

Software Engineering for

Adaptive Hypermedia Systems

Reference Model, Modeling Techniques
and Development Process

Nora Parcus de Koch

Dissertation

zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften

an der Fakultät für Mathematik und Informatik
der Ludwig-Maximilians-Universität München

Tag der Einreichung: 20. Oktober 2000

Tag der mündlichen Prüfung: 12. Dezember 2000

Berichterstatter

Prof. Dr. Martin Wirsing

Priv.-Doz. Dr. Rolf Hennicker

Copyright © 2001 by Nora Parcus de Koch

to my daughters
Tania and Ivonne

 Abstract

This work proposes an engineering approach for adaptive hypermedia applications.
Adaptive hypermedia applications are user-centred systems that are based on the
hypermedia paradigm, i.e. they are a network of nodes connected by links and they
administrate a user model to adapt themselves dynamically to the user.

This software engineering approach consists of an object-oriented, incremental and
iterative development process. It supports the entire lifecycle of adaptive
hypermedia applications from feasibility study to maintenance and includes project
management, software development and quality management activities. The main
focus of the work is the description of a systematic methodology for the analysis
and design of adaptive hypermedia applications. An extension to the Unified
Modeling Language (a so-called UML profile) is specified to provide an adequate
notation for the visual representation. It allows for an easy construction of
navigation, presentation and adaptation models, which are part of the proposed
methodology. The software engineering approach is based on an object-oriented
reference model for adaptive hypermedia applications that is visually modeled in
UML and formally specified in the Object Constraint Language (OCL).

This software engineering approach is also appropriate for the development of
personalised Web applications and the development of non-adaptive hypermedia
applications that can make use of the presented techniques and methodology
merely by skipping the specific features of user modeling and adaptation.

 Acknowledgements

I am indebted to a large number of people for their inspiration and support during
the research and writing of my doctoral thesis.

Particular thanks go to:

Martin Wirsing, my adviser, whose constant support, and confidence that I
could do it, encouraged me to continue and complete this project.

Rolf Hennicker, whose interest in my work, discussions on software
engineering and valuable critique of the methodology I proposed, had a great
influence on my research progress.

The Hochschulsonderprogramm III of the Ludwig-Maximilians-Universität
München, for financial support and Edda Ziegler for her organisational
commitment to this program. Thanks also to the interdisciplinary and
multicultural members of the HSP-Kolloquium for sharing their experience in
the preparation of doctoral thesis and post-doctoral projects.

María Victoria Cengarle, for numerous discussions on software engineering,
formal methods and, especially, on OCL.

Julita Vassileva, for suggestions and comments related to user modeling and
adaptive systems.

Luis Mandel, Daniel Schwabe, Alicia Diaz, Hubert Baumeister, Alfred
Helmerich, and Friederike Nickl, for discussions on hypermedia design and
Web engineering.

Gustavo Rossi, whose doctoral thesis was a source of inspiration at the
beginning of my research activities.

Florian Albrecht and Thomas Tiller, for the excellent work they did during
their diploma thesis on implementing the adaptive hypermedia system
SmexWeb.

Rudolf Haggenmüller, for flexible working hours at F.A.S.T. GmbH.

Alexander Knapp and Luis Mandel, for helping me make my come back in the
academic world after years of working in industry.

Dorith Schießl, Alba Püschel and Lindsay Dyson-Smith, for their friendship
and advice in the use of the English language.

My special thanks to:

Miguel, my husband, without whose love and patience I would never have
finished this work.

My daughters, Tania and Ivonne, for their love and understanding for so much
time I spent in front of the computer over the last few years.

Contents

1 INTRODUCTION..1

1.1 MOTIVATION.. 5
1.2 GOALS AND RESULTS.. 6
1.3 ORGANISATION OF THE WORK.. 8

2 ADAPTIVE HYPERMEDIA SYSTEMS..11

2.1 ADAPTATION AND FEASIBILITY .. 13
2.1.1 Objectives ..13
2.1.2 Benefits ..14
2.1.3 Risks ...14
2.1.4 Difficulties ...15

2.2 ADAPTATION LIFECYCLE .. 15
2.3 LEVELS OF ADAPTATION... 18
2.4 ADAPTATION METHODS AND TECHNIQUES.. 19

2.4.1 Adaptive Content...20
2.4.2 Adaptive Navigation ...22
2.4.3 Adaptive Presentation...24

2.5 THE ROLE OF THE USER MODEL .. 25
2.6 ACQUISITION TECHNIQUES ... 26
2.7 USER INTERACTION POSSIBILITIES ... 27
2.8 APPLICATIONS AREAS ... 27

2.8.1 Instructional Hypermedia Systems ..28
2.8.2 Hypermedia Search Engines..29
2.8.3 Online Information Systems ...30
2.8.4 Online Help Systems ...31
2.8.5 Personal Assistants ...32

2.9 HOW TO MEASURE ADAPTIVE HYPERMEDIA SYSTEMS .. 32

3 USER MODELS AND USER MODELING...35

3.1 CHARACTERISTICS OF USER MODELS .. 38
3.2 USER MODEL FOUNDATIONS .. 39
3.3 TYPES OF USER MODELS .. 41
3.4 OBJECTIVES OF USER MODELING... 44

3.4.1 Help to Learn ..44
3.4.2 Support Collaboration and Assistance..45
3.4.3 Find and Tailor Information ..46
3.4.4 Improve Man-Machine Communication ...46

3.5 INITIALISATION OF USER MODELS.. 46
3.5.1 Explicit Questioning ...46
3.5.2 Default Assumptions ...47

3.6 USER MODEL INTERNAL STRUCTURE .. 48
3.6.1 Overlay Model...49
3.6.2 User Profile ...50
3.6.3 Stereotyped Model ..50
3.6.4 Bayesian Networks..51

3.7 USER MODELS UPDATING PROCESS... 52
3.7.1 Acquisition techniques..53
3.7.2 Acquisition process...54

3.8 SHARING USER MODELS ... 58
3.9 DEVELOPMENT OF USER MODELS ... 59

4 AN OBJECT-ORIENTED REFERENCE MODEL...61

4.1 REFERENCE MODELS FOR HYPERMEDIA SYSTEMS... 62
4.1.1 The Dexter Hypertext Reference Model ..64
4.1.2 AHAM: Adaptive Hypermedia Application Model ...69
4.1.3 AHM: Amsterdam Hypermedia Model ..71
4.1.4 DFHM: Dortmund Family of Hypermedia Models...72

4.2 THE MUNICH REFERENCE MODEL ... 73
4.2.1 Architecture of Adaptive Hypermedia Systems...73
4.2.2 Extensions to the Dexter Hypertext Reference Model75

4.3 FORMAL SPECIFICATION OF THE MUNICH MODEL... 77
4.3.1 The Domain Model ...78
4.3.2 The User Model...92
4.3.3 The Adaptation Model ..98
4.3.4 The Run-Time Layer ...104
4.3.5 Authoring Functions ...114

4.4 BASIS FOR THE DEFINITION OF MODELING TECHNIQUES..119

5 COMPARISON OF HYPERMEDIA ENGINEERING APPROACHES..............121

5.1 DEVELOPMENT OF HYPERMEDIA SYSTEMS ...122
5.1.1 HDM: Hypermedia Design Method...124
5.1.2 RMM: Relationship Management Methodology ...125
5.1.3 EORM: Enhanced Object Relationship Methodology..................................126
5.1.4 OOHDM: Object-Oriented Hypermedia Design ..127
5.1.5 SOHDM: Scenario-based Object-orientedHypermedia Design Methodology
 ..129
5.1.6 WSDM: Web Site Design Method...129
5.1.7 MacWeb Approach..130
5.1.8 HFPM: Hypermedia Flexible Process Modeling..131
5.1.9 OO/Pattern Approach...133
5.1.10 WAE – Conallen Process...133
5.1.11 Lowe-Hall’s Engineering Approach ..134

5.2 NOTATIONS USED IN HYPERMEDIA DESIGN ...134
5.3 COMPARING HYPERMEDIA DEVELOPMENT METHODS..135
5.4 THE UNIFIED PROCESS AND HYPERMEDIA DEVELOPMENT140
5.5 LESSONS LEARNED FROM THE COMPARATIVE STUDY..144

6 MODELING TECHNIQUES FOR THE DESIGN OF ADAPTIVE HYPERMEDIA
 145

6.1 USE CASE MODEL ...148
6.2 CONCEPTUAL MODEL ...150
6.3 USER MODEL...153
6.4 NAVIGATION MODEL...155

6.4.1 Navigation Space Model ..156

6.4.2 Navigation Structure Model ...159
6.5 PRESENTATION MODEL...173

6.5.1 Abstract User Interface Model...174
6.5.2 Presentation Structure Model ..179
6.5.3 Presentation Flow Model..184
6.5.4 Object Lifecycle Model ...187

6.6 ADAPTATION MODEL ..189

7 THE SOFTWARE DEVELOPMENT PROCESS ..195

7.1 ADAPTIVE HYPERMEDIA SYSTEMS ..197
7.1.1 Covering the Life Cycle ..198
7.1.2 Iterative Development...199

7.2 PHASES OF THE PROCESS ..201
7.2.1 Inception..203
7.2.2 Elaboration..206
7.2.3 Construction..207
7.2.4 Transition ..209
7.2.5 Maintenance..210

7.3 DEVELOPMENT PROCESS ..211
7.3.1 Requirements Capture ..212
7.3.2 Analysis and Design ...230
7.3.3 Implementation..252

7.4 PROJECT MANAGEMENT ...262
7.4.1 Risk Management..262
7.4.2 Iteration Planning...268
7.4.3 Iteration Evaluation..272

7.5 QUALITY MANAGEMENT ..275
7.5.1 Validation ..276
7.5.2 Verification ..279
7.5.3 Testing..282

8 DEVELOPMENT OF SMEXWEB APPLICATIONS – A CASE STUDY287

8.1 THE SMEXWEB FRAMEWORK ..288
8.1.1 The Architecture..289
8.1.2 The Tutor ...292
8.1.3 The Communication..293
8.1.4 The UserModel..293
8.1.5 The Hyperspace ..294

8.2 DEVELOPMENT OF THE EBNF-APPLICATION...295
8.2.1 Inception Phase (Iteration 1) ...296
8.2.2 Elaboration Phase (Iterations 2 and 3) ...298
8.2.3 Construction Phase (Iteration 4 and 5) ...302
8.2.4 Transition Phase (Iteration 6)..305
8.2.5 Maintenance Phase (Iteration >= 7)...308

8.3 ANALYSIS AND DESIGN MODELS FOR THE EBNF-APPLICATION309
8.3.1 Use Case Model ..309
8.3.2 Conceptual Model...311
8.3.3 User Model ..312
8.3.4 Navigation Model..314

8.3.5 Presentation Model...317
8.3.6 Adaptation Model..321

8.4 THE TAXONOMY APPLICATION ..324
8.5 LEARNING PROCESS SUPPORTED BY SMEXWEB ..325

9 CONCLUSIONS...327

9.1 CONCLUDING REMARKS ABOUT THE REFERENCE MODEL328
9.2 CONCLUDING REMARKS ABOUT THE MODELING TECHNIQUES329
9.3 CONCLUDING REMARKS ABOUT THE DEVELOPMENT PROCESS................................331
9.4 PROPOSING FUTURE RESEARCH ...332

APPENDIX UML EXTENSION FOR HYPERMEDIA..335

STEREOTYPES FOR MODELING HYPERMEDIA APPLICATIONS...335
STEREOTYPES FOR MODELING ADAPTIVE FEATURES...338

REFERENCES...341

 List of Figures and Tables

Figure 2-1 Lifecycle Model of Adaptation ...16

Table 2-2 Methods and Techniques for Adaptive Content ..21

Table 2-3 Methods and Techniques for Adaptive Navigation...24

Table 2-4 Methods and Techniques for Adaptive Presentation.......................................25

Figure 3-1 A User Stereotype Hierarchy..48

Figure 3-2 Bayesian Network ...52

Figure 4-1 Layers of the Dexter Hypertext Reference Model..65

Figure 4-2 UML Class Diagram for the Storage Layer of the Dexter Model..................68

Figure 4-3 UML Class Diagram for the Run-Time Layer and Part of the Storage
Layer...69

Figure 4-4 Architecture of Adaptive Hypermedia Systems..74

Figure 4-5 UML Class Diagram of the Domain Model...78

Figure 4-6 The Children Association Class..89

Figure 4-7 UML Class Diagram of the User Model and Associations to the Domain
Model..93

Figure 4-8 Adaptation Model..100

Figure 4-9 UML Class Diagram for the Run-Time Layer and Part of the Storage
Layer...105

Table 5-1 Methods for Hypermedia Development: Processes, Techniques, Notations
and Tools..136

Table 5-2 Concepts Used in the Methods...138

Figure 5-3 UP Workflows covered by the Hypermedia Development Method..............139

Figure 6-1 Models built during the Design..147

Figure 6-2 Use Case Model for the Online Library Application....................................149

Figure 6-3 Class with additional Compartment Variants...151

Figure 6-4 Conceptual Model of the Online Library Application..................................152

Figure 6-5 User Model of the Online Library Application..154

Figure 6-6 User Model Packages..155

Figure 6-7 Navigation Class..157

Figure 6-8 Stereotype for External Node ..157

Figure 6-9 Navigation Space Model of the Online Library Application........................158

Figure 6-10 Index Class...161

Figure 6-11 Shorthand Notation for Index Class...161

Figure 6-12 Guided Tour Class...161

Figure 6-13 Shorthand Notation for Guided Tour Class..161

Figure 6-14 Query Class...162

Figure 6-15 Shorthand Notation for Query..162

Figure 6-16 Navigation Structure Model (First Step)..163

Figure 6-17 Menu Class...165

Figure 6-18 Shorthand for Menu Class..165

Figure 6-19 Navigation Structure Model (Second Step)...166

Figure 6-20 Pattern for Access Structures..167

Figure 6-21 Navigation Structure Model (Third Step)..169

Figure 6-22 Indexed Guided Tour..170

Figure 6-23 Navigation Context triggered by an Index ...171

Figure 6-24 Grouped Context...172

Figure 6-25 Context Package and Context Change..172

Figure 6-26 Shorthand for Context Package..172

Figure 6-27 Presentation Class as Container other Presentation Modeling Elements ..175

Figure 6-28 Presentation Class of Library Main Menu...177

Figure 6-29 Presentation Class.of Composite Library and Author Menu........................177

Figure 6-30 Presentation Class Author..177

Figure 6-31 Presentation Class Article ...177

Figure 6-32 Presentation Class SearchAuthorByName..178

Figure 6-33 Presentation Class AuthorIndexByName...178

Figure 6-34 Window Class...180

Figure 6-35 Frameset Class and Frame Class...180

Figure 6-36 Pattern for Main Presentation Elements..181

Figure 6-37 Partial Presentation Structure Model ...182

Figure 6-38 Page Presentation..182

Figure 6-39 Alternative Representation for Page..183

Figure 6-40 Presentation Flow Model of the “Search Author” Scenario........................186

Figure 6-41 Object Lifecycle Model..188

Figure 6-42 Rule Class...190

Figure 6-43 User Behaviour Class..190

Figure 6-44 Pattern for Adaptation...191

Figure 6-45 Part of the Adaptation Model..193

Figure 7-1 Iteration Workflow...200

Figure 7-2 UML-based Web Engineering Process for One Release...............................203

Figure 7-3 Requirements Capture Workflow..214

Figure 7-4 Template for Use Case Description...227

Figure 7-5 Use Case Model for the Online Library Application....................................228

Figure 7-6 Part of the Glossary...229

Figure 7-7 Analysis and Design Workflow...231

Figure 7-8 Conceptual Model of the Online Library Application..................................239

Figure 7-9 User Model of the Online Library Application..241

Figure 7-10 Navigation Space Model of the Online Library Application........................243

Figure 7-11 Navigation Structure Model of the Online Library Application...................244

Figure 7-12 Presentation Structure Model of the Online Library Application (Partial
View) ..245

Figure 7-13 Presentation Class of Library Main Menu..246

Figure 7-14 Presentation Class of Composite Library and AuthorMenu........................246

Figure 7-15 Presentation Class Author..247

Figure 7-16 Presentation Class Article..247

Figure 7-17 Abstract User Interface Model of one Online Library Page........................247

Figure 7-18 Presentation Flow Model of the Online Library Application (Partial View)
..248

Figure 7-19 Adaptation Model of the Online Library Application...................................249

Figure 7-20 Architecture of the Online Library Application..250

Figure 7-21 Class Description..251

Figure 7-22 Subsystems of the Online Library Application..252

Figure 7-23 Implementation Workflow...253

Figure 7-24 Risk Management Workflow...263

Table 7-25 Risks for the Online Library Project...267

Table 7-26 Actions to Mitigate Risks for the Online Library Project..............................267

Figure 7-27 Iteration Planning Workflow...268

Figure 7-28 Iteration Evaluation Workflow..272

Figure 7-29 Sample Iteration Report for the Online Library Project...............................274

Figure 7-30 Validation Workflow..276

Figure 7-31 Verification Workflow..280

Figure 7-32 Testing Workflow...283

Figure 8-1 Architecture of SmexWeb..290

Figure 8-2 The SmexWeb Server...291

Table 8-3 Activities performed during the Inception Phase..297

Figure 8-4 Frameset proposed for SmexWeb Applications...299

Table 8-5 Activities performed during the Elaboration Phase......................................300

Table 8-6 Activities performed during the Construction Phase302

Figure 8-7 Formal Description of the Exercise’s Task of the EBNF-Application.........304

Figure 8-8 Pragmatic Description of the Exercise’s Task ofthe EBNF-Application.....305

Figure 8-9 An Interactive Exercise of the EBNF-Application...306

Table 8-10 Activities performed during the Transition Phase...307

Table 8-11 Activities performed during the Maintenance Phase308

Figure 8-12 Use Case Model of the EBNF-Application..310

Figure 8-13 Conceptual Model of the EBNF-Application...311

Figure 8-14 User Model of the EBNF-Application ...313

Figure 8-15 Exercise View of the Navigation Space Model..314

Figure 8-16 General View of the Navigation Space Model...315

Figure 8-17 Exercise View of the Navigation Structure Model ..316

Figure 8-18 General View of the Navigation Structure Model ..317

Figure 8-19 Presentation Structure Model ..319

Figure 8-20 Presentation Flow Model ...320

Figure 8-21 Abstract User Interface Model of the Exercise “Building Rules”................321

Figure 8-22 Adaptation Model of the EBNF-Application (Partial View)..........................324

Chapter 1 • Introduction • 1

"As We May Think"
Vannevar Bush,

The Atlantic Month,
July 1945

1 Introduction

The World Wide Web (WWW or Web) has changed the way we work and the way
we live. The Web is currently the most successful hypermedia system in existence,
but “the Web is far from done” as Berners-Lee (1999), the inventor of the WWW
stresses. We are moving to a more “intelligent”, collaborative, and personalised
Web. It is becoming more a personal environment for collaborative creation than
just for browsing. The future “semantic Web” proposed by Berners-Lee is a Web of
data with meaning in the sense that software can learn about what the data means,
to process it.

This work focuses on the development of “personalised” hypermedia applications
(Web applications are a special case of hypermedia applications, i.e. hypermedia
applications for the Web)1. Personalisation, also called customisation or adaptation,
is the process, which – when applied to software – consists of a change in the
behaviour of the system based on the knowledge the system has of the user. This
knowledge can be supplied by the user herself2 or by the software system, which is
prepared to observe and register the user’s behaviour. Software systems with the
capability to acquire information about the user, to build a user model with it, and

1 In this work the more general term hypermedia is used.
2 The feminine form is used in this work for for users and customers and the masculine form for
developers.

 2 • Introduction • Chapter 1

to utilise the user model to dynamically adapt themselves are called adaptive
systems.

Adaptive hypermedia systems (AHS) are both, adaptive and hypermedia systems.
They combine hypermedia with Intelligent Tutoring Systems (ITS) guidance
through the adaptation of the information presented, the layout of the presentation
or the way in which the information units are visited, i.e. how navigation is
performed.

The concept of hypertext, later hypermedia was created by Nelson (1960), who
defined hypertext as “non-sequential writing – text that branches and allows
choices to the reader, best read at an interactive screen”. Nelson assumed that both
the reading and writing process would be supported by hypertext. However, the
first person to define the concept of hypertext (without using the word hypertext)
was Busch in his famous article “As we may think” (1945). There – referring to
scientific publications – he says: “A record, if it is to be useful to science, must be
continuously extended, it must be stored, and above all it must be consulted... Our
ineptitude in getting the record is largely caused by the artificiality of systems of
indexing... The human mind does not work that way. It operates by association”.
Busch proposed a solution called a memex: “A memex is a device in which
individual stores all his books, records, and communications, and which is
mechanized so that it may be consulted with exceeding speed and flexibility. It is
an enlarged intimate supplement to his memory”.

A more pragmatic description of hypertext stems from Conklin (1987): “The
concept of hypertext is quite simple: Windows on a screen are associated with
objects in a database, and links are provided between these objects, both
graphically (as labelled tokens) and in the database (as pointers)”.

The essential feature of hypermedia is the concept of a network of nodes connected
by links. A node is a unit that contains text and/or multimedia elements, such as
images, video, audio, or animations. A link is usually directed and connects two
nodes: the source node and the destination node. A link is associated with a
specific part of the content of the source node, e.g. a word, a phrase or an image.
This part of the source node is called an anchor. It is the linking capability which
allows a non-linear organisation of the text or multimedia content. The activity
whereby the user accesses a node by following links is known as browsing or
navigation. Hypertext basic concepts are formally described by the Dexter
Hypertext Reference Model in the specification language Z (Halasz & Schwartz,
1990). Adaptive hypermedia applications are those that adapt the content or
presentation of their nodes and/or their links to the user.

Chapter 1 • Introduction • 3

The advantage of the hypermedia style of structuring and accessing information
has, however, some limitations and shortcomings for users and developers. The
disadvantages for the users are an easy disorientation – the so called “lost in the
hyperspace” syndrome – and the cognitive overload. Thus, the developer’s
challenge is the management of the cognitive burden which is placed to the user,
producing high quality hypermedia applications that reduce the overhead of
remembering hyperlinks and support the users through navigation. If a hypermedia
application is well developed the user does not require to understand the entire
information space; to navigate she has only to understand the local context to find a
suitable link destination (Lowe & Hall, 1999).

The typical design problems of hypermedia, such as how to increase local and
global coherence of a hypermedia applications, how to improve orientation and
how to facilitate navigation are addressed by many researchers. Among others the
following design principles are suggested: the use of higher order information
units, the visualisation of the structure of the hypermedia system (e.g. overview or
local maps), the provision of additional navigation facilities (e.g. forward and
backward navigation, providing indexes, history trails, landmarks and bookmarks),
and the use of a stable screen layout (Thüring, Hannemann & Haake, 1995 and
Linard & Zeiliger, 1995).

Adaptive hypermedia systems seek to solve the disorientation and cognitive
overload problems in a different way, i.e. by adopting a user-centred approach. The
user is observed by the system, a user model is built for the individual user, and the
system adapts visible aspects of the system to the user. More precisely, the
adaptation of the content and presentation avoids cognitive overhead by showing
the appropriate information with the adequate layout to the individual user.
Adaptive navigation solves the disorientation problem by limiting browsing space,
providing annotations for the links, hiding some irrelevant links or suggesting the
best link to follow. From the commercial point of view, personalisation has the
advantage to draw new visitors, to turn visitors into buyers, to increase revenues
and to increase advertising efficiency.

Eklund and Zeiliger (1996) summarise the characteristics of adaptive hypermedia
systems as follows: AHS are “explicitly based on hypertext (or hypermedia), and
use a model of the user's knowledge or goals to modify links or content to present
individualised instruction or guidance”. Adaptive hypermedia gives the Web
intelligence in the sense that these systems have the ability to “understand” the
user and to customise the application.

Most of the current adaptive hypermedia applications have been implemented as
prototypes and improved in successive steps. We need a process to perform the
development in an effective and efficient way. This process must address project

 4 • Introduction • Chapter 1

management, development and test techniques, metrics for evaluation, etc. Such a
process supports, the human mind’s planning activities during the development of
complex software systems through knowledge representations and guidelines.

In this work an engineering approach for adaptive hypermedia systems is
presented. It focuses on the process and on object-oriented modeling. It is not
concerned with implementation. The main motivation for this decision is the fast
evolution of the implementation technologies and platforms.

The proposed software engineering approach consists of a reference model,
modeling techniques and a development process. The Unified Modeling Language
(UML, 1999)3 was chosen for all models, techniques and notations used. This
decision was taken based on the fact that the UML is an international standard
since 1997 (OMG, 2000). The Object Constraint Language (OCL)4, that is part of
the UML, is used for the formal specification and the process is based on the
Unified Software Development Process (Jacobson, Booch, Rumbaugh, 1999).

In summary, the software engineering approach is a Unified Process and UML-
based approach. It is named UWE, acronym for UML-based Web Engineering.

The main characteristics of UWE are:

• It is an entirely object-oriented approach.

• It presents a reference model visually represented in UML and formally
specified in OCL.

• It supports visual modeling techniques.

• It provides a UML extension (profile) for adaptive hypermedia applica-
tions.

• It defines a development process that covers the whole lifecycle of
adaptive hypermedia applications.

The UML-based Web engineering approach was validated using several case
studies. This work shows how the guidelines and techniques of UWE have been
used in the development process of an adaptive hypermedia exercising system for
computer science students. The SmexWeb framework (Albrecht, 1998 and Tiller,
1998) was used for the implementation of this exercising system.

3 UML Version 1.3
4 OCL Version 1.3

Chapter 1 • Introduction • 5

1.1 Motivation

Adaptive hypermedia applications are complex software systems, whose
development process demands an exhaustive feasibility study, adequate planning
and experience in the construction of hypermedia applications, user modeling and
adaptation techniques.

Software engineering is always a knowledge-intensive process. It requires different
types of knowledge from the software developers: procedural, semantic and
episodic. Procedural knowledge is related to the developer’s ability to interact with
the environment, e.g. finding the appropriate people to interview (potential users
and customers) or using a case tool. Semantic and episodic knowledge are based on
information. The former is related to the meaning of descriptions, such as
processes, notations and adaptation techniques. The latter consists of experience
with such knowledge, e.g. the usefulness of certain diagrams, patterns, user models
or programming constructs. Semantic knowledge is obtained through learning,
while episodic knowledge is obtained through experience based on the topics
learned (Robilliard, 1999). Adaptive hypermedia developers and adaptive Web
developers as well as general software developers all require semantic, episodic
and procedural knowledge.

Software development involves processing a large amount of information belonging
to a set of different domains. As we are not able to register all this information, we
require assistance to manage it. A specific methodology for adaptive hypermedia
applications, such as the engineering approach presented in this work allows for
the reuse of information and knowledge gained in the development of a wide
spectrum of hypermedia and adaptive applications. It supports a more effective and
efficient development of such applications. Adaptive hypermedia and adaptive Web
development is different because between others, it requires a great deal of
communication and team synergy, tasks are often done in parallel and the goal is to
take into account the needs, preference and knowledge of each user. The
complexity of adaptive hypermedia applications is generally underestimated.
Managers, developers and academics still consider hypermedia development as an
authoring activity rather than an application development to which well-known
software engineering practices could apply (Murugesan, Deshpande, Hansen &
Ginige, 1999).

This work was motivated by the lack of an software engineering approach for
adaptive hypermedia systems. The main aim of this approach was the use of
current object-oriented techniques. General object-oriented software engineering
approaches, such as the Unified Process (Jacobson, Booch & Rumbaugh, 1999) and
the Rational Unified Process (Kruchten, 1998) or specific methodologies for

 6 • Introduction • Chapter 1

hypermedia like RMM (Isakowitz, Stohr & Balasubramanian, 1995), OOHDM
(Schwabe & Rossi 1998), and HFPM (Olsina, 1998) are not sufficient as they do
not cover user modeling and adaptation issues. Wu, Houben and de Bra (1999)
cover specific adaptive aspects, but they neither address a process that allows the
systematic development of adaptive applications nor use object-oriented
techniques.

In addition, the choice of UML as the modeling language for this work was taken
before the UML became an OMG standard. Kobryn (1999) stresses that the major
benefits of international standardisation for a specification include wide
recognition and acceptance, which typically enlarge the market for products based
on it. Despite the problems with UML, having a standard is a step in the right
direction. The modeling community can focus now on improving one modeling
language instead of a few dozen OO languages (Siau & Cao, 2001). The use of
UML for modeling purposes is a must, as there is a guarantee that UML is updated
and improved, it is supported by tools, conferences and books, and, even most
importantly, UML improves the communication between people involved in a
software development project as they “talk” the same language.

1.2 Goals and Results

By way of an analogy to hypermedia engineering (Lowe & Hall, 1999), engineering
for adaptive hypermedia applications can be defined as a systematic, disciplined
and measurable approach that supports the entire life cycle of adaptive hypermedia
systems. This life cycle goes from conception through the elaboration, construction,
delivery and maintenance to the cessation of the application.

The goal of the software engineering approach is to support developers during
these different phases in organising mental activities, working at various levels of
detail and abstraction, generating visual representations adapted to the designers
level of experience, presenting the solution’s constraints, building representations
of the application and finally outlining plan structures and strategies (Robilliart,
1999).

The main results of the present work – the UWE approach – are a reference model
for adaptive hypermedia systems, modeling techniques for the analysis and design
of such applications and a development process that covers the entire lifecycle of
these applications. The validation of the engineering approach was done using a
case study of an adaptive learning-system for student use.

Chapter 1 • Introduction • 7

The reference model for adaptive hypermedia applications was elaborated in order
to identify the features that characterise adaptive hypermedia and personalised
Web applications as a previous step to the definition of appropriate modeling
techniques. It is named after the place where it was developed: Munich Reference
Model. The use of UML allows for a graphical representation of the reference
model and the use of OCL for a formal description of the functionality of the model
(Gogolla & Richters, 2000).

The main characteristics of the Munich Reference Model are:

• It is based on the Dexter Hypertext Reference Model.

• It includes a user model and an adaptation model.

• It is formally specified in OCL and visually represented in UML.

Existing user modeling techniques and the more relevant methodologies for general
hypermedia have been compared in this work prior to the definition of a specific
development process for adaptive hypermedia applications. The survey analyses
how these engineering approaches cover the hypermedia applications lifecycle,
which techniques and notations they use, and what their strengths and weaknesses
are.

The modeling techniques of the UWE approach for the methodical analysis and
design of adaptive hypermedia applications comprise modeling elements, notation
and a method. The notation and semantics of these elements define a “lightweight”
UML extension (profile); the method supports the systematic construction of
adaptive hypermedia applications. The aim is to obtain a method that allows as
many steps as possible to be performed in an automatic way.

The main characteristics of the UWE modeling techniques are:

• It supports visual and systematic modeling.

• Hypermedia issues, such as content, navigation and presentation are
treated separately from user modeling and adaptation issues.

• It provides a UML profile based on the extension mechanisms of the
UML and uses it for the construction of the analysis and design models.

These modeling techniques were developed during the initial phase of this project
and are also known as UML-based Hypermedia Design Method (UHDM). They are
now integrated in the analysis and design workflows of UWE development process
for adaptive hypermedia.

 8 • Introduction • Chapter 1

The development process of UWE tailors the Unified Process for the hypermedia
(Web) domain and for adaptive hypermedia, in particular. At the same time it
extends the Unified Process to include project management and quality
management support. UWE includes a maintenance phase and changes the idea of
quality control management incorporating workflows for requirements validation
and design verification in addition to the testing of the implemented software.

The main characteristics of the development process of the UWE approach are:

• It is an object-oriented, workflow-based, iterative and incremental
process.

• It specialises the Unified Process for the development of adaptive
hypermedia applications describing which “experts” (workers) are
required, which activities they perform and which specific artifacts they
produce.

• It extends the coverage of the Unified Process development cycle
including a maintenance phase.

• It adds development process supporting workflows for project mana-
gement and quality management.

• It changes the idea of quality control management incorporating
workflows for requirements validation and design verification in addition
to testing.

In summary, this work presents UWE, an object-oriented engineering approach for
adaptive hypermedia systems. Special emphasis has been put on visual modeling
and the definition of an appropriate UML profile. The modeling techniques are
embedded in the development process, which aims to cover the entire lifecycle
form inception to maintenance of adaptive hypermedia applications. This work also
focuses on an object-oriented, formal specification of a reference model for these
applications in UML and OCL.

1.3 Organisation of the Work

This work is organised in nine chapters.

The current Chapter 1 provides the introduction to this work and focuses on its
motivation and goals.

Chapter 2 introduces the main concepts relating to adaptive hypermedia, adaptation
methods and adaptation techniques.

Chapter 1 • Introduction • 9

Chapter 3 describes the characteristics of user models, classifies them and outlines
the user modeling process.

Chapter 4 presents an object-oriented reference model for adaptive hypermedia
applications.

Chapter 5 gives a comparative overview of methods for the development of
hypermedia applications. It constitutes a basis for the design techniques and the
development process for adaptive hypermedia applications presented in the next
two chapters.

Chapter 6 presents modeling techniques for the analysis and design of adaptive
hypermedia applications. It includes the definition of a set of modeling elements
and methodical steps for the construction of each model.

Chapter 7 presents a development process covering the whole lifecycle of adaptive
hypermedia applications.

Chapter 8 describes how the modeling techniques and the development process are
validated with case studies.

Chapter 9 outlines conclusions on the results of this work and provides ideas about
future work to be done in this field.

Appendix A includes the UML profile defined for the adaptive hypermedia
domain.

Chapter 2 • Adaptive Hypermedia Systems • 11

“The greatest strength and weakness of a hypermedia

system lies in the issue of navigation”
John Eklund & Romain Zeiliger,

AusWeb´1996.

2 Adaptive Hypermedia Systems

“Adaptive hypermedia systems are hypermedia systems which reflect some features
of the user in a user model and use this model by adapting various visible aspects
of the system to the user” (Brusilovsky, 1996b). They have the advantages of both
user-model-based adaptive systems and hypermedia systems. Classical hypermedia
applications, are thus enhanced by an agent that improves the system behaviour
based on the analysis of the user behaviour.

According to this definition an adaptive hypermedia system (AHS) must fulfil the
following requirements:

• it must be a hypermedia system allowing navigation through the
hyperspace of the application domain,

• it must include a user model to describe the user, and

• it must provide an adaptive mechanism for the dynamic adaptation of the
hypermedia on the basis of the state of the user model.

The adaptation consists in changes of the content and/or the presentation of nodes
and links.

What does the user model contain? Let us call a user characteristic the user’s
knowledge, preference, interest, tasks or goals. A user model can therefore be
defined as a representation of characteristics, which the system “believes” that a
user possesses (Benyon & Murray, 1993). It contains characteristics, which are

12 • Adaptive Hypermedia Systems • Chapter 2

different from both, the actual characteristics the user has and the characteristics
the designer of the system believes the user has and he employs in the design of the
system. The representation of the user can only be a partial and incomplete
representation. It is a less complete knowledge than the knowledge another person
could acquire of the user because a live person can use different input channels –
audio, visual, tactile – simultaneously to get information. The system may, however
be able to reason faster and more precisely than people. User models are usually
very pragmatic as they limit the number of characteristics to those that are strictly
required for a specific application.

A clear distinction must be made between hypermedia systems that are
customisable – called adaptable systems – and adaptive hypermedia systems. In
both cases the user plays a central role and the ultimate goal is to offer a
personalised system. They differ in the way the adaptation is performed.

• An adaptable hypermedia system allows the user to configure the system
by changing some parameters and the system then adapts its behaviour
accordingly. It is an external system or the user who decides when her
user model should be changed, e.g. at the beginning of a session. This
configuration consists of setting preferences.

• An adaptive hypermedia system is a hypermedia system that adapts
autonomously (Bulterman, Rutledge, Hardman & van Ossenbruggen,
1999). It monitors the user’s behaviour, registers this behaviour in a user
model and adapts the system dynamically to the current state of the user
model. The system uses the user’s browsing actions, her answers to
questionnaires and the initial information the user may provide, to adapt
the nodes and the navigation. These adaptations can be made by changing
predefined presentations or constructing them out of pieces of
information. In the latter case, where a dynamic generation of pages is
performed, such systems are also known as dynamic hypermedia systems
(De Bra, 1999).

Most of the applications that make use of adaptive hypermedia are currently in the
area of educational hypermedia, because in this area it is easier to build a detailed
user model (Patterno & Mancini, 1999).

This chapter presents an overview of adaptive hypermedia systems. The first
section outlines the objectives, benefits and risks of adaptation. Section 2 presents
an adaptation lifecycle and Section 3 defines three different adaptation levels. For
each of these levels of adaptation methods and techniques are briefly described in
Section 4. Sections 5, 6 and 7 delineate the role of the user model, acquisition
techniques and user interaction possibilities in adaptation, respectively. Section 8
presents a classification of application areas for which adaptive systems have been

Chapter 2 • Adaptive Hypermedia Systems • 13

implemented. Finally, Section 9 provides a list of possible measures for adaptive
hypermedia systems.

2.1 Adaptation and Feasibility

Many questions arise related to adaptation in hypermedia systems.

• Do we need hypermedia systems that are adaptive?

• What are the goals of these systems?

• What benefits do this type of system offer to the user?

• Which additional risks do adaptive hypermedia systems have?

Every hypermedia system is adaptive in some sense as the user decides what link
to follow in each browsing step. Users use the same hypermedia application in
different ways by the selection of different navigation paths. But navigation
sometimes offers too much freedom or insufficient guidelines (Eklund & Zeiliger,
1996), as the user does not know which path to select, i.e. which path is most
appropriate for her. Adaptive hypermedia techniques can be a powerful tool to
support users while browsing on the WWW. These techniques increase the
functionality of the Web.

2.1.1 Objectives

The objective of a hypermedia system is to make information easily accessible to
the user. An adaptive hypermedia system has the enhanced objective of improving
the flexibility and the comfort, which a hypermedia system provides to each
individual user. Hypermedia systems improve the human computer interaction,
operational speed and accuracy as well as they enhance the user learning process,
the user satisfaction and they increment the number of users. This goal is achieved
by gradually adapting content and the functionality to the level of competence and
interests of the user. Adaptive hypermedia systems therefore, seek to learn as much
as possible about the users while they interact with the system. The communication
can be seen as a dialog between user and adaptive system, which improves with
time as the system’s knowledge of the user becomes more precise and the user gets
used to the system (de La Passardiere & Dufresne, 1992).

Consequences of an adaptive and flexible system are that a wider group of users
can be reached, i.e. for each user the system behaves as it if had been built for her

14 • Adaptive Hypermedia Systems • Chapter 2

interests and competence. And last but not least, if the hypermedia system is easy
to use, e.g. fewer clicks to reach useful information, this is a factor in motivating
users to continue using the system.

2.1.2 Benefits

Adaptive hypermedia systems improve human computer interaction, operational
speed and accuracy as well as they enhance the user learning process and the user
satisfaction. They improve comprehension of the content and decrease search and
navigation time. There are two other benefits that adaptive hypermedia systems
offer: they are useful for a heterogeneous group of users and reduce the risk of
being “lost in hyperspace”. They allow for a good combination of an active, self-
directed participation of the user and some guidance or help provided by the
system.

The adaptation is performed in a similar way to a tutor adapting his lessons based
on feedback received from the students sitting in front of him. In both cases, the
adaptation plays an important role in the success of the system or lessons,
respectively. Users’ goals, knowledge, tasks, interests and preferences can vary at
an initial point in time as well as through the period of time during which they are
using the system. A solution, therefore, is to implement a system that takes into
account these changing user characteristics. The same applies to frequently used
Web systems, which seek to attract the attention of a heterogeneous group of users
with varying interests, knowledge and tasks.

“Lost in hyperspace” means to be unable to find the path to information needed, or
to be unable to find the way back to information that has already been read or seen
(sometimes a mere couple of minutes ago). The risk of “lost in hyperspace” is
reduced with adaptive hypermedia systems as they reduce the navigation space,
thus eliminating links that are not of interest to the user or which might confuse
her.

2.1.3 Risks

Adding intelligence to the hypermedia system and moving partial control from the
user to the systems is contrary to the philosophy of the hypertext paradigm, which
is supposed to give the user full control to explore the hyperspace. An adaptive
interface is often perceived by the user as limiting, disorienting, unpredictable and
incoherent. The design of an adaptive interface therefore, means that special

Chapter 2 • Adaptive Hypermedia Systems • 15

attention must be paid to such risks so that techniques are applied that are non-
intrusive, motivating, non-disorienting, and helpful.

One of the problems of adaptive systems is that the interface is less stable for the
user, making it more difficult for her to orient herself. The major risk is therefore,
changing navigation and a presentation that confuses the user. For example, if the
user goes back to take another look at pages she has already seen, these pages very
often look different to the first time she saw them, as they are generated
dynamically according to the current state of the user model. The user may be
irritated by incomplete and/or hidden information or anchors, because she wants to
decide for herself which links to follow. This risk is eliminated by systems like
SmexWeb (Albrecht, Koch &Tiller, 2000), which keep a history of changes to the
user model. In this way one page has the same look and feel throughout a session
for a particular user.

Adaptive systems tend to become complex and are therefore systems that are
expensive to build and maintain. Nevertheless, industry observers see the
personalisation of the Web as the next important step in e-commerce applications,
although one of the main problems is privacy. The concept of personalisation is
subject of ethical debate. Some people fear the misuse of personal information
gathered by organisations with or without the permission of their customers.
Industrial observers, however, maintain that people will get use to this and will
begin to see it less as an invasion of privacy and more as the benefit of software
offering improved service and faster access to preferred information (Waters,
2000).

2.1.4 Difficulties

The main difficulty consists of building adaptive functionality. The design and
implementation of such systems represent a time-consuming and difficult job as
adaptive hypermedia systems are complex and expensive systems. Another difficult
is to determine how correct is the user model. Most of the existing adaptive
hypermedia systems or frameworks have been developed by computer scientists
and so have the first applications of these systems. There is a need for
methodologies and case tools that make the construction of adaptive hypermedia
systems easier, mainly for authors that are not computer experts.

2.2 Adaptation Lifecycle

16 • Adaptive Hypermedia Systems • Chapter 2

Adaptive hypermedia systems and indeed adaptive systems in general, go through
different steps during utilisation or stay in different states so as to interact with the
user, adapt the presentation and update the user model. By contrast, non-adaptive
software systems only oscillate between presentation and interaction. Jungmann
and Paradies (1997) outline a four-steps lifecycle model. The steps are
presentation, interaction, analysis and synthesis.

A slightly different lifecycle model for adaptation is shown in Figure 2-1. It is
graphically represented with a UML state diagram (UML, 1999 and Harel & Gery,
1997), which depicts the states of the lifecycle model and the possible transitions
between these states.

The states are: presentation, interaction, user observation, and adjustment. The
adjustment state is refined by using two concurrent states: system adaptation and
user model update. Two adjustment alternatives are possible: user model update
before or after the systems adapts according to the content of the user model. In
addition to the four sequential transitions (user action, adaptive reaction,
acquisition completed and adaptation completed), the model includes the
transitions user inactivity and non-adaptive reaction. The former depicts the
system waiting for a user action. The latter, non-adaptive reaction transition,

System
Adaptation

User Model
Update

User
Observation

Presentation

Interaction

user inactivity

user action/
time-out

adaptive
reaction

non-adaptive
reaction

observation
completed

adaptation
completed

Adjustments

Figure 2-1: Lifecycle Model of Adaptation

Chapter 2 • Adaptive Hypermedia Systems • 17

shows that the system can also react without adjusting the user model and the
presentation.

The cycle starts with an initial presentation and a default user model. Stereotypes
or interviews are usually used to provide the information for the first user model.
These states have the following semantics:

• Presentation. The system presents to the user presentation elements or a
page appropriate to the properties the system knows about the user. The
system remains in this state until the user becomes active or it receives a
time-out signal.

• Interaction. The system decides how to react to user action. Two
alternatives are represented with two outgoing transitions: a non-adaptive
and an adaptive reaction.

• User observation. This is a state the aim of which is to evaluate the
information obtained from the user interaction with the system.

• Adjustments. This state comprises two sub-states: the user model update
and the user interface (UI) adaptation, performed concurrently.

• User model update. In this state the result of the acquisition is used by
the system to update the user model.

• System adaptation. The user model is utilised to adapt the presentation,
content or links, i.e. to modify the user interface or generate a
presentation that takes into account the user’s goals or characteristics.

A user action produces the change from the state presentation to the state
interaction, i.e. the user is then waiting for an activity of the system – usually the
presentation of another page or interface object. In some systems a time-out can
also trigger the transition from the state presentation to the state interaction. The
system stays in the interaction state for as long as it needs to decide whether it will
perform an adaptive or a non-adaptive cycle, and then changes to state acquisition
or state presentation, respectively.

The transition to the adjustments state occurs after the user observation activities
are completed. As soon as the user model is updated and the system adjusted for
the next presentation the system proceeds to the next presentation. To note is that
the system’s adaptation can be performed before or after the user model update
(pre and post mode). The finalisation of the adjustments mark the transition from
the adjustments state to the presentation state.

18 • Adaptive Hypermedia Systems • Chapter 2

During these states errors can be introduced due to an inappropriate acquisition of
information about the user, incorrect assumptions by the user model update or
errors by the adaptation process (Brusilovsky, 1998).

2.3 Levels of Adaptation

Content, structure and presentation are important issues in hypermedia systems.
These issues are mostly treated separately by authoring processes and methods for
hypermedia applications (see Chapter 5). Adaptive hypermedia systems also
benefit from this separate treatment as they allow for adaptive content, adaptive
navigation and adaptive presentation as defined in the next section. The scope of
each of these issues is given below.

• content: The content consists of pieces of information included in
hypermedia applications. They may be either time independent – called
passive elements – such as text and images, or time-dependent – active
elements – like video clips, audio tracks and animations.

• structure: This is the organisation of the content with a specification as to
which content items will be visited and how they will be visited through
navigation.

• presentation: This is the visualisation of the content and of the interactive
elements that support the functionality of the hypermedia system. There
are thus two different aspects to the presentation: the static layout and the
description of the user interaction possibilities.

Interactive elements are those, which make it possible to access other elements
(“navigate to”), to show passive elements (“display”) or to activate multimedia
elements (“play”).

Adaptive systems tailor the information presented to the user’s preferences,
knowledge or interests. This customising process may include changes such as the
selection of pieces of information that are appropriate to the knowledge level of the
user, or some guidance performed through the removal of links that the system
considers of little use to the state of the user model at a given point in time. An
adaptive system can adapt for example, on the basis of the user variability, the
help, error messages, formatting, search strategies, task offer, input devices,
dialogue style, content, etc.

Two different forms of hypermedia adaptation (technologies) are distinguished by
Brusilovsky (1996a):

Chapter 2 • Adaptive Hypermedia Systems • 19

• adaptive presentation (at content-level) and

• adaptive navigation support (at link-level).

Another possible adaptation is a change at presentation-level, i.e. changes to the
layout that do not affect the content, such as colours, font type or font size. If these
changes to the layout are distinguished from content adaptation, then the following
classification for adaptation is presented (Patterno & Mancini, 1999):

• adaptive content consists of selecting different information, such as
different text, images, videos, animation, etc. depending on the
current state of the user model. For example, the adaptive
hypermedia system provides an expert in a certain domain with
more information than a novice.

• adaptive navigation changes the link appearance, the link target or
the number of links presented to the users as well as the order in
which these links are presented.

• adaptive presentation shows different layouts of perceivable user
interface elements, such as different type of media, different
ordering or different colours, font size, font type or image size.

The first classification in content-level and link-level adaptation is based on the
structure of the hypermedia and consists of nodes and links. The second
classification is based on the three main aspects to be considered when developing
hypermedia applications: content, navigation structure and presentation.

2.4 Adaptation Methods and Techniques

Different methods can be used to achieve adaptation. A method is determined by
an adaptation idea defined at conceptual level. Adaptation methods are defined by
Brusilovsky (1996b) as an abstraction of adaptive techniques. A technique is
defined by a user model representation and an adaptation algorithm.

