knowledge that is explicitly lacking from similar life cycle- 
based categorizations of reusable information. In his 1987 pa- 
per, Freeman identified the reuse of environmental knowledge 
as one of the long-term research goals in software reuse [50]. 
We know of no research effort that has attempted or is attempt- 
ing to formalize the reuse of such knowledge since. One area 
that has been getting considerable attention recently, however, 
is the reuse of application domain knowledge under the form 
of domain models (see, e.g., [5], [501, [911, 11321, 11481). 
Domain models serve three major purposes: 

1) helping developers understand an application domain, 
2) serving as the starting point for systems analysis (e.g., by 

specializing the domain model) and 
3) providing an application-dependent categorization/ 

classification of existing reusable components (of later 
development stages) so that opportunities for reuse can 
be identified as early in the development process as pos- 
sible [5 ] ,  [130], [132]. 

Domain models should identify: 

common to the application domain, 
the entities and operations on those entities that are 

0 relationships and constraints between the entities and 
“retrieval cues,” i.e., properties of objects that are likely 
to be used by developers in the process of searching for 
reusable components [5], [ 1321. 

We know of few research efforts that include declarative do- 
main models that support all three functions described above 
(see, e.g., [5], [91]). Neighbors’s DRACO system [121] and 
Simos’s work on ASLs [148] achieve much of the same goals 
by developing domain-dependent specification languages that 
embody an application domain’s common objects and opera- 
tions 

In the next section, we propose our own ontological cate- 
gorization of reusable knowledge. Our categorization is geared 
toward highlighting the paradigmatic differences between the 
various reuse methods and abstracting what we consider to be 
inessential differences between various reusable assets (e.g.. 
code reuse versus design reuse). 

C. The Method of Reuse 
We adopt the transformational systems’ view of software 

development as a sequence of transformations and/or transla- 
tions of the description of the desired system from one lan- 
guage (level i description) to another (level i + 1 description) 
as shown in Fig. 1. Three levels of knowledge are used in this 
translation: 

1) knowledge about the source domain (level 9, 
2) knowledge about the target domain (level i + l), and 
3) knowledge about how objects (entities, relations, struc- 

tures) from the source domain map to objects in the tar- 
get domain. 

For a given level, the knowledge can be seen in linguistic 
terms, as consisting of a domain language, and a set of ex- 
pressions known to be valid. The domain language consists of 

bevelopment knowl- Application-area 
edge: deals with the 
planning and manage- 
ment of software proj- 
ects such as cost and 
schedule estimation, test 
plans, benchmarking, 
and others. 

kn owledge: deals with 
the underlying models 
for the application do- 
main. 
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domain entities (or classes) and domain structures. The de- 
scription of the various entities and structures can be based on 
an enumeration of legal entities and structures, or based on a 
set of properties that must be satisfied by either (e.g., consis- 
tency checks, composition rules), or a mix of the two. We refer 
to the description methods as enumerated and compositional, 
respectively. The descriptions of past problem instances con- 
stitute the expressions that are known to be valid. 

The mapping knowledge consists of a set of transformation 
rules, from level i to level i + 1, and a set of known mappings 
between problem instances of level i and problem instances of 
level i + 1. The transformation rules’ embody what is usually 
referred to as process reuse or skill reuse (see, e.g., [133]). We 
shall refer to them as the transformation grammar. Note that 
this formalism does not distinguish between declarative 
knowledge and procedural knowledge as we feel the distinc- 
tion to be mainly a representation issue. 

Typically, development consists of, first, describing 
(specifying) the problem at hand in the language of level i to 
obtain a description PDi and, second, transforming that de- 
scription into one at level i + l (PD,+,), supposed to be the tar- 
get description language (e.g., executable code). With reuse, 
one would want to avoid having to manually: 

1) specify completely the problem at hand andor 
2)transform the entire specification of level i into 

Thus, reusable assets include all the kinds of knowledge in- 
volved in the development transformation (DT,,i+l), which can 
be thought of as the result of applying a generic level- 
independent problem-solving method on the relevant knowl- 
edge sources. The various reuse approaches can be categorized 
based on: 

1) the extent to which the language of level i covers the 
problem domain of level i and 

2) the extent to which the mapping knowledge (Ti,i+l) cov- 
ers all the entities and structures (i.e., all the valid ex- 
pressions) of the domain of level i. 

level i + 1. 

1 .  These rules do not only ensure syntactic correctness of the result de- 
scription of level i + l ,  but also the preservation of some properties and the 
satisfaction of some “development constraints.” 

Finer characterizations may be based on the kind of language 
description used, along the enumerated versus compositional 
dimension. Table I1 shows the characteristics of some of the 
approaches commonly referred to in the literature. As we go 
down the rows of Table 11, we move from what is generally re- 
ferred to as the building blocks approach to increasingly auto- 
mated generative approaches. Automation requires the com- 
plete “cover” of the source domain language (level i )  and the 
completeness of the mapping knowledge i + i + 1. In other 
words, automation is possible if we can express all new prob- 
lems in terms of problems, or combinations of problems, that 
have already been solved. We comment below on the various 
approaches separately. 

With source code components, a new problem is solved by 
composing solutions to subproblems. A complete cover of 
level i domain would mean that all the components that one 
may need have been developed, or, more astutely-but equally 
unrealistic-a set of components has been developed such that 
every problem can be reduced to subproblems that these com- 
ponents can solve. Notwithstanding the issue of finding such a 
decompositionheduction, which can be as challenging as 
solving the original problem analytically from scratch (see 
SectionV.B), the number of required components is most 
probably prohibitive [83]. That number depends on: 

1) the breadth of the application domain and 
2) the composition technique used. 
With source code components, composition often takes 

place “too late” in the software life cycle: limiting the range of 
behaviors that can be obtained from a set of components to 
variations on functional composition, as supported by tradi- 
tional module interconnection languages (see, e.g., [ 1291) or 
programming languages. Source code components approaches 
that support composition of components at a higher level of 
abstraction yield a greater range of behaviors (see, e.g., [78], 
[149]). Software schemas are similar to source code compo- 
nents, except that the reusable artifacts are defined at a higher 
level of abstraction, allowing for a greater range of instantia- 
tions (through partial generation) and compositions. Further, 
the added parameterization makes it possible to build complex, 
yet generally useh1 structures (see, e.g., [16]). However, the 
artifacts are still not meant to cover all the needs of the appli- 
cation domain, and finding and expressing the right composi- 
tions are still challenging design problems. 

With the remaining three approaches, the source domain 
language covers the application domain. Transformational 
systems fall short of automation because the mapping knowl- 
edge is incomplete or non-deterministic: A transformational 
system needs developer assistance in selecting among appli- 
c a b l e a n d  perhaps objectively equivalent-transformations 
[ 1231. The transformational approach can be used in conjunction 
with source code components to assist in the modification and in- 
tegration of such components in new applications [113]. Full 

2. Booch’s C++ components include 18 implementations of dequeues cor- 

the concurrency control algorithm, 
the memory allocation algorithm, and 
the ordering algorithm [149]. 

responding to all the possible combinations of choices of 
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TABLE II 
A CATEGORIZATION OF COMMON REUSE APPROACHES 

I 
Life Cycle 

Stage 
mostly de- 
sign 

mostly de- 
sign 

software 
specifi- 
cations 

I 
Description 

Type 
composi- 
tional 
(mostly) 

composi- 
tional 
(mostly) 

composi- 
tional 

Mappin! 
Covering 

partial 

partial 
(mostly) 

partial 

howledge 
Description 

Type 
composition 
al (mostly) 

composi- 
tional 
(mostly) 

composi- 
tional 

Examples Approach 

Source code 
components 
(see [501, 
~ 3 1 )  

software 
schemas (see 
e.g. [83], or 
referred to as 
reusable 
program 
patterns in 
[77]) 
Reusable 
trans- 
formation 
systems (see 
e.g. [191, 
[501) 

Covering 

partial 

partial 

complete 

Spectrum 

wide spec- 
trum 

RSL [27], REBOOT [116], and a number of 
other “nameless” tools and approaches (e.g. [85], 
[131], [161]). Object-orientation, seen as a de- 
velopment methodology for reusable compo- 
nents, is discussed in 8IV.C. Problems related to 
the use of such components are discussed in 
various subsections §V. 
The programmer’s apprentice [137], the PARIS 
system [SO], and Basset’sJiame-based sofware 
engineering, in which an application could be 
completely specified and generated using 6ames 
[16]. Software schemas are briefly discussed in 
the context of 00 technology 9IV.C). 

wide spec- 
trum 

wide- 
spectrum 

________~ ~ 

A somewhat outdated survey of transformational 
systems is given in [123]; their potential for 
quality-preserving maintenance and reuse has 
been recognized by a number of researchers, in- 
cluding Feather [45], Arango et al. [4], and Bax- 
ter [ 171. They are discussed in more detail in 
8V.C. 
Unix’s Yacc, a number of commercial tools in 
business information processing (see e.g.[69] for 
a survey), a number of user interface building 
frameworks (see e.g. [ 1191 for a survey), etc. 
Discussed in more detail in 8V.B. 

User re- 
quirements 
complete 

complete enumerated 
(mostly) 

complete narrow, do- 
main- 
specific 

narrow, 
domain- 
specific 

Application 
generators 
(see e.g. 
1831) 

software 
specifi- 
cations 

complete Emphatic- 
a& com- 
posi- tional 

complete composi- 
tional 

depends on 
the system 

Simos’ ASL are application-specific languages 
[148], PAISLey [162] SETL [82] and others are 
based on application-independent mathematical 
and computational abstractions. T}.TE.LP.ls 2.ce 
Table 2. A categorization of common reuse ap- 
proaches..LP.sp.PP 

Very high- 
level lan- 

reusable 
processor 
1771. etc 

guages ~ 3 1 ,  

automation is achieved with application generators and very high- 
level languages. With very high-level languages, automation is 
possible at the cost of code efficiency and design quality; very 
high-level languages are not intended to implement production 
quality software. Automation is possible with application genera- 
tors because of a restriction of the application domain.’ The re- 
striction has the added advantage of making it practical to enu- 
merate a set of template software specifications (or the correspond- 

quirements 
It is fair to say that as we go down Table U, the focus shi& 

fbm components to composition, and the language for expressing 
compositions moves up in terms of abstraction. This corresponds 
closely to Simos’s “reuse life cycle,” which prescribes an evolution 
of reuse approaches within organizations, following the maturing 
of both the application domain and the expertise of developers 
within that domain [ 1481. 

ing software “Solutions”) parameterized directly with usw re- 

The next section deals with the non-technical effects of software 

1) its effects on the organizational structure of software produc- 

2)measuring reuse effectiveness, both in technical and eco- 

3) some reported case studies. 

reuse on the production of s o h ,  including, 

ing organizations and on the software life cycle, 

nomic terms and 

Section IV deals with issues related to building reusable knowl- 
edge, with a focus on source code components and application 
generators. Section V deals with issues related to building new 
applications with reusable knowledge. Such issues are, for the 
most part, trivial or irrelevant to the application generators and 
very high-level languages approaches. The discussion will thus be 
geared toward the building blocks end of the spechum, and we ad- 
dress issues related to component retrieval, composition, and adap- 
tation. Transformational systems will be discussed to the extent 
that they help adapt reusable components in a time-saving, quality- 
preserving way. 

3. No application generator available today can build a corporate informa- 
tion system. However, big chunks of such systems (e.g., report generators) 
can be generated using application generators [34]. 
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111. SOFTWARE REUSE AND THE 
PRODUCTION OF SOFTWARE 

Software reuse provides some feasible remedies to the cur- 
rent software crisis, but many questioned the suitability of ex- 
isting management practices, organizational structures, and 
technologies to support software reuse. There is a general 
agreement that a rethinking of software manufacturing is 
needed. There is also agreement that the required changes are 
managerial, cultural, and technical in nature, as was the case 
for other engineering disciplines [l5], [39], [144]. There is no 
consensus, however, as to the nature and scope of changes, 
both because the changes involve some yet to be proven man- 
agement techniques and structures and because the proposed 
technological answers are different. In this section, we first 
discuss the effect of software reuse on the organization of 
software development processes (Section IILA); these changes 
depend on the reuse paradigm used, along the building blocks 
versus generative spectrum. Next (Section III.B), we discuss 
ways to measure software reuse and its impact on productivity 
and quality. We conclude in Section 1II.C by discussing the 
relation between the qualitative effects and measurable effects 
of software reuse and the challenges that stand in the way of 
comparing the effectiveness of the various reuse approaches. 

A. Software Reuse and Software Engineering 
It is fair to say that technological innovations in software 

development contributed to enhancing software reusability, 
starting with high-level programming languages, up to struc- 
tured and modular programming, up to design and analysis 
notations and methodologies. The same cannot be said about 
the organization and management of software organizations, 
which are at best reuse-neutral when they do not hinder reuse 
practice. We organize our discussion of the changes required 
and implied by reuse practice into, 

1) new organizational structures (e.g., staffing structure), 
2) new process models (life cycles) and 
3) punctual methodological changes. 

A. 1. New Organizational Structures 
Software reuse relies on the availability of a base of reus- 

able software in all forms (Section IV). Wegner argues that 
software companies should treat software as capital goods and 
their organization, including team structures and cost imputa- 
tions, should reflect that [ 1551. This is true whether we are 
dealing with the building blocks approach or with the genera- 
tive approach: in both cases we have to divert resources, both 
human and financial, into building a common base of reusable 
software assets to be amortized over several uses, be they ap- 
plication generators or source code components. It is widely 
accepted that, in addition to the typical project team structure 
of software organizations, a team responsible for building and 
maintaining a base of reuse capital is needed. Different authors 
proposed different divisions of labor between project teams 
and “reuse capital” teams. Within the building blocks ap- 
proach, the component library team would, minimally, be re- 
sponsible for packaging (e.g., documenting) and controlling 

the quality of what gets added to the reuse base [ 13 I]. The li- 
brary team could also play an active role in creating reusable 
s o h a r e  of all forms. Barnes studied the economic models for 
two such arrangements [IO]: 

1) a pure producer-consumer relationship between the li- 
brary team and project teams, where the library team is 
solely responsible for producing reusable components, 
and 

2) a shared arrangement where project teams contribute to 
and consume what is in the library. 

Caldieri and Basili [28] proposed a more software factory-like 
approach [40]. In their model, project teams do no program- 
ming (see Fig. 2). They are responsible for requirements and 
design specifications-which they submit to the experience 
factory-and for integration and integration testing [28]. The 
experience factory’s activities can be divided into: 

1) Synchronous activities, which are activities initiated fol- 
lowing requests from project teams, and can range from a 
simple look-up to building the required components from 
scratch. Such activities are subjected to project teams’ 
schedules. 

2) Asynchronous activities, consisting of creating compo- 
nents that are likely to be requested (anticipating future 
demands), or reengineering components generated by the 
synchronous activities to enhance their reusability. 

In [12], Basili et al. report on experiences at the Software 
Engineering Laboratory (SEL), funded and operated by the 
University of Maryland, NASA, and the Computer Sciences 
Corp., in which the above structure has evolved over the years. 

The experience factory was responsible mainly for process (vs. 
product) development and reuse [12], [13]. Over a period of 
five years, reuse rates increased from 26% to 96%, the cost per 
delivered statement decreased by 58%, a 138% increase in 
productivityQ - a n d  the number of errors decreased by a factor 
of four [12]. It is not clear how a pure producer-consumer re- 
lationship between the experience factory and the project 
teams would have worked. With the building blocks approach, 
there are a number of motivational and managerial challenges 
to putting into place such a structure, including putting the 

4. The experiments reported in [12] used a project implemented in Fortran 
as a baseline for errors and cost. Subsequent projects were implemented in 
Ada The numbers mentioned here used the first year data with Ada projects 
as a baseline, instead of the Fortran project. When the Fortran project is used 
as a baseline, we obtain smaller decrease of cost of delivered statement (35% 
instead of 58%), but a greater decrease in error rates (a factor of eight, instead 
of a factor of four), which is to be expected. 
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most qualified developersS in the least satisfying tasks 
(experience factory) [28] and redistributing responsibility and 
control of individual projects in a way that may diffuse ac- 
countability. Such a division of labor is less problematic with 
the application generators approach where the skills required 
from application developers are markedly different from those 
required of application generator developers: The former have 
to be versed in the application domain, possibly end users, 
while the latter have to be both domain experts and software 
development experts [89]. Less revolutionary divisions of la- 
bor exist in more traditional organizations where the job of 
system administrators and support staff often evolves into 
building and supporting custom-tailored development tools- 
embodying reusable processes-or at Japanese software fac- 
tories, based essentially on a tighter management and meas- 
urement of software activities and products (see, e.g., [99], 
[ 1001). 

A.2. New Process Models 
A software life cycle is a model for organizing, planning, 

and controlling the activities associated with software devel- 
opment and maintenance [124]. For the most part, a life cycle 
identifies development tasks and identifies and standardizes 
intermediary work products (deliverables) and review and 
evaluation criteria. The known life cycles may be classified 
based on the kind of development tasks and work products in- 
volved, and the organization of such tasks. For example, the 
waterfall life cycle, the spiral model [21], and to some extent 
prototyping, all involve some measure of analysis, design, 
coding, and testing. However, while the waterfall life cycle 
implies that an entire system is analyzed before any part of it is 
designed or implemented, both the spiral model and prototyp- 
ing prescribe the analysis ++ testing cycle on system incre- 
ments [ 13. Newer development paradigms usually shorten the 
analysis t+ testing cycle by automating one or more steps 
along the cycle [2]. When we talk about software reuse, there 
are two life cycles to consider 

1) the life cycle for developing reusable assets and 
2) the life cycle for developing with reusable assets. 

