
SUPPORTING ASPECTS IN MDA
Vinay Kulkarni and Sreedhar Reddy

Tata Research Development and Design Centre,
54 B, Hadapsar Industrial estate, Hadapsar,

Pune, 411 013, INDIA
{vinayk, sreedharr}@pune.tcs.co.in

Abstract
For developing large and complex applications, industrial practice uses a combination of non-
formal notations and methods. Different notations are used to specify the properties of different
aspects of an application and these specifications are transformed into their corresponding
implementations through the steps of a development process. The development process relies
heavily on manual verification to ensure the different pieces integrate into a consistent whole.
This is an expensive and error prone process. Model-driven development approach addresses
this problem by providing a set of modeling notations for specifying the different layers of a
software architecture and a set of code generators for transforming the models into an
implementation. Model-driven development has resulted in improved productivity, better quality
and platform independence. However, it has not been very successful in supporting reuse and
system evolution due to inadequate modeling support for clear separation of concerns and their
composition. The model driven architecture (MDA) initiative of OMG aims to shift the focus of
software development further towards modeling. With model content in system specifications
increasing more and more, it is critical to address the issue of separation of concerns at model
level. Aspect oriented programming addresses separation of concerns at the code level. In this
paper, we argue for supporting aspects in MDA. We propose an approach wherein different
aspects can be specified using different modeling notations and propose model transformations
as a mechanism for weaving them. We discuss several issues including tool support that need to
be investigated in order to support multi-dimensional separation of concerns in MDA.

Keywords
MDA, Aspect oriented programming, Model driven development, Separation of concerns, Model
transformations, Meta modeling

1. Introduction
Model-driven development has resulted in improved productivity, better quality and platform
independence [14, 8]. However, it has not been very successful in supporting reuse and system
evolution due to inadequate modeling support for clear separation of concerns and their
composition. To facilitate traceability, reuse and evolution, a system needs to be specified as a
composition of multiple views corresponding to multiple stakeholders and their concerns [11].
Aspect oriented programming (AOP) addresses separation of concerns at the code level wherein
both aspects and components are typically specified in object oriented paradigm [3]. Aspects are
woven into components using a set of pre-defined composition relationships at specified join
points. The model driven architecture (MDA) initiative of OMG aims to shift the focus of software
development further towards modeling [9]. With model content in system specifications increasing
more and more, it is critical to address the issue of separation of concerns at model level [15]. In
this paper, we present an approach to specify aspects as models and their weaving as model
transformation. We also discuss various issues that need to be investigated and the required tool
support.

mailto:{vinayk, sreedharr}@pune.tcs.co.in

Section 2 makes a case for supporting aspects in MDA. Section 3 describes the proposed
approach. Section 4 discusses open issues and the tool support required. Section 5 discusses
related work.

2. Case for aspects in MDA
The MDA defines an approach to IT system specification that separates the specification of
system functionality from the specification of the implementation of that functionality on a specific
technology platform. To this end, the MDA defines an architecture for models that provides a set
of guidelines for structuring specifications expressed as models. A system is typically specified in
three kinds of modeling layers namely Computation independent model (CIM), Platform
independent model (PIM) and Platform specific model (PSM). A CIM specifies the system in
terms of end-user or domain concepts and can be seen as requirements specification of the
system. A PIM specifies computational realization of the system in terms of platform-independent
abstractions. A PIM can be seen as a refinement of a CIM just as a design is a refinement of a
requirements specification. A PSM specifies the implementation of the system in terms of a set of
platform-specific abstractions. A PSM can be seen as a realization of a PIM just as code is a
realization of a design. The refinement relationships between various kinds of models are
specified as a set of mappings. A mapping specification can be used to derive, wherever possible
automatically, one kind of a model from the other. Specifying a CIM is largely a manual activity. A
PIM is derived partly in an automated manner from a CIM and refined further manually. A PSM is
largely derived automatically from a PIM.

Aspect-orientation advocates specification of a system as a (de)composition of concerns along
several dimensions of interest leading to clear traceability across different levels of system
specification namely requirements, design and code.

A system has multiple stakeholders each having own view of the system that is typically captured
in a model form. A CIM captures the requirements of a system in terms of these multiple
viewpoints. Each viewpoint can be seen as a dimension of concern as advocated in aspect-
orientation. Organization of a CIM as a set of concerns / viewpoints enables concurrent
development, ease of change management and evolution through additive changes. Since a PIM
too is largely specified manually, preserving this organization at PIM level will provide the same
benefits. Lack of separation of concerns at PIM level will result in entangled and scattered models
that are difficult to comprehend and trace. In MDA, parts of PIMs are generated from CIMs and
parts are specified manually. This part-generated-part-manual nature of a PIM exacerbates the
problems of traceability and comprehension.