An adaptation method can be implemented by using different techniques and a
technique can be used to implement more than one method (conceptual idea). The
techniques mentioned above have been implemented by one or more existing
adaptive hypermedia systems.

In the following subsections adaptation methods and techniques for content,
navigation and presentation are outlined. A detailed description of adaptation
methods, techniques and systems, which use these methods and implement

20 • Adaptive Hypermedia Systems • Chapter 2

techniques, is presented by Brusilovsky (1996b). He distinguishes methods and
techniques for adaptive presentation and adaptive navigation. In this work three
methods and techniques are distinguished based on the definitions presented
above. There are methods and techniques for adaptive content, adaptive navigation
and adaptive presentation.

2.4.1 Adaptive Content

The objective of content-level adaptation methods is to increment the application
usability for a wide group of users that have different knowledge or background.
The content-level adaptation consists of providing additional, comparative or
alternative content as well as hiding content.

The methods for adaptive content are:

• additional content

This is the most frequently used method for adaptive content. It consists
of showing only relevant parts of information (hiding irrelevant parts)
according to the user’s level of knowledge, her goal, interests or
preferences. This method is used to show

− additional explanations,

− prerequisite explanations, or

− comparative explanations

to be applied to concepts (terminology that comes from applications in
educational areas).

• content variant

This method can be seen as a variant of the showing/hiding content
method as it consists of showing a part of the information while at the
same time hiding another part of the information. This method is also
known as explanation variants.

The following techniques can be used to implement the methods described above,
i.e. to manipulate content to be adapted to the user’s characteristics. Most of these
are used in adaptive hypertext systems, i.e. they are used for content of type text.
But most of them can also be applied to multimedia content in general.

The techniques for adaptive content are:

Chapter 2 • Adaptive Hypermedia Systems • 21

• stretchtext

The content is organised as a set of visible placeholders. Instead of
moving to a new page, an activation of a placeholder will replace the
activated placeholder extending the text (Höök, 1998). The adaptive
hypermedia system determines which fragments are “stretched”
(expanded) and which are “shrunk” (collapsed) for the initial
presentation. The user can then decide which placeholder she will
stretch, and which she might want to shrink. It should be noted that this
technique allows both the user and the system to adapt the content.

• conditional fragments

The user model and the concept relationships of the domain model
provide the information that allows the system to determine which chunk
of information should be presented to the user. The chunk of information
may also consists of fragment variants, i.e. fragments related by an “or-
exclusive” relationship.

• page variants

This is a very simple technique, which consists of keeping two or more
alternative pages with adapted content, e.g. one for each knowledge level:
beginner, intermediate and expert.

• frame-based approach

This technique allows the inclusion of all related information in a frame.
Frames can be shown, hidden, presented alternatively or ordered. The
frameset includes rules to decide which frames are presented to a user.

Table 2-2 shows which technique can be combined and used for the
implementation of each adaptive content method.

Methods / Techniques stretchtext conditional
fragments

page
variants

frame-based
approach

additional content x x x

content variant x x x

Table 2-2: Methods and Techniques for Adaptive Content

22 • Adaptive Hypermedia Systems • Chapter 2

2.4.2 Adaptive Navigation

The objective of link-level adaptation is to support navigation preventing users to
follow navigation paths that are irrelevant with their tasks or goals (Brusilovsky,
1997). Methods for adaptive navigation provide global or local guidance, support
global or local orientation and generate personalised views. The adaptation consists
of changes to the navigation structure or how this navigation structure is presented
to the user.

Link-level adaptation can be applied to contextual links as well as to non-
contextual links. Additional navigation support in form of site maps or trees, table
of content, indexes and historical bookmarks lists also can benefit from adaptive
navigation techniques.

The methods to support adaptive navigation are:

• global guidance

The objective of the global guidance method is to assist the user in
finding the shortest navigation path to the information she is looking for
or wants to learn.

• local guidance

The objective of the local guidance method is to assist the user in just one
navigation step, i.e. to find the “best” link to follow from the current
node.

• global orientation

The objective of this method is to support the user in her knowledge of
the hyperspace structure and her position in it.

• local orientation

The objective of this method is to support the user in understanding what
the different navigation possibilities of the current position mean and to
help the user to follow the appropriate link.

• personalised views

This method is an agent-based approach. It consists in the generation and
update of a personalised view of a hyperspace. The agents are responsible
for finding appropriate links for the user, thus maintaining the
personalised view.

Chapter 2 • Adaptive Hypermedia Systems • 23

The following techniques for navigation adaptation manipulate anchors and links
with the purpose of adapting navigation dynamically to the user characteristics
given by the current state of the user model, i.e. they are used to implement the
methods mentioned above.

These techniques for adaptive navigation are:

• direct guidance

The user sees only one option to continue with the browsing activity, i.e.
just one anchor or button to navigate to the “next” page is displayed. The
destination of this “best” link is determined by the system.

• link annotation

Anchors of links are “annotated”, that is they present a different visible
aspect, such as a different colour, bullet or text to show the relevance of
the destination. Even a Boolean adaptive annotation (visited/not visited)
can be quite useful. Special cases of link annotation are link highlighting
and link hiding. Highlighting of links is used even in non-adaptive
applications. Hidden links are present but their anchors are not visible as
they are annotated in the same way as text is presented in their
surroundings, i.e. these anchors cannot be recognised as anchors of links.
The “traffic-light” annotation is a well-known example where red, yellow
and green icons are presented together with the anchored text of a link to
indicate the degree of appropriateness.

• link removing

Links that the system considers inappropriate are removed, i.e. they are
not longer available. Anchors of these links are replaced by text, for
example.

• sorting of links

This consists of the ordering of a set of anchors, so that links are
presented in decreasing order of relevance to the user. The disadvantage
of adaptive ordering is that each time the user enters the same page, the
ordered anchors may be different.

• passive navigation

This consists of the addition of non-explicit links (without anchors) that
are used by the system to offer assistance to the user when the system
identifies a user behaviour pattern, e.g. the user remains inactive during a
certain period of time or the user navigates back and forward.

24 • Adaptive Hypermedia Systems • Chapter 2

Another technique described in the literature is map-adaptation (e.g. Brusilovsky,
1998 and De Bra, Houben & Wu, 1999). It consists of a combination of the other
techniques, the only difference being that it is applied to a graphical visualisation
of the navigation (link) structure. The map is usually presented in a separate frame.

Adaptive navigation techniques reduce the navigation space either by eliminating
anchors (direct guidance, link hiding and link removal) or by guiding the user’s
attention to a reduced group of anchors (annotated and sorted links). A user-
specific limitation of the navigation space prevent users from getting “lost in the
hyperspace”.

These five techniques for adaptive navigation can be combined for optimal
navigation support. Table 2-3 shows which technique can be used for the
implementation of each navigation content method.

Methods / Techniques direct
guidance

link
annotation

link
removing

link
sorting

passive
navigation

global guidance x x x

local guidance x x x x x

global orientation x x

local orientation x x x

generation of
personalised views

x x x x x

Table 2-3: Methods and Techniques for Adaptive Navigation

2.4.3 Adaptive Presentation

The objective of presentation-level adaptation is to adapt the layout to the visual
preferences or needs of the user. Methods for adaptive presentation assist the user
with an appropriate layout or language. The adaptation consists of changes to the
presentation. Sometimes these changes happen simultaneously with adaptation of
content. Methods and techniques for adaptive presentation are often grouped with
those for adaptive content. In this work they are presented separately so as to
distinguish between methods and techniques that produce modifications in the
layout and techniques that change the content shown to the user

 The methods for adaptive presentation are:

Chapter 2 • Adaptive Hypermedia Systems • 25

• multi-languages

The objective of the multi-language method is adaptation to the language
preferred by the user. This may be also context dependent.

• layout variants

The layout variants method includes all possible alternatives required in
a presentation, e.g. colours, font size or font type, maximum size of
images, text orientation, ordering of content fragments, etc.

The same techniques as for adaptive content, with the exception of stretchtext, can
be used for presentation adaptation. These techniques are page variants,
conditional fragments and frame-based approach. In addition, the styleguiding
technique is used to implement the methods mentioned above.

• styleguiding

This consists of the definition of different styleguides that are used
alternately for layout variants.

Table 2-4 shows which technique can be used for the implementation of each
adaptive presentation method.

Methods / Techniques page
variants

conditional
fragments

frame-based
approach

styleguiding

multi-languages x x x

layout variants x x x x

Table 2-4: Methods and Techniques for Adaptive Presentation

2.5 The Role of the User Model

Adjusting information (adaptive content), individualising layout (adaptive
presentation) or providing the user with navigation support (adaptive navigation)
are performed within the system on the basis of the information kept in the user
model. Hence, the user model is an important part of an adaptive hypermedia
system. It is defined as the system’s representation of certain user characteristics
and attitudes (Eklund & Zeilinger, 1996 and Paiva, Self & Hartley, 1995).

26 • Adaptive Hypermedia Systems • Chapter 2

According to Eklund & Zeiliger (1996) the five main features that are represented
inside user models are:

• the user’s current goal or task,

• the user’s knowledge on the domain presented in the hypermedia,

• the user’s background or general knowledge,

• the user’s experience, e.g. in the use of similar applications, or in hyper-
space, and

• the user’s preferences or interests.

A detailed description of user models and user modeling is presented in Chapter 3.

2.6 Acquisition Techniques

The features included in user models (listed above) need to be initialised and
updated, i.e. the system needs to acquire information about the user. Different
techniques are used to perform this acquisition (Kobsa, Müller & Nill, 1994), such
as:

• stereotypes, that are defined by the designer at design-time. At run-time
the system assigns a stereotype to each user.

• interviewing is performed by the system at run-time; the information
supplied by the user is used for example to initialise the user model.

• observation of user behaviour consists of the analysis of the user’s
actions, plan recognition or inference mechanisms.

The process of acquiring information concerning the user behaviour comprises the
steps of capturing the appropriate data, selecting the relevant information from data
and inferring, i.e. interpreting the user interactions activities. How effectively user
models can represent users is still controversial. Ramscar, Pain and Lee (1997)
formulate this doubt as follows: Do we know what the user knows, and does it
matter?” Kay (1993) remarks that modeling cannot be anything but a guess if it
attempts to model the user’s knowledge. Self (1996) stresses that “...the power of a
student model does not lie in its fidelity but in the differences it indicates”. Höök,
Kaelgren and Waern (1995) and others promote the idea of a user model of the
“glass box” type, i.e. a user model that is visible to the user and potentially
manageable by the user.

Chapter 2 • Adaptive Hypermedia Systems • 27

2.7 User Interaction Possibilities

User behaviour can only be observed through her actions. According to
Schneiderman (1998) the actions a user performs while interacting with a system
are: menu selection, form filling, direct manipulation, natural language and
command language. For hypermedia system the following actions are possible:

• link following or browsing is the typical action a user performs in order
to navigate the hyperspace,

• menu selection consists of the selection of an item from a list of items,
often it has the same effect as following a link,

• form filling-in allows the user to use the keyboard to enter a sequence of
characters; it is an approach that gives the user a feeling of control over
the dialog,

• direct manipulation is not permitted in the hypermedia paradigm directly;
it requires the use of JavaApplets, for example.

No action by the user, i.e. no action during a certain period of time (timeout) can
also be registered as user behaviour and is then used by the system for passive
navigation. Passive navigation is a concept that was introduced by (Albrecht, 1998
and Tiller, 1998) in the implementation of the SmexWeb – Student modelled
exercising on the Web. It allows the system to take control over the process of
navigation when the user remains inactive, offering her some help or guidance.

User actions are usually stored in log files. The entries in the log file are used as
triggers for the adaptation mechanisms defined on the basis of a set of adaptation
rules. User behaviour is determined by the analysis of these log files.

2.8 Applications Areas

There is no restriction on developing adaptive hypermedia systems for any type of
application area. These systems are normally built for applications where the
hyperspace is large enough and the target users are known as a heterogeneous
group of users who differ in their knowledge, interests, preferences and/or tasks. In
the past an important number of adaptive hypermedia systems have been developed
for the educational purposes, thus offering alternatives to intelligent tutor systems.

Adaptive hypermedia systems can be classified according to application areas into:
instructional hypermedia systems, hypermedia search engines, online information

28 • Adaptive Hypermedia Systems • Chapter 2

systems, online help systems and personal assistants. Some examples are given for
each application area. A comparison of adaptive hypermedia systems can be found
in (Brusilovsky, 1996b).

2.8.1 Instructional Hypermedia Systems

The most popular adaptive hypermedia systems are systems related to the
educational area. They are known as adaptive teaching, tutoring, learning and
training systems or the recent term e-learning systems. These systems are mainly
based on the utilisation of user knowledge for adaptation. They assume the
adaptive system will be used by a heterogeneous group of students or learners in
terms of knowledge. Students are observed during their work or learning process.
These systems then adapt to the student’s improvements.

One of the most interesting works in this area is the ELM-ART tutoring system
that supports learning of the programming language LISP (Brusilovsky, Schwarz &
Weber, 1996a and Weber & Specht, 1997). Adaptation is implemented by direct
guidance (the system selects the next best step) and link annotation. The annotation
follows a traffic light metaphor, where the colour green is used to indicate that a
section is ready to be learned and recommended, yellow is used for ready to be
learned but not recommended and red indicates not ready to be learned yet. The
adaptation (the link annotation in this case) is performed whenever a learning unit
is finished after all units that are a prerequisite to the current unit have been
reviewed.

Other frameworks for adaptive teaching systems are INTERBOOK, TANGOW,
KBS Hyperbook, SmexWeb, AHA, ISIS-Tutor and DCG.

INTERBOOK (Brusilovsky, Schwarz & Weber, 1996b) is a system for authoring
and delivering adaptive electronic textbooks on the Web. All INTERBOOK-served
electronic textbooks have generated table of content, a glossary and a search
interface. The online books – in the same way as ELM-ART – use coloured bullet
annotation to inform the user about the status of the node behind the link.

TANGOW (Carro, Pulido & Rodriguez, 1999) structures Web courses by means of
teaching tasks and rules. It differs from ELM-ART in that uses a dynamic tree to
restrict the set of teaching tasks to be reviewed. This is achieved by including in
each dynamic generated page only those subtasks (fragments), which are
considered to be relevant by the system at run-time. In addition, rules are used to
analyse prerequisite conditions. KBS Hyperbook (Henze & Nejdl, 1999) is another
goal-driven approach that uses a Bayesian network technique for its user model.

Chapter 2 • Adaptive Hypermedia Systems • 29

SmexWeb (Albrecht, Koch & Tiller, 1999) is a framework that permits the
development of teaching applications through the instantiation of a collection of
abstract and concrete classes. Similar to TANGOW the authoring process consists
mainly of the definition of concepts (tasks) and adaptation rules. All types of
adaptation are supported by SmexWeb: adaptive content, adaptive navigation,
adaptive presentation and passive navigation.

AHA (Adaptive Hypermedia Applications) is a generic hypermedia system based
on the adaptation of pages using conditional fragments (De Bra & Calvi, 1998).
The structure of the domain is similar to the SmexWeb structure. Concepts are
related to other concepts through weighted links.

ISIS-Tutor system (Brusilovsky, 1997) uses different forms of adaptive navigation,
such as direct guidance, hiding and annotation. The goal is to highlight the links
corresponding to the student’s goal and to hide concepts that belong to future
learning targets.

The Dynamic Course Generation (DCG) proposed by Vassileva (1997) represents a
quite different approach. It consists of a concept domain structure represented as a
plan, which relates known concepts for the learner with the goal-concept of the
course. The plan is then adapted dynamically according to the student’s learning
progress. This results in changes to the subtasks and steps the learner has to
follow.

2.8.2 Hypermedia Search Engines

Hypermedia search engines combine traditional retrieval systems with hypermedia
features. The objective is to obtain a manageable set of responses to a query put to
an information hyperspace as opposed to a query database. The responses are a set
of links calculated by the search engine. These systems usually limit the navigation
choice and give hints, as to which are the most relevant links.

A very successful example is the Adaptive HyperMan designed by Mathé and Chen
(1996). This system helps NASA Space Shuttle flight controllers access and
organise large amount of information. The user can mark any part of a document as
interesting and index parts with user-defined concepts. She can then retrieve
marked portions of documents. This system provides long-term user models.

The Personal WebWatcher (Mladenic, 2000) based on the WebWatcher
(Armstrong, Freitag, Joachims & Mitchell, 1995) is an agent that watches the user
“over the shoulder”, i.e. without asking the user for keywords, preferences or
evaluations. It has a learning offline phase, in which it analyses requested pages of

30 • Adaptive Hypermedia Systems • Chapter 2

the recent past. Adaptation consists of highlighting (annotation) anchors that the
system believes will be of the user’s interest. Another example of an adaptive
information filtering for the WWW is the case-based approach presented by
Marinilli, Micarelli and Sciarrone (1999).

2.8.3 Online Information Systems

Online information systems provide reference access to information on a
hyperspace. This group includes e-commerce applications, recommendation
systems, digital libraries, electronic catalogues and all classes of online
documentation. The objective is to offer the concepts or information requested to
the user in an appropriate way, i.e. according to her objectives, her background
knowledge and preferences. A typical example is the administration of an adaptive
bookmark menu. The bookmarks can be selected, sorted and/or annotated
according to the absolute, relative or sequential frequency of the documents usage,
i.e. for the entire time the system is used, in the recent past or successive use.

Knowledge management systems are also information systems but usually related
to the information available in an organisation. This is the “knowledge” an
organisation and its employees have to perform and to organise in their daily work.
Adaptive knowledge management adapts navigation, thus reducing the whole
hyperspace to the subset, which users need to accomplish their work. An adaptive
knowledge management systems can adapt presentation to the background level of
the user. Adaptation is mainly task-oriented.

Applications of this group differ from adaptive hypermedia systems in the
educational sphere, as they do not present a systematic introduction to a learning
subject. Examples of applications in this area are: PUSH, Swan, MetaDoc,
AVANTI, CiteSeer and commercial products, such as Amazon.com and FindMe
systems.

The Plan and User Sensitive Help (PUSH) is an information system that only
adapts content to the user applying the stretchtext technique (Höök, 1998). It does
not affect how the user can navigate between pages, it only affects how much
information is presented within a page. The content is related to a software
development method, called SDP, and consists of processes and objects.

Swan (Garlatti, Iksal & Kervella, 1999) is an adaptive and navigational Web
Server for online information systems about nautical publications. The structure of
its user model is similar to the Hynecosum user model (Vassileva, 1996) based on
stereotypes (Rich, 1979). It consist of a user’s class, a task model and an individual
model. The sailor’s class is used for adaptive presentation. Adaptive navigation

Chapter 2 • Adaptive Hypermedia Systems • 31

support is achieved by means of a task model, which uses the vessel’s class, an
individual model and the navigation context.

MetaDoc (Boyle & Encarnaçao, 1994) is a hypertext reading system that makes use
of the stretchtext technique presenting to the user only the relevant extensions in
uncollapsed form. Another example is CiteSeer, an automatic generator of digital
libraries of scientific literature. CiteSeer generates a database, which downloads
Web publications that responds to the user model (Ballacker, Lawrence & Giles,
2000).

The AVANTI system provides hypermedia information about a metropolitan area,
such as places of interest, transportation and public services, for a variety users,
including tourists, residents, elderly people, blind persons and wheel-chair-
bounded people (Fink, Kobsa & Nill, 1997). The system is to be used at people’s
home, public information kiosks and in travel agencies. It adapts the information to
the user taking into account motor functions and sensory abilities, interests and
preferences, domain knowledge and competence of the user.

2.8.4 Online Help Systems

Online help systems are always attached to tools or other systems, i.e. they are not
independent systems. In some ways they are also online information systems, but
the objective is to assist the user when she has difficulties with the tool or system.
This assistance consists of presenting help information when requested (as in
online information systems) and automatically recognising when the user needs
some help. Adaptive online help systems have the advantage of knowing the
context in which the user is working. The host system of the online help system
provides information on the user’s goal, thus allowing for context-sensitive help.

Greer et al. (1998) are working on peer-help systems that have been applied as
intelligent help desks. A well-known but not very effective nor well-accepted
adaptive help system is the Microsoft Word assistant.

ORIMUHS (Encarnaçao, 1997) is a framework for adaptive online help systems. It
is based on action-level discourse management, statistical and probabilistic
evaluation and user modeling techniques, such as stereotypes and overlay models.
The intelligent user support is initiated and can be controlled by the end-user, but
the actual presentation is computed by the system.

32 • Adaptive Hypermedia Systems • Chapter 2

2.8.5 Personal Assistants

Personal Assistants are developed to manage a huge and dynamically changing
hyperspace in a personalised way. They are helpful to users who need access to
certain types of information in a hyperspace, such as the Web, frequently. Personal
assistants are agents that search in a defined space identifying “helpful”
information for the user. To decide which information is “helpful” for the user, the
system bases itself on a user model. These agents search the information space at a
certain frequency looking for new information, updating already identified items
and eliminating items that are no longer up to date.

The ifWeb system is a user-model-based adaptive agent that supports user in their
navigation in the WWW, i.e. an hypermedia search assistant. It performs
autonomous navigation, collects documents and classifies them. The adaptive
mechanism allows to maintain the model in such a way that it includes user’s
interests and non-interests (Asnicar & Tasso, 97).

Hynecosum (Vassileva, 1996) is a hypermedia information system for hospitals. It
is therefore also an institutional system, if we follow the classification presented by
Brusilovsky (1996a). It allows adaptive navigation support for users of different
level of experience. The main idea in Hynecosum is the use of task-hierarchies to
restrict views of information and to make certain links visible or hide them, based
on the experience level and individual needs and preferences.

Personalised e-commerce assistants are a special type of assistants, which aim to
increase the acceptance of e-commerce offering a personalised service. Examples of
adaptive electronic Web shops are AMPres (Rössel, 1998), TELLIM (Jörding,
Michel & Popella, 1998), the Web Shop (Åberg & Shahmemehri, 1999) and SETA
(Ardissono & Goy, 1999).

2.9 How to measure adaptive hypermedia systems

How can adaptive hypermedia systems be measured? Many evaluation criteria that
are used in traditional software systems (ISO/IEC 9126, 1991) can be applied to
evaluate adaptive hypermedia systems (Schneiderman, 1998). Other criteria are
specific to hypermedia systems, such as the criteria related to nodes and links or
specific to adaptive systems, such as adaptivity and adaptability. A non-exhaustive
list is presented below:

• Accessibility: express the facility to reach the nodes.

Chapter 2 • Adaptive Hypermedia Systems • 33

• Adaptability: is the facility of an application to be configurable according
to a set of decisions taken by the user, which usually define her
preferences and/or background.

• Adaptivity: denotes the capacity of the application to alter the user model
according to the user behaviour during the application run and adapt
dynamically to the current state of the user model.

• Assistance: measures the amount of help in the form of additional
information or link annotations is offered by the application to the user.

• Availability: indicates whether the content is updated, and whether
information obtained e.g. from a database is always accessible.

• Completeness: measures the content for missing information and the
structure for missing and dangling links.

• Consistency: measures the regularity of the application, i.e. similar
treatment of similar aspects (at content, navigation and presentation
level) and clear differences for nodes with different content, for different
access structures, for different types of navigation or differences in the
layout. This is considered to be the most important evaluation criteria,
although it is difficult to define what a consistent hypermedia application
is. In adaptive tutoring systems, for example, consistence improves
quality in the same way as consistency is responsible for the success of a
teaching book.

• Functionality: indicates how the application functions satisfy the users.

• Implementability: defines the overhead to providing adaptive features.

• Maintainability: defines the effort needed to make specified
modifications.

• Performance: expresses the system’s response time to user interaction as
well as the amount of resources used by the system under stated
conditions.

• Predictability: measures how easily the user can guess the reaction of the
system to her interaction.

• Portability: indicates the ability of the software to be transferred from
one environment to another.

• Reliability: measures number of crashes resulting for e.g. from SQL or
JavaScript error messages or too many hits during peak periods of Web
use.

• Reuse: defines the percentage of elements that are used for more than one
purpose within the same application or in different applications. In
hypermedia systems reuse means use of objects in different contexts, use

34 • Adaptive Hypermedia Systems • Chapter 2

of the same interface objects or navigation elements for different nodes.
Reuse promotes consistency, accessibility and predictability.

• Richness: denotes the amount of information nodes contained in the
application.

• Satisfaction: shows the user’s subjective impression of the adaptive
system.

• Self-evidence: expresses how well the user can guess the meaning of the
visualised content or the navigation elements.

• Usability: measures the effort the user needs to use the system and
individual assessment of such use.

• User-retention-overtime: indicates how long the user remains using the
application.

Studies to measure one or more of these criteria usually compare user’s handle an
adaptive system and its non-adaptive variant. An example is the study performed
by Höök (1998) for the evaluation of the usability of the PUSH system.

Chapter 3 • User Models and User Modeling • 35

“Do we know what the user knows,
and does it matter?”

Michael Ramscar, Helen Pain and John Lee,
User Modeling, June 1997.

3 User Models and User Modeling

Paiva, Self and Hartley (1995, page 509) have defined the nature and goal of a
student model as “representations of some characteristics and attitudes of the
learners, which are useful for achieving the adequate and individualised interaction
established between computational environments and students.” Replacing the
term learner by user this definition is also applicable to a user model. A user model
is constituted by descriptions of what is considered relevant about the actual
knowledge and/or aptitudes of a user, providing information for the system
environment to adapt itself to the individual user.

What is user modeling? What is a user model ? What is a model?

• A model is defined as an abstract representation of something of the real
world. This representation is abstract because only some relevant
properties for the application are included in the model.

• For a user model, the real thing is the user, who is represented as a
collection of data. It is the explicit representation of user aspects. Mainly
the system’s belief about the user is portrayed.

• User modeling is a process covering the whole life cycle of a user model
including acquisition of knowledge about the user, construction, update,
maintenance and exploitation of the user model.

In case of learning applications, the user model is called student model. Self (1988)
defines a student model as a four-tuple of procedural knowledge, conceptual

36 • User Models and User Modeling • Chapter 3

knowledge, traits and history. Student modeling differs from general user modeling
in the diagnosis and representation of subtleties on the user knowledge that are
crucial to the adequate performance of an adaptive learning environment. It is more
difficult to recognise changes in student knowledge, as there is usually little
evidence and the learners behaviour is difficult to interpret as it responds to
creative, unexpected and novel actions (Greer, 1996). Nevertheless, in this work
the terms user modeling and user models are still used to refer to models that
include knowledge or experience of the user. In some paragraphs student models
are explicitly mentioned when the aspects described are only valid for them and not
for user models in general.

Why do we need a user model? Without a user model a system will perform in
exactly the same way with all users, since there is no basis to behave in a different
manner. But users are different: they have different background, different
knowledge about a subject, different preferences, goals and interests. To
individualise, personalise or customise actions a user model is needed that allows
for selection of individualised responses to the user.

Even a very simple user model can improve the usability of a hypermedia or Web
application as it is shown with the SmexWeb sample application (Albrecht, Koch
& Tiller, 1999). On the other hand, adaptation can produce disorientation just
because of the different aspect of revisited pages. The SmexWeb framework
presents a solution to this problem: navigation consistency. Therefore it maintains
a personal history for each user including the already visited pages and the
corresponding user model states (Albrecht, 1998 and Tiller, 1998).

Although user modeling offers clear advantages, many researchers are sceptical of
its worth. They believe that the cost-benefit for user modeling is too high (Chin,
1993). The main difficulty of applying user modeling to systems is the acquisition
of user models, i.e. the initialisation and the maintenance of the user model due to
the lack of user data, the imprecise measurement of user variables and the
unpredictable change of the user behaviour over time (Stein, Gulla & Thiel, 1997).

User modeling plays an important role in adaptive hypermedia systems as
“Adaptive hypermedia is a direction of research on the crossword of hypertext
(hypermedia) and user modeling.” (De Bra, Brusilovsky & Houben, 1999). The
information kept in the user model of an adaptive hypermedia system belongs to
the representation of the following user’s properties (Brusilovsky, 1996a):

• preferences,
• tasks, goals or interests,
• domain knowledge,
• experience, and

Chapter 3 • User Models and User Modeling • 37

• background.

What information the user model should be designed to contain depends on the set
of tasks to be supported as well as on the subject matter of the application. As
already said, a user model is a representation of the knowledge and personal
characteristics which the system believes that a user possesses. It is different from
both the actual knowledge possessed by a user and the knowledge employed by
system designers (Benyon & Murray, 1993). Systems designers form mental
models of the users based on their domain studies and analysis. They use their
knowledge about the users to guide their designs.

A user model can never be completely accurate, it is usually a rough
approximation. Though, incomplete user models can be useful. The effort to
improve accuracy has to be compared to the benefits of the improvement. Thus,
user models have always to be considered in the context they will be used and the
goals of the user model-based application.

The main purposes of user modeling are :

• to assist a user during learning of a given topic,

• to offer information adjusted to the user,

• to adapt the interface to the user,

• to help a user find information,

• to give to the user feedback about her knowledge,

• to support collaborative work, and/or

• to give assistance in the use of the system.

The user modeling process requires techniques to gather relevant information about
the users, to construct the user model and to use it for at least one of the purposes
listed above. A protocol of the user actions, interpretations of these actions or
explanations of the behaviour are required for user modeling.

At present, general techniques for user modeling do not exist. Most of the existing
and promising techniques have been implemented and tested in different proto-
types and are often restricted to certain domains.

In the following sections of this chapter user model characteristics, foundations,
classification and purposes are presented as well as user model internal
organisations, techniques for acquiring data and updating processes for user models
are outlined.

38 • User Models and User Modeling • Chapter 3

3.1 Characteristics of User Models

User models may be classified as adaptive or adaptable models (depending on who
updates the user model), as being obtained by querying or observation (depending
on how the update is performed), as static or dynamic (depending on when the
update takes place), as grouped or individual, internal or external, explicit or
implicit (depending on where it is located), as visible or opaque (depending on the
visibility), as fine grained or coarse grained (depending on how detailed it is), as
short term or long term user models (depending on its duration).

A user model is called adaptive when the model is updated automatically by the
system according to the information obtained from the user’s behaviour like
mistakes, use of help systems or the dialogue between user and computer.
Adaptable or configurable user models are only modified by the user and therefore
it is a user controlled process, i.e. the user is who decides when the application will
be adapted to the newest state of her user model. Rich (1979) calls these user
models explicit and implicit. Here these terms are reserved for another
classification (see below).

Information for initialising or updating a user model can be obtained by querying
the user or by observing him. Greer (1996) calls these options: intrusive and
passive observation. Queries may cover user’s interests, preferences, expertise in
some topics, knowledge of domain subjects. Observations have as subject among
others user’s interactions, problem’s solving abilities, performance on tests of
declarative knowledge and response to ability tests. Very often a combination of
both techniques is chosen with the aim to acquire as much information as possible
about the user.

Dynamic user modeling consists in dynamic knowledge acquisition of the user
based on user interactions with the system. The user model is continuously updated
with the acquired information. The usage of this kind of model implements
dynamic applications that adapt themselves at each step to the user. In a static user
modeling information is collected by queries or by observations and actualisation is
done only in an initial phase or in regular intervals.

A user model represents positive or negative information of the user, such the
adaptation in the ifWeb system (Asnicar & Tasso, 1997) is based on interests and
non-interests of the user.

Models for groups represent user characteristics based on stereotypes while
individual models are specially generated for each user. Often stereotyped models

Chapter 3 • User Models and User Modeling • 39

are used in the initial phase and further they are refined and individualised during
the interaction of the user with the system.

A user model is internal if it is embedded in the application; otherwise it is
external. It may have a separate representation (explicit) or be included in the
domain model representation (implicit).

User models are visible by the user, when the assumptions the system makes about
the user is open to inspection to her. The user model is said to be visible and
modifiable by the user, if she can change it explicitly (Höök, 1998 and Kay, 1995).
Espinoza and Höök (1996) in her “glass box approach” stresses that the user must
be able to inspect why a certain adaptation was generated, and correct the
behaviour if the result is not what the user wanted. If the user neither is allowed to
see nor to modify the user model, the user modeling is opaque to the user. The
visibility requires a user interface that interrogates the user about some properties
or presents the complete user model or part of it.

Another classification factor is the granularity (Collins, Greer, Kumar & McCalla,
1997). Some user models are described as fine-grained or coarse-grained depen-
ding on the detail level of the issues represented by the model. Some models also
provide many levels of granularity by using a hierarchy.

Short-term models are available as long as a session lasts. Long-term models are
kept from one session to another.

3.2 User Model Foundations

A user model is defined as the representation of the system’s beliefs or knowledge
that the system has about the user. The notation used in this chapter is based on the
formal foundation given by Self (1991), which represents a user model based on
beliefs and knowledge the system and the user have. Beliefs are represented by
formulas in the propositional calculus. They can be assessed as true or false. The
objects of belief are called propositions. Beliefs are related to the behaviour of
agents (A), such as a user (U) or a system (S). In the remainder of this section
definitions are restricted to one user, but they are applicable to any number of
them.

To formalise beliefs let p be a proposition, then BAp holds if agent A beliefs p.

 ΒΒA = {p| BAp} is the set of beliefs of the agent A

40 • User Models and User Modeling • Chapter 3

As BAp are propositions itself, that means that beliefs can be nested. Then,

 ΒΒSU = {p| BSBUp} is the set of propositions the system S believes are
 believed by a user U.

But as the user’s beliefs are unknown for the system, all reasoning has to be done
on the system’s beliefs. More interesting are the subsets of system’s beliefs about
the user; they constitute the user model (UM). To give a formal description of a
user model, let p(U) denote a proposition related to the user U.

 UM = BS(U) = {p| BSp(U)} is the set of propositions the system S
 believes about the user U.

Belief could be replaced with knowledge as it can be described in terms of beliefs:
an agent knows p if KAp = BAp, p is true and there is a source for knowing p is
true.

For separating domain dependent and domain independent aspects of a user model,
it is useful to distinguish among the following types of propositions:

• propositions related to the domain, which a student acquires in a learning
system (problem knowledge) or which are subject for searches (D),

• general propositions that are domain-independent, also called background
knowledge (I), and

• propositions that describe cognitive or personal characteristics of the user
or of her actions, also known as behavioural knowledge, such as
preferences, tasks, goals and experiences (C).

Student models focus on domain-related propositions, while general user models
are built mostly on behavioural knowledge.

Thus, DS and DS(U) can be defined as follow:

 DS = {p| BSp ∧ p ε D} is the set of propositions related to the domain D
 that the system S believes

DS(U) = {p| BSp(U) ∧ p ε D} is the set of propositions related to the
 domain D that the system S beliefs the
 user U has.

IS, IS(U), CS and CS(U) can be defined in analogy.

Chapter 3 • User Models and User Modeling • 41

As every proposition believed by the system belongs to one of these three types (D,
I or C), then

 BS = DS ∪ IS ∪ CS and UM = DS(U) ∪ IS(U) ∪ CS(U)

Giangrandi and Tasso (1997) include a temporal aspect describing the status and
the evolution over time of a temporal student model. It allows to monitor the
learning process in a more fine-grained way. By the introduction of temporal
constraints they handle the problem of possible conflicts in the student’s beliefs.

3.3 Types of User Models

The criteria that are most frequently used to classify user models are: the nature of
the contents, the type of representation and the methods used to initialise, construct
and exploit user models. In this section only a user model classification based on
the contents is presented. The next sections outline the other criteria.

Three types of content-based models are distinguished: the domain-knowledge
model, the domain-independent-knowledge and the psychological or cognitive
model. Other names for these models are: student model, background-knowledge,
and user profile (Murphy & McTear, 1997).

The Domain-knowledge model (DS(U)) contains knowledge the system assumes
that the user has about the domain. In addition, a sub-classification of propositions
contained in the models may be done. Benyon and Murray (1993) distinguish three
levels within this model: task, logical and physical level. The task level describes
user goals in the domain. The logical level records what the system believes the
user understands about the logical concepts embodied in the domain and the
physical level records the user’s inferred knowledge. (e.g. task level: paragraph
formatting in a text editor, logical level: meaning of paragraph, physical level: how
to perform indentation).

Vassileva (1990) also distinguishes between general characteristics, which
describe or evaluate the user domain knowledge and the actual domain knowledge
given by facts, procedures, misconceptions and mal-rules.

Ragnemalm (1995) distinguish two types of DS(U): Subject-matter and Pedagogic-
content model. The former corresponds to a domain knowledge base. The latter is
organised according to instructional goals storing evaluations of the user
knowledge. The knowledge base can include correct as well as incorrect knowledge
(misconceptions).

42 • User Models and User Modeling • Chapter 3

The Domain-independent-knowledge or Background-knowledge Model (IS(U))
contains general or not domain-specific knowledge as well as areas of interests and
background of the user. This data is not of psychological nature but may be
important for the overall user model.

The Psychological or Cognitive Model (CS(U)) is concerned with preferences,
(dis-)abilities and personality traits. For example the system has to know the
student’s preferences (Vassileva, 1990; Ragnemalm, 1995) if it adapts its
instruction to:

• the learning style or strategy preferred by the user (holistic vs. serialised,
exploratory vs. directed learning),

• the motivation technique that is more effective for the user (curiosity,
competition or confidence),

• the type of thinking – inductive (learning by examples) or deductive
(logical deductions, problem-solving),

• the degree of concentration (recognised e.g. by typing errors, misuse of
commands).

Users that differ in these cognitive skills require different adaptations. Usually the
characteristics of cognitive model are long-term characteristics as they are more
resistant to changes.

If the user’s model is represented as a subset of the expert model then it is called
an overlay model, i.e. UM ⊂ BS. An overlay model only allows to diagnose missing
pieces of knowledge, but cannot represent deviations from correct knowledge or
bugs (Sleeman & Brown, 1982).

Another approach, also based on the nature of the contents, is the modeling of
characteristics and misconceptions. Models that also include propositions about
misconceptions or bugs are called Perturbation Models or Bug-models. Here it
must be distinguished between misconceptions, bugs and errors. A misconception
is a discrepancy between the system’s and the user’s representation of knowledge,
a bug (sometimes called mal-rules) refers to a discrepancy at the behavioural level
and an error is the difference between the user’s and system’s behaviour related to
the problem domain. Bugs or erroneous sequences are sometimes given or
automatically generated by the system using some rules or mechanisms (Vassileva,
1992).

To illustrate the above definitions some propositions related to the SmexWeb
adaptive hypermedia exercising application (see Chapter 8) on the subject EBNF
(Enhanced Backus-Nauer-Formalism) are chosen. EBNF is a grammar-like

Chapter 3 • User Models and User Modeling • 43

formalism used for describing the syntax of programming languages. It is a topic of
introductory courses in computer science. Therefore, students may have little
experience with computers in general and browsing in particular. This adaptive
Web-based application was implemented on the basis of the framework SmexWeb
(Albrecht, Koch & Tiller, 1999) to assist students with different background in
solving EBNF exercises.

The pedagogic-content model contains the EBNF-rules to built correct EBNF
expressions and pedagogic rules useful to teach EBNF. The domain-independent-
knowledge model consists of a list of propositions related to general computer and
browsing knowledge. The cognitive model describes some learning and layout
preferences of the user. Some of the propositions of each model are listed below.

DS = {EBNF rules are of the form non-terminal = expression,
 expressions that comprise terminals and non-terminals,
 EBNF language comprise expressions without non-terminals,
 the symbol “|” is used for alternatives,
 the symbol “*” indicates any number of repetitions,
 the symbol “+” indicates at least one repetition,
 distinction between “*” and “+”,...}

IS = {any link can be followed,
 help can be requested at any time,
 experience in browsing, ... }

CS = {preference of explanations with examples,
 small font, non-formal details, ...}

BU contains propositions believed by the user, which are related to EBNF, to
browsing and the user preferences. The UM consists of the propositions the
SmexWeb system believes about the user and that are related to the mentioned
subjects. It can be observed that there are some differences in both models. First,
the user considers herself an expert in browsing while the system has categorised
her as fairly good. Second, the user has an erroneous concept about the EBNF
language.

BU = {EBNF rules are of the form non-terminal = expression,
 EBNF language comprise expressions without non-terminals,
 the symbol “|” is used for logical “and”,
 expert in browsing,
 explanations with examples,
 small font, ...}

44 • User Models and User Modeling • Chapter 3

UM = {EBNF rules are of the form non-terminal = expression,
 EBNF language comprise expressions with terminals
 and non-terminals,
 the symbol “|” is used for logical “and”,
 fairly good experience in browsing,
 explanations with examples,
 small font, ...}

3.4 Objectives of User Modeling

Applications of different kind can profit from user models. Traditionally, user
models are found as a component of learning systems. User modeling is usually
tightly coupled with the instructional component of an adaptive learning
environment or plays an important role in user assistance, such as in search engines
or help systems. User models are included now in a wider spectrum of applications.
The following is a non-exhaustive list of objectives for which user modeling is used
for: help users to learn about a topic, to support collaboration and assistance, to
find and tailor information and/or to improve man-machine communication.

3.4.1 Help to Learn

The instruction and training field is one of the major applications fields for user
modeling. Learner or student models are built to support the systems in e.g.
choosing suitable learning material, selecting appropriate exercises, differentiating
skills of trainees, providing feedback on their knowledge or predicting and
correcting student’s answers.

The learner model in an instruction or training system aims at identifying
misunderstandings and support the student in the learning process eliminating
these misconceptions.

Some adaptive learning environments need to support dynamic planning
(Vassileva, 1995 & Wasson, 1990), i.e. the online creation and revision of the
instructional plan according to the user’s behaviour. Plans can not be created from
scratch, that means there are always a set of assumptions made. Therefore, plans
are only dynamic to a certain degree. A mapping function can be defined that
creates a new user model based on the current user model and the users inputs as
well as the system’s outputs.

 UM x {i1, o1, i2, o2, ..., in, on} → UM (a)

Chapter 3 • User Models and User Modeling • 45

where {i1, o1, i2, o2, ..., in, on} is a sequence of events: inputs (i) and outputs (o).
Usually n is kept small to reduce complexity. As the user’s inputs are not known in
advance, some kind of predictions have to be made. The plan may also depend on
other factors, such as constraints or organisation of the subject matter.

Diagnosis is the process of finding and interpreting student’s misconceptions or
bugs. Planning and diagnosis are in some cases very closely related. The results of
the diagnosis are represented in the user model and are the subject of the
remediation.

Remediation can be performed in different ways. From the pedagogical point of
view it has to be determined, which is the appropriate form. These forms are for
example:

• re-teaching: is an option to be applied when the system can not exactly
identify the user’s difficulty, e.g. a set of concepts can be re-thought.

• emendation: if the system has identified a proposition p, where the user
believes a faulty version of p, then the system can deny the faulty version
of p, assert p and justify p.

• exemplification: the system can generate examples that address the
missing or faulty knowledge of the user.

3.4.2 Support Collaboration and Assistance

In a collaborative environment, where the user has greater freedom to select her
own goals, the role of the system is different. It plays the role of an assistant,
offering hints, helps and comments. The system is in this case a co-operative
partner or adviser and no longer a traditional tutor. Emphasis is put on goals, tasks,
and interests of the user, instead of knowledge. In applications supporting
collaborative learning or work the user model is built by a more direct interaction
with the user rather than trough some internal system reasoning.

A mapping function, as shown ins (a), is applied in this case to obtain an updated
user model. It takes into account the last n inputs from the user. The number of
parameters of the function may be restricted to n = 1, i.e. the system in this case
does not predict or plan at all.

 UM x {in, in-1, in-2, ...i1} → UM (b)

46 • User Models and User Modeling • Chapter 3

3.4.3 Find and Tailor Information

Examples of user models used for finding and tailoring information for the user
are: reminding users of previous Web navigation paths (Maglio & Barret, 1997),
recommending Web pages, selecting documents of interest to the user, filter
documents, such as e-mails or articles according to the user’s interests (Cas &
Bingler, 1998), select appropriate collaborators (Collins, Greer, Kumar & McCalla,
1997), recommend form of collaboration between students (Bull & Smith, 1997),
guidance in solving exercises (Albrecht, Koch & Tiller, 1999), etc.

3.4.4 Improve Man-Machine Communication

User modeling is also an important subject in the human-computer communication
field. The dialogue management and the natural language generation are own
research areas. Dialogue modeling is traditionally motivated by the assumptions
that interaction is not an arbitrary exchange of messages, but that it follows certain
rules and can be described by certain patterns. For example, Miracle is a logic-
based information retrieval system that builds a dialogue model which describes
potential development of the interaction recommending problem-solving steps
(Stein, Gulla & Thiel, 1997).

3.5 Initialisation of User Models

The first time a user runs an adaptive application the user model is empty. A user
model can be initialised in two ways: by explicit questioning or by default
assumptions. Most of the times a combination of both is implemented.

3.5.1 Explicit Questioning

The system can acquire initial knowledge about the user asking her to fill in a
questionnaire. The problem that arises is how many questions the user would be
willing to answer. It is not possible to give a unique response as it depends on
others on the application and the type of users.

If there is a finite set of independent propositions {p1, p2, p3, ...} such that BSpi may
be true, the system may ask the user questions such as “Do you believe pi?” or “Do
you know pi?”. Hence the user is asked to indicate through the dialogue an

Chapter 3 • User Models and User Modeling • 47

assessment of interests, estimation of her capabilities determining a first domain
knowledge, etc. If the propositions are not independent, an appropriate order in the
questions has to be determined (Self, 1991).

Some answers can be used to deduce an increment of the system’s knowledge.
Therefore, inference rules are defined as follows:

 BSKupi → BSKupj for some pairs of i,j

where BSKupi is the system’s belief about the user’s knowledge about pi.

Questions can also be related to domain independent concepts as well as to
cognitive characteristics. These questions may be restricted to one proposition pi,,
such as “Do you prefer material with examples?” or related to a set of classes of
users “Do you believe yourself to be an expert, novice or beginner?” These classes
permit through application of inference rules the determination of propositions.

 BScj → BSKup1 ∧ BSKup2 ∧ BSKup3 ∧

The user model relies on the user input, i.e. on her own assessments and beliefs
about her knowledge, which may not always be correct. The initial interview is a
primary and valuable source of information about the user. Sometimes it is used to
assign the user to certain classes, as mentioned above. These classes are so called
stereotypes. In the remainder of this work they are called user stereotypes to mark a
difference to UML stereotypes used in Chapter 6.

3.5.2 Default Assumptions

If no explicit questioning is possible or only a limited set of questions is tolerable,
but more information is needed, then some default assumptions can be made. For
example, the assumption that a user of a learning system knows nothing of the
subject to be learned:

 ∀ p (p ε DS(U) ∧ p → BS¬Kup)

or every user that uses a certain system responds in a first phase to some class of
user (stereotyped), as for example to be assisted with help information without
explicit request until she gives a signal to reduce this assistance.

 ∀ U (p = „requires help“ ∧ p ε IS(U) ∧ BSBup)

48 • User Models and User Modeling • Chapter 3

If user stereotypes are arranged into a hierarchical structure, it is possible to
organise sequences of questions and inheritance of inference rules. A set of
propositions can be associated to each node, which represents a user stereotype. If a
user is identified or assumed to belong to a user stereotype group, then all the
propositions of the node are included in its model and she inherits all propositions
of the parents nodes (stereotype activation). Figure 3-1 shows an example of a user
setereotype hierarchy.

User stereotypes are useful in the initialisation process of user models, sometimes
during the whole user modeling process. But they do not offer enough information
in the case of student models because they do not permit the necessary fine-grained
analysis. User stereotypes for student models are seldom used beyond the initial
stage. E-commerce applications often use user stereotypes that are based on
predefined user segmentation groups, such as the Internet Values and Lifestyles
(iVALS, 2000).