Issues to consider include whether the two life cycles are dif- 
ferent and whether the availability of a base of reusable assets 
modifies the underlying life cycle. This depends on both the 
reuse approach used-along the building blocks ++ genera- 
tive dimension-and on the development methodology used. 

With the building blocks approach, both the reusable assets 
and the products developed with them are software compo- 
nents. Reusable components may be developed either concur- 
rently or separately from specific product development, corre- 
sponding closely to the synchronous and asynchronous activi- 
ties, respectively, of the experience factory in Caldieri and 
Basili’s model (see above). When they are developed concur- 
rently, they follow the same life cycle as non reusable compo- 
nents, except that greater care may go into building and pack- 

5 .  In the SEL at the Univ. of Maryland, the experience factory was mainly 
staffed by researchers [12]. However, they spent their time mainly collecting 
and analyzing data and proposing process enhancements, rather than develop- 
ing variants of sort algorithms or stack structures! 

aging them. When a separate activity is set aside for develop- 
ing them, we talk about domain analysis and domain engineer- 
ing. One of the major inputs of domain analysis is a set of al- 
ready developed systems within the domain, whose common 
features are identified, abstracted, implemented, and then 
packaged [ 1321. The identification and abstraction of common 
features can take place at the earliest development stage for 
which there is adequate documentation. For example, if good 
quality analysis documents for the existing systems are avail- 
able, the common features can be recognized at the analysis 
level. If not, one needs to look at existing designs or even code 
fiagments, perform some measure of reverse-engineering to 
recover requirements of individual systemskomponents, iden- 
tify common features, abstract them, and forward-engineer 
them 

Building new applications with reusable components need 
not follow a radically different life cycle fiom building new 
applications without reusable components (see, e.g., [6], [27], 
[76], [131]). One of the criticisms leveled at the waterfall life 
cycle is that each life cycle stage is mainly influenced by the 
previous stages (top-down), while the existence of reusable 
components requires some sort of a look-ahead procedure to 
identify opportunities for reuse and take advantage of them 
[66], [148]. We believe this to be mainly a documentation is- 
sue: Reuse has traditionally meant reuse of small code frag- 
ments that have little or no life cycle documentation; if analy- 
sis information were stored in components libraries, for ex- 
ample, analysts could identify opportunities for reuse at the 
analysis level without looking at the actual code of reusable 
components. The point has been made, though, that 00 soft- 
ware development, the reuse methodology par excellence, re- 
quires a mix of top-down and bottom-up approaches6 [66]. 
This is explained by the premise that an 00 development life 
cycle needs to combine application and domain engineering in 
order to attain reuse objectives [66]. The application engineer- 
ing part of the life cycle proceeds in a top-down fashion from 
requirements gathering to high-level system design. Domain 
engineering consists of building “clusters” (libraries or layers 
[107]) of classes, starting with the lowest level (building 
blocks) which would most likely be needed no matter what the 
final system design is like, and moving up to application- 
specific classes, looping back on system design or even analy- 
sis [66]. Other 00-induced life cycle changes have been pro- 
posed in the literature that are motivated by considerations 
other than reuse, such as managing the risks inherent in 
switching to a new development technology [125]. 

The situation is markedly different with the generative ap- 
proach. Application generators, which experienced some 
commercial success, have been studied in the literature (see, 
e.g., [89], [98]). However, by and large, the process of build- 

6. The terms top-down and bottom-up are used in software. engineering to 
mean two things. They may refer to the direction used to go through the 
stages of a life cycle. For the waterfall life cycle, top-down means going ftom 
requirements to testinghtegration. The terms are also used to refer to con- 
struction paradigms, the analytical (top-down) versus synthetic (bottom-up). 
Things get confused because synthesizing systems from components suggests 
that detailed design is done before system design, e.g., and the two meanings 
overlap. 
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ing “reusable processors” has not earned a lot of attention, 
perhaps because most of the executable specification lan- 
guages are research prototypes. A notable exception is Simos’s 
work on application-specific specification languages (ASL), 
and what he calls domain life cycle [148]. He sees ASLs as the 
culmination of the maturation of an application domain, or of 
an organization’s expertise in that domain. The maturation 
starts with small reusable code components and moves toward 
more abstract representations and more complex constructs 
until an entire application domain is “covered” (Section 1I.C) 
[ 1481. The effect of using the generative approach for software 
development is much easier to assess: The generative approach 
shortens traditional life cycles through automation (see, e.g., 
[98]). Application generators, for example, obviate the need 
for specifying the software requirements, designing, coding, 
and testing, of big chunks of applications [89]. Executable 
specification languages and transformational systems obviate 
the need for designing, coding, and testing, but developers still 
need to produce precise formal specifications of the desired 
system [ 11. 

A.3. Eflects on Development Method 
Software development can be considered as a problem- 

solving activity, the problem being that of finding a software 
implementation that satisfies a set of user requirements. Cog- 
nitive scientists and AI theorists alike consider recall as an es- 
sential part of human problem-solving (see, e.g., [88], [141]). 
Broadly speaking, when faced with a problem, we first per- 
form a “rote recall” to see if we haven’t solved the problem 
before [MI. When that fails, we start looking for analogical 
(similar) problems that we might have already solved and 
adapt their solution to the problem at hand [29]. When that 
fails, we fall back on general analytic problem-solving knowl- 
edge and skills [ 881. Traditional development methodologies 
(e.g., SNSD [124]) are analytical in nature and fall back im- 
mediately on general problem-solving knowledge and heuris- 
tics such as divide and conquer and successive refinements. 
Researchers recognize that “informal reuse” (i.e., in devel- 
oper’s head) has always been taking place, whereby the base 
of reusable knowledge is “acquired” individually by develop- 
ers through experience (see, e.g., [ll]). To some extent, 
“formal” software reuse in general and the building blocks ap- 
proach in particular recognize the earlier recall-based phases 
of problem-solving and aim at formalizing them and providing 
computer support for them. 

Challenges to supporting reuse within development meth- 
odologies include: 

1) identifying reuse tasks and the skills required to perform 

2) providing methodological and tool support for these tasks 

3) integrating reuse activities into the normal workflow of 

The reuse tasks depend heavily on the reuse approach used 
along the building blocks vs. generative axis. With the genera- 
tive approach, the reuse tasks consist of specifying the desired 
application in a high-level language (executable specification 

those tasks (see, e.g., [95]), 

(see, e.g., [ 1 131, [ 1 16]), and 

developers (see, e.g., [47] and [113]). 

language, 4GL, etc.), and the required cognitive skills need not 
be different fiom those required of traditional development 
methods. With the building blocks approach, developers try to 
build a system that satisfies a set of requirements by using as 
many existing components (or developing as little code) as 
possible. For any part of the target system, developers must 
(see, e.g., [471, [951, [I 131, [ W ) :  

1) formulate the requirements of the part in a way that sup- 
ports retrieval of potentially useful reusable components, 

2) understand the retrieved components and 
3) if the retrieved components are sufficiently %10Se” to the 

needs at hand and are of sufficient quality, then adapt them. 

If no component is found that matches perfectly or closely the 
given requirements, developers may fall back on general- 
purpose analytical heuristics to decompose the system (or part 
thereof) into smaller parts for which steps 1 to 3 may be reit- 
erated [ 1 3 51. 

The search and retrieval problem benefits fiom a large 
body of work in the area of document retrieval and will be dis- 
cussed in more detail in Section V.A. For the time being, we 
note that in the context of reuse, we need more than an algo- 
rithm that tries to match a requirement to a single component; 
we need a retrieval system that is capable of synthesizing a set 
of building blocks into a single component that satisfies the 
developer’s requirement. This is what is commonly referred to 
as bottom-up development. This is perhaps the most challeng- 
ing problem in the building blocks approach, and where com- 
puter assistance is much needed. Yet, there have been few 
concrete proposals (see, e.g., [62], [79]). Component synthesis 
and aggregation is discussed in more detail in Section V.B. 

Component/program understanding represents an important 
part of both the mental effort and the cost factor, in reuse [47], 
[95] and m a i n t e n ~ c e ~  [103]. Component understanding can 
mean three things: 

1) understanding what it does, 
2) understanding how it does it and 
3) understanding how to modify it in such a way that it does 

In a r euseand  maintenancwontext, some abstract 
(implementation independent) component documentation 
should accommodate step 1, obviating the need for reusers to 
browse through actual codei .e . ,  obviating the need for 
step 2. For components whose evolution/adaptation and ex- 
tension has been properly planned, the amount of knowledge 
needed for step 3 can be very small, compared to what it 
would take to explain how the component works, i.e., step 2; 
the knowledge required for step 3 corresponds to documenting 
what Krueger called the variable part of component abstrac- 
tions [83]. It is reasonable to assume that if a component is to 
be modified in an unanticipated (or not properly parameter- 
ized) fashion, one might need to delve into the minute details 
of the component, and the knowledge required for step 3 may 
be comparable to that required for step 2. However, studies 
have shown that reusers are able to edit and adapt components 

7. A 1979 study done at IBM revealed that “maintainen” spend at least 

something a little different. 

30% of their time trying to understand the code to be modified [103]. 
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with only a sketchy understanding of how they work [95]; 
whether that is desirable or not is another issue.* 

Program understanding involves the recognition of high- 
level abstract patterns amid complex and detailed structures. 
Studies have shown that experts and novices use different ap- 
proaches to program understanding9 suggesting that reusers 
and maintainers may need training in program understanding 
or the support of tools that help them understand programs 
1471, [951, [103l. 

Component understanding is the first step toward compo- 
nent adaptation. Unplanned component adaptation constitutes 
a textbook case in analogical problem-solving [29]. Analogi- 
cal problem-solving is used when the mapping from problem 
to solution cannot be characterized intensionally, but such that 
some <problem,solution> pairs are known for which elements 
in the solution space (software artifacts) can be traced to ele- 
ments in the problem space (requirements). A new problem Np 
is solved by first matching it to a known problem-solution pair 
<KP, KS>, and then using the difference between NP and KP 
to infer the difference between KS and the actual solution of 
NP (NS). Analogical problem-solving is unsound in the sense 
that a problem solution NS is not guaranteed to solve the 
problem NP; if we modify a component using this kind of rea- 
soning, we lose any assurances that the modified version does 
what it says (verification), and what we want it to do 
(validation). It is inherently unsound because it relies on an in- 
complete knowledge (partial extension) of the problem + so- 
lution mapping. This kind of technique is only used in the 
constrained context of transformational systems (see, e.g., [ 171 
and Section V.C) or for informal software artifacts for which 
there is not much else that can be done (see, e.g., [94]). 

In terms of tool support and integration, there is a fairly 
wide consensus that tools for reuse tasks should integrate 
seamlessly into CASE environments (see, e.g., 1471, [94], 
[113], [ 1 161). Typical reuse hctionalities such as search, 
copy, and edit should be available to developers in a modeless 
fashion, and should not distract them from their normal work- 
flow (see, e.g., [113]). Broadly speaking, reuse-oriented CASE 
environments should be viewed as problem-solving aids, to be 
used as extensions of developer’s mental workspace, rather 
than a rigid formalism requiring constant translation back and 
forth to that mental workspace. This entails, among other 
things, enabling developers to custom-tailor their development 
environments and providing them with proactive development 
aids/tools [47]. The former is made possible by offering fine- 
grained development functionalities which developers may 
combine and sequence at will [ 1 161. The latter remains a re- 
search goal, although some knowledge-based systems made 
some headway in that direction (see, e.g., [ 1471). 

8. Such reuse does away with the quality incentive, and may cost resources 
for debugging and testing. 

9. It was found that experts classify program segments along functional 
lines, while novices classify program segments along syntacticdsuperfcial 
similarities. Also, experts use a mix of a bottom-up phase, collecting enough 
clues to formulate a hypothesis (a pakrn), followed by a top-down predic- 
tiveherification phase during which they check whether the remaining clues 
fit in the pattem, while novices use a straight bottom-up strategy, trying to 
understand programs one line at a time [95]. 

B. Measuring Software Reuse 
Economic considerations are at the center of any discussion 

of software reuse. Indeed, the most vaunted advantages of 
software reuse are: 

1) an increase of the productivity of software development, 
which translates directly into monetary terms and 

2)an improvement of the quality of the products, which 
may mean less corrective maintenance, easier perfective 
maintenance, greater user satisfaction, and so forth, all of 
which translate into monetary gains. 

There are also different costs associated with software reuse, 
both capital setup (up-front) costs and proportional costs (cost- 
per-use). Further, different technical approaches to reuse have 
different investment and return on investment profiles (see, 
e.g., [42], [148]). Economic models and software metrics are 
needed that quantify the costs and benefits of reuse. Only re- 
cently have researchers started to tackle this problem (see, e.g., 
[7], [lo], [ 1 13). Such studies will not only help convince man- 
agement of the advantages of software reuse-in case there are 
any-but will also guide the choice of the technical ap- 
proaches, and improve the management of the introduction of 
reuse work methods within organizations [ 121, [lS]. 

Traditional software metrics that estimate (predict) or 
measure (after the fact) effort, size, and the relation between 
them (productivity) need to be amended to account for soft- 
ware reuse. For example, reusable components that accommo- 
date several uses tend to be bigger in size than a version that 
accommodates a single use, and more complex (see, e.g., [7], 
[97]). Further, reuse practice presents managers and develop- 
ers with choices whose implications have to be measured at the 
organization, project, and task levels. We recognize three such 
decisions: 

1) the decision to launch an organization-wide software re- 
use program (a long-term, capital investment-like deci- 
sion [ 1 13, [52], [ 128]), 

2) the decision to develop a reusable asset (a domain engi- 
neering decision [52]) and 

3 )  the decision to (re)use a reusable asset in an application 
currently under development (an application engineering 
decision [52]). 

In the next three sections, we discuss the work relevant to 
these decisions. Because of the dependencies between some of 
the metrics and models, we proceed in reverse order. We con- 
clude in Section 1II.D by discussing the weaknesses of the ex- 
isting methods and suggesting areas for research. 

B. 1. Reuse Instance Costs 
A reuse instance means different things whether we are 

talking about the building blocks approach or the generative 
approach. In the context of the building blocks approach, a re- 
use instance is a point in the development where a developer 
has the option of building a component from scratch, but 
chooses instead to try to reuse a component from the library. 
With the generative approach, a reuse instance corresponds to 
an entire project life cycle, or a significant part thereof, as the 
decision to reuse-in this case, generate-modifies the life 
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cycle in significant ways (see Section 1LI.A). Models appro- 
priate for the generative technology are needed that estimate 
(or measure) the cost of generative development (see, e.g., 
[98], [154]) and thatcompare it to the cost of more traditional 
development (see, e.g., [114]). In this section, we focus on 
studies that dealt with the building blocks approach. 

Barnes and Bollinger recognized the existence of two kinds 
of building blocks reuse, namely, black box reuse, whereby the 
component is integrated in its host environment without modifi- 
cations, and white box reuse, whereby the component is adapted 
and integrated into its host environment [ll]. The average cost 
of attempting reuse can be formulated as follows: 

[Search + (l-p) x Development] 
where Search is the cost of performing a search operation on the 
database, Development is the cost of developing the component 
from scratch, and p is the probability that the component is 
found in the database. The reuse option is attractive only if: 

[Search + (l-p) x Development] 
e Development, 

or Search e p x Development. 
To favor reuse, we must have an adequate coverage of the library 
(large p )  and make sure that developers can, quickly, either find 
the component they need or be fairly confident that it does not ex- 
ist. Obviously, the more complex the reusable component, the 
more worthwhile it is for a developer to keep searching. 

In the context of white box reuse, the developer must weigh the 
cost of producing a component h m  scratch against the cost of at- 
tempting to reuse one, possibly after modifying it. The average cost 
of developing with intent to reuse can be formulated as follows: 

[Search + (l-p) x (ApproxSearch 
+ q  x Adaptation 

+ ( 1 3 )  x Development)] 
where p is the probability that the component is found in the 
database, q is the probability that a satisfactory approximation 
of the component can be found, ApproxSearch is the cost of 
performing the approximate search, Search is the cost of per- 
forming an exact search operation on the database, Develop- 
ment is the cost of developing the component from scratch, 
and Adaptation is the cost of adapting the component to its 
host environment [ 11 1. The reuse option is attractive i f  

Search + (l-p) ApproxSearch 
+ (l-p) q Adaptation I 

(1) 
If we consider that the fact that a satisfactory approximation of 
the component is found means that Adaptation I Develop- 
ment,1° then a sufficient (but not necessary) condition for reuse 
to be attractive is given by: 

(p + (l-p) q) Development 

10. A study by Woodfield and Embley suggested that developers would not 
consider reusing if they estimate the cost of adaptation to be 70% or higher 
than the cost of developing from scratch [159]. They also found that develop 
ers systematically underestimate adaptation effort by about 15%. which 
means that what they perceive to be 70% may actually be 85%. Thus, all in 
all, developers are reasonably trustworthy as far as ensuring that they don't 
adapt reusable components in cases where they should develop from scratch. 

Search + (l-p) ApproxSearch 5 p Development (2)  
which means the overall cost of search, whether a satisfactory 
component is found or not, is less than the savings that actually 
result from those (100 x p) % cases where a satisfactory com- 
ponent is found. 

This inequality has to be understood in the context of ex- 
perimental evidence to the effect that the cost of adapting a 
component for the purpose of software reuse jumps very fast 
as the portion of code to be modified goes up [23]; e.g., the 
cost of modifying 20% of the code of a component is esti- 
mated at near 90% the cost of developing the component from 
scratch [23]. Margono and Rhoads argued that adaptation 
costs depended on whether a component was reused within or 
across application domains and on whether a component was 
developed in-house or acquired externally [97]. It is fair to say 
that, in general, white box reuse is cost-effective if it is re- 
stricted to those cases where modifications are very minor or 
already planned andor parameterized. That being said, ine- 
quality (2)  can be used as a baseline for developing component 
libraries and retrieval systems, where we should replace p 
above by p x recall," which represents the probability that a 
component exists that satisfies the needs and that is found by 
the retrieval system. Putting more components in the library 
increases its coverage @), but may increase search time 
(Search and ApproxSearch) by returning more irrelevant com- 
ponents that need to be studied by developers. Putting in big- 
ger components (higher development costs) increases also the 
cost effectiveness of the library. We discuss the marginal costs 
of adding a component to a library in the next section. 