In MDA, a PSM is automatically derived from a PIM through a set of transformation specifications.
Having separation of concerns at PIM level will enable specification of PIM-to-PSM
transformation to be decomposed into a set of concern specific transformations. Such a
composition architecture will enable plug-and-play, change isolation, ease of evolution through
additive changes to PIM-to-PSM transformation.

3. An approach for supporting Aspects in MDA
Specification of a typical business system caters to functional and several non-functional
requirements like concurrency management, performance, security etc. In traditional AOP
parlance, functional requirements can be viewed as components and non-functional requirements
as aspects. In the MDA approach, the component and the aspects will be specified in their own
modeling languages. The weaving of an aspect into the component can be seen as
transformation of the component model as shown in Figure 1. The model transformer takes the
component model and the aspect model as input to produce a transformed component model.
The transformer itself is specified as a model [10].

C’’ = T2(C’, A2)

T2

instanceOf

C’ = T1(C, A1)

T1

A2 A1 C

AM2 AM1 CM

succ

pred

has

GroupAction

has

Action

Operation

Figure 2. Action model Figure 1. Aspect weaving as model transformation

Consider a business application in which the business functionality is specified in terms of class
models. For the purpose of this discussion we view operations as being specified in terms of a
simplified action model as shown in Figure 2.

has

ContaineeContainer

Resource
has

contains
UpdateReadOnly

Operation

Figure 3. Concurrency management aspect meta model

Consider the concurrency management aspect. Here, we view the system as comprising of
Containers and Containees having two kinds of Operations namely ReadOnly and Update. When
a container reads its contents, they should be consistent for the duration of the read operation.
This is typically achieved by taking a ReadLock on the contents being read. When a containee is
being updated, an UpdateLock is taken to prevent concurrent read / update of the same. Figure 3
describes a model for the concurrency management aspect.

The concurrency management meta model can be specified as a view over the functionality meta
model as shown in Figure 4.

Class Operation

Class

[isComposite = True] Association contains

Container Operation

Containee Operation

Operation

Figure 4. Concurrency management meta model as a view over the functionality meta
model

The weaving of the concurrency management aspect into the functionality can be seen as a
transformation as shown in Figure 5. The transformation is specified in terms of model patterns
wherein each occurrence of the left hand side pattern is replaced by an occurrence of the right
hand side pattern. Figure 5 depicts a read operation being transformed to take a ReadLock
before performing the read action.

succ

pred

succ

succ

parameter

has

parameter
Resource

Container

contains

Action

GroupAction

Operation

ReadActionReadLock

has

Resource

Container

contains

Action

ReadAction

Operation

parameter

[isRead = True]

pred

Figure 5. Weaving of the concurrency management aspect

Consider the performance aspect of a business application. In a transaction, multiple updates to
the database of an object can be replaced by a sequence of in-memory update operations
followed by a single (the last) database update operation. Similarly, multiple reads of an object
from the database can be replaced by a single (the first) database read operation followed by a
series of in-memory read operations. The read and update operations can be interspersed. A
transaction may be composed of several operations each developed independently of others. An
operation may read an object from the database and may write the same to the database. The
first step of transformation is to flatten the transaction into a sequence of, possibly interspersed,
database read and write operations. The performance optimisation transformation is applied over
this view.

The performance aspect meta model can be specified as a view over the functionality meta
model as shown in Figure 6.

hashas

GroupAction

succ

ReadAction WriteAction

writes reads

Resource

has

predpred

succ

Transaction

Figure 6. Performance aspect meta model

The weaving of the performance aspect into functionality can be seen as a transformation as
shown in Figure 7. Figure 7(a) depicts the transformation that transforms the first read action to
the database read action. Figure 7(b) depicts the transformation that transforms all subsequent
database read actions to in-memory read action. Figure 7(c) depicts the transformation that
transforms the last write action to the database write action. Figure 7(d) depicts the
transformation that removes all previous database write actions to in-memory write actions.