3.6 User Model Internal Structure

The heart of students models is a set of concepts (also called topics, knowledge
elements, propositions, objects) mostly related to the domain. Depending on the
type of relation between these concepts Brusilovsky (1996a) distinguishes between
level one, level two and level three models. Level one is the simplest form and is a

network
expert

computer user

application
developer

Web
user

application
user

Web
developer

Web
engineer

Web
designer

HTML
expert

JavaScript
expert

Java
expert

system
administrator

Web
expert

Web
novice

systems
programmer

multimedia
designer

architect

Figure 3-1: A User Stereotype Hierarchy

Chapter 3 • User Models and User Modeling • 49

set of independent concepts referred to as the domain model. If the topics are
linked to each other thus forming a kind of semantic network, this network domain
model is said to be a level two model. Level three is a frame-based domain
knowledge representation, where each topic is represented as a set of attributes
with the particularity that different kinds of topics usually have different sets of
attributes.

These domain models provide the structure for the user model. In this context the
knowledge a system has about the user can be represented in different ways, such
as overlay models, semantic nets, user profiles, stereotype-based models, bayesian
networks or fuzzy logic models. The most frequently used representations are
overlay models, stereotyped models and bayesian networks.

3.6.1 Overlay Model

In an overlay model the user’s knowledge is represented as a subset of the system’s
knowledge. The system’s knowledge may be given by the expert knowledge, the
domain knowledge, the expected student knowledge or a perturbation model. The
overlay model is the most predominant type of user model usually represented as a
hierarchical or semantic network of nodes related directly to the domain concepts.
Boolean or discrete values are used as estimation for the user’s knowledge. The
value of overlay models has been questioned and criticised, such as by Self (1991)
and Vassileva (1990). Others, such as Brusilovsky (1996a) stresses that overlay
models are powerful and flexible as they can measure independently user
knowledge on different topics. One way of implementing overlays is to assign a
numerical weight to each concept in the curriculum, which indicates how sure the
system is that a user knows the concept.

There are many examples for overlay models in the literature; the following
systems organise their user models as overlay models including not only domain
knowledge but also user tasks and goals: Orimuhs (Encarnacão & Stork, 1996),
PUSH (Espinoza & Höök, 1996), HyperTutor (Gutierrez, Perez, Usandizaga &
Lopistéguy, 1996), ELM-ART (Brusilovsky, Schwarz & Weber, 1996a),
HYNECOSUM (Vassileva, 1996), ADAPS (Brusilovsky & Cooper, 1999), etc.

For example the student model of HyperTutor contains information about the
student learning characteristics, the domain knowledge, the didactic material and
about the learning process history. Also the media preferences for learning (video,
sound, animation, etc.) are considered as part of the learning characteristics. The
domain knowledge contains the concepts acquired by the student during the
learning process. It is represented as an extended overlay model of the pedagogical

50 • User Models and User Modeling • Chapter 3

domain. The learning date of a concept is also stored; it allows the system to know
in which order the concepts are learned and how much the student may have
forgotten according to the time elapsed since then. Information about the didactic
material presented to the student is kept in order not to repeat examples or
exercises. Recording the history of the learning process allows the system to know
what happened in the last session and over the whole student learning process.

3.6.2 User Profile

The terms user model and user profile are often used as synonymous. But
sometimes they are distinguished to indicate that user profiles are simple user
models. They are used to represent user’s cognitive skills, intellectual abilities,
intentions, learning styles or preferences.

In a user profile each aptitude is assigned to a value; these values usually belong to
a range of valid values. The values can be a boolean (true for known and false for
unknown), discrete (e.g. 1 for low, 2 for middle, 3 for high) or probabilistic value
(e.g. 0 for none, 0,5 for some, 1 for all). Therefore the model of the user can be
represented by pairs of “topic-value”, one pair for each concept. Every
representation with a finite number of values for each aptitude can be converted to
one with only boolean values (Kay, 1995 and De Bra & Calvi, 1998). These
aptitudes may be transient (e.g. interest in politics, no Web experience) and some
permanent (e.g. blindness, age). Some may be situational-dependent (e.g.
preference for audio).

Examples of systems that implement user profiles are the EPK – an electronic
product consulting system – developed by Timm and Rosewitz (1998) and
SmexWeb – Student Modelled Exercising System (Albrecht, Koch & Tiller, 2000).

3.6.3 Stereotyped Model

In a stereotyped model the properties and knowledge of the users are also
represented with pairs of item and value. The difference is that different
combinations of pairs are assigned to stereotypes, such as novice, intermediate,
expert. One user then inherits all the properties defined for one stereotype.
Stereotyping introduced by Rich (1979) is simpler but less flexible and powerful
than other user modeling techniques.

Chapter 3 • User Models and User Modeling • 51

Examples of systems that use stereotyped models are the tourist information system
developed by Schuhbauer (1998), the CALL system (Murphy & McTear, 1997) and
GRUNDY of Rich (1979).

Good results are obtained with the combination of stereotyping techniques and
overlay modeling. The initialisation of the user model is done by assigning a
stereotype to the user, which is refined at each step implementing the overlay
model. An example is the user model implemented in ARCADE (Encarnacão &
Stork, 1996).

Stereotype models are enough when modeling the interface or choosing the type of
instruction. They are insufficient when individual adaptation requires a more fine-
grained description of the user or specific help or advising is required.

3.6.4 Bayesian Networks

Numerical techniques have become more popular in the last decade for modeling
user’s knowledge, user goals, recognising plans and identifying the best actions to
take under uncertainty. One of these approaches used to manage uncertainty in user
modeling is Bayesian Networks (BN).

A Bayesian network is a directed, acyclical graph in which the nodes correspond to
variables (user properties) and the links correspond to probabilistic influence
relationships (Jameson, 1998). These variables may belong as well to the domain-
knowledge, background-knowledge and/or cognitive model. Each node represents
the system’s belief about the possible values (levels, states) of the variable. Thus,
the conditional probability distribution (CPD) must be specified at each node. If the
variables are discrete, they can be represented as a table, which lists the probability
that a child node takes on each of its different values for a given combination of
values of its parents.

For example the following node represents the User knowledge of the concept
“inheritance” in object-oriented techniques; possible values are known and unknown.
This node is a child of User expertise in object-oriented software development and
Difficulty of the concept “inheritance”. The states for the parent node User expertise in
object-oriented software development can be defined as different levels of expertise
such as expert, intermediate, beginner, novice (see Figure 3-2).

Links between nodes are defined to infer about the system’s belief about the user.
To derive beliefs for known and unknown the network requires a conditional
probability table that specifies each of the 24 combinations of possible values of

52 • User Models and User Modeling • Chapter 3

the variables in the parent nodes and the child node, how likely the value of the
child variable is, given the values of the parent variables.

Where do these probabilities come from? The difficulty lies in specifying these
conditional probabilities. They can be derived from empirical data, estimated by a
domain expert, and/or based on a more general theory about the relationship among
variables of these types. General theories applicable to specify conditional
probabilities can be found, for example, within the psychological test theory
(Jameson, 1995). Some frameworks also allow conditional probabilities to be
characterised as unknown parameters (Mislevy & Gitower, 1995). But in most of
the systems these numbers have been entered by the designers themselves on the
basis of intuitive judgement. Most of the researches do not indicate how accurate
numbers can be obtained in practice.

difficulty of
“inheritance”

knowledge of
“inheritance”

expertise in
object-orientationexpert

intermediate
beginner
novice

0.1
0.2
0.4
0.3

complex
middle
simple

0.25
0.45
0.30

known
unknown

Figure 3-2: Bayesian Network

Applying Bayes’ Theorem in its pure form becomes unmanageable as the number
of variables in a problem increases. Different kinds of algorithm improvement’s
have been tested in many applications. Computation techniques for bayesian
inference networks are discussed by Jameson (1995). There are many examples of
adaptive systems based on user modeling relying on bayesian networks, such as the
KBS hyperbook system (Henze & Nejdl, 1999), the agents of Horvitz (1997) and
the systems mentioned in Jameson (1995).

3.7 User Models Updating Process

Chapter 3 • User Models and User Modeling • 53

The updating process requires to acquire information about the user’s behaviour
and to adjust the user model if there is evidence that it is inaccurate. The user
model is inaccurate if the user acts in a different way than predicted by the user
model.

The acquisition is the process of collecting input from the user in whatever form it
is available – mouse click, typed or voice input, screen touch, time elapsed –
corresponding to user interactions in a process, pages visited in a hypermedia
application, steps in a student’s problem solving, etc. Based on this information the
aim is to infer about what the user knows, or does not know, what she prefers or
aims at. The problem is the interpretation of the data (mouse click, keyboard input,
etc.) into actions or propositions, which is not trivial (Ragnemalm, 1995).

3.7.1 Acquisition techniques

The user model acquisition techniques can be characterised along several
orthogonal dimensions, as follows (Chin, 1993):

• Active or passive, based on the participation of the user in the acquisi-
tion.

• Automatic or user initiated, based on who is the initiator of the acquisi-
tion.

• Direct or indirect, depending on the length of the inference chain.

• Explicit or implicit, based on the type of user feedback.

• Logical or plausible, according to the results produced.

• Online or offline, based on when the acquisition is performed.

Active techniques interact directly with the user, e.g. using online forms via CGI-
scripting to query the user. Passive techniques, instead, construct user models
based on inferences from observations, such as visited pages or the analysis of the
user clickstream; information is obtained from HTTP log files, CGI data, cookies or
Java applets. SmexWeb (Albrecht, Koch & Tiller, 1999), for example, uses both
techniques; an active one for the initialisation of the model and a passive
acquisition technique for the update of the user model.

User initiated are those techniques in which the user decides when to change the
user model. In automatic techniques, instead, the user has no influence on when
she is observed and when the model is updated. System initiated techniques are the
more frequently used. The UM toolkit (Kay, 1995) is an exception that allows
users to build a model in a graphical format.

54 • User Models and User Modeling • Chapter 3

Explicit techniques are those in which the user consciously provides information.
Implicit techniques instead are based on unobstrusive observation of the user
behaviour.

Logical and plausible techniques differ on the degree of plausibility of the results.
Plausible techniques require the explicit representation of uncertainty in the user
model and need mechanisms to maintain consistency in the user model.
Uncertainty in user modeling can be managed, e.g. by Bayesian networks
(Jameson, 1995). Overlay models, instead, are an example for the result of a
logical acquisition technique.

An acquisition technique is direct, if the system derives directly from the user
feedback information that is used for the update of the user model. Indirect
acquisition techniques build upon the results of direct ones; they often take the
form of inference rules. One of the most well known inference rules are those to
define stereotypes. Stereotypes are widely used after they have been introduced by
Rich (1979) in the GRUNDY system.

Most of the acquisition techniques are applied online. Exceptionally, users can be
observed offline, to infer stereotypes, e.g. extracting information of certain
customer databases. It is questionable if this is an appropriate acquisition technique
for user modeling, since the information obtained from the databases may not
correspond to real users of the adaptive system.

3.7.2 Acquisition process

The acquisition process consists of three phases: collection, diagnosis and
consistency. In the diagnosis process two steps can be distinguished: transfor-
mation and evaluation.

 Collection of data

The main problems related to the collection of data are: the reliability of the data,
the amount of data available and the level of detail of the data. What amount of
data is needed depends on the granularity of the model. In hypermedia-based
systems there is the additional difficulty to register user interactions mainly due to
the stateless Hypertext Transfer Protocol (HTTP), which provides little support in
the process of collecting data (Ragnemalm, 1995). Thus, data is obtained through
additionals channels of communications.

Chapter 3 • User Models and User Modeling • 55

Granularity or level of detail of data vary from application to application. For
example, the following states of level of detail are defined for student models:
final, intermediate and mental to express just the result of final exercise,
intermediate results or every step during solving the exercise.

 Diagnosis

As mentioned above, the diagnosis is the process of finding faults. It consists of
two steps: a transformation of the collected data and a comparison (evaluation) of
the resulting user’s behaviour with some “correct” behaviour.

Transformation consists of extracting the relevant information from the data
collected in order to judge the user’s skills. This can be done in two directions
according to Ragnemalm (1995) and Vassileva (1990):

• the user’s input from her behaviour can be converted to a representation
closer to the model. The techniques used for this conversion may be
domain-dependent.

User’s input has to be mapped into a set of propositions (Self, 1991). The
problem is to find a function:

interpret ({i1, i2, i3, ..., in}) = {p1, p2, p3, ..., pm} such that

 BSBUpj for j= 1 to m

In the simplest case the function is the identity, thus ij = pk. But the
interpretation is usually more complex as it has to reason about what the
inputs mean in terms of user’s beliefs. These interpretations are very
often domain or application dependent. Some general acquisition rules
can be formulated, such as if the user states a proposition then the system
believes that she believes it and all components of it (Kass, 1989).

• the user’s properties contained in the model can be converted to a format
closer to the user’s input, i.e. giving criteria or recognition patterns for
the user’s input. They can be given in advance or generated by the
system. Handling of contradictions, misconceptions and instability of user
and student models are aspects to be considered.

It can be defined in analogy to the deduction of recognition patterns:

deduce ({p1, p2, p3, ..., pm}) = {r1, r2, r3, ..., rn } such that

 BSBUpj for j= 1 to m

and the set of recognition patterns {r1, r2, r3, ..., rn } is compared during
evaluation with the user’s input {i1, i2, i3, ..., in}.

56 • User Models and User Modeling • Chapter 3

Evaluation refers to the process of comparing the user’s behaviour or knowledge to
some conception of “correct” behaviour or knowledge, which is represented
explicitly or implicitly in an expert model.

Summarising: the diagnosis process aims at matching data (i) with a model (UM)
or inversely to match the model to the data. Thus, diagnosis processes are ranged
between two extremes:

• a purely data-driven approach: the diagnosis is built based on the user’s
behaviour without reference to a predefined model,

• a purely model-driven approach: this method generates predicted models
and matches them to the user’s behaviour.

Data-driven approaches are appropriate for simple domains, more for user than
learner models. Model-driven models easily result in problems with combinatorial
complexity. Most diagnosis methods are in between these two extremes, such as
reconstruction, model tracing, or condition induction. A brief definition is given of
some of them. The following works can be referred to for a detailed description of
diagnosis methods: Self (1991), Dillenbourg and Self (1990), Jameson (1998) and
Ragnemalm (1995).

• Reconstruction is the inferring process that tries to reconstruct a set of
propositions the user “has used” for an answer “a” (answer for a solution
with no intermediate steps). This is based on the assumption that the user
uses only knowledge that is included in DS(U) and provided that there is
a unique set of {pi}.

reconstruct (a) = {p1, p2, p3, ..., pm} such that pi ε DS for i = 1 to m

This method is applied in Web systems, where the system only receives
information from the user when the user activates a link. Intermediate
steps or inputs are inaccessible to the system.

• Model tracing is a technique that can be chosen if more than one set {pi}
is given, such that {p1, p2, p3, ..., pm} →� a . It assumes that the user
input reflects the mental steps in the user’s problem solving process.
Model tracing selects states that can possibly be applied and transforms
them for comparison with the user input states. As input for the user
mental steps it is required an extremely detailed procedural user
modeling. Classical examples are the Lisp Tutor (Anderson & Skwarecki,
1986), the ACT Programming Tutor (Corbett & Anderson, 1995) and
PAT Online (Ritter, 1997) .

Chapter 3 • User Models and User Modeling • 57

The EBNF application mentioned before implements applets, that for
example permit to record every movement the user performs during the
construction of EBNF expression.

match ({step1, step2, step3, ..., stepk},{p1, p2, p3, ..., pk})

 for k ≤ m and for each candidate sequence {pi}.

It is not necessary to wait for the complete user’s input sequence to begin
the comparison with the propositions. Based on this comparison the
system determines the matching propositions and can predict next steps.
This model tracing process has no advantages unless the user makes
mistakes (useful for student models). As a result of this process a set of
propositions {pi} ε DS is added to the UM fulfilling BSBUpi.

If the user model is an overlay model then, ∀i (BSBUpi → pi ε DS).

• Condition induction is similar to model tracing as it assumes that the
user input is described with mental steps and the model is represented by
propositions. Difference is that instead of looking for an appropriate
proposition from the user input a proposition is generated and then
compared to the propositions of the domain model. The direction is the
opposite of the model tracing (Rangemalm, 1995).

interpret ({i1, i2, i3, ..., in}) → {q1, q2, q3, ..., qk} and then

match ({q1, q2, q3, ..., qk},{p1, p2, p3, ..., pk})
 for each candidate sequence {pi}

• Other techniques such as Decision Trees, Generate and Test as well as
Interactive Diagnosis use knowledge about misconceptions, bugs and
mal-rules to predict student’s input. Dillenbourg and Self (1990) describe
these concepts on the basis of discrepancy between the system’s
knowledge and the knowledge about the user represented in the user
model. Misconceptions refer to a discrepancy in the conceptual level
while bugs, also called mal-rules, are differences in the behavioural level.

Different techniques are used to construct and update probability-based inference
networks, such as deductive, inductive and abductive reasoning described by
Jameson (1995) and Mislevy and Gitower (1995) .

• Deductive reasoning flows from general to particulars, within an
established framework of relationships among variables – from causes to
effects, from knowledge to observable behaviour. It is also called
predictive inference.

58 • User Models and User Modeling • Chapter 3

• Inductive reasoning flows in the opposite direction – from effects to
possible causes, from user’s solution to likely configurations of
knowledge. It is also called diagnostic inference.

• Abductive reasoning generates new hypotheses, new variables or new
relationships among variables from observations. Model improvement,
i.e. modifying the network in response to unexpected or unsatisfactory
outcomes, requires abductive reasoning.

 Model’s consistency

The maintenance of the model’s consistency is a subject that is not so intensively
researched as the diagnosis techniques are. When incorporating new propositions
to the user model, some inconsistencies with already existing conceptual or
behavioural propositions may appear. One interesting approach is presented by
Huang, McCalla, Greer and Neufeld (1991). When conflicts are detected among
the assumptions about the user, their systems determine which assumptions should
be retracted to resolve the conflict.

3.8 Sharing User Models

Kobsa and Wahlster (1989) stress that a user model is a knowledge source which is
separable by the system from the rest of its knowledge. Adaptive Web systems can
access through the World Wide Web to external user models, but in practice it has
been proven to be difficult to find domain problems sharing a user model. Some
research has been done in this direction of shared or server user models.

BGP-MS (Belief, Goal, Plan Management System) and “Doppelgänger” (Wahlser
& Kobsa, 1989) are examples of server systems developed for user modeling, that
offer their services to a number of applications. BGP-MS is a prototypical
implementation of the AsTRa (Assumption Type Representation) framework for
logic-based user model representation and reasoning (Pohl, 1999).

Fink (1998) sees the following as the main advantages of the central maintenance
of user modeling activities compared to local and application-oriented user
modeling scenarios:

• current user model information is available to every application,

• synergistic effects with respect to aquisition and usage,

• low redundancy in individual user model content,

Chapter 3 • User Models and User Modeling • 59

• availability of stereotypes for different applications, and

• design, implementation and maintenance can be performed independently
of the application.

Paiva & Self (1995) present the workbench TAGUS that aims at providing a set of
services to be used by applications and by user model developers. It has identified
the basic mechanisms in user modeling and establishes general modeling cycle.
This cycle includes two main stages: the acquisition activities and the maintenance
of the model. The architecture of TAGUS is composed of a User or Learner Model
(ULM), a set of maintenance functions, an acquisition engine, a reason
maintenance system, a meta-reasoner and two interfaces. This user model server is
independent of the applications that use it. The remaining problem is the transfer
of information between the application and the ULM as the user or learner model
depends usually on the domain. TAGUS is only partially general as it is useful for
applications that satisfy some constraints as to communicate with the application
using a language especially defined for this purpose. Other shell systems are UMT
(user modeling tool) implemented by Brajnik and Tasso (1992) and GUMAC
(General user model acquisition component) presented in Kass and Finin (1988)
and the AsTRa (Assumption Type Representation) framework described by Pohl &
Höhle (1997).

Many commercial user modeling servers are available. A list of some major players
as of press time is shown in the article of Waters (2000). Fink and Kobsa (2000)
present and discuss a group of selected user modeling servers: Group Lens,
Personalization Server, Learn Sesame and FrontMind. They describe among others
the architecture, the functionality, data acquisition, representation methods, soft-
ware and hardware platforms, the company and product profile.

3.9 Development of User Models

Part of the software engineering process for adaptive hypermedia is concerned with
the development of an appropriate user model for the application. The classifi-
cation and description of characteristics of user models done in this chapter are
used as basis for the definition of a development process for user models (Chapter
6 and 7). The structure of a general user model is based on the division of the user
model in three sub-models as suggested in Sub-section 3.3.

Chapter 4 • An Object-Oriented Reference Model • 61

“..an attempt to capture, both formally and informally,
the important abstractions found in a wide range of

existing and future hypertext systems.”
Frank Halasz and Mayer Schwartz

NIST Hypertext Standardization Workshop,
January 1990.

4 An Object-Oriented Reference Model

In this chapter a reference model (metamodel) for adaptive hypermedia
applications is presented. It is called the Munich Reference Model for Adaptive
Hypermedia Systems, continuing with the tradition to choosing names of places for
the reference models related to the hypermedia field, such as in the case of the
Dexter Reference Model for Hypertext Systems (Halasz & Schwartz, 1990), the
Amsterdam Hypermedia Model (Hardman, Bulterman & van Rossum, 1994) or the
Dortmund Family of Hypermedia Models (Tochtermann & Dittrich, 1996). An
exception to the rule is the Adaptive Hypermedia Application Model (AHAM) of
Wu, Houben and De Bra (1998), which does not include the name of a city in the
title. AHAM is a first approach to a reference model for adaptive hypermedia
applications, and is, to author’s knowledge, the only one that has been published to
date.

The model presented in this work is a Dexter-based reference model, similar to
most of the models mentioned above. It augments the Dexter model with features
supported by existing adaptive hypermedia systems or systems under construction.
It improves the AHAM approach by including a detailed specification of the user
model and the adaptation model (called the teaching model by AHAM). The
Munich Model focuses on object-orientation, visual representation and formal
specification.

The Dexter Model was formalised in the specification language Z, a specification
language based on set theory (Spivey, 1992). Since then, object-oriented models
and programming have increased in importance and dissemination. In addition,

62 • An Object-Oriented Reference Model • Chapter 4

more emphasis is now put on visual modeling languages, which improve intuitive
comprehension of models.

The Munich Reference Model is based on the Unified Modeling Language (UML)
and the Object Constraints Language (OCL). “The UML is a language for
specifying, visualising, constructing, and documenting the artifacts of software
systems, as well as for business modeling and other non-software systems. The
UML represents a collection of best engineering practices that have proven
successful in the modeling of large and complex systems” (OMG, 2000). UML
provides the notation and the object-oriented modeling techniques for the visual
representation of the reference model. OCL (Warmer & Kleppe, 1999) is used for
the formal specification of invariants on the model elements and attributes as well
as pre-conditions and post-conditions on the functions.

The visual representation has the advantage that of showing at a glance the relevant
concepts, how they are organised and how they are related to each other. This
graphical representation is missing in a pure Z or Object-Z specification. UML has
been chosen because it has become a standard modeling language. The semi-formal
graphical representation is supplemented with semantic information formally
written in OCL. The integration of formal and diagrammatic approaches is
recommended, e.g. by Pastor, Insfrán, Pelechano, Romero and Merseguer (1997)
that propose a mixed approach called OO-Method. Evans, France, Lano and
Rumpe (1998) as well as Wirsing and Knapp (1996) stress that the formal meaning
of diagrams and model elements is required for rigorous analysis. Richters and
Gogolla (1999) report on considerable improvements by using OCL constraints
instead of English text eliminating ambiguous interpretations of UML models.

In this work UML combined with OCL allows for an object-oriented formal
specification that is equivalent to the original Z specification of the Dexter Model.

This chapter is structured as follows: The first section gives an overview of the
state of the art of reference models for hypermedia applications. The second section
presents the architecture of the Munich Reference Model for Adaptive Hypermedia
Applications. In addition, this section outlines the changes to the Dexter model and
lists differences to other reference models for adaptive hypermedia systems. The
third section presents the formal specification of the model.

4.1 Reference Models for Hypermedia Systems

The objectives of hypertext or hypermedia references models are to capture
important abstractions found in current hypermedia applications, to describe the

Chapter 4 • An Object-Oriented Reference Model • 63

basic concepts, such as the node/link structure of these systems, to provide a basis
to compare the systems, and to develop a standard.

For the specification of reference models, formal, semiformal or informal
techniques can be used. Formal techniques are those specification languages that
are based on mathematics, logic or algebra and for which syntax, semantics and
manipulation rules are explicitly defined. Semiformal techniques indicate the use
of diagram techniques and tabular techniques, which present information in a
structured form. Informal techniques are those that use only natural language.
Wieringa, Dubois and Huyts (1997) stress the importance of integrating semiformal
and formal specification techniques. The Munich Reference Model presented in
this chapter seeks to achieve this aim.

In practice, the majority of specifications use a combination of two or three
techniques. Several abstract models have been developed in the area of
hypermedia. The existing models fall into two main categories:

• informal – semi-formal models, such as

- the Hypertext Abstract Machine (HAM) of Campbell and Goodman
(1988),

- the Tower Model (De Bra, Houben & Kornatzky, 1992),

- the Amsterdam Hypermedia Model (AHM) of Hardman, Bulterman
and van Rossum (1994),

- the Devise Hypermedia Model (DHM) of Grønbæk and Trigg (1996),
and

- the Adaptive Hypermedia Application Model (AHAM) of De Bra,
Houben and Wu (1999), the description for which is based on
tuples.

• formal models, such as

- the Trellis Model (Furuta & Stotts, 1990), the specification for
which is based on petri nets,

- the Dexter Reference Model, the original specification for which
was written in Z. Two additional specifications of the Dexter Model
are the Object-Z (van Ossenbruggen & Eliëns, 1995) and the UML-
OCL specification (Koch, 2000b);

- the Dortmund Family of Formal Models of Tochtermann and
Dittrich (1996), the specification for which is based on VDM
(Vienna Development Model).

64 • An Object-Oriented Reference Model • Chapter 4

These models also differ in their objectives. The Dexter Model defines a common
vocabulary, the hypertext abstract (HAM) is an architectural description and the
Trellis model is a formal specification of hypertexts. The four most relevant
reference models are outlined in the following subsections.

4.1.1 The Dexter Hypertext Reference Model

The Dexter Hypertext Reference Model was the result of the discussions of a small
workshop on hypertext at the Dexter Inn, Sunapee, New Hampshire in October
1988. The purpose was to find a common language for the people involved in
hypermedia development and to obtain common abstractions for the hypermedia
systems existing at that time (Halasz and Schwartz, 1994). The Dexter Model has
been proven to be useful and has since then been used as a basis for discussions
and improvements of hypermedia systems. For example, the Devise Hypermedia
Model (DHM) of Grønbæk and Trigg (1994,1996) is an extended Dexter Model that
covers systems that represent and store links as objects separate from the
components they connect and at the same time models systems whose links are
embedded in the contents of documents. Although DHM covers similar territory to
the original Dexter Model it introduces the concepts of location specification and
reference specification that capture the two styles of linking in a more intuitive and
integrated manner.

There is no doubt that the Dexter Reference Model – formalised by Halasz and
Schwartz (1990) in the specification language Z – is one of the most important
milestones in the history of hypermedia development. It uses the word “hypertext”
to refer to both text-only and multimedia systems; in the same way is done in this
section. The Dexter Reference Model divides a hypertext system into three layers.
These are the Run-Time Layer, the Storage Layer and the Within-Component Layer
connected by the interfaces Presentation Specification and Anchoring. The model
focuses mainly on:

• the Storage Layer,

• the mechanisms of Anchoring (interface between the Storage Layer and
the Within-Component Layer),

• the Presentation Specification (interface between the Storage Layer and
the Run-Time Layer), and

• some aspects of the Run-Time Layer.

Chapter 4 • An Object-Oriented Reference Model • 65

Run-Time Layer
presentation of the hypertext
user interaction, dynamics

Prresentation Specification

Storage Layer
network of nodes and links

Anchoring

Within-Component Layer
content/structure inside the nodes

Figure 4-1: Layers of the Dexter Hypertext Reference Model

The Within-Component Layer is purposely not elaborated within this reference
model. Figure 4-1 shows these layers as presented in the work of Halasz &
Schwarz (1994).

The main goal of the reference model is to describe the network of nodes and links
in the Storage Layer, i.e. the mechanisms by which these links and nodes are
related. The nodes are treated in this layer as general data containers. The content
and structure within the hypertext nodes are described in the Within-Component
Layer. The Run-Time Layer contains the description of the presentation of nodes
and links, user interaction and the dynamics of the application. But the Dexter
Model only provides the realisation of a set of interfaces; it does not attempt to
cover all the details of the user interaction with the hypertext.

As regards the general containers of data in the Within-Component Layer, no
details are given about their content, e.g., text, graphics, animation, etc., or about
the structure and the mechanism to deal with this structure.

In addition, the model includes the interfaces between the Run-Time Layer and the
Storage Layer (Presentation Specification) and between the Storage Layer and the
Within-Component Layer (Anchoring). The presentation interface is described in
detail e.g. by the Standard Reference Model (SRM) by Bulterman, Rutledge,
Hardman and van Ossenbruggen (1999). It can be observed that this separation of
the contents, structure and presentation aspects of hypermedia systems is the basis
of most of the hypermedia design methods.

66 • An Object-Oriented Reference Model • Chapter 4

The Dexter Model describes the Storage Layer as the structure of a hypertext
system that consists of a finite set of components. A component is either an atom, a
link or a composite entity. Atoms in the Dexter Model terminology are the “nodes”
of the hypertext system. Links, also called link components, are entities that
represent relations between other components. Composite entities are constructed
out of other components. Each component includes component information and a
content specification. The component information is thus a list of attributes, a
presentation specification and a list of anchors.

• With attributes arbitrary properties can be included, for example
attaching keywords to a component.

• The list of anchors provides a mechanism for specifying the end points of
the links that relate this node to other nodes in the network.

• The presentation specification is used as the interface to the Run-Time
Layer.

• The content specification is used as the interface to the Within-
Component Layer.

Every component has a unique identifier (UID) associated with it. These UIDs are
assumed to be unique in the whole universe of discourse.

The content of a link component is a list of two or more specifiers. Each specifier
contains a component specification, a presentation specification, an anchor
identification (id) and a direction. The field direction can be either “from”, “to”,
“bidirect” or “none” with the following semantic: source of a link, destination,
both, or neither source nor destination.

Anchoring is the mechanism that provides the functionality to allow for linking
between nodes or documents but also for addressing (referring to) locations within
the content of a component. An anchor is an indirect addressing entity, which has
two parts: anchor ID and anchor value. The anchor value is an arbitrary value
specifying a location, an item or a region. This anchor value is a variable and
interpretable field within the content of the component. It is part of the Within-
Component Layer. Otherwise, the anchor ID remains constant and identifies its
anchor uniquely within the scope of its component or uniquely across the whole
universe through a pair “UID-anchor ID”.

The UML class diagram representing the Storage Layer of the Dexter Model
presented by Koch (2000b) is reproduced in Figure 4-2. It shows the model
elements mentioned above and the relationships between these model elements.
All the classes depicted in Figure 4-2 are part of the package “Storage Layer” with

Chapter 4 • An Object-Oriented Reference Model • 67

the exception of Content and Anchor Value, which are classes of the package
“Within-Component Layer”.

H
yp

er
te

xt

re
so

lv
er

(c
s)

: S
et

 (
U

ID
)

ac
ce

ss
or

(u
id

):
 C

om
po

ne
nt

lin

ks
T

o(
ui

d)
: S

et
 (

U
ID

)
lin

ks
T

oA
nc

ho
r(

ui
d,

ai
d)

:

 S
et

 (
U

ID
)

...

an
ch

or
Id

an
ch

or
s

sp
ec

ifi
er

s

S
pe

ci
fie

r

/c
om

pS
pe

cs
co

m
pS

pe
c

va
lu

e
at

tr
ib

ut
es

1

1

1

1.
.*

1

1

 *

1

1

1.
.*

1

2.
.*

di
re

ct
io

n
=

 e
nu

m
(T

O
,F

R
O

M
,

N
O

N
E

,B
ID

IR
E

C
T

)

C
om

po
ne

nt

co
m

po
ne

nt
s

1

{o
rd

er
ed

}

A
nc

ho
r

1

ch
ild

re
n

P
re

se
nt

S
pe

c

/a
nc

ho
rS

pe
cs

A
nc

ho
rI

D

*

{o
rd

er
ed

}

C
om

po
ne

nt
S

pe
c

an
ch

or
V

al
ue

U
ID

an
ch

or
S

pe
c

pr
es

S
pe

c
pr

es
S

pe
c

A
ttr

ib
ut

e
V

al
ue

*

1.
.*

1.
.*

re
so

lv
es

T
o

ac
ce

ss
T

o

1
1

1

1

1
1

1 1

1

1

1

1

1

0.
.1

co
m

pI
nf

o
co

m
pB

as
e

1

co
ns

is
te

nc
y(

c,
c)

: B
oo

le
an

co
m

po
ne

nt
(b

,i)
:C

om
po

ne
nt

C
om

po
ne

nt
B

as
e

A
to

m
Li

nk
C

om
po

si
te

C
om

po
ne

nt
In

fo

W
ith

in
-

co
m

po
ne

nt
La

ye
r

::
C

on
te

nt

1

11

co
nt

en
t

W
ith

in
-

co
m

po
ne

nt
La

ye
r

::
A

nc
ho

rV
al

ue

ui
ds

1.
.*

co
m

po
ne

nt

1 ui
d

co
nt

en
t

1

1

Figure 4-2: UML Class Diagram for the Storage Layer of the
Dexter Hypertext Reference Model

68 • An Object-Oriented Reference Model • Chapter 4

The functionality of the Storage Layer is supported by a resolver function and an
accessor function. Together they are responsible for mapping specifications of
components into the components themselves, i.e. retrieving the components. The
resolver function “resolves” the component specification into a component UID or
set of UIDs, which is used by the accessor function to “access” the correct
component(s). The accessor function may find out that no component exists for a
UID. We are then in the presence of a dangling link. But, the Dexter Model
requires link consistency. Therefore, when a component is deleted, the system has
to guarantee that also all links resolving to that component are also deleted. This
requirement has been widely criticised and is not implemented in actual
hypermedia systems.

In addition to the data model the Dexter Model defines a set of operations to access
or modify the hypertext structure: to create an atom, a link or a composite
component, to delete or modify components, to set values of attributes and to get a
component (using the accessor function) as well as an operation to get all attributes
of a component. Two other operations help to determine the accessibility of the
network. They are linkToAnchor and linkTo operations. In case of the former, given
a component and an anchor contained in the component, the operation returns the
set of links that resolve to this anchor. In the case of the latter, given a hypertext
and a component UID, the operation returns all links resolving to that component.

The Run-Time Layer describes how the components are presented to the user. This
presentation is based on the concept of instantiation of a component, i.e. a copy of
the component is cached to the user. If the user modifies the instantiation, it is
written back into the Storage Layer. The copy receives an instantiation identifier
(IID). It should be noted that more than one instantiation for a component may exist
simultaneously and that a user may be viewing more than one component.

Instantiation of a component also results in instantiation of its anchors. An
instantiated anchor is known as a link marker. In order to follow the same structure
as in the Storage Layer, the instantiation is a complex entity that consists of a base
instantiation, a sequence of link markers and a function mapping link markers to
the anchors they instantiate. Base instantiation is a primitive in the model and
represents the presentation of a component to the user.

In order to keep track of all these instantiations the Run-Time Layer uses an entity
session. The user will open a session by the action present Component of a given
hypertext. She can edit the instantiation, save the modifications, create a new com
ponent or delete a component. The most common action is follow Link, which takes
the IID of an instantiation together with the link marker contained within that
instantiation and then presents to the user any component resolved according to the
content of a link component specifier, i.e. components that are the end point

Chapter 4 • An Object-Oriented Reference Model • 69

destination of all links. The user can also remove an instantiation and close the
session.

Figure 4-3 shows the UML class diagram of the Run-time Layer and the related
part of the Storage Layer (Koch, 2000b).

4.1.2 AHAM: Adaptive Hypermedia Application Model

The Adaptive Hypermedia Application Model (AHAM) presented by Wu, Houben
and De Bra (1998) divides adaptive hypermedia systems into the same three layers
as the Dexter Reference Model does for hypermedia systems. These are: the Run-

Time Layer, the Storage Layer and the Within-Component Layer connected by the
interfaces Presentation Specification and Anchoring.

The Storage Layer of AHAM is also a network of nodes and links. It consist of the
same three components – domain model, user (student) model and teaching model

compInfo

1..*

1

 *

Component

components

Anchor

PresentSpec

{ordered}

presSpec

1 accessTo

ComponentInfo

1

1

1

1

1

anchorId
1

AnchorID

UID

1

1

1

ComponentSpec

1..*

Session

instants (iid):Instantiation
instantiator (uid, ps):
Instantiation
realizer (inst): Component
runTimeResolver(cs): UID

 *
1

History

operations

1

anchor
Link

*

IID

1

* iids

Instantiation

1

1

1

LinkMarker

*links

{ordered}

1

1 base

1

1

{ordered}

linkAnchor (lm): AnchorID

hypertext

anchors

inst

*
1

instUid

pres
Specs

BaseInstantiation

sessions

Operation

1
1

history

resolvesTo

 *

link
Markers

resolver(cs):UID
accessor(uid): Component
linksTo(uid):Set (UID)
linksToAnchor(uid,aid):
 Set (UID)

Hypertext

 *

Run-time LayerStorage Layer

1

1

comp
Base

...

iids
iid

Figure 4-3: UML Class Diagram for the Run-time Layer and Part of the Storage Layer

70 • An Object-Oriented Reference Model • Chapter 4

– as most intelligent tutoring systems do (Nwana, 1990). The domain model
represents the author’s view of the application domain. The user model contains
information which the system records about the user. The teaching model consists
of pedagogical rules, which define how these models, the domain model and the
user model, are combined for adaptation. The Within-Component Layer specifies
the content and the structure inside the nodes.

Although this reference model is not restricted to teaching applications, the
terminology used is related to the instructional field. The adaptation is performed
within the adaptive engine, part of the presentation specification, which is
responsible for the adaptation or dynamic generation of the nodes. The anchoring is
the mechanism for addressing locations or items within the content of an individual
component.

The AHAM Storage Layer treats the nodes of the structure in the same way as the
Dexter Model treats general containers of data. It also describes the activities of the
adaptive engine. At the present time only a few details of the Run-Time Layer are
given. No details are given about the content of the containers of data, such as text,
graphics, animation, etc.

Based on the layers specified above, an adaptive hypermedia application is defined
as a 4-tuple <DM,UM,LM,AE> where DM is a domain model, UM is a user
model, TM is a teaching model and AE is an adaptive engine.

The domain model describes the structure of an adaptive hypertext system as a
finite set of concept components (in contrast to the Dexter components). Two types
of concepts components are distinguished: concepts and concept relationships. Two
types of concepts are distinguished: atomic and composite. And two types of
composites: abstract composites and pages.

The user model based on the user’s knowledge about concepts is updated only on
the basis of the browsing behaviour of the user. A table representation is used as a
conceptual representation of the user model. The most common attributes are:

• concept UID.

• user knowledge related to each concept, the user knowledge-value
indicates how much the user knows about the concept.

• read, which indicates whether the user read some fragment, page or set of
pages about the concept. This value may be Boolean or a list of access
times.

• ready-to-read, which indicates if the user fulfils the knowledge
prerequisites that enables her to read about this concept.

Chapter 4 • An Object-Oriented Reference Model • 71

The basis for the adaptive functionality can be found in the teaching model, which
combines information from the Run-Time-Layer about the user’s behaviour, the
domain model and the user model in rules that determine how information is
changed in the user model and which information will be presented to the user.

The teaching model is described as a finite set of pedagogical rules. Two types of
rules are defined: generic and specific rules. These rules use and change variables
which denote concept UID´s, attributes, anchors, parts of presentation
specifications and user-model attributes for concepts and concept relationships.
Adaptation may be performed based on the current state of the model or using a
new state, which has been reached by applying a rule.

4.1.3 AHM: Amsterdam Hypermedia Model

The Amsterdam Hypermedia Model (AHM) is an informal extension of the Dexter
model. It adds the notions of time, high-level presentation attributes and link
context to the Dexter Model. It was developed by Hardman, Bulterman and van
Rossum (1994) to support the design of hypermedia systems that use dynamic
media such as audio, video and animations. These kinds of media require a model
that supports the specification of temporal relationships between data items. AHM
was defined by combining the Dexter Hypertext Reference Model and the CMIF
Multimedia Document Model (Hardman, Bulterman & van Rossum, 1994).

The most important improvements to the Dexter Model are:

• The presentation specification of an atomic component that includes the
specification of the attributes channel and duration.

• The presentation specification includes temporal layout, spatial layout
and style information. The presentation specification of a composite
component is extended with a list of synchronisation arcs, which include
the components ID of the related components and a timing relation.

• Composite component do not include content. They only act as
containers, i.e. they do not contain any data directly.

• Anchor values in composite components are replaced by a list of indirect
addresses (component ID and anchor ID).

• For each child the AHM indicates a pair of component Ids and a start
time.

• The composite type is specified as either parallel or choice. Parallel
composite components display all their parts, whereas choice composites

72 • An Object-Oriented Reference Model • Chapter 4

display one or more of their children. The Run-Time Layer will
implement the selection mechanism.

AHM supports synchronisation of multimedia components. This synchronisation
consists of constraints defined between the children of a composite component –
the relative starting time of each child of a composite for example. This
information is given explicitly within a composite.

4.1.4 DFHM: Dortmund Family of Hypermedia Models

The Dortmund Family of Hypermedia Models supports different variations of data
types. It can thus be regarded as a family of interrelated models rather than one
model with fixed data type specification. The DFHM is formalised in the
specification language VDM (Tochtermann, 1994).

DFHM describes the hypermedia fundamentals, such as node, component
(multimedia content of node), link, anchor and hyperdocuments. These basic data
types of hypermedia have been extended using hypermedia structuring concepts
that organise and categorise hyperdocuments.

The structuring concepts introduced by DFHM are: link structures, views, view
nodes and folders. These structuring concepts are relevant to the Munich Reference
Model since they can be considered as the first approach to model customised
hypermedia applications.

A link structure is defined in this model as a set of links that interconnects defined
parts of a hyperdocument. It allows different links to be assigned in the same
document. Conceptually link structures are defined as an identification, a set of
links and optional attributes. DFHM suggests using the link structure to define
different contexts for different users.

Views of hyperdocuments are defined in similarity with views over databases. They
will be used to hide information that is not interesting or relevant to the user. A
view allows for simplification of the user interface and for data security. A view
node is a node containing only chosen components or nodes of underlying nodes or
view nodes.

A folder is a container object containing nodes, links and other folders. Folders
support links between folders documents and documents outside the folders.

Chapter 4 • An Object-Oriented Reference Model • 73

4.2 The Munich Reference Model

The main objectives guiding the elaboration of this model have been the following:

• to develop a model for adaptive hypermedia applications based on the
Dexter Hypertext Reference Model,

• to include the user models in the reference model,

• to model the adaptation rules and functionality,

• to produce an object-oriented approach,

• to elaborate a formal specification of this metamodel, and

• to use general terminology, i.e. independent of the application field.

The result is the Munich Reference Model for Adaptive Hypermedia Applications.
It is an object-oriented specification based on UML models and the Object
Constraints Language (OCL).

The UML class diagrams show a visual representation of the metamodel
augmenting the intuitive comprehension. OCL (UML, 1999) supports the formal
specification through invariants for model elements such as classes and attributes
as well as by pre-conditions and post-conditions for the operations that describe the
functionality of the metamodel5.

4.2.1 Architecture of Adaptive Hypermedia Systems

An adaptive hypermedia system is first of all a hypermedia system. The Dexter
Reference Model is therefore used as basis for a reference model for adaptive
hypermedia systems. The three-layer structure and the names of these layers are
kept unchanged, even though the “Storage Layer” has more functionality than just
storing information about the hypertext structure. The layers are the Run-Time
Layer, the Storage Layer and the Within-Component Layer as illustrated in Figure
4-4. To support adaptation the Storage Layer consists of three models: the Domain
Model, the User Model and the Adaptation Model.

5 The specification presented in this chapter was checked with the UML-based Specification
Environment (USE). USE was developed at the University of Bremen (Richters & Gogolla, 2000).
http://www.db.informatik.uni-bremen.de/projects/USE

74 • An Object-Oriented Reference Model • Chapter 4

The Domain Model models the basic network structure. The User Model includes
the user attributes and attribute-values that are relevant to the adaptive application.
User attributes are classified as domain dependent and domain independent. A user
attribute that belongs to the former group has a value for each domain component.
The Adaptation Model consists of a set of rules and containers for user behaviour.
Rules are triggered by the user behaviour or by other rules. Different types of user
behaviour are modeled: browsing, user input and user inactivity.

The model includes two interfaces: the presentation specification and anchoring.
Anchoring is the mechanism for indirect addressing that provides a fixed point of
reference for use by the Storage Layer (anchor ID) combined with a variable field
(anchor value) used by the Within-Component Layer. The Within-Component
Layer is neither modeled in this reference model nor in the Dexter or AHAM

Run-time Layer

Storage Layer

Within-Component
 Layer

Presentation
Specification

Interface

Anchoring
Interface

Domain
Model

Adaptation
 Model

User
Model

Figure 4-4: Architecture of Adaptive Hypermedia Systems

Chapter 4 • An Object-Oriented Reference Model • 75

models. The adaptive mechanisms are defined in the adaptation model and they are
responsible for the adaptive presentation, i.e. for the adaptive content, adaptive
links and adaptive presentation. The presentation specification builds pages out of
page fragments, taking into account the adaptive mechanisms defined in the
adaptation model.

The Run-Time Layer manages different sessions for the users generating and
presenting the instances of pages and storing the modifications in the Storage
Layer.

In the same way as in the Dexter Model, the data model is supplemented by a set
of functions. Two types of functions are distinguished:

• Authoring functions, needed by adaptive hypermedia applications to
update components, rules and user attributes, i.e. to create an atom, a
component relationship or a composite component, to create a rule, to add
a user attribute to the model, to delete or modify components, rules or
user attributes.

• Retrieval functions, are required to access the hypermedia domain
structure and the user model, i.e. to get a component (using the accessor
function), to get all attributes of a component, get all rules triggered by a
user’s behaviour or another rule, to get the value of a user attribute, etc.
This functionality is determined by some of the functions defined in the
next section, such as accessor, resolver, constructor, evaluator, trigger,
executor, etc.

Note that the separation of the contents, structure and presentation aspects of
hypermedia systems presented in the reference model is the basis of hypermedia
design methods and of the modeling techniques of the UML-based Web
Engineering approach presented in Chapter 6.

4.2.2 Extensions to the Dexter Hypertext Reference Model

The changes made to the Dexter Reference Model are due to the adaptive aspects
of the systems that are modeled. The main extensions are:

• The hypertext in the Dexter model is the domain in the Munich approach.

• Components may be related not only by navigational relationships (links),
but also by other conceptual relationships, such as part-of, prerequisite-
of, inhibitor-of, variant-of and on-same-page (Boyle, 1997).

76 • An Object-Oriented Reference Model • Chapter 4

• The Domain Model models the conceptual level of the application and
the hypermedia representation of the application. The latter is done by
pages and links. The former using concepts, composite concepts, atoms
and the concept relationships previously mentioned.

• The semantic of composite is simplified, as a composite concept can only
have all children of type composite or all children of type atom.

• A User Model and an Adaptation Model are added as part of the Storage
Layer.

• The User Model includes a user manager and a model for each user,
consisting of user attributes and attributes values.

• Two different types of user attributes are considered: attributes that are
dependent on the domain and those that are independent of the domain.

• The Adaptation Model is defined by a set of rules. These are the core of
the adaptive functionality.

• Rules are classified in construction rules, acquisition rules and adaptation
rules (content adapter, link adapter, and presentation adapter).

• The Adaptation Model also models user behaviour, i.e. browsing, user
input and user inactivity.

• The page constructor guarantees dynamic page generation.

• Additional functions, such as “constructor”, “evaluator” and “trigger” are
defined (similar to “resolver” and “accessor”).

• The model includes UIDs for all components, not only for pages.