We conclude our discussion by pointing out that a devel- 
oper who is fairly familiar with the contents of a component li- 
brary can locate what shehe needs more quickly and knows 
,when not to bother even looking. This has the effect of reduc- 
ing the cost of individual searches (Search and ApproxSearch) 
and their relative frequency, which in case of perfect knowl- 
edge about the contents of the library, go down from 1 to p for 
exact search and from l-p to q for approximate search. 

B.2. Building a Reusable Asset 
Building a reusable asset represents a more or less major 

investment, depending on the reuse approach used. With the 
building blocks approach, building components is a regular, 
recurring activity, whose implications, positive or negative, are 
minor. By contrast, building a generator is an extraordinary 
and costly decision, on which the success or failure of a reuse 
program may depend. For the case of application generators, 
the biggest challenge is to recognize opportunity: When is a 
generator appropriate [98]. This depends on both the stability 
of the application domain and the number of systems that need 
to be developed and maintained within that domain (see, e.g., 
[34], [89]). The second question has to do with the extent of 
application development that should be automated. Levy ar- 
gued that deciding the coverage of the generator should be 

11.  Simply put, the recall of a search on a retrieval system is the probability 
that a relevant item to the search is retrieved by the system The recall of a re- 
trieval system is the statistical average over a sample of representative 
searchedqueries. 

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore.  Restrictions apply.



538 IEEE TRANSACTIONS ON SOlTWARE ENGINEERING, VOL. 21, NO. 6. JUNE 1995 

based on rational economic decisions, namely, on the marginal 
costs of automating an extra E % of applications, relative to the 
marginal benefits expected from automating that extra E % 
[89].  In particular, he noted that the 20/80 rule holds, namely, 
incrementally automating the development of applications gets 
much harder as we come close to full automation [89].  The 
cost increments have to be measured against (amortized over) 
the number of systems to be developed and maintained during 
the “life expectancy” of the generator, which depends on the 
stability of the application domain. 

With the building blocks approach, the decision to build a 
reusable component should take into account several cost fac- 
tors: 

1) the initial cost of development, 
2) the direct and indirect costs of including the component 

3)  the cost of integrating and/or adapting the component and 
4) the expected usage frequency of the component. 

Barnes argued that organizations should consider acquiring re- 
usable components from other vendors, and the decision 
should be purely economical. As a rule of thumb, build reus- 
able components in-house for local expertise, and purchase re- 
usable partslZ in external expertise. But how to estimate the 
cost of developing a reusable component? There is a wide 
consensus that reusable components cost more to develop than 
nonreusable components with comparable functionality, but 
estimates range from 50% more [128] to twice the cost or 
more [97].  The extra cost could be due to a more demanding 
requirements identification stage (domain analysis), lengthier 
or more complex codeI3 (see, e.g., [7 ] ) ,  or more demanding 
testing and packaging. Balda and Gustafson explored a CO- 
COMO-like empirical cost model for software projects that 
accounts for both reusing reusable components and developing 
reusable components [7 ] .  They argued that reusable compo- 
nents tend to be longer and more complex than their nonreus- 
able counterparts, and that the differences depend on the ap- 
plication domain, but offered no detailed breakdown of the 
extra costs [7 ] .  Rhoads and Margano tracked software projects 
in which reuse-mainly within project-was a priority and 
found that 60% of overhead costs for building reusable com- 
ponents were incurred during the detailed design of the com- 
ponents [97].  In their study, reusable components were built as 
a byproduct of application development, and not in the context 
of a stand-alone domain engineering activity, for which differ- 
ent cost profiles may hold. 

Once a reusable component is built, it needs to be included 
in a repositoryllibrary of reusable components. In addition to 
the obvious (and negligible) costs associated with storage and 
degraded time performance, there are a number of insidious 
retrieval costs that are more significant and harder to measure. 
For a thorough assessment of the result of adding a reusable 
component to an existing library, we have to see the effects on 
the reuse instance cost equation: 

into a library of reusable components, 

12. This explains in part why mathematical and statistical packages have 
gained wide acceptance in the software market: Few companies have an in- 
house mathematician or statistician. 

13. E.g., using conditional compilation (extra code) or more parameteriza- 
tion (more complex) to offer several variants of the same functionality. 

[Search + (1-p) x (ApproxSeurch 
+ q x Adaptation 
+ (1-q) x Development)] 

In principle, adding a component increases the coverage of the 
component library and thus increases both probabilities p 
and q and modifies the averages Adaptation and Development 
(depending on the new component size relative to the average 
component size in the library and the average component size 
“outside the library”). It will also probably increase the costs 
Search and ApproxSearch. For instance, with document re- 
trieval systems, there is a three-way trade-off between recall, 
precision,14 and simplicity of the encoding and search strate- 
gies [142]. Increasing the size of the document collection de- 
grades the performance of the retrieval system both in absolute 
terms (e.g., for the same precision level, the user has more ir- 
relevant items to examine) and in relative terms (e.g., “higher 
resolution” encoding is required to describe components, and 
thus more complex queries are required to retrieve them with 
equal precisionI5). It is widely recognized in the literature that 
bigger libraries are not necessarily better (see, e.g., [73]).  
Thus, components should be added only after very careful 
consideration (see, e.g., [28]) and should be taken out of the 
library, if they have poor reuse record; in [73],  Isoda reports 
on an experimental reuse program at “IT where components 
were withdrawn from libraries if they haven’t been used in 
three years. In that same experiment, where the components in 
the library ranged in size from 50 lines or fewer to several 
thousand lines, it was found that modules of 50 lines or fewer 
accounted for 48% of the reuse instances and 6% of the reuse 
volume, while modules 1,OOO lines or larger accounted for 
only 6% of the reuse instances, but of 56% of the reuse volume 
[73].  Unfortunately, no statistical distribution of module size is 
provided in [73],  but we would not be surprised if pulling 
those small components out of the library would have actually 
increased its effectiveness, whereby the loss of coverage is 
more than offset by enhanced search performance. 

B.3. Setting Up a Reuse Program 
The question is not so much whether to set up a reuse pro- 

gram or not, but how. There are a number of intertwined or- 
ganizational and technological choices to be considered, with 
different cost/benefit characteristics, and managers must have 
the tools to evaluate and compare them. In this section, we dis- 
cuss the most salient choices, and any reuse-specific measur- 
ables (or measures) proposed in the literature that are relevant 
to these choices. As shown in SectionIII.A, reuse practice 
benefits from new organizational structures and managerial 
practices. Accounting for such changes in the costhenefit 
analysis would be no different from that in any business proc- 
ess re-engineering effort, and won’t be discussed below. We 
organize our discussion around the steps of a reuse adoption 
process proposed by Davis [42]: 

14. Precision is the average ratio of retrieved and relevant items out of the 
retrieved items. 

15. The readers can convince themselves of the above using intuitive in- 
formation-theoretic arguments: to encode and distinguish between @recision) 
n items, we need codes of length hg(n) .  The more items we have, the longer 
the codes. 
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Initiate reuse program development: This step includes 
identifying organizational objectives (e.g., productivity and 
quality objectives) and reuse opportunities [42]. An organiza- 
tion may be active in different application domains, and the 
reuse potential in each of these domains must be estimated. It 
is widely recognized that MIS applications are fairly stable and 
high reuse rates are possible, while systems software and pro- 
gramming environments, e.g., offer few opportunities for reuse 
(see, e.g., [85], [loo]). However, there is no easy way of find- 
ing out how much reuse is possible within an application do- 
main without actually doing it over a period of years or per- 
forming some extent of domain analysis. 

Define reuse program: This step includes: 

1) defining the scopdcoverage of the reuse program, 
2) establishing “reasonable” reuse targets and 
3) identifying alternative reuse adoption strategies. 

Scoping the reuse program consists of choosing an application 
domain, or a subdomain thereof, that offers the most reuse 
potential, the lowest risks, the fastest returns on investment, 
etc. Once the scope is identified, organizations must establish 
reuse objectives that they can attain with reasonable effort, de- 
pending on a self-assessment of their managerial and technical 
processes [42]. Davis proposed a reuse capability model 
which defines reuse objectives in terms of three measures: 

1) reuse proficiency, which is the ratio of the value of the 
actual reuse opportunities exploited to the value of po- 
tential reuse opportunities, 

2) reuse eficiency, which measures how much of the reuse 
opportunities targeted by the organization have actually 
been exploited and 

3) reuse egectiveness, which is the ratio of reuse benefits to 
reuse costs [42]. 

Note that all three measures assume that a reuse program is al- 
ready in place. Davis pointed out that these measures are not 
metrics that organizations must be able to calculate at the out- 
set, but are objectives to be attained once a program has 
started [42]. 

As mentioned above, it is difficult to precisely quantify the 
reuse potential of an application domain, and thus, reuse pro- 
ficiency is only an indicative measure. There has been some 
interest in the literature for measures of reuse eficiency, al- 
though mostly as target reuse rates, i.e., as a target percentage 
of reused code in new projects (see, e.g., [12], [99], [IOO]). 
However, there are a number of problems in measuring reuse 
rates by comparing code sizes, as reflected by the sometimes 
surprisingly low productivity increases that resulted from im- 
pressive reuse rates (see, e.g., [59]). First, there are difficulties 
in applying such measures for the generative approaches to re- 
use, where the generated code does not necessarily correspond 
to what a developer might write, either in style or in size [34]. 
Second, as shown earlier, reusable components tend to be 
larger than their nonreusable counterparts, inflating the per- 
centage of reused code within projects. This is exacerbated in 
the case of the black-box reuse of modules that offer several 
functionalities: One cannot separate the needed features from 
those that are not needed (e.g., with 00 components) and 

count them separately. Third, there are also difficulties with 
defining what constitutes an instance of reuse (see, e.g., [ 1281): 
A reusable component that is imported (used) in several client 
modules should be counted only once. To alleviate these 
problems, functional (versus size) metrics, such as function 
points, could be used instead. For each project developed un- 
der the reuse program, let firor and JpNw be the function points 
of the entire project, and of the new code developedfor the 
project, respectively; the functionali~ reuse rate may be de- 

fined as: *“‘ - *WW . The trouble with such a measure is that 

a function points count cannot be entirely automated. Further, 
while function points are additive for coarse-grained mod- 
ules,I6 they may lose significance when we are dealing with 
low-level components. 

FinalG, reuse efectiveness can be measured directly-and 
globally-from observables. A naive approach would consist 
of measuring productivity levels before and after the introduc- 
tion of reuse. Productivity can be measured as the time average 
of the ratio of delivered functionality per expended resources. 
Because reuse involves both proportional recurring costs and 
one-time fixed costs, productivity studies must necessarily ac- 
count for different amortizing schedules and account, implic- 
itly or explicitly, for various product line life expectancies. 
Most of the work on metrics and economic models for soft- 
ware reuse takes into account the time-varying aspects of pro- 
ductivity and explores different return on investment scenarios 

Analyze reuse adoption strategies: The identification of re- 
use objectives (in the previous step) suggests a number of 
candidate reuse adoption strategies, whose costs and benefits 
are analyzed at this step. An adoption strategy may be seen as 
a combination of a technical approach and a deployment strat- 
egy (e.g., starting at the project level vs. department level, 
pace of introduction of the technology, etc.). For example, the 
building-blocks approach may be suited to a low-investment 
and low-risk, incremental reuse adoption strategy. It also has 
some inherent limitations in terms of attainable reuse effi- 
ciency and effectiveness. A generative approach, on the other 
hand, supports a high-risk, high-payoff strategy. 

Plan reuse adoption strategy: Based on the comparative 
analysis of the various adoption strategies, one or a combina- 
tion of strategies may be chosen. At this stage, a detailed de- 
ployment plan is produced. Decisions such as how much of the 
reusable domain to cover the first year, the pace of acquiring 
the reusable assets, etc. are made here. Detailed cost models 
such as those discussed in Section III.B.l and Section III.B.2 
are needed. 

Implement and monitor reuse program: Monitoring in- 
volves collecting data to support the various metrics. 

In summary, setting up a reuse program is a major capital 
investment decision and has been recognized as such by a 
number of researchers. The economic models proposed in the 

*tor 

(see, e.g., [I 11, P21, [891, [ W ) .  

16. I.e., are such that for a given two modules M1 and M2, FP(M1 + M2) = 
FP(M1) + FP(M2). 
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literature address fairly adequately the economics of reuse at 
the organization level and at the project level, by integrating a 
set of elementary cost variables in an encompassing model 
(see, e.g., [ll], [52], [128]). However, it is often those elemen- 
tary cost variables, or the observables used to derive them, that 
are hard to measure or interpret, undermining the forecasting 
or explanatory abilities of these models. 

B.4. Discussion 
A lot of progress has been achieved on the analysis of the 

software reuse processes and the derivation of cost estimation 
models for these processes, and a great deal more is needed. 
We feel that future efforts should be concentrated on address- 
ing the following aspects: 

In relation to reuse instance costs: We need more precise 
effort and cost models for adapting reusable software. Existing 
empirical evidence suggests that small changes-which defeat 
the quality advantage-require substantial efforts [23]- 
defeating the productivity advantage. We need a better break- 
down of those efforts (e.g., trying to understand the code ver- 
sus implementing the actual change) to focus technical re- 
search on those aspects that are most costly. We also need a 
better characterization of which adaptation efforts are costly 
and which are not. For example, changing the type of a pa- 
rameter of a procedure is probably less costly than changing 
the outcome of a control sequence. Such knowledge may help 
us develop better techniques for modularizing and parameter- 
izing reusable components and computer tools to support the 
adaptation process (see, e.g., [94]). We also need a finer char- 
acterization and a better integration of retrieval costs in the 
cost equation (Sections III.B.1 and III.B.2). 

In relation to the cost of building reusable assets: It is 
widely recognized that reusable components are costlier to de- 
velop than their nonreusable counterparts. However, there is 
no agreement over how much more, and there are very few 
studies about the distribution of “reusability overhead” (see, 
e.g., [7]); more are needed. There is already recognition in the 
literature that the extra cost depends on the domain (see, e.g., 
[7], [97]). Other factors could include the parameterization 
range, the implementation technique, and associated adapta- 
tionfinstantiation techniques, etc. 

In relation to project-level and organization-level meas- 
ures: This is perhaps the area where most work is needed. 
First, we need more accurate and practical measures of reuse 
rates. As shown above, code reuse rates are difficult to meas- 
ure accurately and do not reflect either effort or savings. Fur- 
ther, they apply only to code reuse and cannot be used to 
measure design reuse, e.g. We showed that functional metrics 
are useful, but impractical. We could ignore reuse rates (a 
means) altogether and look directly at productivity gains (an 
end). But then, how much of the productivity gains are due to 
reuse, how much are due to process improvement? How much 
are due to enhanced communication between developers be- 
cause teams get smaller? For example, the greatest productiv- 
ity gains with 4GL tools occur for those projects that become 
small enough to handle for a single developer [98]. These are 

not moot questions because we need precise indicators to help 
us improve those aspects of the reuse plan that can (or should) 
be improved. 

Until (most of) these concerns are properly addressed, there 
can be no objective basis for comparing different reuse ap- 
proaches, especially those that fall on different segments of the 
building blocks t+ generative axis. The various approaches 
discussed in the remainder of this paper will only be compared 
for the extent to which they address specific issues. Where ap- 
propriate, we will guesstimate their likely relative effective- 
ness, but we will not, and cannot, go any further. 

IV. ACQUIRING REUSABLE ASSETS 

We saw in Section II.B that all the artifacts, both used and 
produced, and the processes of past software development ac- 
tivities are reusable. We choose the word “acquire” to encom- 
pass purchasing, building, and various degrees of re- 
engineering or otherwise transforming existing assets. We dis- 
cussed the economics of acquiring reusable assets in Sec- 
tion III.B.2. In this chapter, we deal with the technical aspects 
of acquiring reusable assets. We first discuss general issues 
related to the acquisition and packaging of reusable assets, 
with a focus on building blocks. In Section IV.B, we discuss 
application generators as an example of a commercially suc- 
cessful application of the generative approach. In Sec- 
tionIV.C, we discuss 00 software development, as an ena- 
bling technology for developing reusable blocks. 

A. Overview 
What makes a software component reusable? We see reus- 

ability as a combination of two attributes, (re)usefulness, 
which means that the component addresses a common need, or 
provides an often requested service, and usability, which 
means that the component is of good enough quality and easy 
enough to understand and use for new software developments. 
The two are often at odds because the generality of a compo- 
nent (its usefulness) entails abstracting the details specific to 
its individual uses, which often means that these details have to 
be somehow put back in to use the component, making it less 
usable. New abstraction techniques in programming and de- 
sign enable us to reach new optimums but do not change the 
basics of the trade-off (see, e.g., [72], [83]). This is part of 
what makes the development of reusable assets more challeng- 
ing than that of custom-made components. 

Acquiring reusable components involves various mixes of 
new developments and use of existing assetdraw resources, 
depending on their usability, reusefulness, and desired level of 
computer support for unit reuse tasks (search, understanding, 
and adaptatiodintegration). Approaches that rely on existing 
resources include: 

providing access to existing “assets,” which could be as 
simple as grouping existing computer files in publicly ac- 
cessible directories, or providing indexing and search 
tools, browsers, etc. (see, e.g., [113]), 
re-engineering and preemptive maintenance (enhancing 
the maintainability and the reuse worth of components), 
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reverse engineering (recovering “implicit” development 

or, more generally, transforming available software knowledge 
that is otherwise too specific (usable but not reuseful) or too 
diffuse (reuseful but not usable) into a level of abstraction that 
makes it (re)useful and usable. 