Consider the workflow aspect. The system is viewed as a set of actions performed on a set of
resources by a set of roles. A user plays a role on a resource. An action can only be performed
by a user if it belongs to the role the user is playing on the resource. The workflow aspect model
is specified in terms of a meta model shown in Figure 8.

writes writes

Resource

hashas

has

pred WriteAction w:WriteAction

GroupAction

Transaction

writes

Resource

has

has

w1:DBWriteAction

GroupAction

Transaction

reads

Resource

has

has

r:DBReadAction

GroupAction

Transaction

reads reads

Resource

hashas

has

succ ReadAction r:ReadAction

GroupAction

Transaction

Figure 7(c). Transformation of the last write action Figure 7(a). Transformation of the first read action

reads reads

Resource

reads reads

Resource

hashas

succ* r2:MemReadActionr1:DBReadAction

has

GroupAction

Transaction

hashas

has

succ* r2:ReadActionr1:DBReadAction

GroupAction

Transaction

Figure 7(b). Transformation of other read actions

writes writes

Resource

writes writes

Resource

hashas

pred* w2:MemWriteActionw1:DBWriteAction

has

GroupAction

Transaction

hashas

has

pred* w2:WriteActionw1:DBWriteAction

GroupAction

Transaction

Figure 7(d). Transformation of other write actions

The weaving of the workflow aspect into the functionality can be seen as a transformation as
shown in Figure 9. The transformation introduces a check for verifying if the current user is

uthorised to perform the action on the resource.

a

Figure 8. Workflow aspect meta model

has

Resource

succ

CheckAction

a:Action

GroupAction

Operation
has

RoleActio

Resource

a:Action

Operation
has

RoleActio

on

Role

Plays

Action

Operation

User

RoleAction

Resource

Figure 9. Weaving of the workflow aspect

4. Discussion

It is not clear which facets of a system deserve to be treated as aspects. There is a need to
identify which of these aspects need to be separately specified. For instance, it is not clear how to
cleanly separate the performance

 aspect from functionality. There is a need to investigate how

ese aspects can be modelled and what the right kind of abstractions for modeling them are to

g.

ied

ave to be directly implemented in a programming language. This gives rise to the issue of how

x implementations’?

an
the issue of traceability from an

spect to the final implementation. It is not clear how to compute the impact of a change in an

here is a need to investigate and devise suitable processes that aid in arriving at various aspect
es

and
n mechanism. The

odel transformation tool should have adequate support for pattern matching and composition. It

th
satisfy the various ‘ities’ like maintainability, reusability etc. For instance, how does one model a
design for better maintainability?

Aspects may overlap each other. This may introduce a dependency on the order of their weavin
In such cases, how does one ensure that properties of all aspects hold after their weaving?

Some of the aspects, for instance some design patterns, may not be amenable to be specif
completely in a model form that can be transformed into an implementation. Some of these may
h
one integrates these ‘black box implementations’ into the aspect modeling framework. For
example, how does one weave other modelled aspects into these ‘black bo

An aspect specification may exist partly in model form and partly in code form. What’s the right
approach to integrate such aspects into the aspect modeling framework?

A system is organized as a set of independently specified aspects. The knowledge of weaving
aspect is hidden inside the transformation. This gives rise to
a
aspect on the final implementation of the system. This information would be critical for ‘what if
analysis’, estimating testing efforts, managing releases etc.

T
models from system requirements. There is a need for well-defined guidelines and best practic
to enable a non-expert developer make the best use of the proposed approach.

Supporting aspects in MDA raises several tooling requirements. The modeling tool should be
extensible to support new modeling languages. This is required to define new aspect models
relate them to the existing component models through model transformatio
m

should provide support for incremental reconciliation of models. The performance of the tool
should scale up to cater to the demands of enterprise class applications.

There should be tool support for intelligent debugging at aspect model level. This is significant

ecause aspects are specified independent of each other and are woven together into the final

here should be support, preferably tool-aided, for aspect-based testing. Since aspects are

here is a need for tool support to check the consistency of aspect composition. For instance,
when two aspects overlap it should be possible to check if it is safe to put them together so that

 of each aspect hold in the woven model.

signing reusable aspects using composition
atterns [13]. We feel this technique cannot address complex composition scenarios that require

d

tJ [2],
yper/J [4] etc. and a visual notation for the same. They do not discuss what the right kind of

abstractions are to represent various aspects. The weaving techniques proposed therein are not
s complex composition scenarios requiring model transformations.

per, we argued for supporting aspects in MDA. We proposed a model transformations
ased approach for aspect weaving. We discussed several issues that need to be investigated to

support multi-dimensional separation of concerns in MDA. We also discussed some tooling

tion paper for the Third international workshop on Aspect oriented modeling 2003.

b
implementation code. A bug detected at code level should be traceable back to the aspect
specification.

T
independently specified, it should be possible to specify test cases for an aspect independently
and compose the test cases to arrive at the system level test cases.