• The Run-Time Layer only instantiates pages.

This work builds partially on the Storage Layer architecture presented by AHAM
(Wu, Houben & De Bra, 1998). The approach presented in this chapter focuses on
a detailed description of the User Model and Adaptation Model as well as the Run-
Time Layer. It does not separate the adaptive rules from the adaptive functionality
as AHAM does with the teaching model and the adaptive engine. The Munich
Reference Model uses composites, which only act as containers as proposed by
HAM, but do not detail the typical multimedia aspects, such as synchronisation.
The aim is to build specific views for the user, as with the view nodes of DFHM, in
these case by adaptation.

Another difference compared with the reference models mentioned above are the
modeling techniques that are used, i.e. the object-oriented paradigma and UML.
The advantage of an object-oriented approach is that it allows for integration of
data and functionality. In addition, the Munich Model presents a complete formal

Chapter 4 • An Object-Oriented Reference Model • 77

specification in OCL with the same scope as the Z-specification of the Dexter
Reference Model (Halasz & Schwarz, 1990).

From the methodological point of view the Munich Reference Model for adaptive
hypermedia systems is:

• an object-oriented approach,

• in UML standard notation,

• represented by a metamodel that shows all model elements and how they
are related,

• based on general terminology applicable to every application field, and

• formally described by OCL constraints.

4.3 Formal Specification of the Munich Model

The focus is on the specification of two of the three layers: the Storage Layer and
the Run-Time Layer as well as parts of the anchoring and presentation specification
interfaces. Each model of the Storage Layer: the Domain Model, User Model and
Adaptation Model is described in detail, specifying classes, their attributes,
relationships and main operations. This description consists of a graphical
representation based on UML class diagrams and a complementary OCL
specification. Note that the UML-OCL specification is simplified for the
presentation in this work, as follows:

• Classes in UML diagrams only include – due to space problems –some
attributes and operations.

• Spaces are included in invariants‘ names to augment readability.

• Non-side effect-free operations are included in the constraints – for
abbreviation – whenever is it is possible to replace them by an
expression.

• The operation “oclAsType” is sometimes omitted to increase clarity of
constraints.

78 • An Object-Oriented Reference Model • Chapter 4

4.3.1 The Domain Model

The Domain Model describes the structure of the application. The class Domain6 is
defined as a finite set of Components together with the three functions, a resolver,
an accessor and a constructor. These components model the elements of the
conceptual level (concepts) and the presentation of the concepts in the hyperspace
(pages). The metamodel structure has many similarities with the model of the
Dexter Storage Layer.

The modeling of the components has evolved since the Dexter Model was
presented. In the original Dexter Model a component consists of component
information and a component base, where a component base is either a composite,

6 In the remainder of this chapter the names of UML modeling elements (classes, attributes,
associations, etc) are written in italics.

Domain

resolver(cs): Set (UID)
accessor(uid): Component
constructor (atoms):Page
linksTo(uid): Set (UID)
linksToAnchor(uid,aid):
 Set (UID)...

anchorID

anchors

specifiers

Specifier

compSpec

attributes

1

1

1..*

1

 *

1
1..*

1

2..*

direction = enum
(TO,FROM,
NONE,BIDIRECT)

Component

components

{ordered}

Anchor
1

children

PresentSpec

AnchorID

1

{ordered}

ComponentSpec

anchor
Value

UID

anchorSpec

presSpec

pres
Spec

Attribute
value:Value

 *

1..*

resolvesTo

accessTo

1

1

1..*

1

1

1

1

1

1

1

0..1

consistency(c,c): Boolean

Concept

Atom

Link

Composite

Within-
component

Layer ::
Content

11

1

content

Within-
component

Layer ::
AnchorValue

uids
1..*

component

1

Concept
Relationship

/fragments

OnPage

Prerequisite

...

uid

Page

1..*

constructs

1

1
specifier

Figure 4-5: UML Class Diagram of the Domain Model

Chapter 4 • An Object-Oriented Reference Model • 79

an atom or a link. This hierarchy is shown above in Figure 4-2. It allows for a
composite to be composed of an atom and a link. The component base and
component information are not needed in this object-oriented representation.

Grønbæk and Trigg (1994) proposed a Dexter-based metamodel where a component
can be a node or a link and in both cases has some information associated to it.
These changes are carried out in the UML representation of the Dexter Model
(Koch, 2000b). AHAM adds the notion of domain concept to this structure,
establishing that a component is either a concept or a concept relationship. And a
concept can be a composite concept or an atomic concept. A composite concept
whose children are all atomic is called a page concept. A fragment is an atomic
content unit, it has associated an atomic concept. Every atomic concept must be a
sub-component at least of one page concept.

In addition to links, other types of concept relationships are included (Boyle, 1997),
such as part-of, variant-of, prerequisite-of, on-same-page, etc. If two concepts are
related through a relationship of type variant-of, it means that only one of them is
chosen to be presented to the user. On-same-page indicates that the related
concepts have to be shown simultaneously. Prerequisite-of specifies that the source
node has to be known before the target node is accessed. Another change is the use
of one class to represent attributes and their values. The result is the graphical
representation of the Domain Model shown in Figure 4-5.

Adaptive hypermedia applications are dynamic applications, i.e. they require the
dynamic generation of pages. To perform this generation a constructor function is
added to the model. It builds pages out of items of information, also called
fragments.

As in the Dexter Model a UID is a unique identifier; it is a primitive in the model.
UIDs are assumed to be unique in the entire universe of discourse. They provide a
guaranteed mechanism for addressing any component in the hyperspace. The
addressing process is accomplished in an indirect way based on the class called
Anchor. An anchor has two parts: an AnchorID and an AnchorValue. Note that
although the anchor value is depicted in Figure 4-5 it belongs to the Within-
Component Layer. This anchor value is an arbitrary value that specifies some
location within a component. The anchor ID is an identifier that uniquely identifies
the anchor within the scope of the component. Together with the UIDs it makes it
possible to uniquely identify the anchor within the scope of the hypermedia.

The resolver and accessor functions are, together responsible for mapping
specifications of components into the components themselves, i.e. retrieving the
components. The resolver function “resolves” the component specification into a
component UID or set of UIDs, which is used by the accessor function to “access”

80 • An Object-Oriented Reference Model • Chapter 4

the correct component(s). Two resolver functions are included in the model; one in
the Storage Layer and the other in the Run-Time Layer. The latter allows run-time
aspects to be taken into account, i.e. history, for example, or adaptive aspects, such
as the current values of user attributes by the resolving component specifications
into UIDs. The accessor function may find out that no component exists for a UID.
In such a case, it means that the domain includes a dangling link.

The functionality of the model is supported mainly by a resolver function, an
accessor function and a constructor function. The constructor dynamically
“constructs” the pages to be presented to the user on the basis of the fragments and
the current state of the user model.

 Component

A component is an abstract representation of an information item from the
application domain. It is represented with a class Component.

A component can either be a concept (Concept) or a concept relationship
(ConceptRelationship). A concept, in turn, can either be an atom (Atom) or a
composite (Composite). A concept relationship can be a link (Link) or a
prerequisite (Prerequisite), or a is-part-of relation (Is-part-Of), etc. This
inheritance hierarchy is shown in the UML class diagram (see Figure 4-5).

The model assures“type consistency” between components, i.e. two components are
“type consistent” if they are both atoms or both links or both composites or both
prerequisites, etc. The “type consistency” is specified by the following constraint.

context Component :: consistency (c1:Component, c2: Component):
 Boolean
post: result = c1.oclIsTypeOf(Page) and c2.oclIsTypeOf(Page)
 or c1.oclIsTypeOf(Link) and c2.oclIsTypeOf(Link)
 or c1.oclIsTypeOf(Atom) and c2.oclIsTypeOf(Atom)

This constraint has to be extended to include additional expressions if other types
of concept relationships are defined, e.g.prerequisite, inhibitor or is-part-of.

A component has a component information that describes the properties of the
component that are different to the content of the component. These properties are
a sequence of anchors (Anchor), a presentation specification (PresentSpec) and,
optionally, a set of arbitrary attribute/value pairs (Attribute and Value). The latter
can be used to define any arbitrary property for a component and assign a value to
it. The presentation specification contains information specifying how this
component should be presented at run-time. It is part of the interface between the

Chapter 4 • An Object-Oriented Reference Model • 81

Storage Layer and the Run-Time Layer. Anchors are part of the interface between
the Storage Layer and the Within-Component Layer.

Note that a presentation specification always has some value. The component
information is therefore initialised with no attributes, no anchors and a presentation
specification, which is given as argument. The post-condition of the operation init
indicates that a component instance has to fulfil these constraints.

context Component :: init (ps:PresentSpec)
post: attributes → isEmpty
 and anchors → isEmpty
 and presSpec = ps

 Composite

A composite is constructed recursively out of other components. The component
hierarchy is restricted to be a directed acyclic graph, i.e. a component may be a
sub-component of more than one composite. No composite of the domain may
directly or indirectly contain itself as a sub-component. This is an invariant that has
to be fulfilled by the domain (see Sub-section Domain).

In contrast to the Dexter Model, this model imposes the restriction that all children
of a composite are of type atom (this is the definition of page) or all of type
composite. Composites that have composites as well as atomic children can be
simulated by introducing extra intermediary composites. This restriction has
already been set in the Amsterdam Hypermedia Model and in the AHAM
Reference Model.

context Composite
inv composite children’s are all composite or all atoms:

children → forAll (ch : Component |
 ch.oclIsTypeOf (Composite))
 or children → forAll (ch : Component |
 ch.oclIsTypeOf (Atom))

Another constraint that has to fulfil a new composite instance is the non-existence
of children.

context Composite :: init ()
post: children → isEmpty

82 • An Object-Oriented Reference Model • Chapter 4

 Atom

An atom has a content, which represents the data of the component. The content of
an object is a primitive of the model. It is the concern of the Within-Component
Layer; therefore no details are described in the Storage Layer. The operation init
connotes that an atom instance has no content after initialisation.

context Atom :: init ()
post: content → isEmpty

Each atom belongs to at least to one page. The invariant that specifies this
constraint is the following:

context Atom
inv each atom belongs to at least one page:
 Components.allInstances → exists (c : Component |
 c.oclIsTypeOf (Page) and

c.oclAsType(Composite).children → includes (self))

 Page

A Page component is a composite that has only children, which are components of
type atom. The accessor function that translates the UIDs to components has to
decide how these components are presented. For this purpose the accessor goes
through the components hierarchy; whenever it reaches a page, it uses the
constructor to build a page from a set of fragments, i.e. from atom components.

context Page
inv page children’s are all atoms:
 self.children → forAll (ch : Component |
 ch.oclIsTypeOf (Atom))

A derived relationship (UML aggregation), called /fragments is included in the
model just to show explicitly that a page is built as a set of atom components.

context Page :: /fragments(): Set (Atom)
post: result = Atom.allInstances → select (a : Atom |
 (self.children → includes (a)))

Chapter 4 • An Object-Oriented Reference Model • 83

 Concept Relationship

The Dexter Model describes only one type of relationship between components of
hypermedia systems, i.e. link components (link in this model). Instead, the
components of the domain of an adaptive hypermedia application may be related by
conceptual relationships, such as prerequisite, inhibitor or on-page or by a
navigational relationship, i.e. by link.

The most common type of relationship is of course the link. Other types of
relationship are used for adaptation together with the user attributes of the user
model. A class is therefore included in the model and classes such as Link,
OnPage, PartOf, VariantOf, Prerequisite and Inhibitor inherit from the class
ConceptRelationship. The model can be extended by the definition of new types of
relationships.

 Anchor

Anchoring provides a mechanism that allows for linking between nodes or
documents and also for addressing (referring) to locations within the content of a
component.

An anchor is defined as a pair consisting of an anchor ID (AnchorID) and an anchor
value (AnchorValue). The anchor ID is an identifier, which uniquely identifies its
anchor within the scope of the component of which it is part. Through the pair
component UID – anchor ID, an anchor can therefore be uniquely identified across
the whole universe. The anchor value is an arbitrary value that indicates some
location, item or substructure within the component. The anchoring process is
made possible by the decomposition of the anchor into two parts: the anchor ID is
used by the Storage Layer, while the anchor value is a variable field for use by the
Within-Component Layer.

Thus, to ensure that the anchor identifiers are unique within a component, the
following invariant constraint must be fulfilled: The number of anchors must be
equal to the number of different anchor identifiers.

context Component
inv number of anchors:
 anchors → size = anchors.anchorID → asSet → size

 Specifier

Another type of component is a concept relationship that specifies which concepts
are related. This consists of a sequence of at least two specifiers. A specifier

84 • An Object-Oriented Reference Model • Chapter 4

defines one single end point of a link. A specifier consists of a component
specification (ComponentSpec) and an anchor identification (AnchorID), as well as
two additional fields: a presentation specification and a direction.

The component specification together with the anchor identification specifies a
component and an anchor within the component. The use of the component
specification instead of the UID has the advantage of allowing indirect addressing,
i.e. the UID of destination is resolved at run-time.

The direction encodes whether the end point is the source of the link (FROM), the
destination (TO), both a source and a destination (BIDIRECT), or neither a source
nor a destination (NONE). The direction of a specifier instance is initialised with
NONE.

context Specifier :: init ()
post: direction = #NONE

The presentation specification (PresentSpec) is a primitive value that is part of the
interface between the Storage Layer and the Run-Time Layer.

 Prerequisite

A component relationship of type Prerequisite means that the specifiers with
direction ‘FROM’ are a prerequisite, i.e. have to be visited or “known”, before a
specifier with direction ‘TO’ is accessed.

The following constraint specifies that a component cannot be a direct prerequisite
of itself.

context Component
inv a component can not be a direct prerequisite of itself:
 self.oclIsTypeOf(Prerequisite) and
 not self.oclAsType(ConceptRelationship).specifiers
 → exists (s1, s2 : Specifier |

s1.direction = #FROM
 and s2.direction = #TO

 and domain.components → exists (c:
 Component |

s1.compSpec.uids.components → includes (c)
 and s2.compSpec.uids.components → includes (c)))

Analogously invariants can be defined for the other concept relationships, such as
Part-of, Variant-of, Inhibitor-of and On-Same-Page.

Chapter 4 • An Object-Oriented Reference Model • 85

 Link

As already defined, a link consists of a sequence of at least two specifiers. Thus,
the Dexter Model excludes dangling links. This was widely criticised; Trigg and
Grønbæk (1994) argued that it makes sense to have links without specifiers at all.
The Dexter Hypertext Reference Model allows for links with multiplicity greater
than two. Binary links are the standard in hypertext systems.

If a specific application requires that all links should have at least one destination,
this can be ensured by the following:

context Link
inv at least one specifier with direction TO:
 specifiers → exists (s: Specifier | s.direction = #TO)

Links are “first-class citizen” as they inherit from the component, which implies
that links to a link component may be defined in the same way as to an atom or
composite component.

Link includes two derived associations (compSpecs and anchorSpecs), establishing
a direct association to ComponentSpec and to AnchorID. These associations are
derived and thus annotated with a “/”. The association /compSpec results in the set
of component specifications for a link and /anchorSpec in the set of anchor IDs for
the link.

context Link
inv derived association /compSpecs:
 /compSpecs = specifiers.compSpec → asSet

context Link
inv derived association /anchorSpecs:
 /anchorSpecs = specifiers.anchorSpec → asSet

 Domain

The domain of an adaptive hypermedia system is represented by the class model
shown in Figure 4-5. The root of the model is the class Domain. It consists of four
parts:

• a set of components (Component) that represent concepts (Concept) and
concept relationships (ConceptRelatinship), i.e. “nodes” and “links”,

• a partial function called resolver that returns the UID for a given
component specifier (more than one specifier may return the same UID)

86 • An Object-Oriented Reference Model • Chapter 4

• an accessor function, which, given a UID, returns a component (this
function is total and invertible), and

• a constructor function that builds pages with atomic concepts.

 The Resolver Function

The resolver function is responsible for “resolving” a component specification into
a UID. The UIDs are primitives in the model with attribute ID.

context Domain :: resolver (cs : ComponentSpec) : Set (UID)
pre: components → exists (c: Component |
 c.oclIsTypeOf (Link)
 and c. oclAsType(Link). /compSpecs → includes (c))

post: result = UID.allInstances → select (u: UID | cs.uids
 → includes (u))

 The Accessor Function

The accessor function is responsible for accessing the component corresponding to
the resolved UID.

context Domain :: accessor (uid : UID) : Component
pre: components → exists (c: Component |
 c.oclIsTypeOf (Link)
 and c. oclAsType(Link). /compSpecs.uids → includes (uid))

post: result = uid.component

 The Constructor Function

The constructor function is responsible for gathering a set of fragments to build up
a page.

context Domain :: constructor (frag : Set (Atom)) : Page
post: result = components -> select (p:Component |
 p.oclIsTypeOf(Page) and p.oclIsNew
 and p.fragments -> forAll (a:Atom | frag -> includes (a)

 and p.fragments = p.fragments@pre -> including (a)))
 -> asSequence -> first

Chapter 4 • An Object-Oriented Reference Model • 87

 Finding all Links to a Component or an Anchor

Two operations are included to access links and anchors, i.e. ensuring the
navigation functionality of the hypermedia system. They are the linkTo and the
linkToAnchor functions. The linkTo function determines the set of links that
resolve to a specific component. The linksToAnchor obtains the set of links that
resolve to a specific anchor of a component. Given a hypermedia system and the
UID of a component in the system, the function linksTo (see definition of Domain
above) returns the UIDs of all links resolving to that component.

To identify the set of links resolving to a component, as in the Dexter Reference
Model, the function linksTo is introduced which, given a hypermedia system and
the UID of a component in the system, returns the UIDs of all links resolving to
that component. The inclusion of the operations resolver and accessor in the
following constraints is possible, as their meta-attribute “isQuery” is true.

context Domain :: linksTo (uid : UID) : Set (UID)
pre: components → exists (c : Component | accessor (uid) = c)
post: result = UID.allInstances → select (lid : UID |

Component.allInstances → exists (link : Component |
link.oclIsTypeOf (Link)

 and link = accessor (lid)
 and ComponentSpec.allInstances → exists (cs:
 ComponentSpecs
 | link.specifiers.compSpec → includes (cs)

 and uid = resolver (cs))))

The function linksToAnchor returns the link components that are associated with a
particular anchor of a component. The following is the OCL expression for
linksToAnchor.

context Domain :: linksToAnchor (uid:UID, aid:AnchorID) : Set (UID)
post: result = linksTo (uid) → select (lid: UID |

 accessor (lid).oclIsTypeOf (Link)
 and accessor (lid)./anchorSpecs → includes (aid))

Functions that modify nodes and links of the domain must ensure “link
consistency”, i.e. all the component specifiers resolve to existing components. This
is guaranteed by the following invariant:

context Domain
inv linkConsistency:
 Component.allInstances → forAll (c : Component |
 c.oclIsTypeOf (Link) implies

88 • An Object-Oriented Reference Model • Chapter 4

 Component.allInstances → exists (comp : Component |
 accessor(resolver(c./compSpec)) -> includes (comp)))

 Domain Invariants

There are five constraints that must be satisfied by every instance of the class
Domain (invariants):

• The accessor function must yield a value for every component. As this
function is invertible, every component must thus have a UID.

• The resolver function must be able to produce all possible valid UIDs,
i.e. the range of the resolver has to be equal to the domain of the
accessor.

• The anchor ID of a component must be the same as the anchor IDs of the
component specifiers of the links resolving to the component.

• There are no cycles in the component/sub-component relationship, i.e. no
component may be a sub-component (directly or transitively) of itself.

• Some concept relationships, such as prerequisite do not allow cycles, i.e.
no component can be related by a prerequisite relationship to itself.

The first constraint is the “components accessibility” and ensures that all
hypermedia components are accessible by means of the accessor function. This can
be formalised as follows:

context Domain
inv components accessibility :
 components → forAll (c: Component |

UID.allInstances → exists (uid:UID | c = accessor (uid)))

The second constraint states that the set of UIDs obtained “resolving” component
specifications (resolver range) is equal to the set of valid documents that can be
retrieved by the accessor (accessor domain). It can be proved with the following
two inclusions.

 range of resolver ⊆ domain of accessor and

 range of resolver ⊇ domain of accessor

The range of the resolver is included in the domain of the accessor by definition.
The following OCL constraint thus proves then that the domain of the accessor is
included in the range of the resolver.

Chapter 4 • An Object-Oriented Reference Model • 89

context Domain

inv range of resolver ⊇ domain of accessor:
 UID.allInstances → forAll (uid:UID |
 components.specifiers.compSpec → exists
 (cs:ComponentSpec | resolver (cs) → includes (uid)))

The third constraint can be described in OCL using the previously defined
operation linkTo. This constraint ensures that the set of anchor identifiers of a
component should always be equal to the set of anchor identifiers of the links
resolving to that document.

context Domain
inv anchors Ids of a component = anchors IDs of the links resolving
 to the component:

components → forAll (c : Component |
 c.anchors.anchorID =

 Link.allInstances → select (l:Link |
UID.allInstances → exists (uid: UID |

 l.specifiers.anchorSpecs =
 linksTo(uid).component.anchors.anchorID

 and accessor (uid) = c)))

The fourth constraint guarantees that a component is not included in the transitive
closure of sub-components of this component. It has to be proved that the transitive
closure of the relation children does not contain a pair with two equal elements. To
calculate the transitive closure, first the association children is transformed into an
association class as depicted in Figure 4-6.

1..*
Component

Composite1 ...

Children

composite

component

Figure 4-6: The Children Association Class

90 • An Object-Oriented Reference Model • Chapter 4

The OCL constraint that we are looking for is the following, where transClos is the
transitive closure of the pairs of composites related by a children relationship:

 not transClos → exists (ch: Children | ch.component = ch.composite)

Unfortunately, OCL collections of collections are flattened, i.e. the transClos has to
be defined as a sequence as proposed by Mandel and Cengarle (1999), of an even
number of elements, where even positions belong to components and odd positions
to composites. The expression written above can be replaced by:

not transClos → exists (i : Integer | transClos → at (i*2-1) =
transClos → at (i*2))

The transitive closure can be calculated in two steps. First an operation called
subcomponents is defined that builds a sequence of pairs of components
(sub_comp) including all components that have children of type composite.

context Domain :: subcomponents(): Sequence (Composite)
post: result = Children.allInstances → iterate (pair: Children;

 sub_comp : Sequence (Composite) = Sequence{} |
 if pair.component.oclIsTypeOf (Composite)

 then sub_comp → append (pair.composite)
 → append (pair.component)
 else sub_comp
 endif)

In the second step an operation transitiveClosure is defined. It applies the
Warshall’s algorithm (Lang, 1988) to a given sequence of composites (pair of
related composites) to calculate the transitive closure (transClos). The result is a
sequence of all pairs of composites included in the transitive closure of the initial
sequence.

context Domain :: transitiveClosure(initial:Sequence (Composite)):
 Sequence (Composite)
post: result = Composite.allInstances → iterate (c3 : Composite;

aux3 : Sequence (Composite) = initial |
 Composite.allInstances → iterate (c2 : Composite;
 aux2 : Sequence (Composite) = aux3 |
 Composite.allInstances → iterate (c1 : Composite;
 aux1 : Sequence (Composite) = aux2 |
 if Sequence {1..(aux1 → size) / 2}→ exists (i,j : Integer |
 aux1 → at (2*i-1) = c1 and aux1 → at (2*i) = c3
 and aux1 → at (2*j-1) = c3 and aux1 → at (2*j) = c2

Chapter 4 • An Object-Oriented Reference Model • 91

 then aux1 → append (c1) → append (c2) else aux1
 endif)))

The fourth invariant can thus be expressed using the above defined operation
subcomponents and transitiveClosure. Thus, the constraint specifying that a
composite may not contain itself as a sub-component can be formalised as follows:

context Domain
inv notItselfAsSubcomponent:

let transClos : Sequence (Composite) =
 transitiveClosure (self.subcomponents())
in not transClos → exists (i : Integer |
 transClos → at (i*2-1)
 = transClos → at (i*2))

The fifth invariant specifies that concept relationships, such as Prerequisite do not
allow cycles, i.e. no component can be related by a pre-requisite relationship to
itself. First an operation prerequisiteComp is defined that builds a sequence of
components. The principle that a pair is given by two elements of the sequence,
one in the even position and one in the next odd position is used here again.

context Domain :: prerequisiteComp(): Sequence (Component)
post: result = ConceptRelationship.allInstances → iterate (cr:
 cr:ConceptRelationship; prereq : Sequence (Component) =
 Sequence{} |
 if cr.oclIsTypeOf (Prerequisite)

 then
 let compPreq = components.allInstances → select (
 c:Component |
 ComponentSpec.allInstances → exists
 (cs:ComponentSpec |

 c = accessor (resolver(cs))
 and cr.specifiers.compSpec → includes (cs)

 and cs.specifier. direction = #TO))
 in compPreq.allInstances → iterate (cp:compPreq;
 sub_prereq : Sequence (Component) = Sequence{} |
 sub_prereq → append (cr) → append (cp))
 and prereq = prereq → union (sub_prereq)

 else prereq
 endif)

The invariant is then defined in a similar way to the previous constraint. It is
required that the transitive closure be calculated for a sequence of components
instead of a sequence of composites. Let transitiveClosure2 fulfil this requirement.

92 • An Object-Oriented Reference Model • Chapter 4

context Domain
inv notItselfPrerequisite:

let transClos : Sequence (Component) =
 transitiveClosure2 (self.prerequisiteComp())
in not transClos → exists (i : Integer |
 transClos → at (i*2-1)
 = transClos → at (i*2))

Analogously, invariant for other concept relationships, such as Part-of or Inhibitor
can be defined as well.

4.3.2 The User Model

Adaptive hypermedia applications maintain a permanent User Model as part of the
Storage Layer. The User Model describes the structure of the individual models of
each user and how these models are administrated. User modeling comprises User
Model initialisation, updating and retrieval.

The User Model package consists of a class UserManager, a set of users and three
main functions. The functions are an initialiser, an updater and an evaluator.
Initialisation can be performed on the basis of interviews or stereotypes. The most
common updating procedure is based on the browsing behaviour of the user; it may
also be performed on her answers to questions (see Chapter 3). The evaluation
provides information about the current state of the user model.

A user of an adaptive hypermedia application is modeled by a user identification
and a set of user attributes. The user identification identifies the user uniquely in
the universe of the adaptive hypermedia application. With the attributes the
adaptive hypermedia system provides a representation of the user’s characteristics
that are relevant for the application. We can distinguish different types of
information contained in user models: user’s knowledge, user’s preferences, user’s
background experience, user’s tasks, etc., summarised in two categories: dependent
or independent of the domain. The values assigned to the attributes represent the
beliefs the system has about the user.

Figure 4-7 shows the metamodel for the User Model package and its relationship to
the classes Domain and Component of the Domain Model.

Chapter 4 • An Object-Oriented Reference Model • 93

 User and the User’s Manager

The UserManager is responsible for the management of the set of users of the
system. It consists of a set of users (class User) and three functions that allow for
the management of the user models. These functions are an initialiser, an updater
and an evaluator.

Users (User) of an adaptive hypermedia system are modeled by a user
identification (UserID) that identifies the user uniquely and a set of user attributes
(UserAttribute). The following constraint ensures that a user is uniquely identified
by her name and her email address.

dependAttrs

1..*

1..*

UserAttribute
userAttrs

IndependentAttr

1 1

1

components

User

1

Domain

resolver(cs)
accessor(uid)
...

*
UserID

1 userIDs

DependentAttr Component
*

UserAttrValue

value: Value

user

 *

1

userID domain

comps

attrVal

User Model

Domain Model

compInfo

...

...

...1

username: String
email: String

attname: String

UserManager

initialiser(ui,name,attr): User
evaluator(ui,attr):
 UserAttributeValue
updater(ui,attr, val)
...

1

0..* users

{xor}

Figure 4-7: UML Class Diagram of the User Model and Associations to the Domain Model

94 • An Object-Oriented Reference Model • Chapter 4

context UserManager
inv: users → forAll (u,v:User | u.username =
 v.username

 and u.email = v.email implies u = v)

 Registering a New User

When a user identifies herself to the system by her name and e-mail address, the
system first checks whether the user has already been registered. If the user
manager does not find the user, she is registered, i.e. a user identification is
assigned, as a new user of the adaptive hypermedia application. Given a name and
an e-mail address, the function findUser returns, if any, the user whose attributes
name and e-mail are equal to the given parameters.

context UserManager :: findUser (n:String, e: String) : User
pre: users → exists (u:User |
 u.username = n and u.email = e)
post: result = users → select (u:User |
 u.username = n
 and u.email = e) → asSequence → first

The function initialiser creates a new instance of class User for each new user that
registers for the adaptive hypermedia application and assigns a given set of user
attributes to her.

context UserManager :: initialiser (userIdentification:UserID,
 n:String, e: String, defAttrs: Set(UserAttribute)) : User
pre : not users → exists (u:User |
 u.username = n and u.email = e)
post: let u = users → select (u:User |

u.userID = userIdentification
and u.username = n
and u.email = e
and u.userAttrs = defAttrs) → asSequence
 → first

 in u.oclIsNew
 and users = users@pre → including (u)
 and result = u

 Retrieving User Model Information

The evaluator is a function that, when given a user identification, a user attribute
and a component, returns the value of the user attribute. The evaluator must thus

Chapter 4 • An Object-Oriented Reference Model • 95

take into account whether the type of the user attribute is dependent or independent
of the domain, i.e. if the value depends on a component or not.

context UserManager :: evaluator (userIdentification:UserID, comp:
 Component, attr: UserAttribute) : UserAttrValue
pre : users → exists (u: User | u.userID = userIdentification

and u.userAttrs → includes (attr))
post : let uat = UserAttribute.allInstances → select
 (ua : UserAttribute |

 users → exists (u: User |
u.userID = userIdentification

 and u.userAttrs → includes (attr)))
 → asSequence → first

 in if uat.oclIsTypeOf (IndependentAttr)
 then result = uat.attrVal

 else result = UserAttrValue.allInstances → select
 (uatVal:UserAttrValue |

 uatVal.comps = comp
 and uatVal.dependAttrs = uat)
 → asSequence → first
 endif

 Updating the User Model

The function updater modifies the value of a user attribute for a given user.

context UserManager :: updater (userIdentification:UserID, comp:
 Component, attr: UserAttribute, val:UserAttrValue)
users → exists (u: User | u.userId = userIdentification

and u.userAttrs → includes (attr))
post: let uat = UserAttribute.allInstances
 → select (ua : UserAttribute |

 users → exists (u: User |
u.userID = userIdentification

 and u.userAttrs → includes (ua)
 and if ua.oclISTypeOf (IndependentAttr)
 then true
 else UserAttrValue.allInstances ->
 exists (uatVal:UserAttrValue |
 uatVal.comps = comp and
 uatVal.dependAttrs = ua)
 endif))

 → asSequence → first
in if uat.oclIsTypeOf (IndependentAttr)

 then uat.oclAsType(IndependentAttr).attrVal = val

96 • An Object-Oriented Reference Model • Chapter 4

 else uat.oclAsType(DependentAttr).attrVal = val
 endif

 Removing a User

The function deleteUser allows the UserManager to eliminate a user identification
and the user model of this user, i.e. all the user attributes and user attribute values
related to her user model.

context UserManager :: deleteUser (userIdentification: UserID)
pre: users → exists (u: User | u.userID = userIdentification)
post: let user = users → select (u: User | u.userID
 = userIdentification)
 in users = users@pre − user.

 User Attribute

User attributes can be classified in different ways. Some adaptive hypermedia
systems distinguish three groups: attributes related to the concept knowledge,
related to general knowledge or background knowledge and other attributes that
describe preferences, tasks, goals, etc. It is also possible to divide the User Model
into sub-models according to these criteria, such as Domain-knowledge model,
User Profile and Cognitive model. Characteristics of these models have been
detailed in Chapter 3.

For modeling purposes it is enough to include two groups of attributes within the
User Model: “user knowledge related to the domain components” and “user general
characteristics”. The first group includes domain dependent attributes while the
attributes of the second group are domain independent. The second group also
includes knowledge not related to the components, such as background knowledge.
These classes are named DependentAttr and IndependentAttr.

The domain independent attributes can be shared with other adaptive hypermedia
applications. AHAM suggests representing and implementing the second group in
the same way as the first one. In the Munich Reference Model both groups are
treated separately.

A dependent attribute is always related to a component. Examples of dependent
attributes are:

• “knowledge”, which indicates how much the user knows about the
component,

• “experience”, which can be treated similarly to knowledge,

Chapter 4 • An Object-Oriented Reference Model • 97

• “confidence of belief”, which adds an estimated value of certainty to the
systems belief,

• “read”, which is used to indicate if the user read something about the
component,

• “ready-to-read”, which indicates whether the user is ready to read about
this component,

• “time elapsed” from last reading. This is an indicator of how much the
user may have forgotten,

• “solved”, which indicates if the user’s answer to a question or exercise is
correct,

• “ type of errors”, etc.

Some of these attributes may be related to each other. Common attributes in
educational adaptive systems are “knowledge” and “read”. All the pairs concept-
UID-knowledge-value form an overlay model that represents the knowledge the
system believes the user has.

Examples of domain independent attributes are listed below. These user attributes
usually are adjusted by the adaptive system less often than domain dependent
attributes. User behaviour, such as frequent soliciting of images or change to
another language, may change the systems belief or initial settings of a language or
of “no images”. Some examples of user attributes that are independent of the
domain are:

• “goals”, such as searching, learning or exercising.

• “ images”, indicating with or without images,

• “examples”, with or without example material,

• “background knowledge”, such as computer experience, computer-based
learning, experience, etc.

• “language”, such as English, Greek or French.

If all user attributes are independent of the domain, a domain independent User
Model is obtained. This is seldom the case, but it has the advantage, that it can be
used by different applications. A domain independent user model can be defined
with the following constraint:

context User
inv domain independent user model:

userAttrs → forAll (uat: UserAttribute |
uat.oclIsTypeOf (IndependentAttr))

98 • An Object-Oriented Reference Model • Chapter 4

 User Attribute Values

A UserAttributeValue will be assigned to each attribute and each component in
case of domain dependent attributes and just for each attribute by domain
independent ones. Different forms of attribute values are possible, such as:

• Boolean, i.e. true and false, which means that for each component the
user either knows or not knows the content of the component, has a
preference or not.

• discrete, expressed by a small set of values such as “not known”,
“learned”, “well learned”, “well known”, or values such as 1 for “high”,
2 for “middle” and 3 for “low” knowledge, or “s” for “exercise-solved”,
“r” for “exercise-read”, “f” for “exercise-failed”, etc.

• probabilistic, given by a real number.

Domain independent attributes require only one value for each user and each
attribute. User models can be implemented in different ways, such as log files,
semantic nets, a table in a relational database, object-oriented classes, etc.

4.3.3 The Adaptation Model

The Adaptation Model consists of a set of rules and a set of functions to perform
the adaptation functionality. The rules determine how pages are built and how they
are presented to the user. The Munich Reference Model establishes how content-
adaptation, link-adaptation and presentation-adaptation are performed and how
user attribute values are changed, i.e. how the User Model is updated.

Rules are based on the information provided by the User Model and Domain Model
as well as on the user interaction activities registered by the Run-Time Layer
(shown in Figure 4-9).

The functions included in the Adaptation Model are an adaptationResolver, a
finder, trigger and an executor. The adaptationResolver “resolves” a component
specification into a UID, but into the UID of an adapted page of an appropriate
concept. The , trigger function implements a trigger mechanism that returns all the
rules triggered by one given rule, i.e. the rules to be used at a given time. The first
rule to be used is triggered by the user behaviour, such as browsing, some input or
inactivity, which is provided by the Run-Time Layer. The executor function allows
for the execution of the rules to select the appropriate concepts, obtain an adaptive
content, presentation and linking as well as for the updating process of the User
Model.

Chapter 4 • An Object-Oriented Reference Model • 99

The user behaviour incorporated in the Adaptation Model models the different user
activities, which can trigger a rule and therefore are part of the condition of a rule.
The values for these user behaviours are provided by the Run-Time Layer, respon-
sible for registering the current user activity of each specific user.

The Adaptation Model is a subsystem of the Storage Layer and has a dependency
relationship with the Domain Model as well as with the User Model. Figure 4-8
shows the Adaptation Model and the classes of the Domain Model and User Model
to which they are related. The different types of rules are visually represented as a
hierarchy of rules.

 Rule

A rule is modeled as a class Rule that consists of one condition (Condition), one
action (Action) and attributes. Attributes, such as phase and propagate, are
suggested by De Bra, Houben & Wu (1999). Conditions and actions are
expressions containing model elements and operators. Two types of rules can be
distinguished depending on whether the rule is applicable to all instances of a
domain class or just to one specific instance. The former is called global or generic
rule; the latter local or specific rule.

ModelElements are defined by two attributes: an element identifier (elementID) and
a Boolean value (modified) that indicates whether the model element is being
modified in the actual action. The attribute modified has always value false in the
case of condition objects. Only certain types of model elements, i.e. User Model
attribute values and presentation specifications can have a modified value true.
Rules can be specified using different languages, e.g. Prolog, scripting languages or
Java.

A rule action (Action) has to include at least one model element, i.e. the constraint
that one or more model elements are modified by the execution of a rule must be
satisfied.

context Rule
inv at least one model element is modified:
 action.elements → exists (m : ModelElement | m.modified)

A rule may have additional attributes. For example, the attribute phase determines
which of two execution phases are chosen for adaptation, i.e. rules can be applied
before or after the User Model is updated. If the phase attribute of the rule is “pre”,
adaptation is performed on the current state of the user model. A value “post”
indicates that the User Model is updated before the rule is applied, for example to
generate some presentation pages.

100 • An Object-Oriented Reference Model • Chapter 4

 .

A
ction

1

R
ule

propagate: B
oolean

phase: enum
 {P

R
E

,P
O

S
T

}
executor (uid,ui,ub)
...

1

1 ..*

A
daptation

1

C
ondition

rules

1

M
odelE

lem
ent

1

1

U
serM

odel
E

lem
ent

D
om

ainM
odel

E
lem

ent

0..*

1

trigger

elem
ents

finder (uid,ub): R
ule

trigger (rule): S
et(R

ule)
adaptationR

esolver
 (cs,ui,ub): U

ID
...

elem
entID

: ID
m

odified: B
oolean 1 ..*

A
daptation M

odel

P
resentation

S
pecification

C
oncept

D
om

ain
 M

odel

C
om

ponent

U
ser M

odel

...

U
serA

ttribute

U
ser

U
serID

...

1

1 ..*

condition
action

U
ser

B
ehaviour

0 ..*
1

behaviours

1..*

0..*

triggers

A
cquisition

R
ule

A
daptation

R
ule

C
onstruction

R
ule

P
age

C
ontent

A
dapter

Link
A

dapter

P
resentation
A

dapter

...

Inactivity

tim
e:T

im
e

behaviours

D
om

ain

com
ponents

dom
ain

adaptation

1
1

Input

inputF
ield: D

ata

B
row

sing

access: U
ID

1

0..*
userID

s

Figure 4-8: Adaptation Model

Chapter 4 • An Object-Oriented Reference Model • 101

The following invariant has to be fulfilled: each rule is triggered by at least one
user behaviour or by another rule. Based on the trigger two types of rules can be
distinguished: behavioural rules and content-based rules.

 context Rule

inv a rule is at least triggered by a user behaviour or by another
 rule:
 UserBehaviour.allInstances → exists (ub: UserBehaviour |
 self.condition.behaviours → includes (ub))
 or Rule.allInstances → exists (r: Rule |
 r.action.elements → exists (m: ModelElement |
 self.condition.elements → includes (m)
 and m.modified))

Rules are also classified according to their objectives into: construction rules,
acquisition rules and adaptation rules. Rules that belong to the group adaptation
are one of the three following types: content adapter, link adapter or presentation
adapter. They differ in the executor method.

• The objective of the ConstructionRule is to find a concept on the basis of
relationships, e.g. of type prerequisite as well as information provided by
the user model. It returns the UID of the concept.

• The AcquisitionRule’s objective is to gather information about the user in
order to build the user model. It includes a rule executor that returns a
list of user attributes and value changes for these attributes. (The
techniques for acquiring user models are explained in Chapter 3).

• The AdaptationRule is defined in order to adapt the pages based on the
user model state. According to the three types of adaptation, three types
of adaptation rules are defined:

− ContentAdapter for the selection of different fragments for the
page construction.

− LinkAdapter for the application of different techniques of
adaptive navigation, such as link annotation, link removing,
link sorting, direct guidance, etc.

− PresentationAdapter for the adjustment of the page presentation
changing styles, fonts and sizes, for example.

Adaptation techniques are presented in Chapter 2. These different types of rules
are represented using an inheritance hierarchy in the UML class diagram of the
Adaptation Model as it is shown in Figure 4-8. They differ in the executor method.

102 • An Object-Oriented Reference Model • Chapter 4

 Executing Rules

The executor function of the class Rule is redefined for each type of rule. The user,
her last interaction as well as the current concept are known parameters for the
function, i.e. it is always based on a user identification, the user behaviour and the
UID of a component. The executors of the different types of rules differ in the
results they provide. The ConstructionRule returns the UID of a concept, the
AcquisitionRule returns a set of user attributes and new values (may be relative to
the existing ones) and for the three types of AdaptationRule the results are the
fragments of a page, the adapted links and the modified presentation specification.

 The Core of the Adaptation

The class Adaptation models a finite set of rules and three main functions: an
adaptationResolver, a finder and a trigger. The rules are used to update the User
Model, find appropriate concepts for the user or change the presentation
specification of model elements.

The following invariant assures dynamic update of the user model. For at least one
user attribute a rule exists that modifies an attribute value of the user model.

context Adaptation
inv User Model is changed:
 Rules.allInstances → exists (r:Rule |

r.oclIsTypeOf (UMUpdater)
and r.action.elements → exists (m: ModelElement |

 m.oclIsTypeOf (UserModelElement)
 and m.modified))

 Finding Rules triggered by User Behaviour

The function finder identifies the rule that is triggered by a given user behaviour. It
is the rule defined for a component, i.e. providing its component specification.
Examples are a browsing activity accessing a component, an input activity for a
component or a timeout while the user is looking at a component. Pre-condition of
the function establishes that there is exactly one rule that satisfies the post-
condition. This assumption can be changed allowing for a set of rules to satisfy the
post-condition, but it requires the trigger function to be rewritten for a set of initial
rules.

context Adaptation :: finder (uid: UID, ub: UserBehaviour) : Rule
pre : rules → select (r:Rule |

 r.condition.behaviours → includes (ub)

Chapter 4 • An Object-Oriented Reference Model • 103

 and r.condition.elements.elementsID
 -> asSequence -> first
 = uid) → size <= 1
post : result = rules → select (r:Rule |
 r.condition.behaviours → includes (ub)
 and r.condition.elements.elementID -> asSequence -> first
 = uid) -> asSequence -> first

 Triggering other Rules

The Boolean attribute propagate is used to allow the rule to trigger other rules.
Triggered rules are all rules which condition includes model elements that are
modified in the action of the given rule.

Thus, the trigger function identifies all rules that are triggered by one rule in the
‘PRE’ phase or in the ‘POST’ phase (PhaseType).

context Adaptation :: trigger (rule : Rule, ub: UserBehaviour,
 ph:phaseType) : Set (Rule)
pre : rules → includes (rule) and rule.propagate
post : result = rules → select (r: Rule | r.phase = ph
 and r.condition.elements → exists (m: ModelElement |
 rule.action.elements → includes (m)
 and m.modified))

 Resolving with Adaptation

The adaptationResolver resolves a component specification to a UID based on the
component specification, the user identification and the user behaviour. The
domain resolver, instead is used to obtain the component corresponding to the
given component specification. The initial rule is triggered by the user behaviour,
such a browsing activity, some input or the inactivity of the user. A finder function
is defined for that purpose. Starting with this rule, the other rules to be applied are
calculated by the trigger function.

context Adaptation :: adaptationResolver (cs:
 ComponentSpec, userIdentification: UserID, ub:
 UserBehaviour, ph: phaseType) : UID
pre : rules.behaviours → includes (ub)
post : let uid = UID.allInstances → select (ui:UID |
 domain.components → exists (c: component |
 c = accessor (ui) and ui = resolver (cs)))
 in let i-rule = finder (uid, ub)

 in if not i-rule → isEmpty

104 • An Object-Oriented Reference Model • Chapter 4

 then let r = trigger (i-rule → asSequence
 → first, ub, ph)

 in r.allInstances → forAll (r:Rule |
 executor (r, uid, userIdentification,ub))
 and result = uid
 else result = uid

 endif

 User Behaviour

Browsing is the most common user activity used to trigger adaptation rules. The
browsing process is started with a user mouseclick that activates the followLink
function of the Run-Time Layer. The resolver and accessor functions are
responsible for identifying the page to be accessed.

In many adaptive hypermedia applications browsing is the only behaviour that is
recorded. Additional information about the user can be obtained from her answers
to questions, selection of options and other user input. User inactivity is under
certain circumstances another helpful piece of information that can be used for
adaptation, i.e. to trigger adaptation rules.

UserBehaviour is an abstract class of the user model. The classes Browsing, Input
and Inactivity inherit from the class UserBehaviour. The following attributes are
defined for these classes:

• an attribute access for the class Browsing, that indicates the component
to be accessed,

• an attribute inputField for the class Input, that specifies the data entered
or selected,

• an attribute time for the class Inactivity, that indicates time elapsed since
last action. It is used for the time-out.

The user interaction activity is captured by the Run-Time Layer, which directs to
the Adaptation Model. Typical events generated by user interaction are access to a
page, timeout, mouseclick, keystroke, etc.

4.3.4 The Run-Time Layer

The Run-Time Layer describes the mechanisms supporting the user’s interaction
with the adaptive hypermedia system. The fundamental concepts of this layer are
the session and the instantiation. A session is established for each user and for each

Chapter 4 • An Object-Oriented Reference Model • 105

new connection to the domain. It contains a history of all activities performed by
the user. An instantiation is a presentation of the component to the user. It can be
considered as a kind of run-time cache of the component as the user sees and edits
a copy of the component. Thus, more than one instantiation for any given
component can coexist.

A set of functions are included in the Run-Time-Layer to fulfil the presentation of
the pages built according to a set of rules of the Adaptation Model with the concept
pages contained in the Domain Model and adapted to the individual User Model.
These functions perform the opening of a session, the opening of instantiations,
modification and removal of instantiations, following a link, modification or
creation of a component, closing a session, etc. Figure 4-9 shows the classes of the
Run-Time Layer and the partial visualisation of the Storage Layer, mainly

1..*

1

 *

Component

components

Anchor

PresentSpec

{ordered}

presSpec

1 accessTo

1

1 1

anchorId 1

AnchorID

UID

1

1

1

ComponentSpec

1..*

Session

instants (iid):Instantiation
instantsUID (iid): UID
instantiator (uid, ps):Instantiation
realizer (inst): Component
runTimeResolver(cs,ui,uop,ph):
UID
...

 *

1

History
operations

1

anchor
Link

*

IID

1

* iids

Instantiation

1

1

1

LinkMarker
*links

{ordered}

1

1

{ordered}

linkAnchor (lm): AnchorID

domain

anchors

inst

 *1
instUid

pres
Spec

sessions

Operation

1

1

history

resolvesTo

 *

linkMarkers

resolver(cs):UID
accessor(uid): Component
...

Domain

 *

Run-time LayerStorage Layer

...

Pages

Adaptation

trigger(rule): Set(Rule)
finder(rule,userID)
adaptationResolver(cs,
ui,ub,ph): UID

Rule

UserBehaviour

1..*
1..*

1..*
1

1

UserID

executor (uid,ui,ub)

1

adap-
tation

10..*

adaptation

userIDs

rules

opn = enum (
ÓPEN, CLOSE,
EDIT, SAVE, ...)

iid
iids

1

 *
operations

behaviour

Figure 4-9: UML Class Diagram for the Run-Time Layer and Part of the Storage Layer

106 • An Object-Oriented Reference Model • Chapter 4

including classes that are related to classes of the Run-Time Layer.