Domain analysis and engineering may involve any or a 
combination of the above approaches to identify the basic en- 
tities, relations, and operations of the application domain (see, 
e.g., [132]). Domain analysis is a relatively new activity, and 
there is some disagreement as to what it involves, both in 
terms of procesdactivities and in terms of outputdwork prod- 
ucts. However, most researchers agree that a critical (and no- 
toriously difficult) step in domain analysis is the identification 
of the boundaries of the domain [5], [loll,  [130]. Lest we 
oversimplify, domain analysis follows a process similar to that 
in developing specific software systems. Namely, it involves 
requirements, analysis, and the production of domain-wide re- 
usable components [5], [loll,  [130]. The outputs, however, 
differ from traditional system development in that reusable 
components typically include standards and guidelines (i.e., 
semantic knowledge), as well as generic, but concrete compo- 
nents such as domain models (i.e., generic functional architec- 
tures), generic design architectures and templates, and even 
generic code fragments [130]. For the case of DRACO [121] 
and ASLs [148]), however, the output of domain analysis is a 
domain-dependent executable specification language that em- 
bodies the domain objects and operations on those objects. 

One of the limitations of “recycling” existing components 
is that the quality requirements for reusable artifacts exceed 
those for custom-developed components, and few of the exist- 
ing components will qualify to be included in a base of reus- 
able assets or will be worth expending effort on. Thus 
“recycling” is only cost-effective if it can be automated, fully, 
or to a large extent [28]. Indexing, searching and browsing 
tools play an important role by organizing existing software 
knowledge for the purposes of (as an input to) domain engi- 
neering (see, e.g., [ 113]), but do not providdgenerate compo- 
nents that are directly usable. In our own work, we built a set 
of tools that extract a structured representation of software 
components suited for a reuse-driven CASE tool from diverse 
and disconnected sources of documentation [113]. However, 
the added value provided by such tools remains to be proven 
in a practical setting [ 1 131. 

In the remainder of this section, we will focus on methods 
for building new reusable assets, namely, application genera- 
tors and 00 components. Some of the issues related to index- 
ing, retrieval, and browsing, as they relate to software compo- 
nents, will be discussed in various subsections of Section V.A. 
The interested reader can consult the literature on reverse- 
engineering; a good starting point is the Jan. 1990 issue of 
IEEE Sofnyare. 

B. Building Application Generators 
Generally speaking, an application generator may be de- 

fined as a tool or a set of integrated tool, that inputs a set of 
suecifications and generates the code of an aDDlication within 

knowledge). 
an implementation language. What distinguishes application 
generators from compilers of high-level and very high-level 
languages or automatic programming systems are the 
“specifications” or “programs” input by the developer, which 
are: 

1)partial-the tool completes them by a set of domain- 

2) partially or totally nonprocedural-declarative, graphi- 

Martin enumerated a number of mostly behavioral properties 
that application generators should exhibit, including 

dependent reasonable defaults and 

cal, etc. [98]. 

1) user-friendliness, 
2) usable by nonprofessional programmers, 
3) support for fast-prototyping, 
4) applications take an order of magnitude less time to de- 

It is next to impossible to give a more precise operational 
definition of what constitutes an application generator without 
excluding known classes of application generators. This is due 
to the fact that the specification language used-and hence the 
generation techniqudepends very heavily on the application 
domain. For the same reasons, it is difficult to design a devel- 
opment methodology for application generators that is appro- 
priate for all application generators, and the development of 
application generators in general received little attention in the 
literature; by contrast developing with application generators 
has received a fair amount of attention (see, e.g., [114], [154]). 
The material presented below is based mostly on the work of 
Levy [89] and Cleaveland [34], describing work at AT&T Bell 
Labs. 

Viewed as translators, applications generators have a fairly 
standard architecture (system design). Further, the program- 
ming techniques for implementing translators (detailed design) 
are well-understood and fairly standardized. In fact, the design 
and implementation of translators are so well-understood and 
standardized that application generators themselves can be 
built using application generators [34] ! The major difficulties 
in building generators reside in: 

1) recognizing cases when they are appropriate 1341, [891, 
2) defining their requirements, in terms of defining the input 

language, the output language, and the “transformation 
grammar” [34], [89] and 

3) validating their outputs, i.e., verifying that the code gen- 
erated does what it is supposed to do [72]. 

The first two difficulties are methodological in nature. Defin- 
ing the input language involves striking the proper balance 
between a language that is sufficiently abstract to be usable by 
noncomputer experts, but also concrete enough so that execu- 
table code can be efficiently generated. Validating the gener- 
ated code poses a number of technical-and theoretical- 
challenges [72]. 

Levy identified a c o m e  three-step methodology for devel- 
oping with application generators (what he calls metapro- 
gramming [tis]): 

velop than with traditional development, etc. [98]. 

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore.  Restrictions apply.



542 IEEE TRANSACTIONS ON SOFrWARE ENGINEERING, VOL. 21, NO. 6, JUNE 1995 

1) identifying the requirements of the generator, 
2) building the generator and 
3) using the generator. 

Cleaveland proposed a breakdown of the requirements phase 
into six subphases briefly summarized below [34]: 

Recognizing domains: This step consists of assessing 
whether an application generator approach is appropriate or 
not. According to Levy, applications generators are appropri- 
ate for applications that embody a “complex synthetic set of 
rules” [89]; complex in the sense that no notation is known 
within which they can be described succinctly, and synthetic in 
the sense that they are man-made. This entails that the rules 
cannot be had right the first time, and they will keep evolving. 
This makes it appropriate for prototyping. Or, if we look at the 
full half of the cup instead, application generators are needed 
when several similar systems have to be built and maintained. 
This makes it suitable for stable and well-understood applica- 
tion domains. Cleaveland proposed a number of 
“appropriateness heuristics” including [ 341 : 

1) recognizing recurring patterns between applications 
(code, design, architecture), 

2) a “natural” or “emergent” separation between the func- 
tional (declarative) requirements and the implementation 
(procedural) of applications, or 

3) a fairly systematic procedure to go from one to the other. 

Defining domain boundaries: This consists of identifying 
the parts of applications that will be generated, the parts that 
will have to be built by hand, and the interfaces between the 
two [34]. There is a trade-off between the range of applica- 
tions that can be built with the generator (breadth) and how 
much of these applications will be automated (depth); the de- 
cision should be based on economic considerations [34], [89]. 

Defining an underlying model: This step consists of defin- 
ing an abstract computational model for the application do- 
main. It is abstract in the sense that it does not depend on a 
particular implementation technique. Different computational 
models are appropriate for different application domains [89]. 
For example, a computational model appropriate for reactive 
systems could be finite state machines, while one appropriate 
for database applications could be relational calculus or alge- 
bra. Computational models are important for consistency, un- 
derstandability, and validation [34]. They also make it easier 
to systematize the implementation of a generator and the gen- 
eration of a family of generators. 

Defining the variant and the invariant parts: the invariant 
part of an application family consists of the implementation 
details of the application and all of the defaults assumed by the 
generator; the variant part consists of those aspects that the de- 
veloper has to specify. The variant part includes input specifi- 
cations as well as code escapes [34]. Code escapes are used 
when a part of the application cannot be captured--concisely 
or at all-within the computational model; they defeat some of 
the advantages of generators (maintainability at the specifica- 
tion level, traceability, testability, etc.) and should be avoided 
whenever technically possible [34] and economically justifi- 
able [89]. 

Defining the specification input method: The input method 
is essentially the user(deve1oper)-interface of the generator. 
Input methods depend on the underlying computational model 
and the target user (developer) community. Input methods in- 
clude: 

1) textual inputs (expressions), 
2) graphical inputs (e.g., for user-interface builders [ 119]), 
3) interactive template-filling, etc. [34]. 

Defining the products: Generators can generate programs, 
documentation, tests programs or data, and even input to other 
generators [34]. Issues such as packaging for readability 
and/or integration and performance, e.g., are important for 
code fragments [ 341. 

A major concern with application generators is their testing: 
checking that they do generate the correct code. One of the 
ways programs are usually tested is by comparing their actual 
outputs to expected outputs. With program generators, we are 
not certain that the expected output is correct: it, itself, has to 
be tested. This additional level of indirection makes it that 
much harder to validate generators [72]. The problem is more 
acute than with traditional high-level language compilers 
which translate imperative code into imperative code, and 
where there is an easier correspondence between source code 
and-nonoptimized-target code. 

C. Object Oriented Programming 
In the past decade, object oriented programming has come 

to be considered a panacea to all computing aches. Software 
engineers view object orientation (00) as the answer to their 
numerous and intractable problems: enhancing software qual- 
ity, reusability, and providing a seamless development meth- 
odology (see, e.g., [35], [38], [106]). Database researchers 
recognize that 00 allows modeling the semantic behavior of 
data by encapsulating data with the procedures that manipulate 
them [25]. In the knowledge-based systems arena, 00 reincar- 
nates old ideas such as procedural knowledge representation, 
inheritance, and distributed control [ 1411. While researchers 
may not agree on the specifics of the tenets of object orienta- 
tion, there is a fairly wide consensus that it is an enabling tech- 
nology for creating interchangeable and reusable software 
components. We first provide a brief tutorial on 00. Next, we 
discuss reusability issues across the 00 life cycle, i.e., analy- 
sis, design, and programming. This is by no means a survey of 
00 research; our focus is on those aspects of 00 that make 
reuse inevitable, possible, or difficult. 

C. 1. Object Orientation IO1 
The concept of “object” in programming was introduced by 

Dah1 and Nygaard in their language SIMULA [41]. SIMULA 
was designed as a language for simulating dynamic physical 
systems. Physical objects were modeled by structures contain- 
ing state variables and procedures used to manipulate them. 
Using today’s jargon, we would say that objects are compila- 
tion units that encapsulate data with the procedures that ma- 
nipulate them. One of the advantages of such structures, from a 
programming language point of view, was to separate the 
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visibility of variables from their lifetime, i.e., a variable could 
be active outside the scope of its visibility. This is the basic 
idea behind information hiding. Information hiding enables us 
to build modules that are easier to understand and more reus- 
able. Because of information hiding, “objects” can only be 
manipulated through public interfaces-sometimes called 
protocols or simply interfaces-i.e., a set of procedures that 
are “publicly” visible. This makes it possible to change the im- 
plementation details of an object without affecting its clients. 

Intuitively, a class is (the description of) a collection of ob- 
jects that share the same data structure and support the same 
operations. The description of a class includes a data template 
and a definition of the operations supported by the objects- 
called instances-of the class. In some 00 languages and 
modular languages (e.g., Modula and Ada), a distinction is 
made between the spec$cation of a class (e.g., package 
specpcation in Ada) and its implementation (e.g., implemen- 
tation module in Modula). Typically, the specification of a 
class corresponds to its public interface.” An abstract class is 
a class that has a specification but no implementation. Over- 
loading makes it possible for several classes to of- 
fedimplement the same operations; the compiler disambigu- 
ates operation references using the parametedoperand types. 
Polymorphism makes it possible for a variable to hold objects 
belonging to different classes. Dynamic binding delays the 
resolution of operation references until run-time when the ac- 
tual type of the variable is known; this allows for greater 
flexibility in programming [ 1061. Overloading and polymor- 
phism make it possible to develop general-purpose client code 
that is indifferent to the reimplementation and extension of 
server code. Classes can be organized along hierarchies sup- 
porting different kinds of “inheritance.” The parallel with natu- 
ral taxonomies, whereby a natural category “inherits” a num- 
ber of properties from its ancestors, is tempting, sometimes 
useful, and often misleading [72]. For the time being, let us 
just say that inheritance in programming languages is a built-in 
code-sharing mechanism that, without polymorphism and dy- 
namic binding, would not be much different from various 
module import mechanisms in traditional languages. 

In addition to its programming significance, 00 is also a 
modeling paradigm. As a computational model, 00 represents 
a significant departure from traditional process-oriented 
modeling approaches in which there is a clear divide between 
process and data. In process-oriented approaches, data are 
viewed as static entities, whose domain-dependent dynamic 
semantics are buried into processes which embody applica- 
tion-dependent tasks. Complexity in modeled systems is then 
reflected in the procedures. By contrast, 00 encapsulates data 
with their domain-wide dynamic semantics, and complexity in 
the modeled systems is reflected in the data instead. Presuma- 
bly, this makes for partial models (components) that are reus- 
able across various applications within the same domain [106]. 
Further, because procedures evolve faster than data in do- 
mains, 00 models tend to be more resilient to change [ 1061. 

17. This is the case in the Modula and Ada families of languages. In Ctt ,  
however, the specification must list the procedures and data variables that are 
not visible outside, but say so. 

The modeling potential of 00 found its way into analysis 
and design (see, e.g., [ 1401, [ 1461, [ 1571). 00 proponents ar- 
gue that 00 models, in addition to their reusability and resil- 
ience to change, are easier to understand and to communicate 
to end-users (see, e.g., [35]). Typically, 00 analysis is con- 
cerned with the derivation of two views of a system: 

1) a static or structural model, describing the objects of the 
domain and their relationships and 

2) a dynamic or behavioral model, describing the functional 
and control aspects of the system as embodied in individ- 
ual object operations and interobject interactions (see, 
e.g., partial surveys in [461, [ISS]). 

Objects that have the same properties and exhibit the same be- 
havior are grouped in classes. Class hierarchies start taking 
shape where classes that share application-signijicant data and 
application-meaningfu2 external behavior are grouped under 
more general classes. Identifying generalizations of classes at 
this level has several advantages, including: 

1) enhancing the understandability of the models by reduc- 
ing the number of independent concepts that an ana- 
lysthser has to deal with, 

2) providing a cross-check with data dictionaries to enforce 
consistency within the model and 

3) identifying opportunities for code reuse [351, [ 1401, 
[157]. 

The last is justified by the intuitive realization that similar re- 
quirements in terms of external behaviors-an analysis-level 
product-generally lead to similar implementations. 

Object oriented design binds domain-level classes-a re- 
quirement-into computational structures that, in addition to 
“implementing” the required functionality, maximize code 
sharing and satisfy environmental and performance constraints 
(see, e.g., [31], [70], [140]). System (architectural) design in- 
cludes partitioning a system into subsystems andor layers, 
choosing an overall control paradigm (e.g., event-driven ver- 
sus hierarchical), and distributing data and processing (see, 
e.g., [ 1401). Class (detailed) design includes: 

1) representation issues (e.g., of attributes, associations, and 

2) algorithms, which are tightly coupled into representation 

3) object control paradigm [31], [140], [146]. 

collections), 

issues, and 

There are a number of advantages to keeping design (and im- 
plementation) class hierarchies close to analysis-level hierar- 
chies, including: 

1) traceability [36], 
2) conceptual clarity (see, e.g., [39]), 
3) reuse of interfaces (see, e.g., [37]) and 
4) potential for reusing application-meaning1 computa- 

tions-by contrast to structure-manipulation operations 
which are inherently representatiodimplementation de- 
pendent. 

Methodologists recognize that in some cases, environ- 
mental considerations may dictate different representations for 
behaviorally similar classes, leading to either suboptimal code 
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reusdsharing or, if we insist, unsavory class hierarchies (lots 
of cancellations, unsafe inheritance, methods having awkward 
names, etc. [37]). They also suggest looking into alternatives 
to inheritance (e.g., delegation) that achieve the same goals 
[ 1401. In general, the transition from design to implementation 
is fairly straightforward. For the case of control-intensive (e.g., 
real-time) applications, the transformation can even be auto- 
mated (see, e.g., [ 1051). 

C.2. Reusability Issues in Object Oriented Analysis 
The proponents of 00 attribute a number of qualities to 00 

analysis and to the resulting models, most of which are sup- 
posed to favor reuse. We will discuss these as well as other 
tenets of 00 analysis that may impact reuse positively or 
negatively. 

An often-cited advantage of 00 analysis and 00 models is 
what Hoydalsvik and Sindre called problem orientation [70], 
i.e., the models are cast into terms of the problem domain. 
This makes models easily communicable to the target user 
community and favors greater user involvement in develop- 
ment and hence greater satisfaction with the final product (see, 
e.g., [35], [36]). We share the view that this is only true in 
data-rich, processing-poor application domains where objects 
are intuitive and easy to identify [3] and where most of the 
processing consists of associative data access; these are do- 
mains where more traditional data modeling techniques are al- 
ready known to be more appropriate than process-oriented 
techniques [46]. In control-intensive applications, objects are 
synthetic (artificial) service providers rather than natural data 
holders, and most of the complexity is embedded in the dy- 
namic model, which uses the same notations as those used in 
process-oriented techniques. 

A second related advantage of 00 models is their- 
presumed-resilience to evolution. Presumably, in application 
domains, processes change more often and faster than the enti- 
ties of the domain, and hence a model structured around the 
data of the problem domain will be more stable [ 1061. To this, 
we add the fact that: 

1) information hiding minimizes the impact of data structure 

2) hierarchical classification enables us to handle data spe- 

Lubars et al. set out to test the claim that 00 models are 
stable [go]. They define model stability in terms of three prop- 
erties: 

1) localization, i.e., changes should be localized in the 
model, even if they require considerable rework in a lo- 
calized area, 

2)conservative extension, meaning that the effect of a 
change on the work already done should be minimal, i.e., 
we should, as much as possible, extend existing work but 
not redo it and 

3) model independence, in the sense that changes to struc- 
tural (data) models have little impact on behavioral 
models, and vice-versa. 