T

the respective properties

5. Related work
Robert France et al discuss the need for investigating which concerns are amenable for
specification as aspects and the need for suitable techniques for their composition [12].

Siobhan Clarke et al propose a technique for de
p
model reorganisation. The power of model transformation, as proposed in this paper, is require
to address complex composition requirements.

Several techniques have been proposed for modeling aspects in UML [1, 5, 6, 7]. Essentially,
they provide an abstract syntax for aspect-oriented programming languages like Aspec
H

adequate to addres

6. Summary
In this pa
b

issues.

References

1. Dominik Stein, Stefan Hanenberg, and Rainer Unland, “Issues on Representing Crosscutting
Features”, posi
http://lglwww.epfl.ch/workshops/aosd2003/papers/Stein-AOMissues.pdf
G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, “An Overview of AspectJ”, ECOOP'01,
Budapest, 2001.

2.

ECOOP’97 LNCS 1241, pp 220-242.
Springer-Verlag. June 1997.

4.

3. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Longtier and John Irwin. “Aspect oriented programming”.

IBM research. Hyper/J: Multi-dimensional separation of concerns for Java.
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm

http://lglwww.epfl.ch/workshops/aosd2003/papers/Stein-AOMissues.pdf
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
http://lglwww.epfl.ch/workshops/aosd2003/papers/AldawudAOSD_UML_Profile.pdf

5. Omar Aldawud, Tzilla Elrad and Atef Bader, “UML profile for aspect-oriented software development”,
position paper for the Third international workshop on Aspect oriented modeling 2003.
http://lglwww.epfl.ch/workshops/aosd2003/papers/AldawudAOSD_UML_Profile.pdf

6. Phillip Schmidt, Sergio Alvarado, Jaime Milstein, Gregory Mulert, Robert Duvall and Jesus Rivera, “A

 .pdf

systems engineering perspective of aspect-oriented software architectural analysis using UML”,
position paper for the Third international workshop on Aspect oriented modeling 2003.

 http://lglwww.epfl.ch/workshops/aosd2003/papers/Schmidt-SEperspectiveOfAOSAUsingUML

 2003.
corporatingAspectsIntotheUML.pdf

7. Mark Basch and Arturo Sanchez, “Incorporating aspects into the UML”, position paper for the Third
international workshop on Aspect oriented modeling
http://lglwww.epfl.ch/workshops/aosd2003/papers/Basch-I

 Centre. http://www.tcs.com/0_products/mastercraft/index.htm
8. MasterCraft – Component-based Development Environment. Technical Documents. Tata Research

Development and Design

9. Model driven architecture (MDA). http://www.omg.org/mda/
QVT Partners Initial submission to the MOF 2.0 Q/V/T 10. RFP http://www.omg.org/cgi-
bin/doc?ad/03-03-27
Rich Hilliard, “Views and viewpoints in software systems architecture”, position paper for the First working IFIP 11.

9.

ps/aosd2003/papers/Robert-.pdf

conference on software architecture (WICSA 1), San Antonio, Feb 199

12. Robert France, Geri Georg and Indrakshi Ray. “Supporting multi-dimensional separation of design
concerns”, position paper for the Third international workshop on Aspect oriented modeling 2003.
http://lglwww.epfl.ch/worksho

 Conference on Software Engineering (ICSE),

14.
, LNCS 2426, pp 270-279. 2002.

5. Vinay Kulkarni and Sreedhar Reddy. “Integrating aspects with model-driven software development”.
In proceedings of International conference on Software Engineering Research and Practice, Las Vegas,
USA, June 2003.

13. Siobhán Clarke and Robert J. Walker. "Composition Patterns: An Approach to Designing Reusable
Aspects" In proceedings of the 23rd International
Toronto, Canada, May 2001.
Vinay Kulkarni, R. Venkatesh and Sreedhar Reddy. “Generating enterprise applications from
model”s. OOIS’02

1

http://lglwww.epfl.ch/workshops/aosd2003/papers/Schmidt-SEperspectiveOfAOSAUsingUML.pdf
http://lglwww.epfl.ch/workshops/aosd2003/papers/Basch-IcorporatingAspectsIntotheUML.pdf
http://www.tcs.com/0_products/mastercraft/index.htm
http://www.omg.org/mda/
http://www.omg.org/mda/
http://www.omg.org/mda/
http://lglwww.epfl.ch/workshops/aosd2003/papers/Robert-.pdf

	Abstract
	Keywords
	1. Introduction
	2. Case for aspects in MDA
	3. An approach for supporting Aspects in MDA
	4. Discussion
	5. Related work
	6. Summary
	References