Instantiation of a component also results in instantiation of its anchors. An
instantiated anchor is known as a link marker (LinkMarker). The instantiation is an
entity that consists of a sequence of link markers and a function mapping link
markers to the anchors they instantiate.

 Instantiation

Each instantiation has a unique instantiation identifier from a given set of
instantiations ID (IID). In addition, according to Halasz and Schwarz (1994), an
instantiation consists of a base instantiation which “represents” a component, a
sequence of link markers which “represents” the anchors of the component, and, as
a minimum a function mapping link markers to anchor IDs called “link anchor”
(operation linkAnchor).

context Instantiation :: linkAnchor (lm : LinkMarker) : AnchorID
pre: links → includes (lm)
post: result = lm.anchorLink

The invariant “ dom linkAnchor = ran links” for the operation link anchor demands
that for every link marker the function link anchor maps the link marker to an
anchor ID.

context Instantiation
inv dom linkAnchor = ran links:
 links → forAll (lm: LinkMarker |
 AnchorID.allInstances → exists (aid : AnchorID
 | linkAnchor (lm) = aid
 and LinkMarker.allInstances → exists (lm :
 LinkMarker | linkAnchor (lm) = aid
 implies links → includes (lm))))

 Session

The session contains the hypertext being accessed, a history, a mapping from IIDs
of the session’s current instantiations to the corresponding components of the
Storage Layer, an instantiator function, a realizer function and a run-timeResolver
function. This is represented by a class Session with an association to the class
Domain and to a class History and a set of functions.

The history records all the operations (interactions) a user can perform during a
session. The Dexter Hypertext Reference Model includes seven different types of

Chapter 4 • An Object-Oriented Reference Model • 107

operations that a user can perform during a session. These operations are: open and
close a session, present and unpresent an instantiation of a component, create a
new instantiation during a session, as well as edit, save or delete an instantiation.
The Munich Reference Model extends this list to include an additional operation,
which is not a really operation as the user is inactive, i.e. she is just waiting. The
aim is not to model every inactive period of time, but long periods of time, i.e.
periods of inactivity that exceed a timeout limit. If the timeout is set, then the
system reacts, for example redirecting to another node. The operation is called
timeout.

The list of nine operations can be grouped into browsing, input and inactivity
operations as shown below. These are the different user behaviours modeled in the
Adaptation Model and used in the rule conditions. The user behaviour is an initial
trigger in the execution of adaptive rules.

• browsing: open, close, present, unpresent

• input: create, edit, save, delete

• inactivity: timeout

The following invariant has to be fulfilled for every Session.

context Session
inv first operation in a session is OPEN:
 history.operations.opn → asSequence -> first = #OPEN

A read-only session can be modeled as follows:

context Session
inv read only session:
 not history.operations → forAll (op: Operation |
 op.opn = #CREATE or op.opn = #EDIT
 or op.opn = #SAVE or op.opn = #DELETE)

For the manipulation of instantiations a mapping function is defined from
instantiations to components. Instantiations are generated for a session. Given an
instantiation identification, the function instants returns the instantiation of the
component and the function instantsUID the UID of the corresponding component.

context Session :: instants (iid: IID) : Instantiation
pre: iids → includes (iid)
post: result = iid.inst

context Session :: instantsUID (iid: IID) : UID

108 • An Object-Oriented Reference Model • Chapter 4

pre: iids → includes (iid)
post: result = iid.instUID

 Generating Instantiations

The instantiator is the core of the Run-Time model. Given a UID of a component
and a presentation specification, the function returns, an instantiation of the
component that is part of the session. The presentation specification is a primitive
in the model, which contains information about how the component is to be
presented by the system during instantiation.

context Session :: instantiator (uid: UID, ps: PresentSpec):
 Instantiation
pre: adaptation.domain.components → includes (accessor(uid))

 and accessor (uid).presSpec = ps
post: result = iids.inst → select (ins:Instantiation |
 ins.presSpec = ps and ins.iid.instUID = uid)
 → asSequence → first

The inverse function to the instantiator is the realizer. This takes an instantiation
and returns a “new” component reflecting the recent changes due to editing the
instantiation. This returned component is the input for the modifyComponent
operation of the domain of the storage layer.

context Session :: realizer (ins: Instantiation) : Component
pre: Instantiation.allInstances → includes (ins)
post: let new = adaptation.domain.components →
 select (c:Component |
 c.specifiers.presSpec.insts = ins
 and ins.links → forAll (lm:LinkMarker |
 ins.links → includes (lm)
 implies c.anchors.anchorID.linkMarkers
 → asSequence → first = lm))
 → asSequence → first
 in new.oclIsNew

 and adaptation.domain.components
 = adaptation.domain.components@pre → including (new)
 and result = new

The following invariant assures that the set of components accessible by the
accessor function is equal to the set of components realised from instantiations.

Chapter 4 • An Object-Oriented Reference Model • 109

context Session
inv range of accessor = range of realizer:
 UID.allInstances → forAll (uid : UID |
 PresentSpec.allInstances → exists (ps : PresentSpec |

 accessor (uid) = realizer (instantiator(uid,ps))))

 The Run-Time Resolver

The session’s Run-TimeResolver is the run-time version of the storage’s layer
resolver operation. It maps component specifiers into component UIDs. The Run-
TimeResolver is needed when run-time information is used for the resolution
process, i.e. when history or time aspects are taken into account in the process. The
Storage Layer resolver would not be able to handle this specification. The
runTimeResolver is a superset of the Storage Layer resolver.

context Session :: runTimeResolver (cs: ComponentSpec, ui:
 UserID, uop: Operation, ph: PhaseType) : UID
post: result =
 if uop.opn = #CREATE
 or uop.opn = #EDIT
 or uop.opn = #DELETE
 or uop.opn = #SAVE
 then self.adaptation.adaptationResolver (cs,ui, #INPUT,ph)

 else if uop.opn = #TIMEOUT
 then self.adaptation.adaptationResolver
 (cs,ui, #INACTIVITY,ph)
 else self.adaptation.adaptationResolver
 (cs,ui, #BROWSING,ph)
 endif
 endif

 Opening a Session

A Session starts with an existing domain (Storage Layer) and neither instantations
nor history. The openSession has to fulfil the following constraint:

context Session :: openSession (d:Domain)
pre: history.operations → isEmpty
post: self.oclIsNew
 and d.sessions = d.sessions@pre → including (self)

 and history.operations.opn → asSequence → first = #OPEN

110 • An Object-Oriented Reference Model • Chapter 4

 and iids → isEmpty

 Opening an Instantiation

There are several operations, which can open a new instantiation: opening
components, presenting a component, following a link and creating a new
component.

The first operation is called openComponents and it opens up a set of new
instantiations based on a set of existing components. The function uses a sequence
of specifiers and a sequence of present specifications as input. Two sequences are
defined therefore instead of a set of pairs as in OCL all collections are flat.

context Session :: openComponents (specs: Sequence (Specifier),
 pspecs: Sequence (PresentSpec)) : Set (Instantiation)
pre: specs → size > 0 and pspecs → size = specs → size
post: let op = Operation.allInstances
 → select (o:Operation | o.opn = # PRESENT)
 → asSequence → first
 in op.oclIsNew

 and history.operations → asSequence =
(history.operations@pre → asSequence) → append (op)

 post: let specs → iterate (j : Integer; newinst = Set {} |
 Instantiation.allInstances → select (ins:Instantiation
 | ins.oclIsNew
 and IID.allInstances → exists (iid:IID |

instants (iid) = ins
and ComponentSpec.allInstances → exists (cs:

 ComponentSpec | (specs → at (j)).compSpec = cs
 and UID.allInstances → exists (uid:UID |
 runTimeResolver (cs) = uid
 and instantiator (uid, pspecs → at (j)) = ins
 and instantsUID (iid) = uid))))

 in iids.inst = iids.inst@pre → union (newinst)
 and result = newinst

Another way of opening a component is to follow a link from a given link marker
in a given instantiation and present all the components for which the associated
links have specifiers with a direction that has value “TO”. There may be more than
one link involved because there may be more than one link associated with a
particular anchor.

context Session :: followLink (instID:IID, lm:LinkMarker) :
 Set (Instantiation)

Chapter 4 • An Object-Oriented Reference Model • 111

post: let specs = Specifier.allInstances → select (s:Specifier |
 s.direction = #TO

 and AnchorID.allInstances → exists (aid: AnchorID |
 aid = instants (instID).linkAnchor (lm)
 and UID.allInstances → exists (uid :UID |

 LinksToAnchor (instantsUID (instID), aid)
 → includes (uid)
 and accessor(uid).oclIsTypeOf (Link)
 and accessor(uid)./anchorSpecs

→ includes (aid)
 and accessor(uid).specifiers → includes (s))))
 in specs → iterate (i:Integer ; pspecs = Sequence {} |
 pspecs = pspecs → append ((specs → at (i)).presSpec)

 and result = openComponents (specs,pspecs)

The newComponent operation models the opening of a new instantiation when a
new component is created.

context Session :: newComponent (co:Content, sp:Set (Specifier) ,
 sc:Set(Component), ps:PresentSpec,
 presentSpec:PresentSpec): Component
post: let op = Operation.allInstances

→ select (o:Operation | o.opn = # CREATE)
 → asSequence → first
 in op.oclIsNew
 and history.operations = history.operations@pre
 → append (op)
 post: let new = adaptation.domain.createNewComponent (co, sp,
 sc, ps)
 in let newIID = IID.allInstances → select (iid : IID |

 UID.allInstances → exists (uid : UID |
 Instantiation.allInstances → exist (ins :
 Instantiation | iids → excludes (iid)
 and ins = instantiator
 (uid,presentSpec)
 and accessor (uid) = new

 and instants (iid) = ins
 and instantsUID (iid) = uid

))) → asSequence → first
 in iids = iids@pre → including (newIID)

 and result = new

 Removal of an Instantiation

The operation unPresent models the removal of an instantiation.

112 • An Object-Oriented Reference Model • Chapter 4

context Session :: unPresent (iid:IID)
pre: iids → includes (iid)
post: let op = Operation.allInstances

 → select (o:Operation | o.opn = # UNPRESENT)
 → asSequence → first
 in op.oclIsNew
 and history.operations → asSequence =
 (history.operations@pre → asSequence) → append (op)
post: iids = iids@pre → excluding (iid)

 Modifying an Instantiation and/or a Component

An edit operation is used to modify instantiations (editInstantiation). The editing
of an instantiation has no effect on the component. An explicit operation to save the
changes resulting from an edit is required. This operation is the realizeEdits.

context Session :: editInstantiation (ins:Instantiation, iid:IID)
pre: iids → includes (iid)
post: let op = Operation.allInstances

 → select (o:Operation | o.opn = # EDIT)
 → asSequence → first
 in op.oclIsNew and
 history.operations → asSequence = (history.operations
 @pre → asSequence) → append (op)
post: let old-ins = instants(iid)
 in iids.inst = iids.inst@pre → excluding (old-ins)
 → including (ins)

context Session :: realizeEdits (iid:IID)
pre: iids → includes (iid)
post: let op = Operation.allInstances
 → select (o:Operation | o.opn = # SAVE)
 → asSequence → first
 in op.oclIsNew
 and history.operations → asSequence = (history.operations
 @pre → asSequence) → append (op)
post: let c = adaptation.domain.components
 → select (comp: Component |
 Instantiation.allInstances → exists (ins:
 Instantiation |
 UID.allInstances → exists (uid: UID |
 instants (iid) = ins
 and instantsUID (iid) = uid
 and realizer (ins) = comp)))

Chapter 4 • An Object-Oriented Reference Model • 113

→ asSequence → first
 in adaptation.domain.components =
 adaptation.domain.components@pre → including (c)

 Deleting a Component and its Instantiations

To delete a component this component has to be instantiated in a Session. Any
other instantiations of the same component have also to be deleted.

context Session :: deleteComponent (iid:IID)
pre: iids → includes (iid)
post: let op = Operation.allInstances

→ select (o:Operation | o.opn = # DELETE)
 → asSequence → first
 in op.oclIsNew
 and history.operations → asSequence = (history.operations
 @pre → asSequence) → append (op)
post: let uc = UID.allInstances → select (uid : UID |
 uid = instantsUID (iid))
 → asSequence → first
 in let iinst = Instantiations.allInstances → select (i:IID |

 iids (i) = uc)
 in iids = iids@pre – iinst
 and adaptation.domain.components =

 adaptation.domain.components@pre → excluding (uc)

 Closing a Session

A session ends when it is closed out, i.e. the last operation registered in the history
has value CLOSE. All instantiations of components are deleted. Changes to
instantiations that have not been explicitly be saved will be lost.

context Session :: closeSession()
pre: history → size > 1
post: let op = Operation.allInstances

→ select (o:Operation | o.opn = # CLOSE)
 → asSequence → first
 in op.oclIsNew
 and history.operations → asSequence = (history.operations
 @pre → asSequence) → append (op)
post: iids → isEmpty

114 • An Object-Oriented Reference Model • Chapter 4

4.3.5 Authoring Functions

Authoring functions are the functions needed in adaptive hypermedia systems to
create or modify adaptive applications. They are mainly required to update the
models, i.e. to create an atom, to create a component relationship, to create a
composite component, to create a rule, to add a user attribute to the user model, to
delete or modify components, rules or user attributes.

 Creating a New Component

The function createNewComponent is the function invoked by the Run-Time Layer
to incorporate a new component to the domain. It calls one of the following
operations: createAtomicComponent, createRelationshipComponent or createCom
positeComponent. This is a more readable specification than writing all conditions
in one post-condition constraint. The disadvantage of the modularity is that the
result is not OCL conform as the constraints does not satisfy the isQuery-is-true
requirement.

context Domain :: createNewComponent (co: Content, sp: Set
 (Specifier), sc: Set (Component), ps:PresentSpec) :
 Component
post: result = if sc → notEmpty
 then createCompositeComponent (sc, ps)
 else if sp → notEmpty
 then createRelationshipComponent (sp, ps)
 else createAtomicComponent (co, ps)

 endif
 endif

createAtomicComponent takes a content and a presentation specification to create a
new atomic component.

context Domain :: createAtomicComponent (co: Content, ps:
 PresentSpec) : Component
post: let c = Component. allInstances
 → select (comp: Component |

comp.oclIsNew
and comp.content = co
and comp.presSpec = ps) → asSequence → first

 in components = components@pre → including (c)
 and result = c

Chapter 4 • An Object-Oriented Reference Model • 115

createRelationshipComponent takes a set of specifiers and a presentation
specification to create a new relationship component. Link consistency has to be
proven.

context Domain :: createRelationshipComponent (sp:Set(Specifier),
 ps:PresentSpec): Component
post: let c = Component. allInstances
 → select (comp: Component |

comp.oclIsNew
and comp.specifiers = sp
and comp.presSpec = ps) → asSequence → first

 in components = components@pre → including (c)
 and result = c

createCompositeComponent takes a collection of components and a presentation
specification to create a new composite component. It must be ensured that any
sub-component of the new composite are already in the domain.

context Domain :: createCompositeComponent
 (sc: Set (Component), ps: PresentSpec) : Component
pre: s.oclIsTypeOf (Sequence)
post: let c = Component. allInstances
 → select (comp: Component |

comp.oclIsNew
and sc.allInstances → forAll (s: Component |

components → includes (s)
and comp.children = comp.children@pre
 → including (s))

 and comp.presSpec = ps) → asSequence → first
 in components = components@pre → including (c)
 and result = c

 Removing a Component

The function deleteComponent eliminates a Component from the domain ensuring
that all links whose specifiers resolve to that component are removed.

context Domain :: deleteComponent (uid:UID)
pre: components → includes (accessor (uid))
post: let lIDs = linksTo (uid) → including (uid)
 in lIDs → forAll (lid:UID | lIDs → includes (lid) implies
 components = components@pre →
 excluding (lid.component))

116 • An Object-Oriented Reference Model • Chapter 4

 Modifying a Component

Components are modified by the operation modifyComponent that ensures that the
associated information as well as the type (atom, composite or component
relationship) remains unchanged and that the resulting hypermedia remains link
consistent. The resolver is not modified when modifying a component as the new
component overrides the old one.

context Domain :: modifyComponent (uid:UID, new:Component)
pre: components → includes (accessor (uid))
post: let old = accessor (uid)
 in concistency (new,old)
 and components = components@pre → excluding (old)
 → including (new)

 Getting Specifiers

The operation getSpecifier takes a UID and uses the accessor function to return
specifiers of a component.

context Domain :: getSpecifiers (uid:UID) : Set (Specifier)
pre: components → includes (accessor (uid))
 and acessor (uid).oclIsTypeOf (ConceptRelationship)
post: result = accessor (uid).specifiers

 Getting and Modifying Attributes

The same as in the Dexter Model the following three operations are included to
allow for manipulation of attributes of components. These operations are
attributeValue, setAttributeValue and allAttributes.

The first one takes a component UID and an attribute and returns the value of the
attribute, e.g a string.

context Domain :: attributeValue (uid:UID, a:Attribute) : String
pre: components → includes (accessor (uid))
 and components.attributes → includes (a)
post: let atr = Attribute.allInstances
 → select (at:Attribute | at = a
 and components
 → exists (comp:Component |

 comp = accessor (uid)

Chapter 4 • An Object-Oriented Reference Model • 117

 and comp.attributes -> includes (at))
→ asSequence → first

 in result = atr.value

The second operation is setAttributeValue, that given a component UID, an
attribute and a value, it sets the value of the attribute.

context Domain :: setAttributeValue (uid:UID, a:Attribute, v:Value)
pre: components → includes (accessor (uid))

and components.attributes → includes (a)
post: let atr = Attributes.allInstances → select (at:Attribute | at = a
 and components
 → exists (comp:Component |

 comp = accessor (uid)
 and comp.attributes -> includes (at))
 → asSequence → first

 in atr.value = v

The third one, allAttributes returns the set of all component attributes.

context Domain :: allAttributes () : Set (Attribute)
post: result = comp.attributes → asSet

 Creating a New Rule

Analogously to the creation of a new component and a new user, in the authoring
mode it is allowed to create a new rule and to add this rule to the set of existing
rules. The function createRule is defined with this purpose.

context Adaptation :: createRule (c:Condition, a:Action, pr: Boolean,
 ph:PhaseType) : Rule

pre: -- none
post: let newRule = Rule.allInstances → select (rule:Rule |

rule.oclIsNew
and rule.condition = c
and rule.action = a
and rule.propagate = pr
and rule.phase = ph) → asSequence → first

 in rules = rules@pre → including (newRule)
 and result = newRule

 Removing a Rule

The function deleteRule is included in this model to allow for elimination of rules
defined in the Adaptation Model.

118 • An Object-Oriented Reference Model • Chapter 4

context Adaptation :: deleteRule (r: Rule)
pre: rules → includes (r)
post: rules = rules@pre → excluding (r)

 Modifying a Rule

The function modifyRule is defined to modify the condition of a rule, the action of a
rule or both.

context Adaptation :: modifyRule (r:Rule, c:Condition, a:Action, pr:
 Boolean, ph:PhaseType)
pre: rules → includes (r)
post: let newRule = Rule.allInstances → select (rule:Rule |

rule.oclIsNew
and rule.condition = c
and rule.action = a
and rule.propagate = pr
and rule.phase = ph) → asSequence → first

 in rules = rules@pre → excluding (r)
 → including (newRule)

 Creating a New User Attribute

The function createUserAttribute is invoked to change the User Model structure
creating a new user attribute, either a DependentAttr or an IndependentAttr,
depending on if it is related to a component of the domain or not.

context UserManager :: createUserAttribute (n:String,
 c:Component, v:UserAttrValue): UserAttribute
post: let ua = UserAttribute.allInstances
 → select (uat:UserAttribute |

uat.oclIsNew
and uat.attrname = n
and if uat.oclIsTypeOf (DependentAttr)
 then uat.attrval.comps → includes (c)

 and uat.attrVal = v
 else ua.attrVal = v
 endif) → asSequence → first

 in users → forAll (u: User |
 u.userAttrs = u.userAttrs@pre → including (ua))

 and result = ua

Chapter 4 • An Object-Oriented Reference Model • 119

 Removing a User Attribute

In similar way to the incorporation of a user attribute to the set of attributes
included in a User Model, a user attribute can be removed from this set.

context UserManager :: deleteUserAttribute (ua: UserAttribute)
pre: users → forAll (u: User | u.userAttrs → includes (ua))
post: users → forAll (u: User |

u.userAttrs = u.userAttrs@pre → excluding (ua))

4.4 Basis for the definition of modeling techniques

The Munich Reference Model presented in this chapter serves as a basis for the
definition of the modeling techniques used in the design of adaptive hypermedia
applications (Chapter 6). The domain model requires a conceptual design of the
problem domain, which will evolve into a navigation model and a presentation
model. The user model and the adaptation model find their pendant in the design.
The user model is used to define user attributes and their relationships to the
domain model. The adaptation model is used to specify the set of acquiring and
adaptation rules as well as the collaborations between these rules and elements of
the domain model and user model.

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 121

“Unless the vast majority of Web sites are improved considerably,

we will suffer a usability meltdown of the Web...”
Jakob Nielsen

Communications of the ACM
January 1999

5 Comparison of Hypermedia
Engineering Approaches

Adaptive hypermedia systems are on the one hand hypermedia systems and on the
other hand systems that have the capability to adapt themselves to the user’s
knowledge, preferences or other characteristics. Therefore, the methods for
hypermedia systems development are used as starting point for the methodology
developed in this work for adaptive hypermedia systems (see Chapter 6 and 7).

Hypermedia engineering – better know as Web engineering – is a new and still
evolving discipline. We are at the beginning of a long process of learning how to
develop large hypermedia applications. Hypermedia applications for the Web or
CD-ROM are mostly developed ad hoc, usually evolving from small to large
applications and quickly becoming difficult to maintain. Guidelines and tools,
which assist the hypermedia developer, are beginning to appear, but are far from
being mature. Current practices often fail when used to develop large-scale
applications for the same reasons as such a development fails in other areas of
software development. These reasons are lack of planning and inappropriate
techniques, processes and methodologies.

The development of hypermedia systems differs from the development process of
traditional software in several ways. People with very different skills are involved
in the process, such as authors, layout designers, programmers, multimedia experts
and also marketing specialists of e-commerce applications. The role of the users is
greater and this makes it more difficult to capture the structure of the domain. The
non-linearity of the hyperdocuments as well as the possibility of connecting easily

122 • Comparison of Hypermedia Engineering Approaches • Chapter 5

to other hypermedia applications increases the complexity and risk of “lost in
hyperspace”. In addition security is a concern of every Web application.

Web and hypermedia development has to take into account aesthetic and cognitive
aspects as well, that traditional software engineering environments do not support
(Nanard & Nanard, 1995). It tends to be more fine grained, the process more
incremental and iterative, and the maintenance is a significant part of the life cycle
of hypermedia applications, in contrast to the role played in traditional systems.

In the last few years many development methods have been defined. They have
similarities and differences. The purpose of this chapter is to compare them and
find out the similarities and the differences. These methods for the development of
hypermedia systems propose a different number of steps and activities. Some of
them focus only on the design or on visual representation; others focus on the
complete development of hypermedia applications. They prescribe different
techniques and/or notations to be used in the development process. Some tools
have been implemented to support the development process that the methods
propose.

This chapter is structured as follows. Section 1 briefly describes eleven different
methodologies. Section 2 outlines the current notations used in hypermedia design.
Section 3 presents a comparison of the hypermedia development methods based on
their process steps, concepts, notations, techniques and tools. Section 4 compares
the Unified Process with some of these hypermedia development methods. Section
5 provides some conclusions.

5.1 Development of Hypermedia Systems

To analyse and compare methods for the development of hypermedia systems, we
first of all need a more precise definition of the notion of systems development
method (methodology). This is often very vaguely defined, not only because of the
ambiguity of the concept of method and methodology7, but also because of the
difficult in providing a precise definition of system and system development (Iivari
& Maansaari, 1998).

Avison and Fitzgerald (1995) define method for system development as “a set of
phases which guide the developers in their choice of techniques that might be

7 Method and methodology are used as synonyms in this work.

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 123

appropriate at each stage of the project”. These techniques also have to help them
to plan, manage, control and evaluate information systems projects. Palvia and
Nosek (1993) give instead the following definition: A methodology is a “an
organised and systematic approach to a systems life cycle or its parts. It will specify
the individual tasks and their sequences”. Another problem is the distinction
between method and technique. Palvia and Nosek also define technique as
accomplishing a task in the systems life cycle. The result of applying a technique is
certain outcomes (deliverables).

One scope problem is to determine which aspects have to be covered by a
methodology. Rumbaugh (1995) proposes that a method should include four
components:

• a set of modeling concepts to capture semantic knowledge about the
problem and its solution,

• a set of views and notations for the visualisation of the underlying
modeling information,

• a step-by-step iterative process for constructing models and
implementations of them, and

• a collection of hints and rules of thumb for performing development.

Henderson-Sellers and Firesmith (1997), by contrast, suggests a more extensive list
of aspects that have to be covered by a methodology. There are the following nine
constituents:

• a full life cycle process,

• a full set of concepts and models that are internally self-consistent,

• a collection of rules and guidelines,

• a full description of deliverables,

• a workable notation,

• a set of metrics, together with advice on quality, standards and test
strategies,

• guidelines for project management,

• advice for library management and reuse, and

• identification of organisational rules.

Most of the major methodologies developed for hypermedia systems only partially
cover the life cycle of hypermedia systems and focus on the design of these systems
– according to Rumbaugh’s definition. See comparison presented in Figure 5-3 in
Section 5.3. Only HFPM (Olsina, 1998), Conallen (1999) and the engineering

124 • Comparison of Hypermedia Engineering Approaches • Chapter 5

approach of Lowe and Hall (1999) cover the whole development process following
Henderson-Sellers proposal.

Basically, two modeling techniques, if any, are applied in hypermedia design:
entity-relationship and object-oriented techniques. HDM and RMM are based on
the E-R model. In contrast, EORM, OOHDM, SOHDM and WSDM adopt object-
oriented approaches. Other methods go beyond the design and implementation, like
HFPM, to describe the process covering the whole life cycle of hypermedia
applications. WCML (Gellersen & Gaedke, 1999) and WebML (Ceri, Fraternali &
Bongio, 2000) are both, approaches that focus on a markup language for the
development of Web applications.

In addition to analysis, design and implementation, some methods include project
management as well as feasibility studies, deployment, maintenance and/or quality
control. HFPM and the OO/Pattern Approach suggest the use of pattern for the
navigation and user interface design. The hypermedia-engineering model presented
by Lowe and Hall (it is not named) goes further, proposing the creation of a
reference model for hypermedia development processes.

A complementary approach to these methods is the Extended World Wide Web
Design Technique (eW3DT) of Arno Scharl (1999) based on the W3DT (Bichler &
Nusser, 1996). eW3DT is recommended to be used as a communication tool
between researchers, system analysts and the management responsible for the
development of a hypermedia system. It includes a graphical notation for the
visualisation of the structure of deployed systems, including a combination of
design, implementation and maintenance aspects that are mainly useful for re-
engineering.

A brief description of the most relevant methods (mentioned above) for this work is
given in the remainder of this Section.

5.1.1 HDM: Hypermedia Design Method

The Hypermedia Design Model (HDM) is one of the first methods developed to
define the structure and interaction in hypermedia applications (Garzotto, Paolini
& Schwabe, 1993). It is based on the E-R methodology, but extends the concept of
entity and introduces new primitives as units (corresponding to “nodes”) and links.
HDM entities have an inner structure and have a browsing semantics associated
with them, i.e. a specification of how navigation may be performed and how
information is visualised. An entity is a hierarchy of components and components
are made up of units. Three types of links are defined: structural, perspective and
application links (see Table 5-2). Structural links connect components; perspective

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 125

links connect units. These links can be automatically derived from the structure of
the entities. Application links are defined by the author and connect components
and entities of the same type or different type.

Two different groups of entities exist in HDM: the application entities described
above and so-called “outlines”. These allow access to the application entities
offering entry points to start navigation and the possibility of locating and selecting
entities. These outlines or access structures are ordered trees of components.

Garzotto, Mainetti and Paollini (1995) distinguish the following dimensions in the
analysis of hypermedia applications: content, structure, presentation, dynamics and
interaction. The content addresses the pieces of information, while the structure is
the content’s organisation. The presentation defines how the application content
and functions are shown to the users. The interaction for HDM is the dynamic
functionality operated on presentation elements. In other methods interaction is
considered as part of the dynamics and presentation as it is a combination of both
factors. The outlines defined by HDM are index links, guided tours and collection
links. Index links connect the collection node to each member of the collection. A
guided tour link connects the collection’s nodes in a linear sequence with each
member connected to the next and previous one. In circular collections the last
member connects to the first. Collection links are index or guided tour links that
allow for traversing of the nodes of a collection. To support the presentational
design HDM defines two concepts: slot and frame. A slot is an atomic piece of
information. It can be simple or complex, such as a video synchronised with sound.
Slots are composed of frames. A frame is a presentation unit, i.e. what is shown to
the user.

This methodology distinguishes between authoring-in-the-large and authoring-in-
the-small. The former identifies the entities, components and units while latter fills
these units with content. HDM specifies the structure of the hyperspace (they call it
hyperbase), as authoring-in-the-small is not within its scope.

5.1.2 RMM: Relationship Management Methodology

Relationship Management Methodology (RMM) addresses the design and
construction of hypermedia applications defining for this purpose a process of
seven steps (Isakowitz, Stohr & Balasubramanian, 1995). These steps are: entity-
relationship design, slice design, navigation design, user interface design, protocol
conversion design, run-time behaviour, and construction and testing. An
application design is represented with RMDM (Relationship Management Data

126 • Comparison of Hypermedia Engineering Approaches • Chapter 5

Model) based on the entity-relationship model and HDM. This method is at the
same time a top down and a bottom up approach.

During the E-R design step entities, attributes and relationships are identified
which will become nodes and links in the resulting hypermedia application. The
second step, slice design, involves grouping entity attributes for presentation. Slices
are “presentation units” which appear as pages of hypermedia applications.
Separation of contents and presentational aspects is not carried out in this step.
Navigational design is the step that identifies the navigation paths. RMM specifies
navigation through access primitives: link, grouping (menus), index, guided tour
and indexed guided tour. The conversion protocol design converts components of
RMM into physical objects in the target hypermedia application. The step user
interface design involves the design of the screen layouts of every diagram element
including access primitives, links, anchors, indexes and general navigational aids.
The techniques proposed for the user interface design by Balasubramanian, Bieber
and Isakowitz (1996) are construction of mock-ups and prototyping.

A Relationship Management Case Tool – RMCase – has been designed (Diaz,
Isakowitz, Maiorana & Gilabert, 1995) to support the development of hypermedia
WWW applications. It supports the RMM methodological stages via development
of contexts, one for each stage. Design objects are shared among different contexts.
The transition between contexts is possible through navigation.

5.1.3 EORM: Enhanced Object Relationship Methodology

The Enhanced Object-Relationship Model (EORM) is defined as an iterative
process that focuses on the enrichment of the object-oriented modeling by the
representation of relations between objects (links) as objects. According to Lange
(1996), this has the following advantages: relations become semantically rich as
they are extensible constructs, they can participate in other relations and they can
be part of reusable libraries. This method proposes the construction of a prototype
of the user interface at an early stage during design.

The method is based on three frameworks: class, composition and GUI. The class
framework consists of a reusable library of class definitions. To identify classes for
an application EORM follows standard object-oriented techniques. EORM
distinguishes two types of object-oriented relationships: generalisation relation-
ships and user-defined relationships. Whereas the former have predefined
semantics associated to them; the latter rely completely on the user specification.

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 127

The composition framework consists of a reusable library of link class definitions
that enable users to reuse already developed link classes and extend them when
necessary by using inheritance. The semantics of the basic link classes is the
following:

• simpleLink: is the root link class that provides basic interlinking
capabilities, including functions for creation, deletion and traversing.

• navigationalLink: provides traversal mechanisms for hypermedia links,
including storage of creation time and history information (backtrack). It
inherits from simpleLink.

• nodeToNode: is a link that inherits from navigationalLink supplying an
object-to-object hypermedia link functionality.

• spanToNode: inherits from navigationalLink. It links the content of an
object to another object.

• structureLink: is a child of simpleLink and the root of the structural
links. It is inserted after creation into the structural context.

• setLink: is a structureLink that provides access to an object in an
unordered collection of objects.

• listLink: is a structureLink that supplies access to an object in an ordered
collection of objects.

The last step in this method is the design of the GUI application using elements of
the GUI framework. It determines the windows of the domain and which
presentation has to appear in each window, obtains presentations from attributes
and operations of classes and determines how functionality is assigned to window
menus.

The ONTOS Studio tool was developed to support the hypermodeling process with
EORM. It utilises an interactive graphical user interface that generates a C++
implementation of the hypermodel. It is based on the ONTOS database. The
method and the tool was not further developed since 1996.

5.1.4 OOHDM: Object-Oriented Hypermedia Design

The Object-Oriented Design Method (Rossi, 1996, and Schwabe & Rossi, 1998)
comprises the following four activities:

128 • Comparison of Hypermedia Engineering Approaches • Chapter 5

• conceptual modeling,

• navigational design,

• abstract interface design, and

• implementation.

The OOHDM activities are performed in a mix of incremental, iterative and
prototype-based development style. Object-oriented models are built in each step
improving the models designed in previous iterations.

The conceptual model of the application is represented with a class diagram. This
method sees a hypermedia application as a view over the conceptual model.
Classes of these views are called navigational classes. The concept of navigational
context is introduced to describe the navigational structure. It is a powerful concept
that allows different groupings of navigational objects for the purpose of navigating
them in different contexts. The access to these navigational elements is modeled
with access structures, such as indexes and guided tours. Different types of indexes
and navigational contexts are defined in the navigational design. A special notation
is used for the representation of the navigational context schema. In addition,
InContext classes are defined to enrich navigational objects allowing them to look
different, present different attributes (including anchors) as well as different
behaviour (methods) depending on the context within which they are navigated.

The abstract interface model is the result of the specification of the interface
objects the user will perceive. OOHDM uses Abstract Data Views (ADVs) to
model the static aspects of the user interface (Carneiro, Cowan & Lucena, 1993)
while dynamic aspects of the user interface are modeled with a technique based on
Statecharts (Harel, 1987).

The OOHDM-Web environment allows for a rapid prototyping of hypermedia
applications designed using OOHDM. It requires the conversion of navigation
constructs defined by the user, (such as navigation classes, navigational contexts,
classes for presentations (InContext classes) and access structures) into tables as it
is not an object-oriented approach. Navigation and interface constructs of OOHDM
are mapped into a library of functions in the cgi-Lua script language therefore using
the Lua-Database (Schwabe & Almeida Pontes, 1998). Based on the table it
generates pages dynamically. The designer builds page templates with a mix of
HTML tags and special commands that are interpreted by the cgi-Lua scripting
environment with a set of special functions derived from OOHDM navigation
primitives.

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 129

5.1.5 SOHDM: Scenario-based Object-oriented
Hypermedia Design Methodology

Another method was recently developed by Lee, Lee and Yoo (1998) is the
Scenario-based Object-oriented Hypermedia Design Methodology. It consists of six
phases: domain analysis, object modeling, view design, navigation design,
implementation design and construction. This methodology has similarities with
RMM, OOHDM and EORM. It differs in the use of scenarios, which are described
through scenario activity charts, based on events, activities and activity flows
primitives. Scenarios are defined in the domain analysis phase and are used for the
object modeling. View design consists of determining object-oriented views
generated from single object classes or from associations between object classes.

The navigation design uses scenarios to determine access structure nodes. They are
defined as a menu-like mechanism that enables users to access other parts of
hypermedia documents. The access structures nodes (ASN), together with the
object-oriented views, are called navigation units. The ASNs are similar to the
access primitives of RMM: grouping (menu), index and guided tour. Object-
oriented views are categorised into three types: base view, association view and
collaboration view. These views are similar to contexts defined in OOHDM. A
base view is generated from a single object class. An association view is extracted
from an association relationship. Similarly, a collaboration view is generated from
a collaboration relationship. The identification of navigation links completes the
navigational design.

During the implementation design the user interface, pages and a logical database
schema are modeled. This method presents a clear sequence of steps that benefits
from the scenarios obtained as results of the analysis phase. It defines its own
elaborated graphical notation.

5.1.6 WSDM: Web Site Design Method

The Web Site Design Method (WSDM) is a user-centred approach that defines the
information objects based on the information requirements of the users of a Web
application. WSDM proposed by De Troyer and Leune (1997) consists of three
main phases: user modeling, conceptual design and implementation design.

In the user modeling phase the potential users/visitors of the Web site are
identified and classified according to their interests and navigation preferences, for

130 • Comparison of Hypermedia Engineering Approaches • Chapter 5

example8. Starting point is the description of the domain, taking into account user
activities. Different perspectives are defined for the user classes; these are different
ways classes of users look at the same information and navigate through the
information. Conceptual design consists of two steps: object modeling and
navigational design. Object modeling is then done in three steps: business object
modeling, user object modeling and perspective object modeling.

The navigational model consists of a number of navigation tracks, one for each
perspective, expressing how users of a particular perspective can navigate through
the available information. WSDM describes it in terms of components and links. It
distinguishes three types of components: navigation, information and external.
Each navigation track consists of three layers: context, navigation and information
layers. The context layer is the top level of the navigation track starting with a
navigation component. The information layer is the bottom level of the navigation
track. The navigation layer connects the context layer and the information layer.
Intermediate components and links, such as indexes and menus are created to
access the information.

This kind of navigational design achieves Web applications that have a very
hierarchical structure. The implementation design step creates a consistent and
efficient look and feel to the conceptual model. Few recommendations are given in
this step, such as the use of index pages, information divided into right-sized
chunks, use of context and information cues and use of navigational cues.

5.1.7 MacWeb Approach

The MacWeb Hypermedia Development Environment is an engineering
environment developed by Nanard and Nanard (1995). They emphasise the
importance of the creative aspects in the hypermedia development process: ”An
important part of hypertext design concerns aesthetic and cognitive aspects that
software engineering environments do not support”. Therefore, the design activity
is performed in a two-dimensional space of methods steps and mental processes.

The mental process includes the steps: generating material, organising and
structuring, reorganising and updating, as well as evaluation. The methods steps
are similar to steps in other methods described in this chapter: concepts elicitation,
navigation model, abstract interface, implementation model and testing. The

8 Note that the meaning of user modeling in WSDM is different to the definition given in Chapter
3.

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 131

designer switches from mental process to methods steps, as there are not
predefined transition rules between the activities or steps. The designer’s strategy
may be bottom-up and/or top-down. They assert that this chaotic process must not
to be impaired or the author’s creativity would be reduced drastically.

MacWeb´s design environment proposes using object-oriented techniques, such as
generalisation and instantiation as well as the well-known technique light
prototyping used in human-computer interaction (HCI) development. Through
prototyping users are able to evaluate interface design and hypermedia structure.

MacWeb´s basic hypertext model relies on typed nodes connected by bi-directional
typed links. MacWeb has a built-in tool that helps users construct a structure as a
semantic network. It provides a few primitive built-in types, such as node, link,
script node, group node. Node represents a concept. A link denotes a relationship
between two types (nodes). Firing a link to a script node will trigger the execution
of its content. A node of type group comprises sets of nodes organised as sub-webs.

5.1.8 HFPM: Hypermedia Flexible Process Modeling

The Hypermedia Flexible Process Modeling (HFPM) presented by Olsina (1998) is
an engineering-based approach that includes analysis-oriented descriptive and
prescriptive process modeling strategies. It describes existing processes, thereby
giving guidelines for the planning and managing of a hypermedia project.

HFPM embraces functional, methodological, informational, behavioural and
organisational views or perspectives of the hypermedia development process.

• The functional view prescribes a set of phases and activities to perform
tasks (e.g. to find users, classes, uses cases, etc.).

• The methodological view defines a set of specific process constructors to
be applied to the different tasks (e.g. use-case-driven analysis, OOHDM-
based conceptual and navigational design, etc). One or more methods are
selected to support the tasks of a specific process and one or more tools
can support a specific method.

• The informational view plans to produce a set of artifacts (i.e. results
such as a navigational model or physical model), which are required by
the tasks.

• The behavioural view represents the dynamic of the process model
making decisions about sequencing and synchronisation of tasks,

132 • Comparison of Hypermedia Engineering Approaches • Chapter 5

iterations, increments, parallelisms, termination conditions, feedback
loops, etc.

• The organisational view defines aspects such as roles, team organisation,
communication mechanisms, groups dynamic, etc.

The list of tasks and suggested subtasks prescribed by HFPM for the development
of hypermedia applications is listed below. It includes the following technical,
managerial, cognitive and participatory tasks:

• software requirement modeling, such as initial survey, use-case modeling,
non-functional modeling, glossary construction;

• project planning, i.e. analysis and specification of the project plan;

• conceptual modeling, that consists of analysis and specification of the
problem domain;

• navigational modeling, that comprises analysis of intended user’s tasks,
identification of navigational classes, specification of navigational
schema, specification of navigational transformations;

• abstract interface modeling, that refers to analysis of user interface
models, specification of interface perceptible objects, events and
transformations;

• design patterns employment, i.e. use of navigational, architectural and
user interface patterns;

• multimedia data capture and editing;

• physical modeling/integration, that comprise component employment,
rapid-functional prototyping, evolutionary prototyping, sketching or
storyboarding, and component integration;

• validation/verification;

• cognitive criteria employment, such as coherence and orientation criteria
employment;

• quality assurance, like analysis of quality and improvement strategies,
specification of quality plan;

• project co-ordination and management, i.e. control and management of
process, artifacts and resources; and

• documentation.

This is a wide engineering-based approach. It covers all essential phases and
activities of a hypermedia project, helps to establish milestones and metrics as well
as promoting communication and human understanding. Olsina (1998) presents a
conceptual model for HFPM based on a set of key-concepts, such as process itself,

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 133

task, artifact, resource, agent, role, process constructor, process description, goal,
resource and operation.

5.1.9 OO/Pattern Approach

The OO/Pattern approach to hypermedia collection design (Thomson, Greer &
Cooke, 1998) is similar to HFPM as it proposes to utilise both, an OO-design and
the application of patterns for the navigational and presentational design. It differs
from HFPM because it does not cover the whole life cycle of a hypermedia
application, i.e. project management, testing and maintenance aspects are not
included. The use of patterns has well-known advantages, such as that the process
is well defined, documentation can be reused and maintenance is easy.

This method prescribes the following steps: use cases, conceptual design,
collaboration design, class definition, navigational design and implementation.
The innovative aspects of these methods in relation to other methodologies are:

• Use case analysis for the different types of users.

• Collaboration design based on the defined use cases and the conceptual
design.

• Navigational design based on patterns.

They describe the layered hierarchy pattern whose purpose it is to create an
intuitive navigation in a naturally hierarchical structured information.

5.1.10 WAE – Conallen Process

Conallen (1999) proposes the use of the Rational Unified Process (Kruchten, 1998)
and defines a Web Application Extension for UML (WAE). The workflows (steps)
included are: project management, requirements capture, analysis, design,
implementation, test and configuration management. Three Web application
architectures patterns are presented in this work: Thin Web Client, Thick Web
client and Web Delivery. In the first one there is little control of the client’s
configuration. In the second one an amount of business logic is executed on the
client. The last one describes a Web client-server system supporting distributed
objects.

The WAE includes stereotypes for the modeling of Web-specific architectural
elements. An icon file including stereotypes can be downloaded for use in the
Rational Rose tool. These stereotypes (see Table 5-1) are used to define different
types of nodes (e.g. pages) and user interface elements (e.g. forms and framesets)

134 • Comparison of Hypermedia Engineering Approaches • Chapter 5

as well as different types of relationships between elements (e.g. link, build and
submit).

The Conallen process focuses on architecture and implementation, including a
reverse engineering step, which achieves the update of the design models according
to the code. It offers little support for a systematic construction of the navigational
structure of Web application and its presentational aspects. It does not treat each of
the Web specific aspects — content, navigation and presentation — separately as
most of the hypermedia design methods do.

5.1.11 Lowe-Hall’s Engineering Approach

Lowe and Hall (1999) provide a framework for the development process of
hypermedia applications. The framework includes domain analysis, product
modelling, process modelling, project modelling, development and documentation.
Product modelling consists in choosing a model for the final product. The
framework supports three different product models: a programming language-based
approach, a model-based approach and an information-centred approach.

• In the programming language-based model the information and the
information structure is embedded into the programming structure.

• In the screen-based model, pages are manually linked together to obtain
the hypermedia application.

• In the information-centred model, the information is stored in a database.

Process modelling consists of selecting phases, activities and artifacts for
development and establishes how these are integrated into the specific
development process of an application. Incremental development and prototyping
are recommended for the development of hypermedia applications.

The activities that are performed during the development process are: system
analysis, design, production, verification and testing as well as maintenance. A set
of development techniques are presented for some activities related to the analysis
and to the design of a hypermedia application. For example, it suggests RMM as
methodology for the design of the structure.

5.2 Notations used in Hypermedia Design

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 135

Most of the works in the hypermedia modeling field concentrate their attention on
defining a new notation for the visualisation of design models, such as the
methodologies already outlined above: HDM, RMM, OOHDM, SOHDM and
WSDM. Some of them use standard notations only for the conceptual design. These
notations are object-oriented like OMT or UML, or are based on E-R. But all of
them define their own notation and graphical techniques for the other steps in the
design process. RMM uses E-R notation for the E-R design. EORM chooses OMT
for the class structure diagram. In early papers OOHDM proposes the use of OMT
notation; however, in a latter one it uses UML, but only for the conceptual model
as it uses its own notation for the navigation and abstract interface model. WSDM
is not restrictive in the notation selection; E-R and OMT are both suggested for the
business object modeling, user object modeling and perspective object modeling
steps. For the navigation model an individual notation is chosen. SOHDM is a
scenario-based methodology using its own notation for the scenario activity
diagrams, the class structure diagrams and object-oriented views. The class
structure diagram is a graphically representation of the information contained in
Class-Responsibility-Collaboration Cards, so called CRC Cards (Wilkinson, 1995).

Other works, like WAE and the Structured Hypermedia Design Technique (SHDT)
focus on an implementation near notation. WAE defines therefore a UML
extension. SHDT only defines a set of design primitives that are derived from the
functionality of HTML. These primitives used for the static representation are: site,
diagram, page, layout, form, index, menu, link and dynamic link. Site and diagram
allow for grouping of diagrams and pages respectively. Dynamic page generation is
represented by templates and dynamic links. The SHDT WebDesigner is a CASE
tool that provides support for the design of Web applications. It generates a
prototype of the planned Web system based on the SHDT design and on HTML
stylesheets performed for the pages.

Another approach is the work of Baumeister, Koch and Mandel (1999) that
combines ideas of OOHDM, RMM and SOHDM. It focuses on the use of UML
techniques for the graphical representation of the models and presents a UML
extension for hypermedia applications. The models built are the conceptual model,
navigation model and presentation model. The UML extension is based on the
definition of stereotypes and the use of OCL constraints.

5.3 Comparing Hypermedia Development Methods

The comparison of software systems development methods is a difficult task. The
focus of the methodologies may be different, some try to address many aspects in
the development process, others try to detail in depth one or two of them. The

136 • Comparison of Hypermedia Engineering Approaches • Chapter 5

comment in this work that a specific issue is not addressed, is then not be seen as a
criticism, rather as an observation that the methodology will not offer help with
this issue.

In this chapter three comparative studies are presented. The first one shown in
Table 5-1 extends the comparison of Lee, Lee and Yoo (1998). It compares the
steps to be performed when using a method for the development of hypermedia
applications, the modeling technique used as well as the graphical representation
and notation chosen for the models. Another criterion used for the comparison is
the CASE tool support they offer for the development.