The authors modeled the ATM application using Rumbaugh et 

changes and 

cialization and extension quite handily. 

al.’s object modeling technique (OMT [ 1403) and considered 
two “small change” scenarios to assess the stability properties. 
They observed that the structural model-called object model 
in OMT-was well-behaved, but that the behavioral models1* 
were not. They also observed that the models were somewhat 
interdependent because in one scenario, changes to the behav- 
ioral models led to revising the object model [go]. The authors 
recognized that theirs was not a controlled experiment and that 
no definitive conclusions could be drawn. We believe that 
some of the difficulties were specific to OMT, and to data- 
driven methods in general,IY but concur with their observation 
that ease of evolution may conflict with ease of description. 
The authors mentioned two modeling “tricks” that would have 
stabilized the models: 

1) the use of abstract classes to leave room for future spe- 

2) the use of ‘“ixins”2° to separate concerns and reuse them 
cialization or factoring of existing classes and 

independently; 
both techniques have no meaning to the end user [go]. 

A third advantage of 00 analysis is that it lends itself natu- 
rally to domain analysis (versus single application analysis) 
and thus leads to more widely reusable components. This is 
attributed as much to the notation as it is to the process. For 
example, once it has been recognized that the class Checkin- 
account is part of an application, it is difficult not to think of 
operations to deposit, withdraw, and give balance, even when 
the application at hand requires only one or two operations. 
Further, data-driven methodologies (e.g., OMT [ 1401) explic- 
itly prescribe that analysts should rely on their knowledge of 
an application domain to complement the statement of the 
problem as a source for identifying the relevant ob- 
jectdclasses. However, this approach has been criticized for 
being open-ended, i.e., analysts do not know when to stop 
adding objects and classes that may be relevant to the domain, 
but could be irrelevant to the application at hand, and thus un- 
duly burdening the project at hand (see, e.g., [74], [125]). Use- 
cuse driven or scenario-driven methodologies are supposed to 
alleviate this problem by focusing on the objects that partici- 
pate in useful system behavior (see, e.g., [74], [138]). And fi- 
nally, generalization enables developers to factor out the 
shared data and behavior between classes in (abstract) classes 
which are even more reusable than the actual (concrete) 
classes. We find it surprising that, despite the importance of 
the analysis-level hierarchical organization of classes on the 
00 development life cycle, and the long-established research 
tradition in classification in artificial intelligence, there have 
been relatively few efforts to provide automated or semi- 
automated tools for building or maintaining class hierarchies 

18. Oh4T uses several complementary notations to represent behavior, in- 
cluding event flow diagram to =present messages exchanged between ob- 
jects, and Haref statecharts for individual objects to represent objects’ indi- 
vidual behaviors. 

19. A method is considered to be data-driven if modeling starts by identify- 
ing the objects of the domaidapplication, before analyzing any desirable be- 
havior the system has to have. 

20. Broadly speaking, mixins correspond to “mixing in” the featum inher- 
ited from two different superclasses (multiple inheritance), each representing 
a view of the class. 
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(see, e.g., [18], [37], [ S I ,  and [56] for a brief literature survey 
on classification techniques in 00 analysis). Notable weak- 
nesses of existing hierarchical classification methods include 
the fact that most methods do not take into account behavior 
[56]. Further, nearly all classification methods are limited to 
“naive” factorizations in the sense that they assume that every 
attribute or operation is defined in only one place, ignoring re- 
definition (extension or specialization) at lower levels; this 
leads to factorizations that are either oversimplifications 
(unsound) or suboptimal (incomplete) [56]. 

Some aspects of 00 analysis have also been criticized for 
hindering reuse or for underusing the potential of 00 for reus- 
ability. One of the thorniest problems resides in the specifica- 
tion of interobject behavior (see, e.g., [3], [46], [158]). An un- 
spoken corollary of 00 is that any behavior that an object 
system may exhibit must be attached to an objectlclass within 
the system. This forces us to specify-and implement-the 
interaction between two objects as an operation on one of the 
two, i.e., it forces us to assign responsibility for a behavior in- 
volving two objects to one of the two objects. If that behavior 
(or the interaction underlying it) is contextual (specific to) a 
given application, the object made responsible for the joint be- 
havior is not reusable across applications [109]. This led a 
number of researchers to propose dynamic entities, other than 
state-bearing application objects, that embody interobject be- 
havior (e.g., relationships [ 1391, constraints [ 1091, contracts 
[65], etc.). Recognizing the need for such constructs has not 
made the identification of “behavioral boundaries” between 
objects any easier (see, e.g., [3], [log], [1581). 

A second set of problems deals with the related issues of 
view modeling and multiple inheritance. Multiple inheritance 
occurs when a class has two or more nonhierarchically related 
ancestor classes. Multiple inheritance may occur in natural 
taxonomies and has been supported by a number of knowledge 
representation languages (e.g., KL-ONE [24] and its deriva- 
tives). Further, automatic hierarchical classification (class 
factoring) algorithms that avoid redundancy may generate lat- 
tices rather than trees (see, e.g., [37], [56]). Multiple inheri- 
tance, which is a powerful modeling concept, becomes a pro- 
gramming language nightmare when the transition is made to 
implementation. Further, it often results from integrating dif- 
ferent roles that objects may play within the same application. 
Forcing all the roles on the same class definition has a number 
of disadvantages [63]. First, the models tend to be hard to read 
and understand. For instance, generalization relationships be- 
come hard to understand as a class may descend from two un- 
related superclasses, each representing a different role. Fur- 
ther, a unified nomenclature must be found for all the roles, in- 
evitably losing meaning and significance. Second, this leads to 
suboptimal reuse as the individual roles cannot be reused 
(extended and/or specialized) independently [63]. The prob- 
lem of providing different views of objects has been addressed 
in 00 programming languages for some time (see, e.g., [ 1451, 
and C++’s three visibility/access modes for class features 
[152]). Views as a modeling concept have been getting more 
attention recently (see, e.g., [63], [1221). 

C.3. Reusability Issues in Object Oriented Design 
In 00 software development the same basic set of concepts 

is used to describe the products of analysis, design, and im- 
plementation [66]. Presumably, this helps make a seamless 
transition between analysis and design (see, e.g., [31], [35]). 
The advantages of such a seamless transition are numerous and 
have been thoroughly documented*’ (see, e.g., [35] and Sec- 
tion IV.B.l). It has been known for some time that the mere 
use of an object notation is not sufficient to ensure a seamless 
transition from analysis to design, and that additional care 
must be taken to ensure that it is (see, e.g., [31], [Sl]). For in- 
stance, it is widely recognized that 00 design involves more 
than adding detail to analysis-level models, and analysis-level 
class hierarchies may need to be reorganized to take into ac- 
count environmental and performance factors (see, e.g., [66], 
[ 11  11, [ 1401). This may lead to design models where classes 
that have the same external (application-meaningful) behavior 
are no longer hierarchically related, leading to suboptimal 
code reuse [ 11 11. Worse yet, if we insist on maximizing code 
reuse, we may end up with two hierarchically related classes 
that do not share application semantics. This may lead to unsa- 
vory class hierarchies, with lots of cancellations, unsafe inheri- 
tance, awkward method names, unpredictable behavior, et. 
[37], [8 13. Most methodologies recognize the problem, but 
don’t do much about it beyond suggesting aggrega- 
tioddelegation as an alternative to inheritance for code sharing 
(see, e.g., [140]). 

We believe that concerns for reusability and safety need not 
be contradictory if we view class design as consisting of two 
distinct and possibly asynchronous activities: 

1) the development of computational structures that support 
generic, application-independent structure manipulations 
with given performance characteristics and 

2) choosing, for a given application-meaningful analysis- 
level class, the structure that best matches its require- 
ments. 

To some extent, the above problems are due to the fact that 
computational structures are essentially designed one applica- 
tion class at a time and are, in a sense, prematurely bound to 
the semantics of application classes by both data types and 
names, i.e., before they can be refined and reused. Shlaer and 
Mellor recognize this problem, and the design phase of their 
methodology includes three steps: 

1) building a system-wide design policy, 
2) building mechanisms and code templates to support this 

3) populate the templates with analysis-level models [105], 

However, while they insist that code templates are highly reus- 
able, they provide no formal mechanisms for their reuse?* 

policy and 

[146]. 

21. Hoydalsvik argued that because analysis models should be prob- 
ledapplication-oriented and design models should be solution-oriented, then 
any methodology that claims to bridge the two is not doing analysis comt ly  

22. The CASE tools that support Shlaer and Mellor may offer specific 
[701. 

functionalities that support editing existing templates. 
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In [ l l l ] ,  we proposed a design framework that makes it 

1 )  reuse interfaces and application-meaningful behavior 
between design-level classes that do not share the same 
representation and 

2)  reuse representation and structure manipulation code to 
the fullest, without jeopardizing the interface confor- 
mance of two hierarchically related design-level classes. 

possible to: 

Our solution to the first challenge relies on: 
1 )  defining a flavor of inheritance restricted to method in- 

heritance, excluding memory structurez3 and 
2)  enforcing a strict discipline in designingkoding applica- 

tion-meaningful logic in a way that does not bind it to the 
representati~n.~~ 

Our solution to the second challenge relies on: 
1 )  defining reusable design templates, including data struc- 

ture definition and manipulation and 
2)  developing a mechanical procedure for “instantiating” a 

design-level class by mapping an analysis-level class 
over a design template [ 1 1 11.  

Our design templates may be seen as generic data structures 
parameterized by both data component types and data compo- 
nent (field) names. A design template may be extended by 
adding new data components and/or operations. Because data 
component names are meaningless parameters, developers 
need to specify parameter mappings in case of ambiguity or 
multiple inheritance/extension [ 1 1 11.  

We have not had reliable practical experience with our 
methodology to ascertain its effectiveness. For example, it is 
not clear how much of an application’s logic can be coded (in 
an object-flavored PDL [ 1 1 1 1 )  without referring to an internal 
representation. Further, from a theoretical point of view, thomy 
subtyping issues with generic types are made even worse by the 
name parameterization [ l l l ] .  It does build, however, on the 
proven principle that greater reuse can be achieved by delaying 
binding component specification to component realiza- 
tiodilementation and exemplifies the progressive move from a 
pure building-blocks approach, to one that includes some genera- 
tion (see, e.g., [ 1491 and Section II.C). 

C.4. Reusability and Object Oriented Programming 
Naturally, any impediments to reuse that may appear during 

analysis and design persist when the components are actually 
implemented. Implementation further binds components to a 
particular programming language and style, inevitably reduc- 
ing their applicability. There is disagreement among method- 
ologists whether language considerations should come into 
play during design or not (see, e.g., [140] vs. [31]).  This is an 
important question because different languages support differ- 
ent sets of 00 features (e.g., typed vs. untyped polymorphism, 

23. Theoretically, this flavor is nothing but subtyping. From a programming 
language point of view, it is a mix of class inheritance and delegation. 

24. Roughly speaking, we use a stricter version of the private mechanism 
as used in C++. Our version makes sure that data fieldslstructures are private 
to the methods used to access them; no other method, even ones belonging to 
the same class, can access them [ 11 11. 

single versus multiple inheritance), with different reusability 
characteristics that may tip design trade-offs. For example, if 
we want to maximize code-sharing in a language that does not 
support multiple inheritance, it is not enough to “linearize” a 
lattice that maximizes code-sharing; in order to keep the same 
class hierarchy at design and implementation, we have to con- 
sider language features at the design level [37],  [56].  

In addition to the loss of reusability due to language power, 
some of the very basic tenets of 00 programming go against 
reusability. First, encapsulation and information hiding replace 
the traditional stamp coupling between modules, by common 
coupling” within modules [156]: All the methods within a 
class are common-coupled via the structure of the class. Fur- 
ther, inheritance in 00 programming languages violates en- 
capsulation and information hiding [150]. For instance, in 
most 00 languages, a class has access to all the implementa- 
tion details of its superclasses. Thus, methods can be-and 
often are-written in such a way that they depend on the im- 
plementation details of their superclasses: When those change, 
the entire class hierarchy beneath them may be affected. The 
C++ language addresses this problem by providing three ac- 
cess levels for attributes and methods: 

1)private attributes and methods are accessible only to the 

2)  protected attributes and methods are accessible to the 

3)public attributes and methods which are accessible to all 

These access levels are further modulated through the acces- 
sibility/visibility of the subclass relationship itself: A client 
objectA may be prevented from using knowledge that 
server B is a subclass of C, thereby preventing him from using 
facilities (e.g., operations) that B inherited from C [152]. 
Meyer argued that inheritance in class libraries is a mechanism 
that is useful only to the component builder, but that the com- 
ponent user (client) need not and should not be aware of in- 
heritance relationships [ 1071. When the programming lan- 
guage does not have the built-in mechanisms to discipline the 
use of inheritance, programmer discipline (“always use access 
functions to read/write objects’ attributes”) or language pre- 
processors are needed [ 1 1 13.  

C.5. Current Trends 
As object technology matures, the distinction between what 

it guarantees-no matter what-what it enables-if additional 
guidelines are used-and what it cannot deliver, becomes 
clearer. Object oriented programming guarantees very little, in 
and of itself. It is mostly an adequate packaging technology for 
reusable components. The major obstacles and opportunities 
for building reusable components remain at the analysis and 

methods of the defining class, 

methods of the defining class and its subclasses and 

objects/methods [ 1521. 

25. Two modules are stamp-coupled if they interact through a visible com- 
plex data structure, as when a procedure invokes another one whose parame- 
ters include a record. Two modules ace common-coupled if they interact 
through a hidden complex data structure, as when two procedures access the 
same “global” complex data structure. Common-coupling is less desirable 
than stamp-coupling because the dependency between the modules is hidden, 
making changes to the modules error-prone. 
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design level. Research efforts in analysis and design shift from 
notations to processes. There are marked weaknesses in 
analysis and design heuristics and increasing demands for 
more formal processes, with verifiable properties (see, e.g., 
[3], [31], [70]). One of the still open, yet fundamental issues 
that have a direct bearing on the reusability of components has 
to do with the identification of object’s behavioral boundaries 
and the elicitation and representation of interobject behavior 
(see, e.g., [3], [157], [158]). Succinctly put, given a high-level 
specification of the behavior of an object system (whose com- 
ponent objects may be known or not), how to distribute the 
behavior among component objects in a way that maximizes a 
given quality criterion-in this case, reusability. The answer to 
this and related questions may build on existing work on for- 
mal specification techniques for reactive systems [ a ] .  It is 
also becoming clear that not all global behaviors can be effec- 
tively distributed among objects (see, e.g., [70]) and there is 
increasing interest in multi-paradigm programming, e.g., 
combining logic and 00 programming (see, e.g., [96]). 

A second major thrust in 00 research was motivated by 
practical experience, as it quickly became clear that classes 
and methods are too fine-grained reuse units to provide any 
substantive leverage and bigger reusable units need to be con- 
sidered. For instance, objects seldom offer any interesting be- 
havior on their own and it is often in combination (interaction) 
with other objects that any useful functionality is achieved 
[75]. The idea of objectframeworks [43], as design-level col- 
lections of interactiqg and interchangeable objects, captured 
significant attention recently.26 The idea of reusable software 
(micro-)architectures is not new. However, object orientation’s 
abstraction, parameterization and code-sharing mechanisms 
support elegant ways for developing and using frameworks 
(see, e.g., [72]). 00 frameworks have been developed and 
used successfully in the area of graphical user interfaces (see, 
e.g., [43], [58], [ l  lo]). A lot of attention has been devoted re- 
cently to the documentation of frameworks, both formally, in 
terms of specifying interobject interactions (see, e.g., [65]), 
and informally, to describe their applicability and illustrate 
their use (see, e.g., discussions about pattern languages [51], 
[75], [87]). It is interesting to note that, according to Krueger’s 
classification of reuse approaches [83], the emphasis on 00 
frameworks moves the reuse of 00 software from a pure com- 
ponent-oriented approach to a combination of “software sche- 
mas” and “software architectures” approach, i.e., occurring at 
a higher level of abstraction and providing much greater reuse 
leverage [83]. 

v. BUILDING WITH REUSABLE SOFTWARE 

In this section, we discuss issues related to developing with 
reusable software. We focus on issues related to the building- 
blocks approach because, as mentioned in Section III.A.2 and 
Section III.A.3, the generative approach does not affect much 

26. For example, IEEEs Computer started a new department called 
Frameworks in the March 1994 issue. An entire conference is devoted to the 
documentation of frameworks. The seven-year-old Software Frameworks As- 
sociation is a self-help nonprofit organization. For info, e-mail to 
info@frameworks.org. 

the steps that it does not automate. We will discuss in turn 
component retrieval, component composition and component 
adaptation. In component retrieval, we look at the problem of 
matching a set of requirements for a component to a database 
of component descriptions. The matching seeks a monolithic 
component that satisfies the requirements. With component 
composition, the matching seeks a combination of components 
(such as functional composition) that satisfies the require- 
ments. Finally, we shall discuss component adaptation from 
the perspective of transformational systems. 

A. Software Component Retrieval 
Given a set of requirements, the first step in building with 

reusable components consists of finding a component that sat- 
isfies the requirements, either in its present form, or modulo 
minor modifications. When the number of components in the 
library is large, developers can no longer afford to examine 
and inspect each component individually to check its appro- 
priateness. We need an automated method to perform at least a 
first-cut search that retrieves an initial set of potentially useful 
components. Such a method would match an encoded descrip- 
tion of the requirements against encoded descriptions of the 
components in the library. The choice of the encoding meth- 
ods, for both the requirements and the components, and of the 
matching algorithms involves a number of trade-offs between 
cost, complexity, and retrieval quality. We start by formulating 
the retrieval problem from a software reuse perspective. Next, 
we discuss some of the trade-offs involved in the choices 
mentioned above. Finally, we briefly describe a representative 
subset of related work in the literature. 