The steps or phases of the process are numbered. These numbers are used in the
fourth and fifth column to indicate what kind of graphical representation and
notation is proposed for each step. It can be observed that although the number of
steps, the techniques, notations and the graphical representation are different, the
sequence these steps are performed in is similar. First the domain model of an
application is analysed and/or designed, second the methods focus on structure and
navigation and in a third step they proceed with the user interface design.

 Process Modeling
technique

Graphical
 representation

Notation Tool
support

HDM 1. Authoring-in-the-large
2. Authoring-in-the-small

E-R 1.- 2. E-R diagram

1. E-R

RMM 1. E-R design
2. Slice design
3. Navigational design
4. Conversion protocol design
5. UI screen design
6. Run-time behaviour design
7. Construction and testing

E-R 1. E-R diagram
2. Slice diagram
3. RMDM diagram

1. E-R
2.-3- own

RMCase

EORM 1. Class framework
2. Composition framework
3. GUI framework

OO 1. Class diagram
3. GUI design

1. OMT ONTOS
Studio

OOHDM 1. Conceptual design
2. Navigational design
3. Abstract UI design
4. Implementation

OO 1.Class diagram
2. Navigational
Class + Context
schema
3. ADV
Configuration
diagram + ADV
charts

1.OMT/
UML
2. own
3. ADVs

OOHDM-
Web

SOHDM

1. Domain analysis
2. OO Modeling
3. View design
4. Navigational design
5. Implementation design
6. Construction

Scenarios
OO Views

1. Scenarios
activity diagrams
2. Class structure
diagram
3. OO view
4. Navigational link
schema
5. Page schema

1.- 5.
own

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 137

 Process Modeling
technique

Graphical
 representation

Notation Tool
support

WSDM 1. User modeling
2. Conceptual design
 2.1 Object modeling
 2.2 Navigational design
3. Implementation design
4. Implementation

E-R/ OO 1. E-R or class
diagram
2. Navigation
layers

1. OMT
2. own

MacWeb
Approach

A1. Concept elicitation
B1. Generating material
A2. Navigational model
B2. Organising and structuring
A3. Abstract Interface
A4. Implementation model
B3. Reorganising and
restructuring
A5. Testing
B4. Evaluation

OO A2. Class structure

2. own MacWeb

HFPM 1. Requirement modeling
 2. Project planning
 3. Conceptual modeling
 4. Navigational modeling
 5. Abstract interface modeling
 6. Design patterns employment
 7. Multimedia data
capturing/editing
 8. Physical modeling/
integration
 9. Validation/verification
10. Cognitive criteria
employment
11. Quality assurance
12. Project co-ordination and
 management
13. Documentation

OO OOHDM 3.-5. =
OOHDM

OO/
Patterns
Approach

1. Use case analysis
2. Conceptual design
3. Collaboration design
4. Class definition
5. Pattern-based navigational
 design
6. Implementation

OO 2. Class diagram
3. Collaboration
 diagram

WAE-
Conallen
Approach

1. Project management
2. Requirements capture
3. Analysis
4. Design
5. Implementation
6. Test
7. Deployment
8. Configuration and change
 management

OO 2.-5 UML-diagrams UML-
exten
sion

Rational
Rose

Lowe-
Hall

1. Domain Analysis
2. Product modeling

RMM
(sugges-

ted)

RMM RMM

138 • Comparison of Hypermedia Engineering Approaches • Chapter 5

 Process Modeling
technique

Graphical
 representation

Notation Tool
support

Approach 3. Process modeling
4. Project planning
5. Development
 5.1 Analysis
 5.2 Design
 5.3 Production
 5.4 Verification and testing
 5.5 Delivery and maintenance
6. Documentation

ted)

Table 5-1: Methods for Hypermedia Development: Processes, Techniques, Notations and
Tools.

The second comparative study is a concept-based comparison. It is similar to the
table elaborated by Jacobson (1992) to compare OOSE, OOA, OOD, HOOD, and
OMT. The results are shown in Table 5-2. It relates the design concepts of some of
the methods outlined to the three typical levels of hypermedia design: conceptual,
structural and visible level. Most of these methods, as mentioned above, clearly
separate the domain problem analysis from the specification of the navigation space
structure as well as from the design of the user interface. The most important
concepts used by seven different design methods are listed in the table. Similar
main concepts are placed on the same row.

 HDM RMM EORM OOHDM SOHDM WSDM WAE

C
on

ce
pt

ua
l l

ev
el

entity

collection
perspective
relationship

entity

relationship

class

oo-
relationship
- generalised
- user defined

class

perspective
oo-
relationship

scenarios:
-event
activity

activity flow

object

perspective
relationship

class

oo-
relationship

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 139

 HDM RMM EORM OOHDM SOHDM WSDM WAE

S
tr

uc
tu

ra
l l

ev
el

link:
structural
application
perspective

node
component

outlines:
collection
link
index link
guided tour

link:
uni-
directional
bidirectional

slices

acc.
primitives:
grouping
(menu)
index
guided tour
indexed
guided tour

link:
simple
navigational
-nodeToNode
-spanToNode
structural:
-set
-list

link

nav. class

nav. context

access
structures:
index
guided
tour

nav. link

oo-view:
-base
-association
-collaboration

ASN (acc.
structure
nodes):
grouping
index
- guided tour

link

component
navigation
information
external

nav. track

link
targeted
link
redirect
build
submit

web page
client page
server page

V
is

ib
le

 le
ve

l

slot
frame

slices ADV
(Abstract
Data View)

inContext

UI
component:

choice
search
input text
button
image
slide bar
anchor
-others

frameset
form
target
select
element
input
element
text area
elem.

Table 5-2: Concepts Used in the Methods
Abbr.: nav: navigation, acc: access, oo: object.-oriented, UI: user interface

140 • Comparison of Hypermedia Engineering Approaches • Chapter 5

The third comparison is given in Figure 5-3. It compares the steps or phases
covered by these methods. Note that comparing phases like this, hides other
important aspects. The depth with which a method describes a phase and the
guidelines given for that phase can vary enormously. Some method descriptions

only propose a set of textual guidelines while others provide tools to support the
phase. As a basis of comparison the core workflows proposed by the Unified
Software Development Process (in short form Unified Process) are used here:
requirements capture, analysis, design, implementation and testing.

5.4 The Unified Process and Hypermedia Development

Object-oriented development processes are becoming a de facto standard in
software engineering. In particular, UML-based processes, such as the RUP
(Kruchten, 1998), the Irrational Separated Process (ISP) of Hitz and Kappel
(1999), the object-oriented approach of Oestereich (1999) and the Unified Process
of Jacobson, Booch and Rumbaugh (1999).

Requirements
capture

Analysis Design
Conceptual Navigational Presentational

Implementation Testing

HDM

RMM

EORM

OOHDM

SOHDM

WSDM

MacWeb

HPFM

OO/Pattern

Lowe-Hall

Figure 5-3: UP Workflowss covered by the Hypermedia Development Methods

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 141

The Unified Process proposes a development process for general software systems.
The Unified Process is the result of the development of, and practical experience
with, other methodologies, such as the Objectory Process (Jacobson, 1992) and the
Rational Unified Process. The latter extends the Unified Process with the goal to
cover the whole software life cycle providing workflows for project management,
configuration and change management.

The methods described and compared in the previous sections are not based on the
Unified Process with the exception of the method of Conallen. UML notation is
used in only a few cases. A list of the most relevant characteristics of the Unified
Process is detailed below. For each of these characteristics a brief analysis is done
to determine which aspects are covered by methodologies for hypermedia systems
outlined in the previous sections.

• Grouping of the iterations in inception, elaboration, construction and
transition phases.

The life cycle of the development process of a software product is divided in the
Unified Process in inception, elaboration, construction and transition phases. Note
that maintenance is not a separate phase. It can be considered as another
development project with its own inception, elaboration, construction and
transition phases. The Unified Process suggests one or more iterations for each of
the four phases.

OOHDM, RMM, the WAE-Conallen approach and the engineering approach of
Lowe and Hall describe an iterative process but they do neither make a distinction
between these iterations nor do they specify a number of iterations to be performed.

• Covering requirements capture, analysis, design, implementation and
testing

The Unified Process focuses on the entire development process that begins with the
user’s requirements and ends with the software system. Most of the above
described methods focuses on the design of hypermedia applications. Figure 5-3
depicts the phases each method covers (core workflows in Unified Process
terminology). Requirements capture and testing are only taken into account by
HFPM, WAE-Conallen and Lowe-Hall.

• A Use-Case-driven process

There are two different ways to capture the requirements of the system to be built.
First, the traditional functional specification that finds out what the system is
supposed to do. Second, the use case strategy that consists of finding out the system
functionality from the user’s perspective, i.e. what the system is supposed to do for
each user. Use-case driven means that the development process proceeds through a

142 • Comparison of Hypermedia Engineering Approaches • Chapter 5

series of models derived from the use cases. Use cases are found, are specified and
are the source for the analysis model and test cases. Use cases are not sufficient to
define the analysis and design model, these models are also based on the
architecture definition.

The hypermedia design methods started with the conceptual analysis or design with
exception of SOHDM, WSDM and HPFM. SOHDM is a scenario-based approach
that uses these scenarios as source for the domain analysis. WSDM describes the
domain from the user perspective; it is a user-centric approach. HFPM and WAE-
Conallen proposes use-case modeling for the software requirements modeling task.

• A specification based on the architecture of the system

The Unified Process sees the architecture as a complement to the use cases. The
use cases define the functionality of the software system. The architecture specifies
the organisation of a software system, the structural elements and their interfaces.
The architecture is described by a set of five models: use case models, analysis
model, design model, deployment model and implementation model.

All methods described above construct at least a static model of the domain; they
also proposes a graphic representation of these models. These models are part of
the description of the architecture of the software system.

• Component-based implementation

The Unified Process is a component-based methodology as the software systems
being built are made up of software components interconnected via interfaces. For
all the hypermedia methods to perform a component-based architecture is not a
restriction posed by the methodology. It is a decision of the designer to perform a
component-based design and implementation or not.

• An incremental and iterative process

An incremental and iterative process provides the strategy for developing software
systems in small manageable steps. The iterations in the inception and elaboration
phases of the Unified Process are concerned with establishing the scope of the
project, removing critical risks and base lining the architecture. In the construction
and transition phases the objective is to implement and integrate the components
step by step, i.e. in small increments.

All hypermedia methods can be applied in successive iterations, but only a few
proposes it explicitly, such as OOHDM, WAE-Conallen, Lowe-Hall and the
Oestereich approach. For the Unified Process an iterative and incremental
development process is one of the cornerstones of the method.

Chapter 5 • Comparison of Hypermedia Engineering Approaches • 143

• Initiating the development process with a feasibility study

HFPM and the Lowe-Hall approach suggest a first step that involve a feasibility
study. The purpose is to evaluate the viability of the project to convert a vision into
a software system. The Unified Process just mentions it by the way. But this step is
of particular importance, if an expensive adaptive software system is to be
developed.

• Elaboration of a business model

Business modeling is used in the Unified Process to describe the business
processes of an organisation in terms of business use cases and business actors
corresponding to business processes and customers, respectively. The business
model represents the business from the usage perspective and outlines how it
provides value to the users. Although the business aspects are relevant in most
hypermedia systems, only WSDM proposes to build a business object model.

• Planning and assessment

The Unified Process proposes the elaboration of a project plan and a project
assessment and so, briefly, do HPFM and the engineering approach of Lowe-Hall.
The project plan comprises of a list of milestones, at least one for each phase, a
time schedule, evaluation criteria and a number of iterations for each phase. The
objectives of the assessment are to examine what has been accomplished since the
last evaluation, to review progress against the project plan and to determine if
quality requirements are satisfied.

• Risk management

Risk management consists of risk identification, risk description, impact analysis,
assignment of priorities, risk monitoring, determination of risk responsible, risk
mitigation and alternative plans in case risk materialises. The Unified Process
gives only a set of brief explanations, hints and rules for risk management. Only
Lowe and Hall and WAE-Conallen mention the importance of risk management.
Although general risk management concepts and techniques can be used, the
hypermedia development process has its own risk factors.

• A model-based development

Models are built, updated and consolidated in the Unified Process in all core
workflows and in all iterations of the phases: inception, elaboration, construction
and transition. These models are built based on the techniques and notations
defined by the UML. All other methods mentioned in this chapter also construct
one or more static and/or dynamic models. The difference is that they do not use
the Unified Modeling Language with the exception of OOHDM (only for the
conceptual model) and WAE-Conallen.

144 • Comparison of Hypermedia Engineering Approaches • Chapter 5

5.5 Lessons Learned from the Comparative Study

The comparative study of the most relevant engineering approaches for hypermedia
and the comparison between the Unified Process and these development methods
presented in this chapter are used as basis for the methodology developed during
this work. Chapter 6 and 7 present the UWE (UML-based Web Engineering)
approach. UWE comprises a methodology, a set of techniques and a notation. It
covers the whole life cycle of hypermedia applications, from requirements capture
to maintenance. Special attention is paid to quality management, i.e. validation of
requirements, verification of the design and testing. First results for non-adaptive
systems are included in Koch (2000a).

The evolution of hypermedia development methods can be compared to the steps
taken by tradiciotnal software development methodologies. As Lowe and Hall
(1999) stress, development processes for hypermedia will continue to evolve and
improve. State of the art reports and comparative studies like this, allow for a
better understanding of what is missing and failing in the current methods. It can
be helpful in showing in which direction research has to continue. On the other
hand, this chapter describes the strength of each method, providing ideas on how to
combine these strengths in an unified and improved approach

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 145

“ Object orientation as a competitive advantage”
Ivar Jacobson,

American Programmer,
October 1992.

6 Modeling Techniques for the
Design of Adaptive Hypermedia

The development of hypermedia and adaptive systems differs from the
development process of general software in several dimensions. These differences
– outlined in the introduction of the previous chapter – are mainly related to the
navigation facilities of the hypermedia structure, the role of the user, the people
involved in the development and the maintenance process. Non-functional require-
ments have to be addressed by a development process for adaptive systems, such as
security and privacy that is a concern of adaptive hypermedia applications.
Adaptive hypermedia poses ethical and legal questions, as it allows for individual
identification of the user and her preferences.

If we limit ourself to the design steps, the main differences observed between the
design of adaptive hypermedia solutions and other software applications are the
central role of the user, the heterogeneity of the designer group, the hypertext
structure composed of nodes and links, the need for navigation assistance, the
multimedia content, the observation of user behaviour as well as the dynamic
adaptation of contents, navigation and presentation. Thus, the design is centred
around three main aspects of the hypermedia paradigm and two additional aspects
of adaptive systems. The first three are the content, navigation structure and
presentation with the goal to construct a conceptual model of the domain, and a
navigation and presentation model of the application. The latter two are the user
modeling and the adaptation. Treating these five aspects separately during design
will pay off in the maintenance phase. It can be observed, that the domain, user and

146 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

adaptation models of the Munich Reference Model described in Chapter 4 are
covered here by the design.

The need of authoring support for the development of Web applications is outlined
by Nielsen (1999), who recommended the separation of content and presentation
and emphasised the importance of a better navigation design. Authoring support for
adaptive hypermedia applications is proposed by Wu, Houben and De Bra (1999).
This authoring support consists of three main implemented classes, which are used
to define the data model and include operations for authoring support. In that work
a domain model, a user model and a teaching model are defined, but neither a
methodology nor visual modeling is supported.

In this chapter the focus is on the analysis and design of the UWE (UML-based
Web engineering) approach. The techniques developed are then embedded in the
development process that is described in detail in Chapter 7. The objective is to fill
the methodical assistance gap in the development of adaptive hypermedia
applications.

The analysis and design techniques presented in this chapter are based on a UML
extension for hypermedia (Koch & Mandel, 1999; Baumeister, Koch & Mandel,
1999; and Hennicker & Koch, 2000a) and on a first approach to a method for
adaptive hypermedia (Koch, 1998). These techniques are also known as UML-
based Hypermedia Design Method (UHDM).

The methodology − part of the UML-based Web Engineering approach − consists
of a notation and a method. The notation is a “lightweight” UML profile for
hypermedia in general and for adaptive hypermedia in particular. It is defined as a
set of stereotypes for (adaptive) hypermedia. These stereotypes are built using the
UML extension mechanism (UML, 1999). They are used to indicate the descriptive
and restrictive properties that the modeling elements have in comparison to
standard UML elements. The advantage of using UML is that it is standard. The
advantage of using a UML profile is that any practitioner with a general UML
background is able to understand a model based on these specialisations (Selic,
1999). Selic, the author of the UML profile for the real-time domain, stresses that
the resulting language remains compact, because the refinements fully respect the
general semantics of their parents concepts and retain its “universal” quality.

The method consists of the constructing of six analysis and design models. Figure
6-1 shows the models represented as UML packages related by trace dependencies.
The construction is performed in an iterative and incremental design process. The
modeling activities are the requirements analysis, conceptual, user model,
navigation, presentation and adaptation design.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 147

The main artifacts produces by the design method of UWE are the following:

• a use case model that captures the system’s requirements,

• a conceptual model for the content (domain model),

• a user model,

• a navigation model that comprises a navigation space model and a
navigation structure model,

• a presentation model that comprises static and dynamic models
(presentation structure model, presentation flow model, abstract user
interface model and object lifecycle model), and

• an adaptation model.

Note that if the specific steps related to adaptation are suppressed, the methodology
is applicable to the development of hypermedia applications – including Web
applications – in general. The focus of the methodology is on the structure of the
navigation and presentation and less on the architecture of the adaptive hypermedia
application. The objective is to describe a systematic construction of the models,
identifying as many steps as possible, which can be performed in an automatic way.
This thus provides the basis for a systematic mechanism for adaptive hypermedia
applications.

Conceptual
Model

 Navigation
Model

Presentation
Model

«trace» «trace»

«trace»«trace» «trace»«trace»

User
Model

Use Case
Model

Adaptation
Model

«trace»«trace» «trace»«trace»

«trace»

Figure 6-1:Models built during the Design for Adaptive Hypermedia Applications

148 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

Sections 1 to 6 of this chapter present a description of these models. Subsections
are included for each model detailing the modeling elements, giving an example
and enumerating a set of rules for the systematic construction of the model.

6.1 Use Case Model

Following the Unified Software Development Process of Jacobson, Booch and
Rumbaugh (1999) use cases for capturing the system’s requirements is proposed. It
is a user-centred technique that forces to define who are the users (actors) of the
application and offers an intuitive way to represent the functionality an application
has to fulfil for each actor. For non-functional requirements see Chapter 7.

 Modeling Elements

The main modeling elements used for use case modeling are: actors and use cases.
They can be related by inheritance, include or extend relationships. All these
modeling elements as well as the package and view mechanisms are used with the
semantics defined in the UML (1999) and graphically represented with the UML
notation.

 Example

As a running example to illustrate the techniques presented through the whole
chapter, the Web site of an adaptive online library (personalised online library) is
used. This Online Library offers information about publications to registered and
anonymous users. The publication information comprises journals, books and
proceedings. These are described by a title, a number, a publisher, a publishing
date, a set of articles and authors for each article. Books consists of exactly one
article whose title is the same as the book title. In addition, for each article a set of
keywords is stored.

The user is modeled by tracking her interest in articles and registering the articles
she visits. The user can also mark articles (bookmarks) as being of special interest.
A list of personal keywords for each user is administrated by the system. The list is
initialised by the user and is updated either by the user or the system. The system
performs the updating in accordance with the observations on the user’s behaviour
(in this case limited to the articles she marks or visits frequently). The list can
include positive as well as negative keywords. Negative keywords are used to hide
irrelevant publications and articles from the user.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 149

To summarise, the Online Library offers users the following functions:

• access to the publication information as an anonymous or a registered
user,

• dynamic up-dating of a user model,

• different search possibilities for publications, articles and authors,

• search mechanisms for articles already visited,

• dynamic adaptation of the search results to the curent state of the user
model,

• customisation of the presentation of the articles,

• notification of articles recently published by e-mail or included in a news
page.

Figure 6-2 depicts the use case model for the Online Library.

Find
publication

Find
article

Find
author

Adapt
navigation

Update
author

Update
publication

Update
article

Send News
per E-mail

User Library
Administrator

«includes»

«includes»

«includes»

«includes»

Registered
User

Library
System

Adapt
content

Update
User Profile

Select visited
article

Look at news

Adapt
presentation

Mark articles «includes»

Figure 6-2: Use Case Model for the Online Library Application

150 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

 Method

To build the use case model of a Web application the following steps are suggested
(Kruchten 1999, Schneider & Winters, 1998, etc.):

1. Find the actors.
2. For each actor search the text for activities the actor will perform.
3. Group activities to use cases.
4. Establish relationships between actors and use cases.
5. Establish “include” and “extends” relationships between use cases.
6. Simplify the use case model by defining inheritance relationships between

actors and/or between use cases.

For each use case a detailed description can be provided in terms of (primary and
secondary) scenarios, for instance following the guidelines of Schneider and
Winters (1998). The activities flow of tasks related to a use case can be
represented by a UML activity diagram.

6.2 Conceptual Model

The design of adaptive hypermedia applications builds on the requirements
specification in the same way as the design of software applications in general
does. UWE as a UML-based approach proposes use cases for capturing the
requirements. UWE provides a user-centred technique that forces developers to
define who are the users (actors) of the application, how a user model is built and
offer an intuitive way to represent the functionality that an adaptive application has
to fulfil for each actor.

The conceptual design is based on these use cases and includes the objects
involved in the typical activities users will perform with the application. The
conceptual design aims to build a conceptual model, which attempts to ignore as
many of the navigation paths, presentation and interaction aspects as possible.
These aspects are postponed to the navigational and presentational steps of the
design.

 Modeling Elements

The main modeling elements used in the conceptual model are: class and
association. These are represented graphically by the UML notation (1999). If the

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 151

conceptual model consists of many classes, it is recommended that they be grouped
using the UML package modeling element.

• class

A class is described by a name, attributes, operations and variants. The
optional compartment named variants is added to some classes of the conceptual
model (see Figure 6-3). It contains additional information used for the adaptive
content functionality, i.e. to present different or additional content to the user
according to the current state of her user model. Content adaptation
mechanisms are described in Chapter 2.

• associations and packages

Associations and packages are used as in standard UML class diagrams.

• tagged values

Tagged values are attached to modeling elements to extend the properties of
the modeling element.

Classes defined in this step are used during navigational design to derive nodes of
the hypermedia structure. Associations will be used to derive links.

 Example

The conceptual model of the Online Library is shown in Figure 6-4. The example is
limited to the core data and functionality, although many other aspects should be
included in the Online Library in an incremental and iterative process. These
aspects could be additional classes and more advanced search functions, such as
editors of publications, classification of authors, search by author name and article
title. In addition to the search engines, authoring functions must be incorporated to
allow for a visible and modifiable user model. Neither this user model authoring
nor the administration of the publication database is within the scope of this
chapter.

Class Name

attributes

operations

variants

Figure 6-3: Class with additional Compartment Variants

152 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

 Method

The developer can follow well-known object-oriented modeling techniques to
construct the conceptual model, such as:

1. Find classes.

2. Specify the most relevant attributes and operations.

3. Determine associations between classes.

4. Define inheritance hierarchies.

5. Find dependencies.

6. Use tagged values.

7. Define constraints.

Publisher

name: String
address: String
...

Publication

title: String
date: Date...

Author

name: String
e-mail: String
picture: Image
...

Article

title: String
abstract: String

print()

variants

complete (pdf, ps, html)

Library

name: String
address: String
...

*

1

*

1

1..*

1..*

1..*

1..

Keyword

word: String
...

1..*

1..*1..*

1..*

keywordsarticles

articles

articlesauthors

authors

publication

publications
publications

publications

library

libraries

publisher

publishers
has

has

writes

has

contacts

publishes

contains

{type=positive}

Figure 6-4: Conceptual Model of the Online Library Application

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 153

The detailed use case descriptions serve as an input for modeling the content of the
application. The result of these activities is the conceptual model represented as a
UML class model. An example is depicted in Figure 6-4.

6.3 User Model

The user model is designed with the purpose of establishing which user attributes
will be chosen to elaborate a user profile, to determine how these attributes are
related to each other and how they are related to the elements of the domain. A
class diagram is used for the representation of a static user model. State diagrams
can be used to represent object life cycles of user attributes and to show
dependencies between state transitions. Most of these state transitions are defined
by the rules of the adaptation model.

The user model represents knowledge, goals and/or individual features, such as
preferences, interests and tasks of the users. The user model is the view the system
has of the user, i.e. the system’s belief about the user’s knowledge (defined in
Chapter 3 as BSKupi). Its main purpose is to influence user interface presentation
and/or generation. User models also are used to administrate user roles for users
and user groups. A user role express the users’ rights within the application.

 Modeling Elements

The modeling elements used in the user model are: class and association. If the
user model consists of many classes, it is recommended to group them using the
UML package modeling element. Based on the user properties classification
presented in Chapter 3, the following sub-models can be created: domain-
dependent knowledge, background knowledge and cognitive model. Each sub-
model may then be represented as a package.

 Example

The following characteristics of the users are included in the user model of the
Online Library application: articles the user visits, articles that are marked by the
user, positive and negative keywords, preferences the user chooses to be informed
about new articles and the type of file she selects for the download of the articles.
Some of the values of these user attributes are updated dynamically by the system
(e.g. visited articles); others are set by the user and can only be changed by her
(e.g. file type). The user model for the Online Library is shown in Figure 6-5.

154 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

Class Article of the domain model is appended to the diagram to show how the user
model is related to the domain model. Class Visited registers how often the user
visits an article. The class Marked models the articles that are marked by the user
(bookmarks). They are part of the domain dependent knowledge, i.e. one instance
of these classes is required for each instance of the class Article and of the class
user. Class UserKeyword models themes of interest. It is considered as background
knowledge and its instances are not related to specific instances of domain classes.
Classes FileType and News model preferences of the user.

User attributes can be grouped in packages. With the only purpose to illustrate the
package building, the user attributes defined in the Online Library are grouped in
the above mentioned packages (see Figure 6-6).

FileType

type:
enum(pdf,ps,html)

User
username:String
password: String
lastLogin: Date

Marked

 mark: Boolean

UserKeyword

word: String
positive: Boolean

News
notification:
enum(email,page)
frequency: String

 Article
(from Conceptual Model)

title: String
abstract: String

InterestInArticles

changeValue()

**
articlesusers

Visited

count: Integer
lastVisit:Date

Preferences

changed: Date

users

preferences * users

userKeywords *

 *

 *
marks

keywords * *

visits *

readshas

uses

characterises

labels

inv: articles -> forAll (a:Article
| a.visited.count > 3 implies
userKeywords -> exists (k:
Keyword | a.keywords = k and
k.positive = true))

Library
(from Conceptual

Model)

1

currentUser

Figure 6-5: User Model of the Online Library Application

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 155

 Method

This step requires the same abilities of the developer as the design of the domain
model does. The requirements captured as use cases can be helpful to identify
classes for the user model. The structure of the user model of an application is
based on the user model of the reference model presented in Chapter 4, i.e. it
contains a class user and a set of user attributes.

1. Decide which user attributes that describe characteristics of the users are
relevant for the application.

2. Define a class for each identified user attribute.

3. Determine ranges of values for the attributes of these classes.

4. Establish which user attributes are domain-dependent, and which represent
background knowledge or model cognitive properties of the user.

5. Identify associations between domain dependent user attributes and classes
of the domain model.

6. Define constraints.

7. Group user attributes in packages of domain-dependent knowledge,
background knowledge and cognitive properties.

The results of these activities are the user model represented as a UML class
model. An example is depicted in Figure 6-5.

6.4 Navigation Model

Navigation design is a critical step in the design of a hypermedia application. Even
simple applications with a non-deep hierarchical structure will very quickly
become complex as a result of adding new links. On the one hand, additional links

DomainDependent
Knowledge

Visited

Marked

Background
Knowledge

UserKeyword

Cognitive
Properties

FileType

News

Figure 6-6: User Model Packages

156 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

improve navigability; on the other hand, however, they increase the risk of loss of
orientation. Building a navigation model is not only helpful for the documentation
of the application structure, it also allows for a more structured increase in
navigability. Maintaining coherence as the user moves across the application is not
simply a matter of providing links. It depends on the structure of the overall
system, which is related to its underlying communicative performance.

The navigation model comprise the navigation space model and the navigation
structure model. The former specifies which objects can be visited by navigation
through the hypermedia application. How these objects are reached is defined by
the navigation structure model. These models are described in subsections 6.4.1
and 6.4.2, respectively.

6.4.1 Navigation Space Model

In the process of building the navigation space model the developer takes crucial
design decisions, such as which view of the domain model is needed for the
application and what navigation paths are required to ensure the application’s
functionality. The designer’s decisions are based on the domain model, use case
model and the navigation requirements that the application must satisfy.

A set of guidelines is proposed for modeling the navigation space. A detailed
specification of associations, their multiplicity and role names, establish the base
for a semi-automatic generation of the navigation structure model.

 Modeling Elements

Two modeling elements are used for the construction of the navigation space
model: navigation classes, external nodes and navigation associations, which
express direct navigability. They are the pendant to page (node) and link in the
Web terminology.

• navigation class

A navigation class models a class whose instances are visited by the user
during navigation. Navigation classes will be given the same name as the
corresponding domain classes. For their representation the UML stereotype
«navigation class» is used (see Figure 6-7). Navigation classes may contain
derived attributes. These attributes are derived from domain classes that are
not included in the navigation model. The formula to compute the derived
attribute can be given by an OCL expression. A derived attribute is denoted in
UML by a slash (/) before its name.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 157

• external node

An external node models a navigation target belonging to another hypermedia
application, i.e. the node is not part of the application that is being modeled,
but can be reached from a source node of the application. For their
representation the UML stereotype «external node» is used (see Figure 6-8).

• direct navigability

Associations in the navigation space model are interpreted as representing
direct navigability from the source navigation class to the target navigation
class. However, their semantics are different from the associations used in the
conceptual model. To determine the directions of the navigation the
associations of this model are directed (possibly bi-directed). This is shown by
an arrow that is attached to one or both ends of the association. Moreover,
each directed end of an association is named with a role name and equipped
with an explicit multiplicity. If no explicit role name is given, the following
convention is used: if the multiplicity is less than or equal to one, the target
class name is used as the role name; if the multiplicity is greater than one, the
plural form of the target class name is used. In the diagram shown in Figure 6-
9 all associations are implicitly assumed to be stereotyped by «direct
navigability».

«navigation class»

Class Name

attributes

operations

variants

Figure 6-7: Navigation Class

ExternalNode

Figure 6-8: Stereotype for External Node

158 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

 Example

Figure 6-9 shows the navigation space model for the Web Site of the Online
Library application. The diagram includes one invariant that defines the set of new
articles which is navigable for the user. The articles belonging to this set depend on
the last login date of the user. The constraint is attached as a note to the
correspondent class. Alternatively, constraints can be specified separately as the
invariant listed below the diagram.

context Library
inv: visitedArticles → select (a:Article | a.visited.count > 1

and lastVisit.year = currentYear)

«navigation class»

Publication
title: String
date:Date
/publisher: String

«navigation class»

Author

name: String
e-mail: String
picture: Image
...

«navigation class»

Article

title: String
abstract: String
/keywords: Set(String)

print()

variants
complete(pdf,ps,html)

«navigation class»

Library

name: String
address: String
...

*

* 1..*

1..*

1

*

1..*

1

publications

articles

authors articles

1

1..*

visitedArticles

1

authors
newArticles

articles

*

1..*

1

1

1..* Publisher

1 *

inv: newArticles -> select (a:Article |
a.publicationDate > currentUser.lastLogin)

Figure 6-9: Navigation Space Model of the Online Library Application

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 159

 Method

The navigation space model that is built with the navigation classes and
navigability associations as shown in Figure 6-9 is graphically represented by a
UML class diagram.

Although there is obviously no way to automate the construction of the navigation
space model, there are several guidelines that can be followed by the developer:

1. Include classes of the conceptual model that are relevant for the navigation as
navigational classes in the navigation space model (i.e. navigation classes
can be mapped to conceptual classes). If a conceptual class is not a visiting
target in the use case model, it is irrelevant in the navigation process and
therefore omitted in the navigation space model (such as the classes Publisher
and Keyword in our example).

2. Keep information of the omitted classes (if required) as attributes of other
classes in the navigation space model (e.g. the newly introduced attribute
publisher of the navigation class Publication and attribute keywords of the
navigation class Article). All other attributes of navigation classes map
directly to attributes of the corresponding conceptual class. Conversely,
exclude attributes of the conceptual classes that are considered to be
irrelevant for the presentation in the navigation space model.

3. Associations of the conceptual model are kept in the navigation model. Often
additional associations are added for direct navigation to avoid navigation
paths of length greater than one. Examples are the newly introduced
navigation associations between Library and Author and between Library and
Article (all articles).

4. Add additional associations based on the requirements description or the
scenarios described by the use case model. Hence, an association for visited
articles and for new articles is added.

5. Add constraints to specify restrictions in the navigation space as shown in the
UML note of Figure 6-9 or as the invariant that defines the set of visited
articles below Figure 6-9.

6.4.2 Navigation Structure Model

The navigation structure model describes how the navigation can be performed
using access elements such as indexes, guided tours, queries and menus.
Technically, the navigation paths together with the access elements are presented
by a class model which can be systematically constructed from the navigation space

160 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

model in three steps: Firstly, the navigation space model is enhanced by indexes,
guided tours and queries. Secondly, menus are derived directly from the enhanced
model. Menus represent possible choices for navigation. Thirdly, properties for
access primitives are introduced to model adaptive navigation.

The resulting navigation structure model defines the structure of nodes and links in
the adaptive hypermedia application showing how navigation is supported by the
access primitives as well as depicting where the adaptive navigation is applied.

The following subsections describe how the navigation structure model is built step
by step.

6.4.2.1 Including Access Primitives

Access primitives are additional navigation nodes required to access navigation
objects. The following access primitives are defined: index, guided tour, query and
menu. In this section the first three are described and used to refine the navigation
space model. Menu is treated separately in the next subsection.

 Modeling Elements

The following modeling elements are used for describing indexes, guided tours and
queries. Their stereotypes and associated icons are defined in (Koch & Mandel,
1999); some of the icons stem from Isakowitz, Stohr and Balasubramanian (1995).

• index

An index allows direct access to instances of a navigation class. This is
modeled by a composite object, which contains an arbitrary number of index
items. Each index item is in turn an object, which has a name that identifies
the instance and owns a link to an instance of a navigation class. Any index is
a member of some index class, which is stereotyped by «index» with a
corresponding icon. An index class must be built conform to the composition
structure of classes shown in Figure 6-10. Hence the stereotype «index» is a
restrictive stereotype in the sense of Berner, Glinz and Joos (1999). In
practice, the shorthand notation shown in Figure 6-11 is always used.

Note that in the short form the association between Index and NavigationClass
is derived from the index composition and the association between IndexItem
and NavigationClass.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 161

• guided tour

A guided tour provides sequential access to instances of a navigation class.
For classes, which contain guided tour objects the stereotype «guidedTour» is
used and its corresponding icon depicted in Figure 6-12. Any guided tour class

must be built conform to the composition structure of classes shown in Figure
6-12. Each NextItem must be connected to a navigation class. Guided tours
may be controlled by the user or by the system. Figure 6-13 shows the
shorthand notation for a guided tour class.

• query

A query is modeled by a class which has a query string as an attribute. This
string may be given, for instance, by an OCL select operation. For query
classes the stereotype «query» is used and the icon depicted in Figure 6-14. As
shown in Figure 6-14, any query class is the source of two directed

*

 Index

«navigation class»
 NavigationClass

«index»
 Index

name: String

 IndexItem * 1 «navigational class»
 NavigationClass

 Figure 6-10: Index Class Figure 6-11: Shorthand Notation
 for Index Class

«navigation class»
NavigationClass

1

next
prev

name: String

FirstItem
1

1

Figure 6-12: Guided Tour Class

GuidedTour

* «navigation class»
NavigationClass{ordered}

Figure 6-13:: Shorthand Notation for Guided Tour Class

162 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

associations related by the constraint {xor}. In this way a query with several
result objects is modeled to lead first to an index supporting the selection of a
particular instance of a navigation class. The query results can alternatively be
used as input for a guided tour.

Figure 6-15 shows the shorthand notation for a query class in combination
with an index class or with a guided tour.

 Example

Figure 6-16 shows how the navigation space model of the Web Site of the Online
Library can be enhanced by indexes, guided tours and queries.

Note that the access to all authors or all articles of the Library is restricted in this
example to search mechanism via queries. News is reached directly via an index
and the use of a guided tour is illustrated by a guided tour through the articles of a
publication

*

«navigation class»
 NavigationClass{xor}

0..1

 Index

1

«query»
Query

inputField: String

 QueryForm 1

?

Figure 6-14: Query Class

 Query

? * «navigation class»
NavigationClass

 Index

1

 Query

? * «navigation class»
NavigationClass

GuidedTour

1

Figure 6-15: Shorthand Notation for Query

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 163

 Method

The enhancement of a navigation space model by access elements of type index,
guided tour and query follows certain rules, which can be summarised as follows:

1. Replace all bi-directional associations, which have multiplicity greater than
one at both associations ends by two corresponding unidirectional
associations.

2. Replace all bi-directional associations, which have multiplicity greater than
one at one association end with one unidirectional association with an
directed association end at the end with multiplicity greater than one. The
navigation in the other direction is guaranteed by the use of navigation trees
introduced later in the design.

3. Consider only those associations of the navigation space model, which have
multiplicity greater than one at the directed association end.

search
Visisted
Articles

visited
articles

Library

?

Publication

ArticleAuthor articles

ArticleByTitle
ByAuthorByPublication

ArticleByTitle
ByPublication

AuthorByName
ByPublication

authors

Search
ArticleByTitle

publications

articles

authors

AuthorByName

Publication
ByTitle

searchAll
Articles

1

1..*

1

1..*
1..*

1

1..*

1
1..*

1

1

1

1..*

searchAuthors

Search
AuthorByName

1

?
SearchVisited
ArticleByTitle

1

?

articles

Article
ByTitle

1

news

NewArticle
ByTitle

1

1

1..*

VisitedArticle
ByTitle

Publisher

1

1..*

Figure 6-16: Navigation Structure Model (First Step) of the Online Library Application

164 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

4. For each association of this kind, choose one or more access elements to
realise the navigation.

5. Enhance the navigation space model correspondingly. Role names of
navigation in the navigation space model are now moved to the access
elements (compare Figure 6-9 and Figure 6-16).

6. Add constraints to model invariants and conditions. They are deduced from
the detailed description of the use case model.

In item 4 the task of the designer is to choose appropriate access elements.
However, note that it is also possible to fully automate this step by making the
choice of an index a default design according to an attribute with the property
{key} of the target navigation class.

6.4.2.2 AddingMenus

In this step, access primitives of type menu are added to the navigation structure
model.

 Modeling Elements

The modeling element menu is an additional access primitive that can be added to
the list presented in the previous step. Its stereotype is defined by Koch and
Mandel (1999).

• menu

A menu is an index of a set of heterogeneous elements, such as an index, a
guided tour, a query, an instance of a navigation class or another menu. This is
modeled by a composite object which contains a fixed number of menu items.
Each menu item has a constant name and owns a link either to an instance of a
navigation class or to an access element. Any menu is an instance of some
menu class which is stereotyped by «menu» with a corresponding icon. A
menu class must be built in accordance with the composition structure of
classes shown in Figure 6-17. Hence the stereotype «menu» is again a
restrictive stereotype according to the classification of stereotypes given by
Berner, Glinz and Joos (1999). The property {frozen} is attached to each name
attribute in a menu item class to show that menu items have fixed names.
Nevertheless, the same menu item class may have different instances since
there may be menu items with the same name but linked to different objects.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 165

For a convenient notation of menu classes in navigation structure models the
shorthand notation shown in Figure 6-18 is used. This is a somewhat more flexible
extension than the extension mechanisms of UML allows, since it includes a
variable number of compartments with the names of the menu items.

 Example

Figure 6-19 shows how menus enriched the navigation structure model of the
previous subsection where each menu class is associated with a composition
association to a navigation class. Note that the role names occurring in the previous
model (Figure 6-16) are now names of corresponding menu items.

«menu»
Menu

name=“menuItem”
 {frozen}

 MenuItem *

?

1

1

1

1

1

{xor}

{xor}

{xor}

{xor}

Figure 6-17: Menu Class

? Menu

item2
item1

item3
item4
item5

Figure 6-18: Shorthand for Menu Class

166 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

 Method

The navigation space model is enhanced by access elements of type menu following
certain rules which can be summarised as follows:

1. Consider those associations, which have as their source a navigation class.

2. Associate to each navigation class, which has (in the previous model) at least
one outgoing association, a corresponding menu class. The association
between a navigation class and its corresponding menu class is a
composition.

3. Reorganise a menu in a menu with sub menus.

visited
articles

?

Publication

Article

Author

ArticleByTitleByAuthor
ByPublication

ArticleByTitle
ByPublication

AuthorByName
ByPublication

Search
ArticleByTitle

publications

authors

AuthorByName

Publication
ByTitle

searchArticles

1

1..*

1

1..*

1..*

1

1..*

1

1..*

1

1

1

1..*

searchAuthors

Search
AuthorByName

1

?

SearchVisited
ArticleByTitle

searchVisitedArticles

1

?

articles

Article
ByTitle

1

news

NewArticle
ByTitle

1

1

1..*

Library

LibraryMenu

articles
authors

1

1

PublicationMenu

articles
1

AuthorMenu

VisitedArticle
ByTitle

Publisher

11..*

Figure 6-19: Navigation Structure Model (Second Step) of the Online Library Application

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 167

4. Introduce for each role, which occurs in the previous model at the end of a
directed association a corresponding menu item. By default, the role name is
used as the constant name of the menu item.

5. Any association of the previous model, which has as its source a navigation
class now becomes an association of the corresponding menu item introduced
in step 4.

6. Add constraints to add precision to the model.

Note that all the steps in the above method can be performed in a fully automatic
way. As a result a comprehensive navigation structure model of the application is
obtained. The method guarantees that this model conforms to the pattern shown in
Figure 6-20.

6.4.2.3. Modeling Adaptive Navigation

An adaptive hypermedia system adapts navigation to the preferences, knowledge or
tasks of the user. To model these adaptive navigation features, associations
showing navigability and access primitives, such as indexes, guided tours and
menus have to be annotated with properties to specify their adaptive behaviour.

Adaptive navigation can be performed by direct guidance, sorted links, annotated
links, removed links and passive navigation (Brusilovsky, 1996b, and Wu, Houben
& De Bra, 1999). A detailed description of these adaptive techniques is given in
Chapter 2.

Index

 MenuItem

 NavigationClass

{xor}

*

Access Element

Menu

?
Query GuidedTour

{xor}
*

Figure 6-20: Pattern for Access Structures

168 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

 Modeling Elements

The following properties for modeling elements are defined in order to specify
adaptive navigation.

• direct guidance

Direct guidance is a property assigned to a guided tour or to a link. It specifies
that the system decides, which is the “best” target node based on the current
state of the user model.

• sorted

The list of index items of an index is given the property {sorted} to denote that
these items are ordered to indicate the relevance they have for the user.

• annotated

An index or a menu is given the property {annotated} to indicate that the index
or menu items are annotated to indicate the relevance they have for the user.
How annotation is presented (colours, icons or symbols) is decided in the
presentation design.

• removed

Index items and menu items can be removed if the system believes that they
are not relevant for the user. To show that certain items of an index or a menu
eventually are removed, the property {removed} is specified.

• passive navigation

{passive navigation} is a property added to an association to indicate that
navigation is performed by the system. This is used to allow a reaction of the
system to a passive behaviour of the user. A timeout is used to trigger passive
navigation.

Note that hidden links can be modeled by annotation choosing the appropriate font,
icon or colour. Also note that annotation and passive navigation can be used as a
general mechanism for user orientation and guidance, i.e. without being based on a
specific user model.

 Example

Figure 6-21 shows how the navigation structure model of the previous subsection is
enhanced in this third step by properties for the access primitives and associations
indicating passive navigation. Properties using UML notation are placed under the
modeling elements.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 169

An example of passive navigation is incorporated in the Online Library: in the case
of user inactivity while visiting any article, the system navigates to the news, to call
the user’s attention.

The following is an example of a constraint for the LibraryMenu. It describes the
property {removed} specifying which menu items are removed if the user is
anonymous.

context LibraryMenu
inv removal of menu items by anonymous user:
 library.currentUser → isEmpty

visited
articles

?

Publication

Article

Author

ArticleByTitleByAuthor
ByPublication

ArticleByTitle
ByPublication

AuthorByName
ByPublication

Search
ArticleByTitle

publications

authors

AuthorByName

Publication
ByTitle

searchArticles

1

1..*

1

1..*

1..*

1

1..*

1

1..*

1

1

1

1..*

searchAuthors

Search
AuthorByName

1

?

SearchVisited
ArticleByTitle

searchVisitedArticles

1

?

articles

Article
ByTitle

1

news

NewArticle
ByTitle

1

1

1..*

Library

LibraryMenu

articles
authors

1

1

PublicationMenu

articles
1

AuthorMenu

VisitedArticle
ByTitle

Publisher

11..*

{removed,
annotated}

{sorted,
annotated}

{sorted,
annotated}

{sorted,
annotated}

{sorted}

{sorted}

{sorted, removed}

{direct
guidance}

{passive
navigation}

Figure 6-21: Navigation Structure Model (Third Step) of the Online Library Application

170 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

 implies (searchVisitedArticlesItem → isEmpty
 and newsItem → isEmpty)

In analogy, invariants can be defined for the other properties specified in the class
diagram.

 Method

The navigation structure model can be enhanced by properties and additional
associations to model adaptive navigation following certain guidelines which can
be summarised as follows:

1. Specify {direct guidance} for a guided tour if the sequence of instances of
the guided tour is generated based on the actual current state of the user
model.

2. Choose the property {sorted}, {annotated} and/or {removed} for access
primitives, such as indexes and menus, if links are sorted, annotated or
removed according to the adaptation rules which take into account the
current values of the user attributes in the user model.

3. Add associations with the property {passive navigation} to indicate that
navigation is performed by the system when a timeout occurs. It can be
performed in a user model dependent or independent mode.

4. Specify{annotated} for associations if the system offers general orien-
tation or guidance to all type of users.

5. Describe the properties by OCL invariants.

6.4.2.4 Other Modeling Elements

This subsection shows how modeling elements of other methods can be defined as
stereotyped classes in UML as well. The following examples are selected: the
indexed guided tour of RMM and the navigation contexts of OOHDM.

«navigation class»
NavigationClass

 toIndex
next
prev

1

1
1 *

Index

1

Figure 6-22: Indexed Guided Tour

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 171

An indexed guided tour provides sequential access to instances of a navigation
class as well as through an index. The first method that used this modeling element
was RMM (Isakowitz, Stohr & Balasubramanian, 1995). Figure 6-22 depicts the
structure of an indexed guided tour.

Navigation contexts allow the organisation of the navigation space in sequences
that can be traversed following a predefined order. A navigation context consists of
a defined set of instances of a navigation class, a predefined order and a
mechanism that makes it possible to find the next and/or the previous instances of
the sequence as well as to return to the starting point (index or menu). This is the
basis for different presentations of a navigation class instance, depending on the
context it is navigated, so called “InContext” classes of OOHDM. Navigation
contexts were introduced by Rossi (1996).

The use of navigation contexts may replace navigation maps or trees (see
presentation model in the next section) or they can be used to include additional
links. Navigation contexts have the disadvantage that they add unnecessary
complexity to the navigation model. The combination of both techniques −
navigation maps and navigation contexts − leads to an enriched navigation
structure but with higher risk of “lost in the hyperspace”.

A simple context is provided by a sequence of navigation objects; each of them is
connected to the previous and to the next object. This is modeled by a composite of
a sequence of instances of a navigation class, for which an order is given.
Attributes of the class are usually used for the definition of the ordering. The
navigation context class includes a menu with menu items previous, next and/or
back (to the index or to the previous menu). The menu items previous and next are
responsible for the access to the previous and next objects in the sequence,
respectively. A context class is built in conformity with the structure of classes
shown in Figure 6-23.