A.1. The Component Retrieval Problem 
We can formalize the component retrieval problem as fol- 

lows. We make the distinction between a problem space and a 
solution space, where the problem consists of the developer’s 
needs. We can further divide the problem space into: 

1) actual problem space, as opposed to, 
2) problem space as understood by the developer and 
3) query space, which consists of the developer’s perceived 

need’s translation into a “query” that the component re- 
trieval system can understand (see Fig. 3). 

I 

Fig.3. A model of component retrieval. 

We use the term query to mean an expression of the devel- 
oper’s need. It can be as simple as a string fed into a string 
search command or as complex as a Z specification of the 
component. Depending on the level of expertise of the devel- 
oper, hidher understanding of the need can be as close to the 
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actual need as possible. Also, depending on the expressiveness 
of the language used to formulate queries, the developer (or 
some other agent) can translate those needs as accurately as 
possible. 

From the solution space end, we can identify three sub- 
spaces: 

1) component instances space, 
2) component classes space and 
3) codeshndices space. 

The component instances space consists of components some 
of which may be equivalent in some respect. For example, two 
stable in-situ sorting algorithms are functionally equivalent. 
Two quicksort programs coded in exactly the same way, but 
such that variable names differ are functionally equivalent and 
performance equivalent-they generate the same machine 
code. Within the class space, these two components will be 
represented by the same class. The class space is the space of 
equivalence classes. The equivalence relationship may include 
functional equivalence (same input-output relation), perform- 
ance equivalence (same time and space requirements), etc. The 
codes space consists of the descriptions of the component 
classes using an encoding or indexing language. In practice, 
the encoding step inevitably results in a loss of information. In 
the best case, “indexing” encodes only a subset of the proper- 
ties of a component class, as when the encoded description of 
a program module does not state all the potential uses of the 
program. Depending on the relative size of that subset, index- 
ing would project more or fewer distinct component classes 
into the same codes (or indices). Worse yet, the encoding can 
assign properties to classes that don’t have them. 

Matchers compare an encoded description of the devel- 
oper’s needs (query) to the encoded descriptions of the com- 
ponents in the library. The languages for describing queries 
and components should be identical or homomorphic. Given 
the number of translations and their complexity, there are am- 
ple opportunities for inaccuracy and ambiguity, and it is a 
wonder any needs get satisfied! Any one of the above steps 
have kept information retrieval (IR) researchers busy for years. 
A full survey of IR research is beyond the scope of this paper. 
We explore below the relation between encoding languages 
and methods and the corresponding matching algorithms, in 
general, and from a software reuse perspective. 

A developer query may be seen as a predicate Q(.) that re- 
trieves software components X such that Q(X) is true. Each 
class C in the class space is characterized by a description rep- 
resented as a predicate D d . )  such that all (and only) instances 
Y of the class C are such that DdY) is true. As mentioned 
above, encoding generally results into a loss of information by 
replacing the actual description Dc of a class C by a “simpler” 
description Dc(.). Accordingly, retrieval takes place by com- 
paring Q(.) (the developer query) to the approximate descrip- 
tions of component classes ( Dc(.) s). We distinguish between 
two basic matching approaches: 

1) partial-order-based retrieval: The retrieval algorithm 
returns classes of items such that Dd.) LT Q(.), for some 

partial-order relation LT. Notice that in practice 
Ec() will be used for comparison. If LT is a logical 
implication, the algorithm returns classes C such that 
OX.) +Q(.). In this case, for all X such that DdX) 
( Dc(X) ) is true, we are assured that Q(X) is true. 

2)  distance-based retrieval: The retrieval algorithm returns 
classes of items such that Dist(Dd.), Q(.)) (Dist Bc()  , 
Q(.))) is smallest, where Dist is generally a metric that 
satisfies the following property: 

[D(.) LT Q(.)l + [Dist(D(.), Q(.N = 01 
Intuitively, Dist. measures the extent by which D c ( )  ( D c ( ) )  

fails the partial-order relation. Needless to say, in either case, 
the quality of retrieval depends on the quality of indexing, i.e., 
the relation between 0, (-) and Dc (-) . 

Independently of the retrieval used, queries seldom return 
software components that fit the needs exactly, especially 
when those needs are not very precise in the beginning. Thus, 
most likely, the components retrieved will have to be adapted, 
and the assessment stage consists of evaluating the retrieved 
components for the efforts required to modify them. We con- 
sider assessment to be an integral part of retrieval. For in- 
stance, developer queries should be seen from the following 
perspective: 

Find components that satisfy the functional requirements Q(.) 
OR are eusy to modi@ so that they satisfy e(.). 
In other words, a binary predicate IsEasyToAdaptTo(., Q(.)) 

should be appended, implicitly or explicitly, to any developer 
query. What makes a component Y easy to adapt to the set of 
requirements Q(.)? There are two kinds of criteria that make a 
component easy to adapt: 

1) some general criteria related to the intrinsic quality of the 

2) differences between the retrieved component and the re- 

In other words, the predicate IsEasyToAdaptTo(., Q(.)) can be 
seen as the conjunction of two predicates: 

ZsEasyToAduptTo(X, e(.)) E EasyToModifyInGeneral(X) A 
[CostOfI mplementingDifference(DClm of X( .), Q( .)) 

on X is small] 

where Dclass of x(.), or DA.) for short, is the description of X’s 
properties. 

Criteria that make a component easy to understand and 
adapt include the complexity of the component (size, cyclo- 
matic complexity, number of inputs and outputs, etc.) and the 
quality of its documentation [28], [131], [159]. Estimating the 
cost of implementing the difference between DA.) and Q(.) on 
X poses two major difficulties. First and foremost, we have to 
develop a procedure that, based on the difference between two 
descriptions DA.) and Q(.), tells what kind of changes need to 
be incurred to components with description DA.) so that they 
fit in (satisfy) the description Q(.). In fact, distance-based re- 
trieval is fairly useless if the measure Dist doesn’t correlate 

component to be adapted and 

quirements Q( .). 
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somehow to the amount of effort required to adapt the compo- 
nent; this issue is discussed in more detail in the next section. 
Second, we need a way to estimate the costs of making various 
kinds of changes to a program. Changing a program may in- 
volve modifying its interface, its (internal) structure, or both. 
Clearly, the cost of adaptation depends on the scope of change 
(interface alone, versus internal logic) and extent of the 
change. As mentioned in Section III.B.4, more work is needed 
in this area. 

A.2. Evaluating Retrieval Pe$ormance 
Traditionally, retrieval quality is measured by recall and 

precision. Recall measures the ratio of number of retrieved and 
relevant items to the total number of relevant items in the in- 
formationhowledge base. Precision measures the ratio of the 
number of retrieved and relevant items to the number of re- 
trieved documents. Such measures are only adequate for par- 
tial-order-based retrieval, which assumes that relevance is a 
Boolean function, and have been widely criticized for this rea- 
son. We add to this the concern for estimating the effort re- 
quired to adapt a component that doesn’t match the devel- 
oper’s requirements. In this section, we study the properties 
that the encoding schemes and retrieval algorithms need to 
have to address these problems. 

First, it is interesting to discuss the conditions under which 
we can achieve 100% recall and 100% precision. With partial- 
order-based retrieval, perfect precision (only items that truly 
satisfy the query are returned) implies that indexing/encoding 
should be such that: 

(AI) (vC)[(Dc(.) LT e(.)) 4 (Dc( . )  LT Q(.))] 
The reader can check that condition (Al) is satisfied if for all 
C, Dc(.) LT Dc(.). If the partial order is logical implication, 
the condition [D, + E,] means that all that have been en- 

coded (“said”) about classes is accurate. We say that the en- 
coding is sound. For perfect recall, encoding should be such 
that: 

(vC)[( 0, (.) LT e(.)) + (0, (.) LT e(.))] (A2) 

Condition (A2) is satisfied if for all C, E,(.) LT D,(.). If LT 
stands for logical implication, this says that all that is true 
(and functionally signacant) about a class C, and possibly 
more (erroneously), has been encoded in E,(.). Not surpris- 
ingly, to achieve perfect recall and precision, we need equiva- 
lence between the actual intension of classes (Dd.)) and their 
encoding ( E, (.) 1; logical equivalence if LT is logical impli- 
cation. In practice, neither is possible, as mentioned in the 
previous section. With distance-based retrieval, we don’t need 
logical equivalence but the encoding process should be such 
that the ranking produced by Dist using E,(.) is similar to that 
which would have been produced using the actual Dd.). The 
following must hold: 

Condition (Bl) means that if an item C1 is presented to the de- 
veloper before item C,, then it is truly more relevantz7 than Cz. 
Condition (B2) means that if C1 is more relevant than Cz, then 
it will be presented to the developer before Cz. The reader can 
check that because, for a given query, Dist defines a total order 
on the class space, the two conditions are actually equivalent. 

Another way of interpreting condition (Bl) (or (B2)) is to 
say that encoding is monotonic, or, introduces a consistent 
bias. A cautionary note is, however, in order: 

In a reuse context, the thoroughness of component 
encoding is limited by the developer’s willingness to 
formulate long and precise queries; there is no point in 
encoding every bit of relevant information about a com- 
ponent if a developer barely has the patience for typing 
string search regular expressions! 
We now look at the issue of estimating the cost of adapting 

a component that does not match exactly the needs of the de- 
veloper. Notwithstanding cases where a component fails to 
match the query on nonessential (nonfunctional) properties, 
distance-based retrieval implicitly assumes that the measure 
Disc somehow correlates to the effort required to adapt the 
component to match the query. It is fair to assume that the ef- 
fort is related to the extent of structural changes needed to 
change the component. A component may be described by ei- 
ther its function (input-output relation, the “what”) or its 
structure (the “how”). Typically, a developer queries the li- 
brary for a component that fulfills a given purpose (“what”), 
i.e., by specifying its functional properties rather than by speci- 
fying or sketching its structure; the former being, supposedly, 
easier than the latter. Hence, for matching purposes, compo- 
nent classes are described by their functional properties. 
Therefore, in order to estimate the structural changes needed 
to apply to a component that fails a developer query, we need 
to have a model of the relation between functional require- 
ments (function, types of inputs/outputs, etc.) and component 
structure. 

27. The left-hand si& of (Bl) has strict inequality (e) because we don’t 
care what happens for cases where oist(EC, (.), e(.)) = oist(EC, (.),q(.)),  

since encoding natucaUy maps distinct classes to equivalent codes. 
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The kind of knowledge needed to model a stnicture-function 
relationship is not much different from that needed in auto- 
matic programming. For instance, if we can characterize the 
structures that implement a given function, we are only one 
step away from generating those structures automatically based 
on the specification of the function! It is extremely difficult to 
characterize such structures, in no small measure because sev- 
eral algorithms, e.g., can implement the same function, and the 
same algorithm can implement several “functions,” depending 
on the data it manipulates. However, we should mention that 
automatic programming systems do not generate all the possi- 
ble programs that can satisfy a given set of requirements; one 
that does suffices. Further, we do not need to characterize the 
full range of (function, structure) pairs, but rather the structural 
modifications associated with “small” functional differences. 
In other words, if FS is the mapping that associates to a func- 
tionfa set of structures {s i } i  = FSO, we do not need a charac- 
terization of FS, but rather of FS(f+ AB - FSO. This reduces 
the problem to finding types of functional differences that can 
be accommodated by (measurably) small structural differ- 
ences?* knowing that several kinds of structural differences 
can accommodate a given functional change. In the next sec- 
tion, we will comment on the extent to which the encoding and 
retrieval methods discussed address this problem in one form 
or another. 

A.3. A Survey of Existing Approaches 
Existing approaches to software component retrieval cover 

a wide spectrum of component encoding methods and search 
or matching algorithms. The encoding methods differ with re- 
spect to their soundness, completeness, and the extent to which 
they support an estimate of the effort it takes to modify a com- 
ponent. Striving for any of these qualities makes encoding 
more complex and costlier. It also makes it possible to support 
more sophisticated retrieval, provided queries of equal rich- 
ness and expressiveness to that of the encoding scheme are 
used. In practice, there is a limit to how complex queries can 
be for component search and reuse to be worthwhile 
(Section 1II.B. 1). Accordingly, overly complex encoding 
schemes are wasteful unless reusers are provided computer 
assistance in formulating equally complex queries. The ap- 
proaches discussed below strike different balances between 
complexity and cost on one hand and retrieval quality on the 
other. Further, some are immediately practicable and have 
been used in a production setting, while others are mere theo- 
retical explorations. We discuss three major classes of encoding 
and retrieval approaches, by increasing order of complexity: 

1) text-based “encoding” and retrieval, 
2) lexical descriptor-based encoding and retrieval and 
3) specijication-based encoding and retrieval. 
With text-based encoding and retrieval, the textual repre- 

sentation of a component is used as an implicit functional de- 
scriptor: Arbitrarily complex string search expressions sup- 
plied by the reuser are matched against the textual representa- 

28 For example, we can compare graphical representations of programs 
obtained through data and control flow analysis, see, e.g., [86]. 

tion (see, e.g., [ 1131). The main advantage of such an approach 
is related to cost: No encoding is required, and queries are 
fairly easy to formulate. Its disadvantages have been thor- 
oughly investigated in the information retrieval literature [20]. 
Simply put, plain-text encoding is neither sound nor complete. 
Short of a full-fledged language understanding system that 
takes into account the context, the presence of a concept (term 
or phrase) in the text does not imply that the component is 
about that concept (e.g., “Unlike quicksort, this procedure...”). 
Conversely, the absence of a concept from the text does not 
mean that the component is not about that concept, as different 
developers and documenters may use a different terminology. 

Plain text encoding and search, and variants thereof, have 
been used in a number of software libraries (e.g., [481, 1931, 
[ 113]), alone or in conjunction with other search methods, and 
had fairly good recall and precision rates. In a controlled ex- 
periment performed at the Software Productivity Consortium, 
Frakes and Pole found that more sophisticated methods (see 
below) had no provable advantage over plain text retrieval in 
terms of recall and precision [49]. However, they found that 
developers took 60% more time than with the best method to 
be satisfied that they had retrieved all the items relevant to 
their queries. This accounts for both the speed with which in- 
dividual search statements/expressions can be formulated and 
the number of distinct search statements that had to be submit- 
ted to answer the same query. With traditional document re- 
trieval systems such as library systems, longer search times are 
a mere annoyance. In a reuse context, bigger search times can 
make the difference between reusing and not reusing 
(Section III.B.l). 

With lexical descriptor-based encoding, each component is 
assigned a set of key phrases that tell what the component “is 
about.” We could define a two-place predicate ZsAbout (.,.), 
where key phrase K is assigned to a component (or component 
class) C iff ZsAbour(K, C). If C is assigned a set of phrases 
{ Kl, ..., K,,), then IsAbout(C, K l )  h...h ZsAbout(C, K,,) is true, 
and the one-place predicate ZsAbout(., K l )  A...A ZsAbout(., K,,) 
may be considered as the description of the component 
(class) C (Section V.A.2). Typically, subject experts inspect 
the components and assign to them key phrases taken from a 
predefined vocabulary that reflects the important concepts in 
the domain of discourse (see, e.g., [6], [27], [113], [1311). 
Notwithstanding the possibility of human error and the coarse- 
ness of the indexing vocabulary, such encoding is sound, as 
opposed to plain-text encoding. Further, because a key phrase 
need not occur in a component’s textual representation to be 
assigned to it, it is also more complete29 than plain text encod- 
ing. Reusers formulate their queries as Boolean expressions of 
key phrases. Let Q = E(K‘ sub 1, ..., K‘ sub m), a Boolean ex- 
pression with terms PI, ..., K‘,. A component C with key 
phrases K,, ..., K,, is considered relevant to the Boolean ex- 
pression (query) Q iff IsAbout(., K1) h...h IsAbout(., K,,) + 
E(ZsAbout(., r1), ..., [sAbout(., K‘,)), or, equivalently, if K1 
A...K,, + Q = E(K‘1, ..., K‘,,,). Boolean retrieval, as it is called, 
corresponds to what we called partial-order-based retrieval. 

29 An encoding scheme can be considered complete only if it says every- 
thing of consequence about the component; that is hard to define. 
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In practice, the method presented above is refined in many 
ways. In one refinement, instead of using the one generic rela- 
tion ZsAbout(.,.) between components and descriptors, several 
specific relations are used such as HasFunction( .,.), Applica- 
bleToDomain(.,.), Operateson(.,.), etc. 1271, [112], [131]; this 
is commonly referred to as multifaceted classification in the 
information retrieval literature, where each facet corresponds 
to a relation, and the descriptions for each facet are logically 
ANDed. For example, if we use the facets HasFunction and 
Operateson, a routine that sorts both arrays and linked lists 
may be described by the one-place predicate [HasFunc- 
tion(., Sorting)] A [Operateson (., Array) A Operates- 
On(., LinkedList)]. Similarly, reuser queries are now formu- 
lated using a conjunction of Boolean expressions, one for each 
facet on which the reuser wishes to search. 

A second set of refinements amend the retrieval algorithm 
itself to handle approximate matches. We illustrate them for 
simple (single-facet) indexing; extending them to multifaceted 
indexing is fairly straightforward. First, if there is a partial or- 
der between key phrases themselves, the partial order may be 
used to extend queries. Assume for example that the key 
phrases are organized in a taxonomy. Let Kl and K2 be two 
phrases such that KI has an “is-a” relation with K2. By defini- 
tion, any component C that is about K1 (ZsAbout(C, K l ) ) ,  by 
default, is also about KZ (ZsAbout(C, Kz)). However, the re- 
verse is not true. Thus, in the process of looking for compo- 
nents that are about K2, the ones that are about Kl-and KZ’S 
descendants in general-would also do. This approach is used 
in MEDLINE [102], an on-line medical literature retrieval 
system operated and maintained by the (U.S.) National Library 
of Medicine. Two additional refinements turn Boolean re- 
trieval-which is partial-order-based-into distance-based re- 
trieval. The first ranks components by decreasing number of 
key phrases that match phrases from the query [ 1421. The sec- 
ond method is used when key phrases are organized in a tax- 
onomy (see, e.g., [134]) or a weighed semantic net in general 
(see, e.g., [131]). The former has been used in the European 
ESPRIT Practitioner (software reuse) project (see, e.g., [ 1131). 
The latter has been more widely used in software libraries (see, 
e.g., [27], [48], [131]). In Softclass, a prototype CASE tool 
with integrated support for reuse, we implemented three 
classes of lexical descriptor-based component retrieval algo- 
rithms that combine the above features with weighed facets 
and a number of fuzzy bells and whistles [ 1121. We are cur- 
rently setting up a series of experiments to compare the differ- 
ent methods. However, we don’t expect significant improve- 
ments to result from some of the refinements mentioned above. 

Lexical descriptor-based encoding and retrieval suffers 
from a number of problems. First, an agreed (or agreeable) vo- 
cabulary has to be developed. That is both labor-intensive and 
conceptually challenging. Sorumgard et al. reported a number 
of problems developing and using a classification vocabulary 
[ 15 13. They experienced known problems in building indexing 
vocabularies for document retrieval, including trade-offs be- 
tween precision and size of the vocabulary and the choice be- 
tween what is referred to as precoordinated or post- 

coordinated indexing,M with the confusion that may result 
from mixing the two [151]. Software-specific challenges in- 
clude the fact that one-word or one-phrase abstractions are 
hard to come by in the software domain [83], [151]. 

Further, it is not clear whether indexing should describe the 
computational semantics of a component, as in “this procedure 
returns the record that has the highest value for a float field, 
among an array of records,” or its application semantics31 as in 
“this procedure finds the highest paid employee within the 
employees file” [ 1511. Characterizing computational semantics 
is important for reuse across application domains. However, 
reusers may have the tendency to formulate their queries in 
application-meaningful terms. Formal specification methods 
suffer from the same problem, but to a lesser extent, since 
application semantics show up specifically as terminal symbols 
in the specification language. Finally, neither the encoding 
mechanism nor the retrieval algorithm lend themselves to as- 
sessing the effort required to modify a component that does 
not match the query perfectly. This is so because the descrip- 
tors have externally assigned (linguistic) meanings and bear no 
relationship to the structure of the components. For example, 
what does it mean for a component C to have the function 
Sort, i.e., what does it mean to have HasFunction(C, Sort)? it 
only means what we wish the symbol “Sort” to mean to us, and 
any relation between two symbols has to be posited by us, 
rather than proven by a formal proof system. 

From the reuser’s point of view, a familiarity with the vo- 
cabulary is needed in order to use a component retrieval sys- 
tem effectively [142]; a hierarchical (e.g., taxonomical) or- 
ganization of the key phrases and proper browsing tools can 
alleviate the problem significantly [ 1 131. Further, queries tend 
to be fairly tedious to enter, especially for the case of multi- 
faceted encoding. In Softclass, where software components 
are grouped into component categories, each with its own fac- 
ets, queries are entered by filling out a simplified component 
template that stands for the prototypical component the devel- 
oper wishes to retrieve [113]; the filled out template is then 
internally translated into a Boolean query and matched against 
the component base. While this format does not handle all 
kinds of queries efficiently, we believe that it handles the most 
common queries efficiently [ 1 131. 

Specification-based encoding and retrieval comes closest to 
achieving full equivalence between what a component is and 
does and how it is encoded. With text and lexical descriptor- 
based methods, retrieval algorithms treat queries and codes as 
mere symbols, and any meaning assigned to queries, compo- 
nent codes, or the extent of match between them is external to 
the encoding language. Further, being natural language-based, 
the codes are inherently ambiguous and imprecise. By contrast, 
specification languages have their own semantics within which 

30. (Very) roughly speaking, with precoordinated indexing, several phrases 
for the same facet are to be interpreted disjunctively, while with post- 
coordinated indexing, they should be interpreted conjunclively; see [112]. 

3 1. Using our approach to object-oriented design (seec Section IV.C.3 and 
[ 11 11). generic design templates would be described by their computational 
semantics. Application data structures would be characterized explicitly by 
their application semantics, and implicitly, through the generic design tem- 
plate to which they map, by their computational semantics. 
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the fitness of a component to a query can be formally estab- 
lished [32], [108], [161], and “mismatches” between the two 
can be formally interpreted [108], [ 1611. Typically, the formal 
specification-based methods correspond to what we called 
partial order-based retrieval, using a partial-order relationship 
between specifications. This partial order is often used to pre- 
organize the components of the library to reduce the number of 
comparisons between specifications-an often prohibitively 
costly operation [108], [115]. The methods discussed in the 
literature differ in the expressiveness of the specification lan- 
guage. Also, different retrieval algorithms take advantage 
more or less fully of the power of the specification language. 
The subset of the language used for retrieval o j h  has no ef- 
fect on recall, but degrades precision, as in using operations’ 
signatures instead of using signatures and pre- and post- 
conditions. 

In [108], A. Mili et al. describe a method for organizing 
and retrieving software components that uses relational speci- 
fications of programs and refinement (contravariance) ordering 
between them. Any given program is correct with respect to 
(satisfies) the specification to which it is attached, as well as 
the specifications that are “above” it. Hence, a specification 
retrieves the programs attached to it, as well as those attached 
to specifications that are “below” it. A theorem prover is used 
to establish a refinement ordering between two specifications. 
Two forms of retrieval are defined: exact retrieval, which 
fetches all the specifications that are more refined than a re- 
user-supplied specification, say K ,  and approximate retrieval, 
which is invoked whenever the exact retrieval fails, and which 
retrieves specifications that have the biggest “overlap”32 with 
K [108]. One nice property about approximate retrieval is that, 
while it does not directly assess the effort required to modify a 
component, the difference actually means something (e.g., a 
program is found that gives the desired outputs for a subset of 
the inputs) and may suggest a way of modifying the returned 
programs to make them satisfy the requirements or use several 
of them in combination [108]. 

Chen et al. proposed a similar approach that uses algebraic 
specifications for abstract data types and an implementation 
partial ordering between them [32]. Reusable components, 
which may be seen as abstract data types, are specified by both 
their signature and their behavioral axioms. However, while 
the implementation relationship takes into account the behav- 
ioral axioms, the retrieval algorithm uses only signatures, 
modulo a renaming of the “types” of the components to match 
those of the query [32]; the authors did envision using an 
“interactive system [read semiautomatic] for algebraic imple- 
mentation proofs” [32]. Moorman-Zaremski and Wing pro- 
pose an approach based exclusively on signature matching 
[161]. The major advantage of their approach is that the in- 
formation required for matching can be extracted directly from 
the code. They first define exact matches between function 
signatures, to within parameter names, and then define module 
signatures and partial matches between modules using various 
generalization and subtyping relationships [ 1611. They too 

envision taking into account behavioral specifications in future 
versions, using LARCH (cf. [60]) specifications-which 
would then have to be encoded manually. 

None of the formal specification-based methods we know 
about addresses directly (or successfully) the issue of assessing 
the effort required to modify a component returned by ap- 
proximate retrieval (inexact match). Further specification- 
based methods that include behavioral specifications (and not 
just signatures) suffer from considerable costs. First, there is 
the cost of deriving and validating formal specifications for the 
components of the library (see also [ 1151). This cost is recov- 
erable because it could be amortized over several trouble-free 
uses of the components and is minimal if specifications are 
written before the components are implemented, which is the 
way it should be (and seldom is) done. The second cost has to 
do with the computational complexity, if not outright undeci- 
dability, of proof procedures. This cost can be reduced if ac- 
tual proofs are performed only for those components that 
match a simplified form of the specifications, e.g., the signa- 
ture; not much else can be done about the inherent complexity 
of proof procedures or their undecidability without sacrificing 
specification power. Last but not least, there is the cost for the 
reuser to write full-fledged specifications for the desired com- 
ponents. Because there is no evidence that specifications are 
either easier or shorter to write than programs, reusers need 
motivations other than time-savings, or computer assistance, to 
write specifications for the components they need. We believe 
that formal specification-based matching will remain a theo- 
retical curiosity for the time being and will integrate only in 
the more formal development methods that address application 
domains such as reactive and real-time systems. 

B. Component Composition 

issues: 
Under component composition, we address two dual sets of 

1) Given a set of components, and a schema for composing 
them, check that the proposed composition is feasible 
(veriBcation) and satisfies a given set of requirements 
(validation); we refer to this as the composition verifica- 
tion and validation problem and 

2)given a set of requirements, find a set of components 
within a component library whose combined behavior 
satisfies the requirements; we refer to this as the bottom- 
up design problem. 

The first problem benefits from a large body of work that is 
not often associated with reuse. A thorough coverage of this 
problem is beyond the scope of this paper. We will be content 
to highlight the general issues and describe a representative 
sample of work in this area (SectionV.B.1). The second 
problem, discussed in Section V.B.2, benefits from work on 
verification and validation of compositions, but presents chal- 
lenging search problems of its own. 

32. The overlap between two specifications is determined using the “meet” 
lattice operation [108]. 
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B.l. Composition Verification and Validation 

three challenges: 
Component composition verification and validation poses 

1) designing a language for describing compositions of 
components that lends itself to verification and valida- 
tion, 

2) performing verification and 
3) performing validation. 

There are two general methods for describing compositions of 
components. If we think of a component as consisting of a 
specification and a realization (or a set of realizations, see, 
e.g., [83]), then composition may occur either at the specifica- 
tion level or at the realization (implementation) level (see also 
Section V.B.3). Specification languages usually provide built- 
in composition operators with well-defined semantics. For ex- 
ample, with relational specifications, any of the set theoretic 
and relational operations may be seen as a composition. In this 
case, we might say that the set of specifications is closed under 
composition, and verifying or validating a composition of 
specifications or validating it against a target specification is 
not different from verifying any individual specification or 
validating it against another specification. With regard to vali- 
dation, we can expect the same challenges discussed for speci- 
fication-based component encoding and retrieval 
(Section V.A.3). The problem with specification-level com- 
position is that it is often difficult to characterize specification- 
level manipulations by manipulations on the actual realizations 
(programs) of these specifications [ 1081. 

When composition takes place at the component realization 
level, we obtain a (much) smaller range of behavioral compo- 
sitions, but we are assured that these compositions are feasible 
without additional development. Component compositions are 
usually described using the so-called module interconnection 
languages [61], [129]. A module may be seen as having an 
internul structure, consisting of a set of data structures and a 
set of procedures that reference them, and an external inter- 
face specifying the external entities the module depends on 
and the internal entities the module exports. Module intercon- 
nection languages describe component (module) compositions 
by specifying: 

1) the obligations of the individual participants and 
2) the interactions between the components. 

The specification of the obligations of the individual compo- 
nents consists, minimally, of the signatures of the operations 
they need to support; this is similar to Ada’s constrained ge- 
nerics, where generic packages list the operations that type pa- 
rameters have to support [106]. It could also include the 
specification of the behavior of the operations. This is the ap- 
proach followed in Helm et al.’s contracts [65] and a number 
of algebraic specification-based interconnection languages 
such as Goguen’s library interconnection language (LIL [57]) 
and other derivatives of OBJ or LILEANNA [153], e.g., an 
application of LIL’s concepts to ANNotated Ada packages. 
One of the interesting features of LIL is that obligations are 
specified in terms of theories, and a given module (in this case, 
an abstract data type) may satisfy a theory in different ways, 

called views [57]. This has the advantage of ignoring operation 
names during verification, by focusing on their behavioral se- 
mantics instead. 

The specification of the interactions between the compo- 
nents varies from simple call dependencies [61] to a full- 
fledged behavioral specification including interaction logic, 
aggregate-wide preconditions, postconditions, invariants, etc. 
(see, e.g., [61], [65], [log]). Behavioral interactions between 
components can also be specified implicitly in logic-based (or 
logic-flavored) languages. One such language is MELD, an 
00 language developed by Kaiser and Garlan [78]. In MELD, 
classes are represented by features. Methods are represented 
by ~emideclarative~~ constructs called action equations. When 
the same methods are implemented by two features, their ac- 
tion equations are merged. In case the merge creates depend- 
encies, a topological sort determines which action equations 
are to be executed first [78]. This constitutes, in our opinion, 
MELD’S most interesting feature for reuse by composition as 
it automates code-level integration. Validating the behavior of 
a composition of modules against a desired behavioral specifi- 
cation is generally a difficult problem [84], [163]. One of the 
major difficulties is due to the fact that it is difficult to get a 
closed form expression for the behavior of the aggregate. This 
is due to the fact that the language used for describing com- 
positions is different from that used for specifying individual 
components (see, e.g., [ 1631). 

B.2. Bottom- Up Development 
Top-down development consists of decomposing the re- 

quirements for a module into requirements for a set of 
(simpler, more reusable, etc.) submodules and patterns of in- 
teractions between them. Informal requirements analysis and 
specification methods use informal heuristics to guide the de- 
composition process. Formal methods use various reduction 
and factoring mechanisms to decompose specifications (see, 
e.g., [30], [33]). In both cases, the decomposition is guided by 
properties that the component submodules and their patterns of 
interactions have to have. For non-trivial requirements, a vir- 
tually limitless number of solutions of equal quality could be 
found. With bottom-up development, the major requirement is 
that the decomposition yields specifications for which compo- 
nents have already been developed. This is generally a very 
difficult problem. 

Enumerating compositions of components within a library 
“until one is found that has the desired behavior” seems un- 
thinkable at first. In practice, a number of practical and theo- 
retical considerations can make the number of compositions to 
explore manageable. In [62], Hall describes a component re- 
trieval method that explores combinations of components 
when none of the individual components matches the user 
query. Users specify the desired behavior by giving an exam- 
ple input-output pair 4, 0 >. The idea of retrieving compo- 
nents based on the output they actually produce when executed 
on a user-supplied input was first proposed by Podgurski and 
Pierce [127]. Hall extends Podgurski and Pierce’s work by 

33. Action equations am. essentially predicates. However, they do contain 
some control information such as iteration and sequencing. 
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exploring compositions of components when no single compo- 
nent is found that returns 0 given I .  For example, if all the 
components in the library are single-parameter functions 
fi, ...,fa, then if for all i, f,(l) f 0, we try out jjU;(l)), for all 
1 S i, j I n, and if none is found that returns 0, we try three 
levels deep function compositions, etc. [62]. Hall showed that, 
in general, the number of compositions of components of 
depth d or less is doubly exponential in d ,  i.e., of the form 
O(n("")). However, a number of techniques help reduce that 
number considerably, without missing any potential solutions. 
Type-compatibility requirements considerably restrict the 
range of possible compositions. More dramatic results are ob- 
tained by dynamic programming: When generating composi- 
tions of depth d U;,o ... of,"), apply new components to all the 
combinations of distinct return values of depth d - 1, rather 
than all combinations of distinct programs of depth d - 1. 

Hall tested his algorithm on a library of 161 Lisp functions. 
The retrieval system itself is written in Common Lisp. He lim- 
ited the depth of compositions to three, with the level three 
functions limited to those that have a single input. Fifteen 
queries took an average of 20 seconds, and a maximum of 40 
seconds, running on a SUN SPARC 11. In one example, a 
query provoked 2,400 component executions instead of a po- 
tential 10l6 executions [62]. While more testing is needed to 
assess the efficiency of the algorithm, the processing times re- 
main reasonable for a reasonably large library and show that 
the method could indeed be computationally practical. How- 
ever, as Hall pointed out, this method could not be applied to 
retrieving nonexecutable reusable components [62]. A less se- 
rious engineering difficulty has to do with multiplatform librar- 
ies, components that raise exception while being tested out or 
loop endlessly, and components with side-effects, all of which 
pose challenging but tractable engineering problems [62]. 
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Fig. 4. Altemative compositions that could be considered by the composition 
retrieval algorithm. 

We have started work on a combination of Hall's work and 
Moorman-Zaremski and Wing's work on signature matching 
[161]. Assume that a developer is looking for a component 
that takes an input variable of type TI and produces an output 
variable of type T2. Failing to find such a component, an al- 
gorithm could find any of the compositions shown in Fig. 4, 
that "concatenates" components based on type compatibility 
between their inputs and outputs. The function realization 
problem, as we called it, consists of finding all the composi- 
tions of functions (signatures) that consume no more than the 
inputs specified by the developer's query and produce at least 
the outputs specified by the developer's query [112]. We 
showed in [ 1121 that the set cover problem, which is known to 

be NP-complete [54], could be reduced to the function reali- 
zation problem. Worse, we know of no heuristic that guaran- 
tees a solution value within a constant factor of the optimum 
cover of a set [54], which suggests that none could be found 
for the function realization problem either. Fortunately, finding 
out whether a function signature has a realization or not can be 
done in polynomial time [112]; bear in mind, though, that a 
realization does not necessarily exhibit the desired behavior. 
Because several realizations could be equivalent, we defined a 
"minimal" form for realizations called normal realization, 
where each function is needed (i.e., without it the composition 
would not be a realization), and where each function has the 
minimal possible depth, i.e., is "called as soon as all its inputs 
are available." We developed an algorithm for finding normal 
realizations and implemented it in Lisp [112]. 