«navigation context»
Context

«navigation class»
NavigationClass

1

1 1..*

«menu»

 back

1

0..1

1

1

Figure 6-23: Navigation Context triggered by an Index

172 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

A grouped context is a sequence of sequences of instances of a navigation class, i.e.
a sequence of simple navigation contexts. It represents a partition of a sequence of
navigation objects into sub-sequences determined by a common value of an
attribute or a common object related by an association. Both cases can be reduced
to one, as an attribute can also be modeled as a class with the appropriate
aggregation. A grouped context is modeled by a composition of navigation contexts,
which are obtained as a qualified partition of all instances of the navigation class
(see Figure 6-24). The qualifier values are given by the names of the objects of the
qualified class.

«grouped context»
GroupedContext

«navigation context»
Context contextQualifier

0..1 «navigation class»
QualifiedClass*

Figure 6-24: Grouped Context

*«navigation context»
ClassByA

1

1

{ordered}

{first}

 nextByA

{ordered}

ClassContexts

 nextByB

* «navigation context»
 ClassByB

1

1

{first}

*«navigation context»
 ClassByC

1

1

{ordered}
 nextByC

«navigation context»
ByA

ClassContexts

«navigation context»
ByB

 «navigation context»
ByC

«context change»

*

Figure 6-25: Context Package and Context Change Figure 6-26: Shorthand for Context Package

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 173

Navigation contexts for a same navigation class can be grouped in a UML package.
They are related by a stereotyped association called «context change» that makes it
possible to continue navigation in another context and to return then to the original
context. The condition for a context change is that the instances of a navigation
class are part of both contexts. Within the package the default semantic is that all
context changes are permitted when they are not explicitly drawn. Figure 6-25
shows three navigational contexts and the context changes between these
navigational contexts. Figure 6-26 depicts a shorthand for a context package.

6.5 Presentation Model

The presentation model is the description of where and how navigation objects and
access primitives will be presented to the user. Presentation design supports the
transformation of the navigation structure model in a set of models that show the
static location of the objects visible to the user, a schematic representation of these
objects (pages in the Web design) and the dynamic behaviour of them. The
schematic representation is similar to the sketching technique used by some user
interface designer, but without having a precise notation for it as described by Sano
(1996). Here a UML notation is chosen for the graphical representation.

Presentation design focuses on the structural organisation of the presentation, such
as texts, images, forms and menus, and not on the physical appearance in terms of
special formats, colours, etc. Such decisions are taken during the development of a
user interface prototype or in the implementation phase. The layout of modeling
elements in the presentation model, however, may provide hints, for example,
about the position and the size of these elements relative to each other.

The following subsections show how the presentation model is derived from the
navigation structure model. Presentation design uses additional information
collected during requirements analysis.The static aspects are modeled by a pre-
sentation structure model and an abstract user interface model. The presentation
structure model shows how windows and frames are filled with content and which
content can be shown simultaneously. The abstract interface model sketches the
content of each node.

A presentation model may yield different implementations depending on the
restrictions of the target platform and the technology used. These include static and
dynamic pages, client and server pages, one or multiple windows, etc. Important
concepts of presentation modeling are windows, framesets and frames. The use of
frames allows amongst other things, of the visualisation of the navigation space,
usually presented as a navigation tree (also known as a navigation map).

174 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

In addition, dynamic aspects of the presentation are modeled using a presentation
flow model and optionally object lifecycle models. UML sequence diagrams and
state diagrams respectively are used for these models. Sauer and Engels (1999)
also propose the use of this type of UML diagrams for the modeling of multimedia
applications. Both models describe the behaviour of the presentation objects, i.e.
the changes on the user interface when the user interacts with it or when the system
reacts to internal events such as timeouts. The construction of a presentation flow
model is normally proposed when a multiple-window technique or frame style is
chosen. This specifies when windows are open, closed and when frames change
their content. An object lifecycle model describes the behaviour of critical objects
and how state transitions influence the status of other objects.

6.5.1 Abstract User Interface Model

The objective of the abstract user interface model is to provide a technique and
notation for the sketching of the user interface, i.e. how the content of a node (Web
page) is presented to the user. The abstract user interface design, as mentioned
above, mainly models the structural organisation of the presentation, such as texts,
images, forms and menus, and not the layout characteristics, in terms of fonts,
colours, special formats, etc. Such decisions are taken during the development of a
user interface prototype during an early analysis stage or in the implementation
phase. The abstract user interface model may, however, provide some hints, for
example, on the position and the size of the user interface objects relative to each
other. In order to construct a presentation model, one has to decide, on the one
hand, which presentation elements will be used for the presentation of the
instances of navigation classes and, on the other hand, which will be used for the
presentation of the access elements.

The abstract user interface design may be considered an optional step as the design
decisions related to the user interface can also be taken during the realisation of the
user interface. However, the production of sketches of this kind is often helpful in
early discussions with the customer.

 Modeling elements

Instances of a presentation class are containers, which comprise modeling elements
like texts, images, forms, buttons, video sequences, audio sequences, anchors,
collections (i.e. lists of texts, images, etc.) or anchored collections (i.e. lists of
anchors). A presentation class follows the composite rules depicted in Figure 6-27.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 175

The following modeling elements (ten stereotyped classes and two properties) are
proposed to describe the abstract user interface of an adaptive hypermedia
application. Stereotypes for text, form, button, image, audio, video, anchor,
collection and anchored collection as depicted in Figure 6-27 are presented in
Baumeister, Koch and Mandel (1999).

• presentation class

A presentation class models the presentation of a navigation class, an access
primitive, (index, a guided tour, query or menu) or a composite of presentation
classes. A presentation class is also a container for a set of other classes that
model the presentation of the attributes of the presentation class. This is
stereotyped by «presentation class» with a corresponding icon as shown in
Figure 6-27.

• text

A text is a sequence of characters together with formatting information.

• anchor

An anchor is a clickable area, which is the starting point of a navigation and
thus has associated a link to another node. Anchors are generally presented in
the literature as part of links, seldom as independent objects. An anchor
consists of a presentation together with a link. The presentation may be either a

«presentation class»
PresentationClass

«image»
Image

«text»
Text

«video»
Video

«form»
Form

«audio»
Audio

«button»
Button

«collection»
Collection

«anchored collection»
AnchoredCollection

«anchor»
Anchor

*

*

*

*

*

*

*

*

*

...

...

Figure 6-27: Presentation Class as Container other
Presentation Modeling Elements

176 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

text (even a single character), an image, a video, a group of mixed media, any
interactive object or a whole document.

• button

A button is a clickable area, which has an associated action. Example of actions
are playVideo, displayImage, stopAudio and runApplet. Note that anchors may
be implemented as buttons, i.e. buttons can also be navigation triggers.

• images, audio and video

Images, audio and video are multimedia objects. Images can be displayed;
audio and video can be started, stopped, rewound and forwarded. To provide
this functionality user interface objects that allow for interaction, such as
buttons or anchors may be associated with these multimedia objects.

• form

Forms are used to request information from the user. They supply information
in one or more input fields or select options from a browser or checkbox. The
semantics of this model element includes the display of the content, waiting for
the user activity, the evaluation of the input and the trigger of the defined
event.

• collections and anchored collections

Collections and anchored collections are model elements introduced to provide
a convenient representation of frequently used composites. They avoid textual
description by comprehension or by extension. A collection consists of a set of
text elements. An anchored collection comprises a set of anchors. Whether the
collection will be laid out horizontally or vertically is not specified; objects may
still be arranged as a table.

• adapted language

Adapted language is a property that can be added to presentation objects. It
indicates that the language used in the user interface to which the property is
applied, is the language specified in the current state of the user model.

• layout variant

Layout variant is a property that can be added to presentation objects. It
indicates that the modeling elements to which the property is applied, have a
layout that is adapted to the current state of the user model.

 Example

Figures 6-28 to Figure 6-38 show some presentation classes that are part of the
abstract user interface model of the Online Library.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 177

Figure 6-28 shows the main menu of the application and Figure 6-29 depicts a
variant of LibraryMenu that includes the AuthorMenu. These menus and other
variants of the main menu are visible while navigating in the whole application.

Anchors of the menu may be annotated, i.e. underlined or change their colour, to
show that they are selected. Another inheritance hierarchy for the main menu may
be used to represent this kind of annotations.

Figure 6-30 and Figure 6-31 depict how the modeling elements described above are
used to construct a template for the presentation of author and article, respectively.

Picture

Name

Address

E-mail

Author

Audio

Title

Abstract

CompleteArticle

Article

StartAudio

{variant:pdf,ps,html} Keywords
...

 Figure 6-30: Presentation Class Figure 6-31: Presentation Class
Author Article

LibraryMenu

Articles

VisitedArticles

Publications

Authors

News

LibraryMenu
Author

Articles

VisitedArticles

Publications

Authors

News

Articles

IndexAuthorByName

Figure 6-28: Presentatiol Class Figure 6-29: Presentation Class
 of Library Main Menu of Composite Library and AuthorMenu

178 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

Figure 6-32 shows the presentation that the user sees after she selects the author
option in the LibraryMenu. It is a form to be filled by the user. As response to the
send of this form, a list of authors matching the search input fields is shown as it is
depicted in Figure 6-33, where she can select one author (an index item). The list
of authors is sorted and annotated according to the values of the current user
model.

 Method

The abstract user interface model is constructed as a set of class diagrams,
represented mainly as compositions. Each composition models one presentation
class using a template to represent the content. A template for a Web page is then
given by one presentation class composition or by the presentation classes that are
presented in each frame of the Web page.

The following rules can be used as guidelines for the construction of the abstract
user interface model:

1. Construct a presentation class for each navigation class occurring in the
navigation structure model. A template must be provided to present the
instances of the class, taking into account the given attributes. Stereotyped
classes, such as «text», «image», «audio», «video» are used for attributes of
primitives types and «collections» are used for lists, etc. Figure 6-30 shows
the presentation class for an author and Figure 6-31 shows the presentation
class for an article.

2. Construct a presentation class for each index and menu occurring in the
navigation structure model. The presentation of an index or menu class
consists usually of a list of anchors. Use stereotypes «anchored collection»

AuthorIndexByName

{sorted, annotated}

...
AuthorsName

SearchAuthorByName

SearchAuthor

Figure 6-32: Presentation Class Figure 6-33: Presentation Class
SearchAuthorByName AuthorIndexByName

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 179

and «anchor», respectively. Examples for menus and indexes are the
LibraryMenu (Figure 6-28) and the AuthorIndexByName (Figure 6-33).

3. Construct a presentation class for each query and guided tour. Use a «form»
stereotype for representing queries and for guided tours introduce an
additional menu item (“next”, and “prev”) which makes it possible to
navigate to the next and to the previous object within the guided tour.

4. Add anchors to the presentation classes to allow creation and destruction of
objects, or the execution of operations on objects.

5. Specify properties, such as {direct guidance}, {sorted}, {annotated} and/or
{removed} for buttons, anchors or anchored collections, if these properties
are specified for their related guided tours, indexes or menus in the
navigation structure model (see Figure 6-33).

6. Specify properties {adapted language} and/or {layout variant} for each
class that requires adapted presentation based on the user model state
(these techniques for adaptive presentation are defined in Chapter 2).

7. Add OCL constraints to specify these restrictions.

It must be ensured that there is only a finite set of navigation paths from the root
class to each navigation or index class. For this purpose it is assumed that the given
navigation structure model has no cycles, i.e. forms a directed acyclic graph. This is
not a proper restriction since in any case, a presentation of the navigation tree is
provided which, specifically, allows us to move backwards.

Concerning the presentation of a navigation tree it is obvious that, in practice, the
depth of the tree must be limited. For a convenient representation of such trees one
may also use several frames, for instance a top frame and a left frame.

6.5.2 Presentation Structure Model

The presentation structure model is a static description of where the navigation
objects and access primitives will be presented to the user. Thus, the focus of the
step is to specify whether a single or multiple-window technique is used, how
many frames framesets are divided into (if a frame style is chosen) and in which
frames or windows the content is displayed.

 Modeling Elements

The following modeling elements are used to describe the presentation structure of
a hypermedia application. Windows, framesets and frames are used to describe
location of presentation while presentation classes (defined in the previous section)

180 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

are used to describe the content of nodes. Hennicker and Koch (2000b) presented
the stereotyped presentation and frameset classes, but with a different semantic.

• window

A window is the area of the user interface where presentation objects are
displayed. A window can be moved, maximised/minimised, resized, reduced
to an icon and/or closed. It therefore includes at least five buttons, one to
transform the window into an icon, one to close the window, one to
maximise/minimise the window, one to resize the window and one to close the
window. In addition, windows include horizontal and vertical scrollbars that
allow for visualisation of the whole content of the window. Any window is an
instance of a stereotyped class «window» that is built in conformity with the
structure shown in Figure 6-34. Windows can be organised as a hierarchy.

• frameset

A frameset is a modeling element used to define different visualisation areas
within a window. A frameset is always contained in a window; it is divided
into lower level location elements – so called frames – and may also contain
an arbitrary number of nested framesets. A frameset is an instance of a
frameset class stereotyped by «frameset» with a corresponding icon (see
Figure 6-35).

«window»
 Window

1

*

Figure 6-34: Window Class

1

«frameset»
 Frameset

«frames»
 Frame

2..*

*

Figure 6-35: Frameset Class and Frame Class

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 181

• frame

A frameset is divided into a series of frames. A frame is an instance of a frame
class stereotyped by «frame» with a corresponding icon. Framesets and frames
must be built in accordance with the structure shown in Figure 6-35.

• presents

Specifies that the target object of the association is displayed in the location
indicated by the source object.

A presentation model of a hypermedia applications is built with stereotyped classes
window, frameset, frame and presentation classes. It also includes associations of
type «presents» in accordance with the pattern shown in Figure 6-36. This is a
design pattern for the case that only one frameset is defined for a window.

 Example

Figure 6-37 shows a partial view of the presentation structure model of the Online
Library application. This is the view following the link corresponding to the menu
item searchAuthors of the main menu (see Figure 6-21). Similar views may be
constructed for the other menu items of the LibraryMenu, i.e. publications,
searchArticles, searchVisitedArticles and news. Note that for the LibraryMenu a
subclass is included that extends the menu to include the AuthorMenu. This model
is obtained from the navigation structure model following the guidelines described
in the next subsection.

«frameset»
 Frameset

«presentation class»
PresentationClass

«window»
 Window1

*

1

*

1

«frames»
Frame

1

«presents»

«presents»
{xor}

1

1

1..*

1..*

2..*

1

{xor}

Figure 6-36: Pattern for Main Presentation Modeling Elements

182 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

Figure 6-38 and Figure 6-39 show two different representations of a frameset, their
frame and the associated presentation classes, using the UML composition
modeling element. It is an example of a complete Web page (presentation node).
This is a frameset which has two frames. The left frame presents the presentation
class of the main menu of the Online Library application and the right frame

MainFrameset

Articles

VisitedArticles

Publications

Authors

News

AuthorIndexByName

{sorted, annotated}

...
Authors Name

LibraryMenu

MainLeft MainRight

1

11

1

«presents» «presents»

Figure 6-38: Page Presentation

«frameset»
Main

«pres. class»
LibraryMenu

«window»

Window1

1

1

1

 1

1..*

1

«presents»

1

1 mainWindow

«window»

Window2

«frame»
MainLeft

«frame»
MainRight

1

«pres. class»
SearchAuthor

«pres. class»
Article

«pres. class»
Author

1

1

subWindow

«presents»

1

1

1 1

1

«pres. class»
LibraryMenu

Author

«pres. class»
AuthorByNameIndex

1

1

«presents»

«presents»

1

«presents»

«presents»

1

«pres. class»
ArticleByTitleIndex

{xor}

{xor}{xor}

Figure 6-37: Presentation Structure Model of the Online Library Application (Partial View)

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 183

presents the selected content. This kind of representation is optional, it gives an
idea of how pages of the application will look, i.e. a sketch of the user interface.
Note that the LibraryMenu includes an additional item that allows navigation back
to the starting point of the application. Figure 6-39 presents also the constraint
which expresses that the menu items News and VisitedArticles not are shown for
anonymous users.

 The Method

The presentation structure model requires that the designer take some decisions,
such as number of windows to be used and number of frames each frameset is
divided into. Hence the construction of the presentation structure model cannot be
fully automated, but there are certain guidelines that the designer can follow:

1. Select between a single or multiple-window technique. In case of a
multiple-window technique plan how many windows will be used.

2. Choose the frame style, i.e. with or without frames. In the first case specify
how many frames each frameset has.

3. Use the presentation classes constructed for each access primitive and for
each navigation class during the sketching process. Composite presentation
classes may be modeled, if their content is presented in one frame or
window, such as the LibraryMenuAuthor in Figure 6-29.

4. Decide in which frame of a frameset or a window (no frames style) each
presentation class is to be presented to the user.

5. Use a «presents» association for the relationships created in step 4 between
window or frame, and presentation class.

AuthhorIndexFrameset

Library
Menu

Articles

VisitedArticles

Publications

Authors

News

AuthorIndexByName

{sorted, annotated}

...
AuthorsName

inv anonymous user:
 library.currentUser -> isEmpty implies
(VisitedArticlesItem -> isEmpty and
newsItem -> isEmpty)

Figure 6-39: Alternative Representation for Page

184 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

6. Depict class diagrams (optional) using composition to show how Web
pages will look like. Such a diagram is shown in Figure 6-39.

If many windows and/or frames are used, it is advisable to then construct partial
views of the presentation structure model to avoid an overloaded presentation
structure model.

Note that different types of presentations can be modeled using this method
depending on how composites of presentation classes are defined and how window
technique and/or frame style are used. For example a map-based presentation
consists of a collection of presentation classes with the peculiarity that some of the
presentation classes are based on a composition of menus of the navigation
structure model. They show a navigation tree (total or partial) that is permanently
visible. This allows for navigation at the same level (instances of the same
navigation class or context), or at any higher level of the navigation map, i.e. the
navigation map is displayed with differing depth depending on the frameset.

6.5.3 Presentation Flow Model

The presentation flow model describes in which window, frameset or frame (visual
location element) presentation objects are presented and how the control flows
from one location element to another. It is a combined representation of navigation
and presentation aspects of the hypermedia application.

At a particular moment a presentation object is active if it is included in the
window or frame that is active. A window is active if the mouse focuses on that
window (or frame). Only one window or frame can be active at any moment. The
presentation object is perceptible if it is included in any window at that point of
time. Perceptible means audible in the case of audio and visible in case of all other
user interface objects.

If one-window technique is used, only the frameset included in that window is
active and the presentation object(s) included in that frameset (or frames of the
frameset) are perceptible (visible). The transition to another presentation object
thus implies removing the current one and displaying the new one.

If a multiple-window technique is used the following situations are possible:

• A presentation object is displayed in the active window replacing the
current one, i.e. the same window remains the active one.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 185

• A presentation object is displayed in a new window opened for this
purpose, the content of other windows remain unchanged, but the new
window is now the active one.

• A window is closed without altering the content of the other windows.
One of these windows has to be assigned as active.

• If dependencies between windows are established, then to close one
window may imply closing other windows. Dependencies are usually
based on the window hierarchy.

• Mouse focus can change from one window to another, i.e. another
window becomes active and therefore another presentation object is
active.

Control flow between windows or frames can be represented with interaction
diagrams (UML sequence or collaboration diagram) showing which windows are
open, which active and which presentation objects are displayed in each window at
a certain moment.

 Modeling Elements

The modeling elements used in the presentation flow model are the user (actor)
and objects of the modeling elements defined in the previous subsection, such as
windows, framesets and frames.

 Example

Figure 6-40 shows a presentation flow model for the “search author” scenario in
the sample application Online Library. It consists of the representation of the
message flow between user, windows and frame objects. The presentation flow
model shows an abstract representation since the implementation will include more
objects, in particular some control objects that collaborate in this interactive
process (Conallen, 1999).

186 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

 Method

The following is a guideline to assist the developer in the modeling of the
presentation flow model, based on the navigation and presentation structure
models.

1. Set the scenario for the interaction model, i.e. define which navigation
path of the navigation structure diagram will be modeled. A navigation
path is always related to a use case.

2. Represent the user, the windows and/or frame objects in the horizontal
dimension.

3. Specify a display message for each presentation object that should be
presented to the user (in a window or frame). The parameter of the display
message is the corresponding presentation object (described in Subsection
6.5.1).

u:User

display (LibraryMenu)

execute (OnlineLibrary)

open ()

select (Author)

fill + submit (AuthorForm)

select (ArticleItem)

display (SearchAuthor
Form)

select (SearchAuthorItem)

display (AuthorIndex)

:Window2

display (Author)

display (ArticleIndex)

select (Article)

display (Article)

display (LibraryMenu
Author)

:Window1

«window»

«window»

:MainRight
«frame»

:MainLeft
«frame»

display (LibraryInfo)

Figure 6-40: Presentation Flow Model of the “Search Author” Scenario
 of the Online Library Application

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 187

4. Include a select message for each user action, which selects an anchor or a
button. The anchor or button names are the parameters of the message.

5. Specify a fill and a submit message for each user action, which consist of
supplying data in a query form. This form is the parameter of the message.

6. Include a message for each open and each close of a window.

7. Use “balking” to specify the period of time that a window or frame is
active.

UML sequence diagrams are used to represent the presentation control flow (see
Figure 6-40). Note that the representation does not include additional classes
needed in the implementation to allow the communication.

6.5.4 Object Lifecycle Model

The objective is to model the lifecycle of reactive presentation objects and the
influence they have on the status of other presentation objects. The lifecycle of an
object is defined by a set of states and transitions between states. A state is
specified by a name, entry and exit actions, internal transitions, and/or sub-states.
A transition is triggered by an event and may have an action associated with it. In
the case of user interfaces most of the events are generated by the user, such as
mouse focus, mouse clicks, or keyboard inputs. Complex behaviours can be
modeled easily in UML with sub-states (Sauer & Engels, 1999). Two different
types of sub-states are possible: sequential and concurrent (Booch, Rumbaugh &
Jacobson, 1999).

UML state diagrams have been chosen to depict the object lifecycle model. The
design of these UML state diagrams is time consuming and usually so many details
are not necessary for presentation classes with well known behaviour. They are
therefore used only for complex composite presentation classes.

 Modeling Elements

The modeling elements used for the object lifecycle model are states and state
transitions as defined in the UML to build state diagrams.

 Example

188 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

In the Online Library the presentation of an article consists of the title, author’s
list, abstract of the article, list of keywords and a button that makes it possible to
access the complete article.

The design pattern “information on demand” (Rossi, Schwabe & Garrido, 1996) is
applied to display the complete article in a separate window. The type of file is
chosen in conformity with the preferences of the current user model. Figure 6-41
shows a UML state diagram of the classes involved in the presentation of the
complete article, i.e. a button to request the complete article, a window and the
content.

 Method

The object lifecycle model is constructed as a set of state diagrams. The following
rules can be used as a guide:

1. Identify the different states of an instance of a class during the presentation
(object life cycle). Represent them as UML states. For example, states
hidden and visible of the instances of the CompleteArticle class.

up down

CompleteArticleButton

mouseClick/
display

closed

open

Window

open

hidden

visible

CompleteArticle

close

hide display

1

Figure 6-41: Object Lifecycle Model

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 189

2. Specify transitions between states determining the events that trigger these
state transitions. For the class CompleteArticleButton, the event that triggers
the display transition is the mouse click on the button.

3. Define at least one initial state and, possible, one or more final states for
each state diagram.

4. Establish if any dependencies exist between state transitions of different
objects. Dependencies are represented using UML notation, i.e. dashed
lines as shown in Figure 6-41.

5. Determine synchronisation of transitions. In the sample application
synchronisation between the open transition of the Window and the display
transition of the CompleteArticle is needed, as the article cannot be displayed
before the window is opened.

6.6 Adaptation Model

Finally, the adaptation rules are defined in the adaptation model specifying the
conditions under which the content, navigation and presentation are adapted, which
actions are performed for the adaptation and how the user model is updated
according to the observations of the user behaviour (De Bra & Calvi, 1998). The
representation of the rules in a model shows how they collaborate with user
behaviour, navigation, presentation and user model elements. UML interaction
diagrams (sequence and collaboration) are appropriate for the dynamic
representation of the message flow between the adaptation model and the other
models as they allow for depicting anonymous and named objects, i.e. showing how
global and how local rules collaborate with all or specific objects of a domain class.

A detailed description of the adaptive functionality is given in Chapter 2 and in the
Munich Reference Model for adaptive hypermedia systems presented in Chapter 4.

 Modeling Elements

The following modeling elements are used to describe the adaptive functionality of
an adaptive hypermedia system:

• rule

A rule specifies how concepts are found, pages are built and/or presented to
the user as well as how the user model is updated. Rules can thus be classified
as follows:

− construction rules (finding the appropriate concepts)

190 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

− acquisition rules (acquiring information about the user to update the
user model)

− adaptation rules (adapting content, link, and/or presentation)

These three types of rule are included in the Munich Reference Model
described in Chapter 4. Acquisition techniques are presented in Chapter 3 and
adaptation techniques are detailed in Chapter 2. In many adaptive hypermedia
systems there is no need for construction rules, as for each concept a page is
presented to the user.

A rule is modeled by a condition, an action and an executor function. A rule
has at least two attributes. These indicate whether the rule triggers other rules
and whether the rule has to be applied before or after presentation. A rule is
stereotyped by «rule» with a corresponding icon and follows the composite
principle depicted in Figure 6-42.

• user behaviour

User behaviour is a class that models the behaviour of the user as observed by
the system. Three types are observable in hypermedia applications:

«rule»
Rule

Condition
1

Action
1

Model
Element

User Model
Element

Domain
 Model Element

*

*

Figure 6-42: Rule Class

«user behaviour»
UserBehaviour

Figure 6-43: User Behaviour Class

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 191

− browsing, i.e. the visit to a hypermedia node as a result of following a link,

− input of data in the input fields of a form together with the sending of the
form, and

− user inactivity registered by a time-out mechanism.

User behaviour is stereotyped by «user behaviour» with a corresponding icon
shown in Figure 6-43

Figure 6-44 shows the analysis pattern, after which an adaptation model is built
using rules and user behaviours. This analysis pattern is based on the adaptation
model of the reference model presented in Chapter 4.

 Example

The following rules are part of the Online Library application. A textual
description of each rule is given here. In a further iteration a formal language can
be used for the description of these rules.

• The system observes the following user behaviour:

− visiting articles (browsing),

− marking articles (input), and

− inactivity, i.e. no browsing activity during n minutes (n can be
predetermined).

• Rule 1: If the user visits an article, this visit is registered in the instance
of the associated class Visited. The attribute count indicating how many

Action

1

«rule»

Rule

Condition

1 1

1

1..*
1

«user behaviour»

UserBehaviour

0..* 1

triggers

1..*

1..*

triggers

Figure 6-44: Pattern for Adaptation

192 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

times the article is visited, is incremented by one and the current date of
the visit is recorded.

• Rule 2: If an article is marked, the instance of the associated class Marked
is set to true.

• Rule 3: If an article is marked, i.e. indicating that the user is interested in
that article, then the keywords of the article are registered in the keyword
list of the user. If the keywords are already included in the list, the
lastObservationDate is changed and the observationTimes is incremented by
one (see Section 6.3). If the keyword is not part of the set, then a new
instance of the class UserKeyword is created and initialised.

• Rule 4: If the user remains inactive during a period of time, the system
presents the NewsFrameset to the user, adapted to the current values of
the user model.

• Rule 5: For the presentation of the complete article, the type of the file is
chosen, in conformity with the FileType selected by the user.

• Rule 6: In the LibraryMenu the link to news is removed, if the user has
chosen to receive the list of news via e-mail.

• Rule 7: An article included in any ArticleIndex or ArticleGuidedTour is
removed if the negative keyword list includes two or more keywords of
the article.

• Rule 8: The articles in the ArticleIndexByTitle, VisitedArticleIndexByTitle,
NewArticleByTitle and ArticlesGuidedTour are sorted based on the current
values of positive keywords in the user model.

• Rule 9: The authors in the AuthorIndexByName and the publications in the
Publication IndexbyTitle are also sorted based on the positive keywords.

• Rule 10: Annotation is performed in the article indexes as follows:

− red bullets for articles not visited and not marked,

− white bullets for visited but not marked,

− blue bullets for visited and marked.

The first three rules are acquisition rules, that update the user model; the other
seven rules are adaptation rules.

Note that the initialisation and modification of the user model, in particular the
setting of the preferences, is not modeled in the sample application.

Chapter 6 • Modeling Techniques for the Design of Adaptive Hypermedia • 193

Figure 6-45 shows part of an adaptation model for the sample application Online
Library. It shows the adaptation process that begins when a SearchArticleByTitle
form is filled in by the user. The list of articles is provided by the ArticleByTitle
context, which is adapted through elimination of links and through addition of links
given by positive keywords. The model is represented as a collaboration diagram.
The graphical visualisation permits the recognition of loops in the flow of rules
triggered by other rules.

 Method

The adaptation model consists of a set of rules described textually or with a formal
language, e.g. OCL, and a set of UML collaboration diagrams. Although there is

:InputSearchByArticle

:Rule 7

:Rule 8

:Rule 10

:UserKeyword

:Visited

:Marked

:ArticleIndex

window1

:SearchArticleByTitle

:MainRight

?
:ArticleByTitle

:Registered
User

1: fill
(SearchArticleForm) 4: register(input)

3: getArticles(input)

15: generate
Presentation()

 5: trigger()

8: trigger()

6: neg:=get (negative)

7: remove (neg)

9: pos:=get (positive)
10: sort (pos)

11: trigger()

16: include()

17: present()

12:marked:= get()

13:visited:= get()

14:annotate
(marked, visited)

2: submit (SearchArticleForm)

Figure 6-45: Part of the Adaptation Model of the Online Library Application

194 • Modeling Techniques for the Design of Adaptive Hypermedia • Chapter 6

obviously no way to automate the construction of the adaptation model, there are
some guidelines that the developer can follow:

1. Define the user behaviour the system has to observe, such as browsing, input
and inactivity.

2. Define a rule for each variant of a navigation class, specifying under which
conditions the content variant has to be presented to the user.

3. Define at least one rule for each class of the navigation structure model that is
adorned with one or more properties. The condition of the rule establishes under
which circumstances the rule has to be applied. The action of the rule specifies
a selection in accordance with the current values of the user model or an
algorithm based on these values to be applied to obtain a certain order of items
for example.

4. Define rules to adapt presentation, e.g. in accordance with the preferences
chosen by the user.

5. Represent the more complex adaptation situations as collaboration diagrams.
They show how rules, user behaviour, user attributes and presentation objects
collaborate to build a presentation.

6. Verify that each user behaviour that is observed is used in the condition of one
rule at least.

7. Verify that each attribute of the user model is updated by at least one rule.

8. Verify that the recursive application of rules has a guaranteed termination in all
possible cases.

Chapter 7 • The Software Development Process • 195

“If you wait for a complete and perfect concept
 to germinate in your mind,

you are likely to wait forever”
Tom De Marco,

Structured Analysis and System Specification,
Prentice Hall, 1979.

7 The Software Development Process

Most of the existing adaptive hypermedia applications are built as prototypes.
Their implementation is usually performed ad hoc and is improved in successive
steps. Adaptive hypermedia systems are complex software systems and they
therefore require, an appropriate software engineering process. As far as we know,
there is currently no systematic engineering process which describes how adaptive
hypermedia systems should be developed.

Even the production of non-adaptive hypermedia systems demands, as far as certain
aspects are concerned, a development process that differs significantly from
developing other software applications (Olsina, 1998; Lowe & Hall, 1999;
Conallen, 1999). Adaptive hypermedia and Web applications are characterised by a
rich multimedia material, conversion of content to hypertext format, a linked
structure, and a greater emphasis on graphic design. Other minor differences as
compared to classical software engineering can be found in the activities of project
management and quality management. The Interactive Media Process Assessment,
Characterisation and Tracking schema (IMPACT) of Lowe and Webby (1998) for
example, presents a metamodel of the information layer and specifies activities,
artifacts and workers for each separate aspect of the Web information systems, i.e.
content, structure, presentation and functionality.

The development of adaptive hypermedia systems requires additional effort.
Different users require different content, different forms of presentation and
different guidance through the material. Adaptability is based on user modeling
and adaptive features, i.e. on the building, maintaining and exploiting of a user
model and an adaptive engine. Paternó and Mancini (1999) propose a method for

196 • The Software Development Process • Chapter 7

developing configurable hypermedia systems on the basis of task modeling and the
usage of a set of heuristics. It does not support user modeling, as only three static
user profiles are considered for adaptation.

It is difficult to decide how formal or how formless software development process
should be. Very formal methods have the advantage to allow correctness proofs,
but they add many formalisms that tend to abort creativity. Formless development
is chaotic and seldom conducts to a successful project. Booch (1994) mentions five
different schools that can be followed during the development of a software system:

• Anarchists ignore all kind of methodical procedure; they rely only on
their intuition and creativity.

• Behaviourists concentrate on roles and responsibilities.

• Storyboarder see the world as a set of business processes.

• Information modeler observer primarily the data; for them the behaviour
stays in second place.

• Architects focus on frameworks and patterns.

For Sommerville (1982) the best known process models are the waterfall model,
the spiral model and the explorative process model. During the last years object-
oriented development replaced functional and structured oriented approaches. New
process models that focus on object-oriented development have been introduced,
such as the Objectory Software Development Process (Jacobson, 1992), the OPEN
Process (Graham, Henderson-Sellers & Younessi, 1997) and the Unified Software
Development Process (Jacobson, Booch & Rumbaugh, 1999). They also allow for
an iterative approach. These process models are only applicable to the development
of adaptive hypermedia applications with certain restrictions.

The UML-based Web Engineering approach (UWE), presented here, covers all
aspects that the development of adaptive hypermedia applications require. In this
chapter the development process of UWE is described, which chooses a mixture of
the different directions proposed by Booch (1994). UWE is based on the Unified
Software Development Process – also known as Unified Process – (Jacobson,
Booch & Rumbaugh, 1999) and the Rational Unified Process – RUP (2000).

The main differences of UWE with respect to the Unified Process (UP) and the
RUP are:

• It specialises the UP for the development of adaptive hypermedia
applications describing which “experts” (workers) are required, which
activities they perform and which specific artifacts they produce.

Chapter 7 • The Software Development Process • 197

• It extends the coverage of the UP development cycle including a
maintenance phase.

• It adds to the UP development process supporting workflows for project
management (included in RUP) and quality management.

• It changes the idea of quality control management, defined in the UP and
RUP only through testing, incorporating workflows for requirements
validation and design verification.

• It proposes a stereotype-based extension of UML (UML Profile) for
adaptive hypermedia applications.

• It includes a systematic method for the analysis of adaptive hypermedia
applications based on the separation of user modeling, conceptual,
navigation, presentation and adaptation aspects (already presented in
Chapter 6).

In addition, UWE, same as the RUP, is an object-oriented approach that covers the
entire life cycle of adaptive hypermedia systems, it moves through a series of
iterations and increments and uses UML notation and diagrams. UML activity
diagrams are used to visualise the activities of the workflows and the artifacts
produced by the workers.

Summarising, the UWE is a systematic, prescriptive, user-centric, UML-based,
iterative and incremental methodology for adaptive hypermedia systems.

This chapter is structured as follows: Section 1 outlines the most important aspects
of the development process. Section 2 presents the phases and milestones of the
process. Section 3, 4 and 5 describe the workflows of the development process,
project management and quality management, respectively.

7.1 Adaptive Hypermedia Systems

The aim of this chapter is to describe UWE, a systematic hypermedia engineering
approach for adaptive hyperemdia systems. The methodology and the techniques
described here, however can also be used as well for non-adaptive hypermedia
applications. Web applications are a subset of hypermedia applications; UWE is
therefore also applicable to Web applications.

The term adaptive hypermedia development is used in this work, to refer to the
development and the maintenance of adaptive hypermedia applications, in the same
way as Lowe and Hall (1999) define it for hypermedia applications. UWE covers
the life cycle of this type of applications from the creation to cessation.

198 • The Software Development Process • Chapter 7

Adaptive hypermedia engineering refers to the application of an engineering
approach to the development process. The development process is supported by
project management and quality management activities.

Adaptive hypermedia design covers only a part of the life cycle, i.e. the application
of a method to generate a schema for the structure and functionality of the domain
as well as to implement a user model. It does not cover other activities such as
iteration planning, requirements capture, implementation and testing.

Adaptive hypermedia authoring is an even more reduced set of activities in the life
cycle of adaptive hypermedia. It is limited to the creation and structuring of
content, usually supported by special tools.

7.1.1 Covering the Life Cycle

UWE covers – as already said – the whole life cycle of adaptive hypermedia
applications, starting when the idea for an adaptive hypermedia system is
conceived and ending when the product is no longer available for use. A clear
distinction should be made between UWE and the software development cycle that
begins with the decision to build an adaptive hypermedia application and ends
when the adaptive software product is delivered. A software development cycle
that comprise analysis, design, implementation and usage is analysed by Scharl
(1999).

UWE describes an iterative and incremental process. The iterative approach
reduces the risks of the waterfall model, in which the development consists of a
single sequence of phases with little feedback from each phase to the previous
ones. Development based on the waterfall model produces results very late in the
process, making it difficult to introduce changes to the initial decisions. UWE
supports a more incremental development process than the spiral model of Boehm
(1988). In the spiral model there are four distinct cycles of development: concept,
requirements, design and implementation. During each cycle the same four
activities are performed. These activities are: determination of objectives and
constraints, evaluation of alternatives and resolution of possible risks, development
and verification, and planning for the next cycle. The spiral model does not address
maintenance activities.

UWE is based on the UP, which allows for an incremental development process
through the inception, elaboration, construction and transition phases. In each
phase a little of requirements capture, a little of planning, a little of design,
implementation and little of testing is done. It uses UP terminology, whenever

Chapter 7 • The Software Development Process • 199

possible. The workflows of the UP have been adapted or extended. The
methodology specifies the activities to be performed at each phase as well as the
resulting artifacts and the workers responsible for these activities.

UWE establishes a priori milestones between the phases. The goal of an iterative
process with milestones is to allow major control during the whole process, thus
mitigating the risks inherent in the development process. Steps for planning,
designing, implementing, integrating and testing are performed at each iteration. In
between steps, the project manager can get feedback and adjust the goals of the
next step.

UWE is specially tailored for the development of adaptive hypermedia applications
as user modeling, adaptation specification and user behaviour capture are included
as separate design steps. If one skips the special steps for user modeling and
adaptive aspects, this methodology can also be used for the development of
hypermedia systems.

UWE is an object-oriented approach, which uses UML techniques for analysis and
design of the adaptive hypermedia applications to be developed. The UML notation
used corresponds to the UML Profile presented in Chapter 6. This UML Profile is
defined according to the extension mechanisms supported by UML, i.e. by the
definition of stereotypes and the specification of OCL constraints.

7.1.2 Iterative Development

UWE is an iterative process that a priori does not establish how many iterations are
to be performed. At each iteration a set of process workflows are performed; this
set is called the iteration workflow. UWE consists of development process
workflows and two supporting workflows: project management and quality
management.

A UML activity diagram is used in this work to represent the iteration workflow.
This activity diagram is shown in Figure 7-1. It depicts the flow of control
(continued lines) and dependencies (dashed lines) between workflows. Swimlanes
are used to indicate the different workflow groups: project management,
development process and quality management.

The core workflows belonging to the development process are: requirements
capture, analysis and design, and implementation. The supporting workflows of
the project management are: risk management, iteration planning and iteration
evaluation. Quality management comprises validation of the requirements,

200 • The Software Development Process • Chapter 7

verification of the artifacts resulting from the analysis and design results, and
testing of the implemented system.

Further differences between UWE and the UP or between UWE and the RUP
should noted here: First, UWE includes development process workflows and
supporting workflows in the same way the RUP does. Second, whereas the RUP
defines the following supporting workflows: configuration and change
management, project management and environment, in UWE six supporting
workflows are included. They are grouped into project management and quality
management. Third, as in the RUP, analysis and design are treated in the same
workflow. Finally, the more general concept quality management is used instead of
“testing”.

The life of an application is divided by UWE into cycles, each cycle concludes with
a release. The first cycle begins with the conception of the idea and the last one
ends with the cessation of the use of the application. UWE does not establish the
number of iterations required in a life cycle of an adaptive hypermedia application,
but distinguishes a number of phases. Each iteration belongs then to one of
following phases: inception, elaboration, construction, transition or maintenance.
These phases take place over a period of time and each phase terminates in a
milestone. A milestone is defined by the delivery of artifacts, such as models, code

Iteration
Planning

Requirements
Capture

Analysis
and Design

Implemen-
tation

Testing

{and}

P
ro

je
ct

M
an

ag
em

en
t

Q
ua

lit
y

M
an

ag
em

en
t

D
ev

el
op

m
en

t
P

ro
ce

ss

Validation Verification

Iteration
Evaluation

Risk
Management

Figure 7-1: Iteration Workflow

Chapter 7 • The Software Development Process • 201

or documents and by the decisions that workers will take at this phase in the
process before the work of the next phase can proceed.

The number of iterations planned for each phase varies, essentially, with the
complexity of the project. If the project is simple, one iteration per phase will be
enough. The number of iterations of the elaboration and construction phases
usually increases with the complexity of a project.

Before a detailed description of the phases of UWE as well as of the processes and
workflows are given, the terms artifact, activity, worker, stakeholder and model are
defined.

• An artifact is a tangible piece of information that is created, changed and
used by workers when performing activities. It can be a model, a model
element or a document.

• An activity is a tangible unit of work performed by a worker in a
workflow. The activity implies a clearly-defined responsibility of the
worker, a clearly-defined result (artifacts) and a well-defined input.

• A worker is a person with certain capabilities to perform one or more
activities during a process. The term “worker” is not synonymous with
person. One person can play the role of one or more workers during a
project, even simultaneously.

• A stakeholder is any person interested in the outcome of the project, such
as a user, a designer, an engineer, a customer, a contractor or a project
manager.

• A model is a simplification of reality, i.e. a semantically close abstraction
of a system, the objective being to better understand the system being
created.

Each workflow is defined by a set of activities that are performed by a set of
workers with the goal to produce some artifacts, which are the measurable results
of the workflow. The artifacts, workers and activities of each workflow are briefly
described in subsections 3 to 5 of each section. The objective is to give only a
general overview of the Unified Process and to detail the aspects specific to the
hypermedia and adaptive systems. Examples are shown in the activities
subsections.

7.2 Phases of the Process

202 • The Software Development Process • Chapter 7

The software development process described by UWE consists of five phases, each
of which can be performed in one or more iterations. In an orthogonal dimension to
these phases a set of workflows are defined (see above Subsection 7.1.2). In each
phase activities of almost all those workflows are performed.

The first four phases are the same as those in the Unified Process: inception,
elaboration, construction and transition. The process is extended to include the
maintenance phase as maintenance activities are an important part of the life cycle
of hypermedia applications and often begin immediately after transition has been
completed. Maintenance implies not only changes in the content, but also in the
layout and changes in the hypermedia structure. These latter changes constitute an
important difference vis a vis traditional software. The activity diagram shown in
Figure 7-2 presents the iterative software engineering process including these five
phases for each release. In each phase of the process some activities of the iteration
workflow are performed, i.e. activities of the workflows requirement capture, risk
management, iteration planning, analysis and design, validation, etc.

The inception phase starts with no more than an idea for a new system or the need
of an extension of an existing system. The final state of the inception phase is a
vision of the end system and its business case. The objectives of the systems
development are defined during this phase as well as a first approach to the
architecture of the system, an estimation of costs and a schedule plan.

During the elaboration phase the architecture of the system and a set of design
models are defined. The project manager will elaborate a plan of activities and an
estimation of the resources needed to complete the project. A stable architecture as
well as control over the risks are prerequisites for the next phase.

The construction phase focuses on the development of the system, although
additional requirements elicitation and minor changes in the architecture design are
performed during this step. The phase is finalised when all the uses cases are
implemented.

The transition phase covers the period during which the system is tested as a
complete version (normally called beta release) by a reduced group of users.
Training, help-assistance and correction of defects are the main activities of the
transition phase.

The maintenance phase begins when the first version is delivered and extends
itself until the system is no longer used. During this period of time the system
requires different types of adjustments: content updates, layout improvement,
structure modifications and adaptation to new technologies or new software
versions.

Chapter 7 • The Software Development Process • 203

Five main milestones are part of the process marking the end of each of these
phases. These milestones are: life cycle objectives, life cycle architecture, initial
operational capability, product release and product cessation. The following

sections outline the characteristics of the iteration workflow in each of these
phases.

7.2.1 Inception

The principal objective of the inception phase is to establish the feasibility of the
project, i.e. to define the business case for the system and delimit the scope of the
project. This business case includes success criteria, risks assessment, budget and
resource estimation as well as a phase plan with a schedule and delivery plan for
the major milestones. Sometimes an executable prototype is developed during this
phase.

At the beginning of the inception phase there is only an idea. The process starts
with the conception. The goal is to develop and evaluate the idea for an adaptive
hypermedia system, i.e. the need for an adaptive capability and benefits in
developing an application based on it. The main aim of the feasibility study is to
define the high level functional requirements for the adaptive hypermedia system,
to outline a first budget, produce a draft schedule plan and establish the main non-
functional requirements of the system. The costs of the project must be estimated
during this phase, as this is a crucial element in determining the feasibility of the

Inception

Transition

Construction

Elaboration

Maintenance

Figure 7-2: UML-based Web Engineering Process for one Release

204 • The Software Development Process • Chapter 7

project. It may be advisable to develop a prototype, but one has to consider the
need to minimise effort just in case the idea fails to live up to expectations.
Depending on the results of this study a decision can be taken as to whether it is
worthwhile to develop an adaptive hypermedia application which dynamically
adapts to the current state of the user model.

Techniques which support feasibility study vary from informal textual description,
through checklists and spread sheets to implementation-oriented techniques such as
paper or computer based storyboarding as proposed by Boyle (1997). Prototyping
is a meaningful but expensive alternative.

The inception phase focuses on requirements capture, risk management, project
planning and validation of the requirements. Activities, such as design, implemen-
tation and testing are of minor importance during inception. Decisions are taken
about Web specific techniques, such mouse-overs, animations, multimedia and
about the browsers under which the application will run.

The most important factors that influence the activities of the workflows in the
inception phase are:

• current information, information sources and information structure

In the development of adaptive hypermedia applications, it is important to
have an understanding of the types of information available and of the
relationships between the information as it will be reflected in the hypermedia
structure. Other considerations include: how often the information changes as
well as security and legal aspects related to information sources and to user
models.

• current applications

In many cases adaptive hypermedia applications are developed to replace or
enhance existing non-adaptive hypermedia-based or non web-based
applications. An understanding of these applications, and any problems
involved in them is helpful in understanding the scope of the new application
to be developed. The navigation of the final application has to support the
same or an improved behaviour and functionality of the legacy system.

• stakeholders

Any existing system has numerous categories of people who have a stake in
the system, such as clients, users, designers and providers. Adaptive
hypermedia systems involve a greater variety of stakeholders than other
software development projects. They are a heterogeneous group of people
including a complex and heterogeneous group of users, multimedia experts,

Chapter 7 • The Software Development Process • 205

graphic designers, hypermedia architects, public relation experts, marketing
people, legal experts, e-commerce experts, etc.

• resources

This factor includes personnel, budget, time, information, expertise, hardware
and tools.

• technological limitations

Technological limitations are constraints that condition possible and
appropriate solutions. Limitations include processing power, bandwidths,
equipment costs, the equipment’s reliability and security. The development of
adaptive hypermedia applications requires detailed analysis and testing of new
and existing technologies, such as JSP´s, ASP´s, java applets and servlets.

• constraints

Constraints may be inherent to the domain or imposed by the client. They are
mainly related to the architecture that may be predefined or are re-used from
other hypermedia applications projects. Examples of Web applications
frameworks are WebSphere9 and WinDNA10. Adaptive hypermedia systems
require a careful evaluation of the need and benefits of user modeling and
adaptation features to be included in the system. Different alternatives for the
construction and exploitation of the user model can be evaluated during this
phase.