Our method has the advantage of not requiring component 
execution, and like Moorman-Zaremski and Wing's method 
[161], the information required for search can be extracted 
from components themselves. However, programming lan- 
guage types alone can be hopelessly nondiscriminatory. A li- 
brary written in a weakly typed language (e.g., C) is likely to 
have a handful of types, and the algorithm will have a dismal 
precision. Application-oriented definitions of types can 
sharpen the search but may miss out on some valid realizations 
[62]. We are currently testing the algorithm on a library of data 
manipulation functions (string manipulation, data conversion, 
etc.). While we do not expect a good precision, we are hoping 
that an inspection of the results will help us recognize classes 
of realizations or subrealizations that should be pruned out of 
the search, thereby increasing the efficiency of the algorithm. 
However, we expect most of the gains to come from using 
richer semantics for types and type compatibility, and we are 
pursuing work in that direction as well. 

C. Adapting Reusable Components 
We use the term adaptation to refer to what happens to a 

component between the time a decision is made to reuse it and 
the time it has become part of the product. We recognize three 
potential subtasks, 

1) what Krueger called selection [83]: if a reusable compo- 
nent has a variable part or explicitly enumerated alterna- 
tive implementations, select (the) one that is appropriate 
for the problem at hand, 

2 )  modification: in case the component or any of its variants 
cannot be used as is and 

3) integration, which is essentially a verification step that 
checks whether the component is compatible with its en- 
vironment. 

One of the major differences between selection and modifica- 
tion is that with selection, the changes to the component have 
been planned ahead of time. This is generally done using vari- 
ous parameterization and abstraction techniques and will be 
discussed briefly below. With modification, the changes are 
often unanticipated or poorly planned. As mentioned in Sec- 
tions III.A.3 and 1II.B. 1, modifying reusable components may 
defeat both the quality and the productivity advantages of re- 
use. Hence, it should be automated as much as possible to save 
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time and ensure that the modifications are quality-preserving. 
We discuss modification in the context of transformational 
systems. As for the integration of reusable components, what is 
not addressed by module interconnection languages discussed 
in Section V.B.l is not specific to the reusability of the com- 
ponents and will not be discussed further here. 

C.I. Selection 
Two commonly used selection mechanisms are specializa- 

tion and instantiation of abstract software components. Ab- 
straction has been supported by programming language con- 
structs for some time [143]. At the most basic level, declaring 
program constants or using variable-dimension arrays is a form 
of parameterized programming. Conditional compilation is 
another more sophisticated form of parameterized software, 
whereby different code sequences are compiled based on a 
number of system and environmental parameters. In this case, 
adaptation consists simply of setting the right environmental 
parameters. In general the mechanisms involved depend on the 
nature and complexity of the parameters, ranging from a sim- 
ple compile or linkage-time binding (e.g., of an unresolved 
reference to a type T to a specific type), to a mix of substitu- 
tions, conditional compilation and code generation as in [16], 
and template-based approaches in general (see, e.g., [85],  
[1371). 

Object oriented languages support a number of abstraction 
and selection mechanisms, including generic classes, abstract 
classes, and metaclasses with metaprogramming [721. 
Genericity supports the development of complex data struc- 
tures with parameterized component types. For example, one 
could define a generic list structure LIST[TI whose node val- 
ues (or "data" fields) are of a generic type T that supports 
comparison operators. In this case, selection consists of using 
the (e.g., declaring a variable of) data type LIST[< >I by speci- 
fying an actual type instead of the parameter T. The obliga- 
tions of the type T may be specified explicitly in the specifica- 
tion of the generic type (called constrained genericity [ 1061) or 
implicitly based on what types will actually compile or exe- 
cute. With abstract classes (Section 1V.B. l), selection consists 
of choosing among several concrete subclasses that conform to 
the behavior of the abstract class, or creating a subclass of our 
own, to address the specific needs of the application at hand 
[72]. Note that subclassing alone does not guarantee that a 
class conforms to its superclasses, i.e., that the types they im- 
plement are in a subtype relationship. We showed in Sec- 
tion 1V.B .3 how design-level considerations may lead to situa- 
tions where subclasses do not implement subtypes, and vice- 
versa. Unfortunately, few programming languages (e.g., Eiffel 
[106]) ensure that subclasses implement types that are in a 
subtype relationship, and subclassing remains essentially a 
code-sharing mechanism, with the problems we discussed in 
Sections IV.B.3 and IV.B.4. Finally, the use of metuclasses 
with metaprogramming may be seen as an 00 packaging 
(design) for program generators (Section IV.2) and will not be 
discussed further here; the reader is referred to [72] for a more 
thorough discussion. 

C.2. Mod$ication 
Modification is required when a retrieved component has to 

be reworked to accommodate the needs of the application at 
hand. The need for modification may become clear during re- 
trieval: The encoded description of the component does not 
match perfectly the query. Alternatively, a closer inspection of 
a component whose encoded description did match the query 
may reveal inadequacies. The latter case is possible because 
encoding is often incomplete: The encoded description leaves 
out some functional properties of the component. We saw in 
Section V.A.2 that the mismatch between a query and the en- 
coding of a component may be more or less revealing as to the 
(extent of the) changes that need to be incurred to the compo- 
nent, depending on the completeness of the encoding. For the 
purposes of presentation, we consider the two situations as in- 
stances of the same problem: Given the specification of a de- 
sired component SO, the "closely matching" specification SC of 
an existing component C, and its realization Rc (i.e., imple- 
mentation), find the realization for the desired component- 
call it RD; the additional problem of working our way back 
from differences between encoded (partial) description used 
for retrieval to actual functional specifications raises similar 
issues because in both cases we have to walk our way back, 
upstream of an information-losing mapping (see Fig. 5).  

? 
."..--"-..""""""""""-"-"-."~ 

h i i d l e  co ponent 
specitcation 

Fig. 5.  The component modification problem. 

This problem is best understood in the context of a trans- 
formational view of software development. Software develop- 
ment is seen as a (possibly long) sequence of transformations, 
starting with more or less formal specifications, leading even- 
tually to executable code [ 11. Fig. 6 shows the typical software 
life cycle for transformational systems. In such systems, soft- 
ware development consists of two major steps: 

1) deriving formal specifications from user require- 
ments-if the transformations to be applied are to do any 
substantive work and 

2) applying a set of transformations on the formal specifica- 
tions, gradually building a computer program, in either a 
target programming language or in a readily translatable 
language [123]. 

An important characteristic of transformational systems is the 
potential for maintaining software systems at the specifications 
level [8]. According to this view, the complexity of software 
development lies not in the individual transformations, but in 
applying the "right" transformation when several alternatives 
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are possible. Existing transformational systems provide vary- 
ing levels of support for selecting the “right” transformations, 
ranging from simply enacting/executing transformations cho- 
sen by the developer to full automation [8], [ 1231. 

Fig. 6. Typical software life cycle in transformational system. Adapted from [l]. 

Regardless of the “intelligence” of the transformations (e.g., 
their knowledge about their own appropriateness), the trans- 
formational approach has the following advantages: 

1) relieving developers from labor-intensive, knowledge- 

2) virtually eliminating clerical errors, 
3) ensuring correctness of the resulting programs by con- 

4)maintaining a record of development choices, their ra- 

It is this last characteristic of transformational systems that 
concerns us most in this paper, namely, the potential for soft- 
ware reuse. Maintenance has been recognized by a number of 
researchers as a particular form of reuse (see, e.g., [ 141). Bal- 
zer et al. recognized transformational systems’ potential for 
enhancing software reuse, whereby reusable components are 
maintained and modified at the specification level rather than 
at the implementation level [8]. While a number of researchers 
have recognized the importance of recording development de- 
cisions for reuse purposes, the transformational approach to 
software development makes explicit computer-supported use 
of those decisions to maintainheuse existing software. 

The transformational approach makes maintenance and re- 
use easier, not only because it makes development easier in 
general, but also because “similar” inputs (e.g., formal specifi- 
cations or any other intermediary form) often call for the same 
transformations to be applied. Cases where the same sequence 
of transformations cannot be replayed, e.g., the preconditions 
of one of the transformations fail to hold as a result of a modi- 
fication, developer intervention is only needed from that point 
onward. Baxter studied the commutativity and dependencies 
between transformations to minimize the scope of modifica- 
tions [ 171. Take the example of a program P that was derived 
from a specification S using the chain of transformations 
T, o ... o Ti o ... o TI and assume that S was modified into S’ 
such that all transformations up to, not including, Ti (i.e., 
TI,  ..., were applied successfully. Normally, a developer 
would have to intervene to choose an alternative transforma- 
tion to Ti and proceed from that point to the end. However, if it 
is known that some transformation T,, for i c j S n, commutes 
with (thus, independent of) Ti, then it could be moved 
(applied) ahead of Ti, and the developer would have fewer 
transformations to consider. Generally speaking, replaying de- 

poor tasks, 

struction and 

tionale, or both for maintenance purposes. 

sign histories is not foolproof. The level of confidence in the 
replayed process depends on the knowledge embodiedlused in 
selecting transformations (e.g., completeness and soundness of 
preconditions) and the responsiveness of the transformation 
selection algorithm to specification changes. One can easily 
imagine a case where an innocuous change in specifications 
might require a significant change in program structure to 
maintain a similar level of performance. 

Transformational systems have been criticized by some re- 
searchers for their limited range of applicability [123]. The 
programs generated with this approach were mostly toy ex- 
amples, as was the case with other AI-oriented automatic pro- 
gramming systems [9]. While, in principle, the transforma- 
tional approach is not limited to small programs, the amount of 
knowledge that needs to be encoded to handle large software 
systems is prohibitively large. Most of the earlier transforma- 
tional systems embody basic, domain-independent, program- 
ming knowledge. More recent efforts such as the DRACO 
system [ 12 11 support domain-specific specification languages, 
and transformations embody some form of domain knowledge. 
Software reuse research may well benefit from relaxing the 
formal correctness-preserving nature of transformations and 
fromusing more heuristic rules such as analogical reasoning 
[29], especially when we deal with informal or poorly struc- 
tured software products (see, e.g., [94]). Alternatively, we 
could settle for localized or partial transformational ap- 
proaches, as opposed to ones covering the entire specification 
+ program cycle. 

To the extent that software reuse benefits from automati- 
cally propagating software changes across development stages, 
work on configuration management systems and program de- 
pendencies is eminently relevant. Configuration management 
systems are concerned primarily with maintaining the integrity 
of software systems and the interoperability of components as 
they undergo change [ 1201. Minimally, such systems help lo- 
calize the effects of changes [92]. On a different scale, work 
on program dependencies is concerned primarily with the local 
effects of change, typically within a procedure. Typically, data 
and control flows within a program are analyzed, thereby 
identifying the parts that depend on a particular datumlcontrol 
statement. Such analyses support reuse in many ways: 

1) localizing the effects of changes [117], [126], thus guid- 
ing reusers in the process of adapting retrieved compo- 
nents to their needs, 

2) simplifying program structures [7 13, which enhances 
program readability and understandability and 

3) “slicing” programs to extract specific functionalities [53], 
[71], in case the retrieved component does more than 
what is required. 

The latter is an interesting dual to reuse by composition (see 
Section V.B). We should mention, however, that reliable flow 
analysis depends on a number of restrictive assumptions, such 
as the absence of side-effects and “global variables” (see, e.g., 
[ 1171, [ 1261). On the positive side, they help increase the reuse 
worth of code fragments by automating some of the code 
modification tasks and do not require the availability of design 
or analysis information. A combination of macroscopic con- 

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on March 5, 2009 at 09:19 from IEEE Xplore.  Restrictions apply.



MILI, MILI, AND MILI REUSING SOFrWARE: ISSUES AND RESEARCH DIRECTIONS 551 

figuration management and microscopic program flow analysis 
can help reduce the cost of maintaining and reusing software. 

VI. SUMMARY AND DISCUSSION 

Reuse is the default problem-solving strategy in most hu- 
man activities [ S I ,  and software development is no exception. 
Software reuse means reusing the inputs, the processes, and 
the outputs of previous software development efforts. Software 
reuse is a means toward an end: improving software develop- 
ment productivity and software product quality. Reuse is based 
on the premise that educing a solution from the statement of a 
problem involves more effort (labor, computation, etc.) than 
inducing a solution from that to a similar problem, one for 
which such efforts have already been expended. While the in- 
herent complexities in software development [26] make it a 
good candidate for explorations in reuse, it is far from obvious 
that actual gains will occur. The challenges are structural, or- 
ganizational, managerial, and technical. In this paper, we dis- 
cussed some of the most important issues, with an emphasis on 
the technical ones. 

Economic considerations, and costhenefit analyses in gen- 
eral, must be at the center of any discussion of software reuse. 
Notwithstanding differences between reuse approaches along 
the building blocks-generative dimension, it is useful to think 
of software reuse research in terms of attempts to minimize the 
average cost of a reuse occurrence (see Section III.B.l): 

[Search + (1 - p) X (ApproxSearch + q 
x Aduptationold + (1 - q) x Developmentn,)] 

where Search(ApproxSearch) is the average cost of formulat- 
ing a search statement to a library of reusable components, and 
either finding one that matches exactly (approximatively) the 
requirements, or be convinced that none exists, Adaptation,,, 
is the average cost of adapting a component returned by ap- 
proximate retrieval, and Development,, the average cost of 
developing a component that has no match, exact or approxi- 
mate, in the library. For reuse to be cost-effective, the above 
must be smaller than: 

p X Development,,,, + (1-p) X q 
X Development,,,,ox + (1 - p) 
x (1 - q) X Development,,) 

where Development,,,, and Development,,, represent the 
average cost of developing custom-tailored versions of com- 
ponents in the library that could have been used as is or 
adapted, respectively. Note that all these averages are time av- 
erages and not averages on individual components, i.e., a reus- 
able component will be counted as many times as it is used. 

Work on developing reusable software aims at maximizing 
p (probability of finding an exact match) and q (probability of 
finding an approximate match)--i.e., maximizing the coverage 
of the application domain-and minimizing Aduptationold for a 
set of common mismatches, i.e., packaging components in 
such a way that the most common mismatches are handled 
easily. Increasing p and 4 does not necessarily mean putting 
more components in the library; it could also mean putting 

components that are more frequently needed. Because adding 
components increases search costs (see Section 1II.B. l), we 
could use a two-pronged approach: 

1) identify components that are generally useful and 
2)try to cover the same set of needs with fewer compo- 

Identifying the components that are generally useful is some- 
times called domain analysis and is an important activity for 
both application generator development (Section IV.B) and 
00 software development (Section IV.C). Covering the same 
set of needs using fewer components involves two paradigms: 

1) abstraction, essential to application generators, and very 

2)  composition, which is central to 00 software develop- 

Composition supports the creation of a virtually unlimited 
number of aggregates from the same set of components and 
reduces the risk of combinatorial explosion that would result 
from enumerating all the possible configurations (cf. Sec- 
tion II.C and [149]). In general, the higher the level of ab- 
straction at which composition takes place, the wider the range 
of systems (and behaviors) that can be obtained (see Sec- 
tion V.B). The combination of abstraction and composition 
provides a powerful paradigm for constructing systems from 
reusable components and constitutes the major thrust behind 
research in 00 frameworks. It also exemplifies the ways in 
which software reuse addresses the scalability and focus issues 
in software engineering (see Section I). 

Work on developing with reusable software aims at mini- 
mizing the cost of search (exact and approximate) and the cost 
of adaptation. Minimizing the cost of searches involves a 
number of trade-offs between the cost of formulating searches 
(Search and ApproxSearch) and the quality of the retrieval. 
For instance, the coverage probabilities p and q above should 
be replaced by smaller probabilities to take into account the 
less than perfect recall of search methods (see Secti0nV.A). 
Further, a search method that is not precise (i.e., returns irrele- 
vant components) increases the cost of finding a component by 
forcing the developer to examine irrelevant components. As a 
rule of thumb, given a fixed amount of effort to be spent on 
formulating queries, we can achieve higher recall values only 
at the expense of lower precision, and vice-versa. To enhance 
both recall and precision, more effort should be spent formu- 
lating queries. We discussed a range of approaches that strike 
different balances between query complexity and retrieval 
quality (c.f. SectionV.A.3). However, there is an inherent 
practical limit to how complex queries can be, beyond which 
developers will not bother searching. As for adaptation, em- 
pirical evidence showed that the cost of modifying components 
in non-anticipated ways goes up very quickly with the scope 
and extent of the modifications [23]. The two major cost fac- 
tors are: 

nents. 

important to 00 software development and 

ment. 

1) understanding what changes need to be made and 
2) verifying and validating the component after the change. 
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Transformational systems reduce the first cost by enabling de- 
velopers to make changes directly at the requirements level 
and reduce the second cost by propagating such changes in a- 
mostly-correctness-preserving way [ 171 (cf. Section V.C). 

How far can we reduce the cost of reuse occurrences? If we 
achieve full coverage (p = 1) and develop a query language 
that is perfectly precise and that has perfect recall-that is 
called a specification language!-then we have achieved wide- 
spectrum automatic programming! The generative approach 
and the building blocks approach to software reuse approach 
full coverage from two different, but complementary direc- 
tions, The generative approaches often have a perfect coverage 
within a subarea of the application domain and need to be ex- 
tended “horizontally” to cover the entire domain. In order to 
maintain performance characteristics (e.g., code optimality), 
different modeldgenerators may be needed to cover a given 
domain. Conversely, the building blocks approach has the po- 
tential to cover an entire domain, but only sparsely so. To fill 
in the gaps, so to speak, abstract language constructs (e.g., 
module interconnection languages) are often added, yielding a 
coarse application-specific specification language whose at- 
oms are concrete application components. As language con- 
structs are added and increasingly abstract representations of 
components are used, we move progressively toward genera- 
tive approaches based on very high-level languages [148]. Fi- 
nally, it is interesting to note that in the context of the building 
blocks approach, perfect retrieval and effortless adaptation are 
only possible if the relation between specifications and imple- 
mentations has been completely formalized. To some extent, 
software reuse turns the automatic programming problem into 
several optimization subproblems, allowing us to tackle soft- 
ware automation piecewise. 
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