At the end of the inception phase the decision is taken whether to proceed with the
development or not. The first milestone, i.e. life cycle objectives, marks the end of
the inception phase. The deliverables for the inception phase are:

• a first version of a problem domain model,

• a first version of the use case model,

• a first draft of the architecture description,

• a prototype to prove the concepts or a new technology (optional),

• a risk study,

• a plan for the whole project,

• a business case, including success criteria, risk analysis and budget
estimation, and

• an architecture validation and a requirements review report.

9 IBM´s WebSphere
10 Microsoft´s WinDNA

206 • The Software Development Process • Chapter 7

7.2.2 Elaboration

The principal objective of the elaboration phase is to capture the remaining
requirements, to establish a sound architectural baseline, to elaborate a guide for
construction based on models, to identify additional risks, review already known
risks and to detail the project plan.

At the beginning of the elaboration phase, after the first milestone of the process
the principal inputs that are available are the draft architecture, draft use cases and
problem domain model, a project plan, a list of risks and a business case.

The elaboration phase focuses on analysis and design as well as on iteration
planning and verification of the design. There are many factors which influence the
activities of workflows in the elaboration phase. These factors can be classified
into:

• design creativity

The creativity of the design very often requires the expertise of multimedia,
graphic or marketing experts. Hypermedia design needs to take into account
cultural and perceptional aspects. These will influence the success of an
adaptive hypermedia application over and above the functionality it offers to
the users. It is a factor that most of the traditional software engineering
environments do not support (Nanard & Nanard, 1995).

• technical issues

The limitations of current technology impose restrictions related to the
hardware, software, databases and authoring tools that can be used. For
example bandwidth puts a limit on the information that can be accessed in an
appropriate time interval during online access. In the same way the type of
video or audio to be used depends on the processing power of the user’s
computers. In addition, technologies for dynamic page generation or
adaptation of content and links have to be compared.

• cognitive issues

Cognitive issues play an important role in the development of hypermedia
applications. The designer should know how to avoid the problems of
cognitive overload and becoming lost in the hyperspace. He has to be aware of
techniques to organise and navigate information. Content structuring parallels
the traditional educational concern of curriculum development. The
structuring of interactivity, in a similar way, corresponds in learning
environments to the concern of pedagogy (Boyle, 1997).

Chapter 7 • The Software Development Process • 207

• non-technical issues

Non-technical issues include aspects, such as laws and security regulations in
the different countries that will access the application. Privacy of data stored
about a user in the user model of an adaptive hypermedia application is one of
the questions to be resolved during this phase.

At the end of the elaboration phase the system is ready to be produced. The second
milestone, called life cycle architecture, marks the end of the elaboration phase.
The deliverables for the elaboration phase are:

• a complete business or problem domain model,

• a new version of all models: use cases, analysis, design, deployment,
implementation and testing,

• an architectural baseline and detailed description,

• an updated risk list,

• a project plan for construction and transition,

• a complete business case, and

• an architecture verification and model review reports.

7.2.3 Construction

The principal objective of the construction phase is to produce a software product
ready for initial operational release, the so called “beta release”.

At the beginning of the construction phase the complete set of use cases have been
described, all the models are developed, the main risks analysed in detail, the
architecture defined and almost all requirements captured (in practice about 70% to
80%).

The construction phase focuses on implementation as well as on testing of the
system. During the construction phase various components required for the
application are produced, obtained or modified according to the design
specifications. These components are then integrated to create a prototype or the
final application.

The most important factors that influence the activities of the different workflows
in the construction phase are:

208 • The Software Development Process • Chapter 7

• media components availability

The production or adaptation of existing multimedia components contributes
to the complexity of a project. It requires the participation of more experts
than is the case for traditional software development, such as audio, video and
animation designers.

• dynamic page generation

If pages of a hypermedia application are generated dynamically, a database has
to be administrated, templates need to be defined and a page generator must
be implemented or generated. Performance may be a critical risk in this case.

• user behaviour observation

Adaptive hypermedia systems require user modeling, i.e. the system stores a
set of beliefs about the user and changes these beliefs dynamically according
to observations made about the user’s behaviour. A mechanism to register the
user’s behaviour has to be implemented.

• adaptation engine

The adaptive engine or functionality is responsible for the adaptation of the
content, presentation and navigation to the current state of the user model.

• usability

The usability of the application for different platforms is a typical factor that
affects construction; it requires additional effort. The objective is to obtain a
Web application that has the same quality independently of the browser used.

At the end of the construction phase the first version of the adaptive hypermedia
system is ready to be used. The third milestone is the initial operation capability
and marks the end of the construction phase. The deliverables for the construction
phase are:

• the executable software itself – the initial operational capability release
(last version built during construction),

• all the artifacts and models developed during the project,

• the architecture description updated to reflect all the changes introduced
during the construction,

• a draft version of the user manual to guide beta users, and

• a project plan for the transition and maintenance phases.

Chapter 7 • The Software Development Process • 209

7.2.4 Transition

The principal objective of the transition phase is to integrate the product in the
user’s environment and correct the operational version until customers provide
positive acceptance tests. Jacobson and Thomas (1995) stress that the use of object-
oriented techniques introduce additional complexities in system integration and
testing.

At the beginning of the transition phase the system has reached initial operational
capability. In addition the results of the testing workflow are available to remove
the last bugs and inconsistencies.

The transition phase focuses on the establishment of the final product in the
operational environment and on the evaluation of the project. There are different
ways to perform this transition depending on the type of product that is developed.
If it is a Web application for the Internet for example, a beta version is tested by a
group of acceptance testers before going online. This group has to be as
heterogeneous as possible and must attempt to simulate real Internet users. If the
resulting product is an Intranet application within a large organisation, it could, for
example, be tested by one department or section of the organisation.

The most important factors that influence the activities of the different workflows
in the transition phase are:

• insufficient or inadequate tests

The absence of sufficient or adequate tests in the construction phase, means
that the bugs, misunderstandings and errors appear during this phase, thus
augmenting the amount of re-working to be done. Adaptive hypermedia
systems are even more difficult to test as these systems require a variety of
users to test different user’s behaviour in order to generate different user
models.

• schedule pressure

Schedule pressure is often caused by insufficient time planned for the
transition activities, such as installations, test, corrections and reworks.

• budget pressure

If no budget is left, it is often difficult to make corrections or improvements
even if there is enough time to perform them.

• insufficient time for reworking

This happens when software products are supposed to be final versions at the
end of the construction phase.

210 • The Software Development Process • Chapter 7

• insufficient knowledge transfer

This happens if there is not sufficient time planned for documentation.

At the end of the transition phase the system is ready to be used by the customer.
The fourth milestone, i.e. the product release, marks the end of the transition
phase. The deliverables for the transition phase are similar to the deliverables in
the construction phase, but are now correct and complete:

• the executable software itself, including the installation software,

• legal documents, such as contracts, licenses, etc.,

• final version of all models and artifacts produced during the project,

• completed and corrected architecture description,

• final version of user manual,

• training material,

• references and addresses where to find additional information.

7.2.5 Maintenance

The principal objective of the maintenance phase is to adapt an adaptive
hypermedia application to a changing environment, conditions or new resources.
Maintenance plays an essential role, even more for certain types of adaptive
hypermedia systems such as Web applications. Changes in the content and layout
improvements may require modifications in the structure as well as to the adaptive
components. Maintenance is used with the meaning of “extensions”, a concept
introduced by Jacobson and Thomas (1995), as distinct from a defect repair or
update to the existing system. Maintenance of adaptive hypermedia applications is
thus more complicated and more time-consuming than maintenance of traditional
software systems, where the maintenance process is restricted to data up-dating.

At the beginning of the maintenance phase a full operating adaptive hypermedia
system is provided. During the whole maintenance process the state of this system
has to be preserved.

The maintenance phase focuses on the implementation of changes, corrections or
improvements.

There are many factors, which influence the activities of the workflows in the
maintenance phase. These factors can be classified into:

• coupling and cohesion of the hypermedia application

Chapter 7 • The Software Development Process • 211

In traditional software the rule is to minimise coupling. In comparison a
typical characteristic of hypermedia applications is associative coupling
through linking. Highly coupled pages are difficult to maintain and easily lead
to dangling or incorrect links. Cohesion means that for hypermedia
applications each node, if possible, is based on a single concept. An
appropriate chunking of the information may improve maintenance.

• maintenance of the analysis and design documentation

The maintenance of the documentation related to analysis and design is known
as a critical factor in the maintainability of software.

• code documentation

This factor is as important for the maintenance of hypermedia applications
than for the maintenance of traditional software.

The fifth milestone, i.e. products life end, marks the end of the maintenance phase.
At the end of the maintenance phase the system is replaced by another product or is
merely taken out of service.

There are no deliverables at the end of the maintenance phase as the product life
ends at that moment. At each iteration within the maintenance phase the
deliverables are the same as in the transition phase.

7.3 Development Process

The development process of UWE consists of the workflows: requirement capture,
analysis and design, and implementation. They are called the core workflows. Note
how this differs to the UP, which includes five core workflows: requirements
capture, analysis, design, implementation and testing.

UWE does not include design as a separate workflow. Design is considered as a
refinement process of the analysis. The first iteration of the analysis and design
corresponds to a rough analysis, followed by successive refinements until a detailed
and implementation-oriented design is reached during the last iteration. Thus, in
the same way as in the RUP, the analysis model is defined as an abstraction of the
design model, a generalisation or a less detailed design model. Performing analysis
and design in two separate workflows increases the documentation efforts as
analysis and design models both have to be updated. Testing is the other core
workflow of the Unified Process not included here. In UWE it is part of one of the
supporting workflows: quality management process. This process includes
validation, verification and testing workflows.

212 • The Software Development Process • Chapter 7

Example: Online Library

In the remaining part of this chapter the example presented in Chapter 6 is used to
illustrate the activities and artifacts of the UWE development process. Starting
point is the idea of an online library that gives a personal support to the user. The
Online Library that is being developed step by step will offer information about
publications to registered and anonymous users. The publication information
comprises journals, books and proceedings.

7.3.1 Requirements Capture

The requirements capture is the process of determining or, some times under more
difficult circumstances, the process of discovering what application is to be built. A
requirement is a condition or capability to which an application must conform.

The requirements capture is not an easy task even for the development of
traditional software. There are even more difficulties in the case of adaptive
hypermedia applications. Some reasons for a detailed requirements specification
are:

• The development of adaptive hypermedia applications may have different
starting points, such as a vision, an existing application or a concrete
description.

• Stakeholders usually have only partial knowledge of the process to be
supported by the adaptive hypermedia application.

• Target groups, technologies, and resources may change during
development.

• There is little experience in the systematic development of adaptive
hypermedia applications.

• Greater risks are involved than in the development of a non-adaptive
application.

• Every project is unique, as it is developed for different organisations,
users, goals, technologies, etc.

Traditional approaches are based on the abilities of a system analyst, who elicits a
list of requirements from the users. This approach has been improved by the
specification of use cases. The analyst uses them to ensure the completeness and
correctness of the requirements. Use cases are a good basis for discussions between
customers, users and hypermedia analysts. Note that requirements must be
described in the customer language without, where possible, formal and technical

Chapter 7 • The Software Development Process • 213

specifications. Use cases have the advantage of being less unambiguous than
textual descriptions and they are understandable to customers and hypermedia
analysts.

Two categories of requirements can be distinguished: functional and non-
functional.

• Functional requirements of adaptive hypermedia systems are the actions
the system will be able to perform, i.e. they are used to describe the
systems behaviour given certain input conditions. In this work the
following types of functional requirements are distinguished:

– requirements related to content (e.g. images to illustrate certain
pages, evaluation of exercise results)

– requirements related to structure (e.g. navigation to the
homepage is allowed from every page)

– requirements related to presentation (e.g. layout restrictions,
such as no more than 10 items in a list)

– requirements related to adaptation (e.g. anchors annotated
differently depending on the current state of the user model)

– requirements related to the user (e.g. user preferences or goals
to be taken into account)

• Non-functional requirements specify systems properties, such as
environment and implementation constraints, performance, reliability,
extensibility, etc.

Due to the variety and complexity of requirements to be identified and analysed,
the requirements capture workflow contains several activities performed by four
different workers and the results are a use case model as well as documents
describing potential users, adaptation rules, scenarios, content, use cases and the
user interface.

The requirements capture workflow is shown in Figure 7-3. A UML activity
diagram is used for the schematic representation of the workflow. The visual
ordering of the activities should not to be seen as very tight; some overlapping of
these activities is also possible. Swimlanes are used to specify the locus of
responsibilities for the activities. A worker is responsible for all the use cases
comprised between two swimlanes, but more workers can collaborate in the
development of these activities. These are usually the other workers of the
workflow.

214 • The Software Development Process • Chapter 7

An object flow has been added to the same diagram; it is denoted in dashed lines
(Booch, Rumbaugh & Jacobson, 1999 and Oestereich, 1999). Hence, workers,
activities and artifacts of a workflow are shown all in the same diagram. A detailed
description of the activities, artifacts and workers follows. Artifacts that may be
used as input to the requirements capture activities, such as description of a
previous version of the system or a business model are included in the diagram.

♦ Artifacts

The main artifact produced in the requirements capture workflow is the use case
model composed by actors and use cases. The result of the elicitation process is a
set of artifacts; there are the user profile, content description, scenarios, adaptation
rules, supplementary requirements and user interface prototype. They are used as
input for the activities that produce the use case model. In addition, an architecture
is elaborated and a glossary has to be prepared from the beginning.

Identify
Users

Hypermedia AnalystArchitect UI DesignerBusiness Expert

Elicit
Information

Needs

Elicit
Adaptation
Capabilities

Find Actors
and

Use Cases

Structure
Use Cases

Prioritise
Use Cases

Prototype
UI

Capture
Common

Vocabulary

User
Profile

Use Case
Model

[detailed]

Detail
Use Cases

Use Case
Model

[outlined]

Use Case
Model

[structured]

Architecture
[requirements

view]

UI
Prototype

Adaptation
RulesGlossary

Elicit
Navigational

Needs

Elicit
Additional

Requirements

Suplementary
Requirements

Elicit
UI

Needs

UI
Description

Scenarios

Content
Description

Figure 7-3: Requirements Capture Workflow

Chapter 7 • The Software Development Process • 215

 User Profile

The user profile is a description of users or user groups. This description includes
user goals, tasks, preferences and/or background knowledge related to the problem
domain.

 Content Description

The content description consists of a detailed list of information sources that will
be included in the application. Sometimes adaptive hypermedia systems require
several variants for the same concept or component.

 Scenarios

Scenarios are a textual or graphical description of the typical sequences of
activities performed by actors of the system. Scenarios for business process
concentrate on one usage aspect at a time and express relationships between the
system and business process. This type of scenarios help the developers to manage
the complexity of the application domain (Weidenhaupt, Pohl, Jarke & Haumer,
1999). In hypermedia systems there are the typical navigation paths users follow
through navigation or the steps that authors follow during the authoring process.
Scenarios are used for work distribution within and among development teams, and
sometimes for the derivation of test cases.

 Adaptation Rules

The adaptation rules describe the adaptive behaviour of the hypermedia
application. They specify how the system dynamically adapts content, presentation
and links according to the current state of the user model.

 Use Case Model

The use case model is a model of the system’s intended functions and its
environment, and serves as a contract between the customers, business experts,
designers and architects. Different versions of the use case model are built during
the requirements capture workflow in increasing detail. They are called the
outlined, detailed and structured use case models respectively.

216 • The Software Development Process • Chapter 7

 Architecture (View of the Use Case Model)

The architecture contains an architectural view of the use case model, i.e. focusing
on the use cases that are important for the architecture of the system.

 User Interface Description and Prototype

The UI description may consist, for example, of paper sketches, bitmaps from a
drawing tool or an interactive executable prototype.

 Supplementary Requirements

The supplementary requirements are artifacts in form of documents describing non
functional requirements that can not be captured in the use case model.

 Glossary

The glossary defines the terms used in the project. It is useful to reach a consensus
among customers, project managers, designers and engineers regarding the
definition of concepts used in the project in order to reduce the risk of
misunderstandings.

♦ Workers

The requirements captured during the development of an adaptive or non-adaptive
hypermedia application is performed by the following four workers: business
expert, architect, hypermedia analyst and user interface designer.

 Business Expert

The business expert is responsible for the business use case modeling, by outlining
and delimiting the organisation being modeled. He identifies the potential users
groups, their goals and preferences, i.e. he establishes what business actors and
business use cases exist and how they interact. In addition, he defines the glossary,
working together with the hypermedia analyst.

The business expert does not need knowledge in hypermedia engineering but
experience in the use of similar hypermedia applications is helpful.

The profile of the business expert is epitomised by the following skill: knowledge
of the business domain.

Chapter 7 • The Software Development Process • 217

Example: Online Library

The business expert must be a librarian specialised in the categorisation of
publications related to the main themes included in the online library.

 Architect

The architect is the person in charge of the software development process. He must
be a domain expert as well as have knowledge of software development. He is
responsible for the leadership and co-ordination of all technical activities and the
delivery of all technical artifacts throughout the project. He is the technical driving
force of the project.

The architect does not have to have project manager responsibilities. He begins his
work in the inception phase and will remain active until the transition phase is
concluded.

During the requirements capture the architect describes the architectural view of
the use case model. He elicits the additional requirements of adaptive hypermedia
applications, such as networking, distribution, and browser restrictions. He
prioritises the use cases. This prioritisation is an important input in the planning of
the iterations. The architect is usually assisted in his work by other workers, such
as hypermedia designers, hypermedia engineers or the project manager.

The artifacts that the architect produces during the requirements capture workflow
are the requirements view of the architecture and the supplementary requirements.

The profile of the architect comprises the following skills:

• expertise in the hypermedia technology domain, user modeling, adaptive
techniques and some knowledge of the business domain,

• ability to communicate the architecture to the designers and engineers,

• knowledge of security and access methods,

• leadership – co-ordinating the activities of the different teams and
translating decisions into activities,

• goal-oriented focusing on the resulting adaptive hypermedia application.

 Hypermedia Analyst

The hypermedia analyst is responsible for the requirements elicitation and use case
modeling. He outlines the adaptive hypermedia application’s functionality by
finding out the access and navigation needs of the users as well as the adaptive
techniques that can be applied according to the author’s vision and the potential

218 • The Software Development Process • Chapter 7

user groups. This adaptation functionality is described as rules in textual or formal
form. The hypermedia analyst delimits the systems functionality and ensures the
completeness and consistency of the use case model.

The artifacts that are produced by the hypermedia analyst during the requirements
workflow are the use case model, the adaptation rules and the documents
describing non-functional requirements.

The profile of the hypermedia analyst is based on the following skills:

• general knowledge of the business domain and hypermedia technology
domain,

• general knowledge of user modeling and adaptive systems,

• good communication skills,

• UML expertise for the use case modeling.

 User Interface Designer

The user interface designer is responsible for the visual modeling of the user
interface. He thus has to capture the requirements of the user interface during the
elicitation process (Preece et. al, 1994). These requirements include usability
requirements, which involve stakeholders, especially end-users. He should provide
a user interface description, a user interface model or a prototype, but should not
implement the user interface. The focus is on the visual shaping of the user
interface. The actual implementation is carried out by other workers during the
implementation workflows.

The profile of the user interface designer is determined by the following skills:

• the ability to translate stakeholders’ ideas into hypermedia windows or
Web pages,

• design skills necessary for the creation of adaptive presentation and
navigation, and

• good communication skills necessary to capture usability requirements.

♦ Activities

The activities of the workflow describe the dynamics in the requirements capture
workflow. The goal is to represent these requirements as use cases (see Figure 7-
3).

The activities needed to capture the requirements of an adaptive hypermedia
application focussed initially on the user and on the domain. Such activities

Chapter 7 • The Software Development Process • 219

includes identifying users, eliciting information needs or capturing common
vocabulary. Next, activities are carried out to find the kind of application to be
developed. These are eliciting navigation needs, eliciting user interface needs,
eliciting adaptation capabilities, eliciting additional requirements and prototyping
the user interface. The final group of activities focuses on modeling the
requirements captured as use cases. These activities are: finding actors and use
cases, detailing, prioritising and structuring use cases.

 Identify Users

Users are the principal actors of adaptive hypermedia systems. This task involves
finding users, interviewing them (if possible), characterising them and describing
them. The goal is to delimit the adaptive hypermedia system from the environment
and obtain information needed to build the user model as well as to define the
adaptation rules. The objective is to identify user’s characteristics, such as their
tasks, preferences, interests and knowledge of the domain topics. An interview
technique can be used for this elicitation process (Cordingley, 1989; König, 1976;
Koch & Turk, 1997). It consists of the following activities:

• identification of relevant information in the predefined checklists,

• preparation of questionnaires based on the checklists,

• execution of the interview, and

• documentation of the results.

The following questions are part of the questionnaires prepared to identify users of
an adaptive hypermedia system:

• Who will interact with the adaptive hypermedia application?

• What tasks do the users have?

• What functionality do they expect from the application?

• What (computer, language, cultural) background do they have?

• What background knowledge do they have?

• What kind of tools do they frequently use?

• What experience do they have in using similar applications?

• Can different groups clearly be distinguished?

• Which attributes define these users or user groups? For example, what
age range is the user population expected to belong to?

The activity identify users is performed by the business expert. The result of this
activity is a description of the user’s goals, task, preferences and knowledge about

220 • The Software Development Process • Chapter 7

certain themes. The construction of a business model based on these results can be
helpful as starting point of the analysis stage.

Example: Online Library

The Online Library will be used by different groups of users. According to personal
attributes, such as age, background, knowledge, task and occupation it is possible
to isolate the following groups: students, researchers, teachers, project managers
and professionals. A common characteristic of these users is that they have a clear
interest in specific topics, although these preferences may change over time.
Usually they can also clearly describe which topics do not interest them at all.

 Elicit Information Needs

The aim of this activity is to find out what information must be included in the
hypermedia application. It is useful to establish both the depth and the breadth of
the content. If a business model is available, it can be used to obtain an initial
approximation of the information needed. Interviewing customers and potential
users is another technique that can be applied. In many cases the scope of
information is partially limited by existing content or the effort that may be put into
adapting it to the application’s requirements.

The following questions may be helpful eliciting the information users need:

• What information are the users interested in?

• What will they search for?

• What content is already available and in what form?

• How can the information be organised in small “chunks” that deal with
one topic, theme or idea?

• What content needs to be developed?

• Who can provide the contents?

• How long are users prepared to wait before information is updated?

• How can the risk of information overload be avoided?

The task of eliciting information needs is performed by the business expert. The
result of this activity is the content description.

Example: Online Library

The users of an Online Library are interested in publications, articles and authors.
An existing library database provides information about books, journals and

Chapter 7 • The Software Development Process • 221

proceedings. Information about authors can be found on their homepages, but the
quality of the data differs from one homepage to another. A publication record
includes a title, a number, a publisher, a publishing date, a set of articles and
authors for each article. Books consist of one single article, the title of which is the
same as the book title. An article has a title, one or more authors, an abstract, a set
of keywords and a document with the complete article which may be provided in
different file versions, such as PDF, PostScript, HTML or ASCII format. For each
author at least, the name, postal and e-mail address will be recorded.

 Elicit Navigation Needs

The aim of this activity is to find out how the information is accessed in the
hypermedia application. Interviewing potential users is a technique that may also
be applied in this case.

The following questions may be helpful eliciting the navigation facilities users
need:

• What information do users want to see at first glance?

• What are the typical searches they will perform?

• What are the most frequent searches they will perform?

• How can the length of navigation paths be optimised?

• How can the system adapt itself to assist users in their navigation
activities?

The task of eliciting information needs is performed by the hypermedia analyst.
The result of this activity is a set of scenarios. These scenarios consist of a
description of the typical navigational behaviour of the users.

Example: Online Library

The users of an Online Library are primarily interested in finding articles related to
certain topics as well as finding all information related to a given author of a
publication. They perform typical searches, such as by publication title, article title
or author name. Some users will utilise the Online Library frequently to locate
again published material they have visited before. Another service the library
should provide to the users is the information about new publications related to
topics that are of user interest. They should be informed about such publications
news in an application’s news page or by e-mail.

222 • The Software Development Process • Chapter 7

 Elicit Adaptation Capabilities

The aim of this activity is to find out which adaptive capabilities are required to
improve the system. Observing user behaviour when interacting with a similar, but
non-adaptive hypermedia application can supply useful information.

The following questions may be helpful to elicit the adaptation capabilities:

• How is the user behaviour captured?

• What content should be adapted to the user’s interests, goals, or
knowledge?

• Which links should be annotated, sorted or hidden, based on the current
state of the user model?

• Should the system become active, when the user is inactive?

The task of eliciting adaptation needs is performed by the hypermedia analyst. The
result of this activity is a set of adaptation rules. These are usually presented as a
textual, non-formal description in the first iteration. The specification of these rules
can then be made more formal in successive iterations.

Example: Online Library

Users can choose between a number of initial options, such as type of file for the
document containing the complete article and how they want to be informed about
news, i.e. by e-mail or through the news page. The content of the application is
then adapted to these settings.

In addition, user browsing behaviour is observed and registered to find out the
user’s preferred topics, authors and publications. The user model is built and
updated with the information obtained from observation of user behaviour.
Publication’s items, articles and author’s indexes are sorted, annotated or removed,
based on the current state of the user model.

The system models the user’s interest in articles by registering the articles she
visits. Articles can be marked by the user as being of special interest (bookmarks).
A list of personal keywords for each user is administrated by the system. This list
is initialised by the user and is updated either by the user or by the system. The
system performs the updating in line of observations on user behaviour (in this case
limited to the articles she marks or visits frequently). The list can include positive
as well as negative keywords. Negative keywords are used to hide irrelevant
publications and articles from the user. The user must inform the system of
negative keywords, e.g. keywords related to topics she is not at all interested in.

Chapter 7 • The Software Development Process • 223

The user model of the Online Library is visible to the user. She can modify the
current values of the user model at any time.

 Elicit Additional Requirements

Supplementary requirements are primarily non-functional requirements. They are
not related to the content, navigation, interface or adaptive functionality of the
hypermedia system. These additional requirements cannot be included in the use
case model; they are thus presented as a document that consists of a list of
requirements. Additional requirements can be elicited based on the following
generic list. This list is not exhaustive, i.e. it can be extended.

• Budget constraints

• Time constraints

• Hardware constraints

• Software constraints

• Design constraints

• User modeling constraints

• Implementation constraints

• Performance

• Security

• Availability

• Ergonomics

• Usability

The task of eliciting additional requirements is performed by the architect. The
result of this activity is a list of supplementary requirements.

Example: Online Library

The Online Library application for the Web must be optimised for the most
frequently used browsers, with the objective of nearly identical presentation. The
usual security procedure for user registration and manipulation of e-mail addresses
is required. A user model is built for registered users and used for customisation
and adaptation.

224 • The Software Development Process • Chapter 7

 Elicit User Interface Needs

The aim of this activity is to find out how the information and the navigation
assistance are to be presented to the user in the hypermedia application.
Interviewing the customer as well as potential users is a technique that can be also
applied here.

The following questions may be helpful to elicit the user interface needs:

• Must the presentation to be designed from scratch?

• Does the customer’s organisation have a style guide for their hypermedia
applications?

• What layout constraints does the customer specify?

• How can cognitive overload be avoided?

The task of eliciting of user interface needs is performed by the user interface
designer. The result of this activity is a user interface description and/or a user
interface prototype.

Example: Online Library

The presentation has to be designed from scratch. No style guide is available. No
commercial banners or animations are included.

The remaining activities of the requirements capture workflow are only explained
briefly. The objectives are the same and the tasks are performed in the same way as
the corresponding activities of the UP. Examples are added, if they are required to
make further sections easier to understand.

 Find Actors and Use Cases

For this activity requirements are modeled as use cases, i.e. all the requirements
captured during the above-described activities are used to define the actors of the
system and find the use cases that describe the functionality of the system
(Schneider & Winters, 1998).

The users are the main actors of the adaptive hypermedia application. The
following questions will help to find candidates for other actors:

Chapter 7 • The Software Development Process • 225

• Who will perform the authoring work?

• Who will support and maintain the adaptive hypermedia system?

• What are the system’s external resources?

• What other systems will interact with this application?

A brief description of each actor should include information about what or whom
the actor represents, why the actor is needed and what interests the actor has in the
system.

The best way to find use cases is to consider what each actor requires of the
system. The set of functional requirements, i.e. informational, navigation and
adaptation capabilities, provide answers to these questions. Workshops or
interviews can also be used to understand which use cases are needed. Each use
case is briefly described.

The task of finding actors and use cases is performed by the hypermedia analyst.
The result of this activity is an outlined use case model.

Example: Online Library

In summary, the Online Library offers to the users the following functionality:

• access to regularly updated publication information as an anonymous or a
registered user,

• dynamic updating of a user model,

• different search possibilities for publications, articles and authors,

• search mechanisms for articles, which have already been visited, and

• notification of recently published articles compiled according to the user
model.

The actors in the requirements description are the User, Registered User, Library
Administrator and Library System.

• User

A user represents a person browsing in the Online Library and navigating the
hyperspace defined by this application.

• Registered User

226 • The Software Development Process • Chapter 7

A registered user is a person who has identified herself to the Online Library.
The system builds a user model for this user. When the user browses in the
Online Library, she obtains personalised information and links.

• Library Administrator

A library administrator is a person who is in charge of the updating and
maintenance of the Online Library content.

• Library System

The library system is responsible for sending e-mails with news, for updating
the user model and adapting content, navigation and presentation.

The most relevant use cases are: Find Publication, Find Articles, Find Author, Look at
News, Select Visited Articles, Mark Articles, Modify User Profile, Update Publication,
Update Article, Update Author, Send News per E-mail, Adapt Content, Adapt Navigation,
and Adapt Presentation.

The description of one use case is included here by way of example.

Use Case: Select Visited Articles

The actor in this use case is the RegisteredUser as articles she has already visited
are recorded in the user model. Note that this mark is different to bookmarking,
which indicates that the article is of interest to her. The registered user can select
an article from an index of visited articles that are sorted according to positive
keywords. In addition to the sorted articles, items on the list are annotated to
distinguish articles that have just been visited from those that are marked as being
of special interest.

 Detail Use Cases

The objective in detailing each use case is to describe the flow of events in detail,
including how the use case starts, ends and interacts with actors. The business
expert performs this activity adding his domain knowledge to the use case model
specification. The result is a detailed description of the use cases in text and
diagrams (Schneider & Winters, 1998).

The detailed description of a use case includes a use case name, the list of actors
communicating with the use case, its priority, the status of development of the use
case, pre- and post-conditions that must be true at start and finish of the use case, a
list of use cases that “extend” this use case, a list of use cases that are “included”,
a flow of events describing primary scenarios. Optionally, secondary scenarios
(alternatives and exceptions not shown in the primary flow of events), activity
diagrams, user interfaces, sequence diagrams, views of participating classes and

Chapter 7 • The Software Development Process • 227

other artifacts as well as other requirements and open questions can be added to
description of a use case.

Example: Online Library

The following template is proposed for a detailed description of a use case (Figure
7-4).

Use case name: “Find Author”

Actors: User, Registered User, Library Administrator

Priority: 1

Status: Requirements capture

Pre-condition: The search form must be visible

Post-condition: Author’s page is shown with information about the author’s person, e.g.
as name, picture, postal and e-mail address. A link to the articles published by the author
is also displayed.

Flow of events:
1. The use case starts when the user selects the “author” option.
2. The user enters the name or a keyword related to the author.
3. The user starts the search mechanism
4. If the result is more than one author then

a) the system displays an index of authors matching the user’s input
b) the user selects one

 end if
5. The system displays the information about the author
6. The system offers a link to the articles of the author.
7. The use case ends

Secondary scenario:

2. If the system does not find a matching author, the user is asked to re-enter the
keywords or author’s name.

6. If the user is registered, the author index is sorted and annotated in accordance with
the current state of the user model.

Figure 7-4: Template for Use Case Description

228 • The Software Development Process • Chapter 7

 Prioritise Use Cases

The purpose of this activity is to determine which priority will have each use case
for the development, i.e. design, validation and implementation. The activity is
performed by the architect and the result is visible in the architectural view of the
use case model, which includes only the critical actors and use cases.

Example: Online Library

The “search” use cases, such as Find Publication, Find Article, Select Visited Article,
Find Author and the use case Mark Article have highest priority. The implementation
of these use cases will give the customer the “look and feel” of the system. Priority
two is assigned to the use cases defining updating of the database through special
forms. At a third stage the “news” features will be designed and implemented.
Finally, the remaining functionality is added, such as modification of the user
model through a form.

 Structure Use Cases

During this activity a complete use case model is built, i.e. the relationships
between actors and use cases are analysed in detailed. Relationships of type
«includes» and «extends» are established between use cases as well as
generalisations between actors. A detailed flow of events wit a pre-condition and a

Find
publication

Find
article

Find
author

Adapt
navigation

Update
author

Update
publication

Update
article

Send News
per E-mail

User Library
Administrator

«includes»

«includes»

«includes»

«includes»

Registered
User

Library
System

Adapt
content

Update
User Profile

Select visited
article

Look at news

Adapt
presentation

Mark articles «includes»

Figure 7-5: Use Case Model for the Online Library Application

Chapter 7 • The Software Development Process • 229

post-condition can be defined in textual form as well as represented with a UML
activity diagram. The result is a detailed use case model.

Example: Online Library

A rough granulated Use Case Model for the Online Library is shown in Figure 7-5:
Note that additional dependencies of type «includes» relate the use cases Find

Publication, Find Article and Find Author with the use cases Adapt Content, Adapt

Navigation and Adapt Presentation if the RegisteredUser is who navigates and
searches in the application.

 Prototype User Interface

During this activity a first approach to the visual aspects and distribution of the
user interface elements is prepared. The activity prototype user interface is
performed by the user interface designer, who produces the user interface
prototype.

 Capture a Common Vocabulary

The objective of this activity is to define a common vocabulary that can be used in
all textual descriptions of the system, especially in use case descriptions. This
common vocabulary is the basis for communication between all stakeholders. The
result is a glossary produced by the business expert.

Example: Online Library

The following are some entries in the Online Library glossary:

....

active help: short description for each navigation button, may be suppressed by
the user. This change has to be registered in the user model for registered users.

news: are data and documents related to articles that have recently be published
(period of time may be customised).

publication: includes books, proceedings and journals. Books consists of just
one article bearing the same name as the publication title.
.....

Figure 7-6: Part of the Glossary

230 • The Software Development Process • Chapter 7

7.3.2 Analysis and Design

The purpose of the analysis and design workflow is to translate the requirements
description (obtained in the previous workflow) into a specification that describes
how to implement the adaptive hypermedia application. Analysis focuses on the
application’s functional requirements, ignoring non-functional requirements and
implementation constraints. During design the analysis results are adapted to the
conditions imposed by the non-functional requirements. The design is seen as a
refinement process of the analysis. In this work, both analysis and design are
described together. When the term “design” is used, it means analysis as well.

The design workflow of UWE consists of a model-based and user-centred approach
for building adaptive hypermedia applications. It is model-based because for almost
all activities a UML-model is build. It is user-centred because it takes into account
user properties for the construction of these models. The design comprises the
following activities:

• conceptual design,

• user model design,

• navigation design,

• presentation design,

• adaptation design,

• architecture design,

• detail design classes, and

• definition of subsystems and interfaces.

The artifacts produced as results of these activities are the design view of the
architecture, the conceptual model, the user model, the navigation model, the
presentation model, the adaptation model, design classes, subsystems and
interfaces. These models are constructed based on the UML Profile presented in
Chapter 6. The UML Profile defines several stereotypes for the navigation,
presentation and adaptation modeling according to the extensions mechanisms of
UML. The main workers that perform these activities producing the mentioned
results are the architect, the hypermedia designer and the hypermedia engineer.
Figure 7-7 depicts the analysis and design workflow showing workers, activities
and artifacts.

The conceptual, navigation and presentation design activities provide a clear
separation of the information the user can access (domain semantics), how this
information is structured and how it is presented to the user. Based on the domain
model the activities navigation and presentation design take into account the

Chapter 7 • The Software Development Process • 231

special characteristics of the hypermedia paradigm, i.e. the navigation functionality
and the multimedia user interface. Schwabe and Rossi (1998) stress, that as a
result of this separation a more modular and reusable design is obtained. They
propose a framework to reason about the design process, encapsulating the specific
design experience to each step.

The user design together with adaptation design cover the special aspects related
to adaptability. They cover user modeling and adaptation of content, navigation and
presentation. User modeling consists of the construction, update and utilisation of a
user model to help users in accordancce their preferences, knowledge, interests, or
tasks through adaptive content, navigation and presentation. Alternative content for
the same concept is required to show each user an appropriate version of the
concept. The same information can have different layouts for different users.
Different navigation paths result from adaptive navigation. Consequently, some
information or some nodes may be visible for some users but not for others. Rules
are defined to specify the adaptive behaviour of the hypermedia system.

Identify
Users

Hypermedia AnalystArchitect UI DesignerBusiness Expert

Elicit
Information

Needs

Elicit
Adaptation
Capabilities

Find Actors
and

Use Cases

Structure
Use Cases

Prioritise
Use Cases

Prototype
UI

Capture
Common

Vocabulary

User
Profile

Use Case
Model

[detailed]

Detail
Use Cases

Use Case
Model

[outlined]

Use Case
Model

[structured]

Architecture
[requirements

view]

UI
Prototype

Adaptation
RulesGlossary

Elicit
Navigational

Needs

Elicit
Additional

Requirements

Suplementary
Requirements

Elicit
UI

Needs

UI
Description

Scenarios

Content
Description

Figure 7-7: Analysis and Design Workflow

232 • The Software Development Process • Chapter 7

The purpose of the architecture design is to outline the design and deployment
models and the system’s architecture. This requires the identification of
architecturally significant design classes, subsystems and their interfaces, nodes
and their network configurations as well as special requirements as regards
persistency, distribution and performance. The last two activities on the list, i.e.
detail design classes and define subsystems and interfaces are performed by the
hypermedia engineer in the late iterations of the design. The goal is to detail the
design classes and group them into subsystems preparing them for the next
workflow where the focus is on implementation. The design of hypermedia
applications is an incremental, iterative and sometimes a prototype-based process.

♦ Artifacts

The artifacts produced in the analysis and design workflow are a design view of the
architecture, a set of models, design classes, subsystems and interfaces. The design
models are the – already mentioned – conceptual, user, navigation, presentation
and adaptation models. A set of stereotyped modeling elements are defined in
Chapter 6 as well as the method, which steps can be followed in the construction of
the models. These steps are mainly helpful for an automated development of
hypermedia applications supported by a case tool.

 Conceptual Model

The conceptual model is a model of the problem domain, the aim being to leave out
navigation, presentation and adaptation aspects that characterise an adaptive
hypermedia application. The conceptual design is thus similar to business or
problem domain modeling for traditional software development. An adaptive
hypermedia application requires identification of the concepts units and which
must be available in the different versions. The adaptation model then establishes
at run-time, criteria that are used to decide which of these versions is appropriate
for the user. The decision is based on the current state of the user model. A
conceptual model is represented as a UML class model (see Figure 7.8).

 User Model

A user model contains information that represents the view the system has of the
knowledge, goals and/or individual features, such as preferences, interests and
tasks of the users. The main purpose of including a user model is to support an
application that dynamically adjusts itself to the user. Information contained in the
user model will influence the layout of the user interface, navigation through the
application and adaptation of the content of the nodes the user accesses. The role

Chapter 7 • The Software Development Process • 233

the user model plays in an adaptive hypermedia system can be seen in the Munich
Reference Model presented in Chapter 4.

A user model is described by a set of classes describing the user attributes that are
modeled and their relationships, if any, to classes of the conceptual model. Classes
and associations are represented with a UML class diagram (see Figure 7-9).

 Navigation Model

The navigation model is built in two stages. During the first stage a navigation
space model is constructed based on the conceptual model. The result of the second
stage is a navigation structure model that is build on the navigation space model.

Navigation space model defines a view of the conceptual model showing which
classes of the conceptual model can be visited through navigation in the
application. It is represented as a UML class diagram (Figure 7-9) built with a set
of navigation classes and associations between these navigation classes. Classes
and associations are mainly obtained from the conceptual model. The designer
decides if additional associations representing direct navigability are required.

In the navigation space model navigability is specified for associations, i.e.
direction of the navigation along the association is shown through the arrow
attached to the end of the association’s line. For each link a navigation source
object and a navigation target object are distinguished.

The navigation structure model defines the navigation of the application, i.e. how
navigation objects are visited. It is based on the navigation space model, but it also
includes additional model elements – access elements – that are required to
perform the navigation between navigation objects. These access elements are
menus, indexes, guided tours and queries. The navigation class diagram is
represented with a UML class diagram (see Figure 7-11). The UML Profile defined
in Chapter 6 includes stereotyped classes for navigation and access elements.

 Presentation Model

The presentation model is the representation of an abstract user interface, showing
how the navigation structure is presented to the user. The same navigation
structure may yield different presentations depending on the restrictions of the
target platform and the technology used.

Most of the methods for hypermedia design only suggest the development of
prototypical pages for this activity. In this work, it is proposed instead to define a

234 • The Software Development Process • Chapter 7

presentation model as a composition of user interface objects. UML modeling
elements and UML diagrams are chosen as a technique in the same way as for the
conceptual and navigation model. The presentation model is a rough design of the
user interface; decisions about details such as size, colour or font of user interface
elements are taken when developing the prototype or in the implementation phase.

The presentation model consists of a static presentation model and a dynamic
presentation model.

The static presentation consists of a presentation structure model and an abstract
interface model represented by UML class diagrams and UML composition
diagrams, respectively. The presentation structure model describes where the
navigation objects and access primitives are presented, i.e. in which frame or
window the user will see them displayed, as shown in Figure 7-12. The following
stereotyped classes are defined for the presentation: window, frameset, frame and
presentation class. Two alternative for presentation models are presented: a menu-
based and a map-based presentation.

The abstract user interface model provides sketches of the user interface. It
consists of a collection of user interface objects that shows the composition of
presentation objects by other presentation objects and relationships between these
objects (Koch, 1998; Koch & Mandel, 1999). For the most frequently used user
interface objects special modeling elements (stereotyped classes) are defined.
These are: anchor, text, image, audio, video, form, button, collection and anchored
collection (see Chapter 6 for more details). For each navigation object at least one
presentation object has to be defined. If the presentation depends on the navigation
context within which the navigation object is visited, one presentation object for
each context has to be specified. Hints are provided on how the navigation objects
are presented to the user. For example, a first approach to position and size of the
user interface elements relative to each other is given. Examples of presentation
classes are shown in Figures 7-13 to 7-17.

The dynamic presentation consists of a presentation flow model and an object life
cycle model represented by UML sequence diagrams and UML state diagrams,
respectively. Sequence diagrams are used to describe the flow of control between
presentation elements when a multiple-window technique is used (Hennicker &
Koch, 2000b). State diagrams are used to visualise the object life cycle of
interactive presentation objects. This lifecycle is defined through states and through
transitions between states. A state is specified by a name, entry and exit actions,
internal transitions, and/or sub-states. A transition has an action associated with it,
i.e. it is triggered by an event. In the case of user interfaces most of the events are
generated by the user, such as mouse focus, mouse clicks, or keyboard inputs.
Complex behaviours can be modeled easily in UML with sequential and concurrent

Chapter 7 • The Software Development Process • 235

substates (UML, 1999).The design of these UML state diagrams is expensive and
usually so many details are not necessary for user interface objects with well-
known behaviour. They are therefore only used for complex composite user
interface objects.

 Adaptation Model

The adaptation model presents the objects that participate in the adaptive
functionality and describes how this adaptation is performed. The adaptation model
consists then of a set of rules described textually (or with a formal language) and a
set of UML collaboration diagrams (see Figure 7-19).

The adaptation rules are defined in the adaptation model specifying the conditions
under which the content, navigation and presentation are adapted, which actions
are performed for the adaptation and how the user model is updated. The
representation of the rules in a model show how these rules collaborate with
objects of other models, such as the navigation, presentation and user model. A
detailed description of the adaptive functionality is given in Chapter 2 and it is
modeled in the Munich Reference Model for adaptive hypermedia systems
presented in Chapter 4.

 Architecture (design view)

The design view of the architecture depicts the architecturally important artifacts.
They are:

• the subsystems, which the system is divided into,

• the interfaces of these subsystems,

• key design classes that represent some generic design mechanisms and
have many relationships to other classes, but which are not necessarily
detailed in the architectural view, and

• design classes that are related to the realisation of key use cases.

 Design Class

During the first iterations in the analysis and design workflow classes are outlined,
i.e. more relevant attributes and operations are described. In successive iterations
details are added to finally produce a design class. An adaptive hypermedia system
requires the definition and the detailed description of design classes for the user,
navigation, presentation and adaptation model.

236 • The Software Development Process • Chapter 7

For each design class:

• all attributes and operations are defined,

• visibility of attributes and operations is often specified,

• relationships in which the design class is involved sometimes implies the
addition of attributes to the design class,

• the methods, i.e. the realisation of the operations, is detailed in natural
language or in pseudo-code, and

• active classes are identified, i.e. classes, which objects maintain their
own threads.

 Subsystem

Subsystems are defined to group artifacts of the design models in more manageable
pieces or to separate design concerns. A subsystem consists of design classes,
interfaces, use cases or other subsystems. A subsystem can be used to represent
legacy systems or part of them or to represent reuse software components. Another
purpose for which subsystems are used is to encapsulate the content, showing
behaviour only through the interfaces of the subsystem. A natural group of
subsystems is provided by the models of the layers defined by the reference model.
For example, for the storage layer there are the domain, user and adaptation
subsystem. A more fine-grained grouping of classes can be performed, which
results in a greater number of subsystems.

 Interface

An interface is used to specify the operations provided by design classes and
subsystems. A design class that provides an interface must also provide methods
that carry out the operations of the interface. A subsystem that provides an
interface has to contain a design class that provides this interface.

♦ Workers

The analysis and design in the development of an adaptive or non-adaptive
hypermedia application is performed by the following workers at least: an architect,
a hypermedia designer and one or more hypermedia engineers. The role of the
hypermedia designer can be performed by several hypermedia experts with
different profiles, such as navigation designers, multimedia experts and graphic
designers.

Chapter 7 • The Software Development Process • 237

 Architect

The architect is responsible in the design for the integrity of the user model, the
conceptual model and the design view of the architecture.

The profile of the architect is defined in the requirements capture workflow.

 Hypermedia Designer

The hypermedia designer is responsible for the use case realisation. The
functionality described in the use cases has to be reflected in the navigation
structure, dynamic page generation and the adaptive user interface of the
hypermedia application. The hypermedia designer develops the navigation model,
the presentation model and the adaptation model.

The profile of the hypermedia designer is provided by the following skills:

• knowledge of the functional and non-functional requirements of the
system,

• general knowledge of the business domain and hypermedia
technology domain,

• experience in the design of the structure of a hypermedia system,

• general knowledge of user modeling and adaptive systems, and

• UML knowledge for the modeling activities.

 Hypermedia Engineer

The hypermedia engineer details and maintains the attributes, operations, methods,
relationships and implementation requirements of one or more design classes as
well as the integrity of one or more subsystems and interfaces. It is often
appropriate to let the same hypermedia engineer be responsible for a subsystem
and the modeling elements contained in the subsystem. The implementation is then
done by the same hypermedia engineer who takes advantage of knowledge of these
modeling elements.

The profile of the hypermedia engineer is provides by the following skills:

• UML knowledge for modeling activities,

• experience in the implementation language that has been chosen,

238 • The Software Development Process • Chapter 7

• know-how related to logging and event monitoring procedures, security
and access methods and site “policies”,

• knowledge of the technologies with which the system will be
implemented, and

• experience e.g. in HTML, JavaScript, JSP, ASP, database definition and
generation, multimedia design and/or integration, etc.

♦ Activities

Throughout the analysis and design workflow, the designers will perform a set of
activities to create the user model, content, structure and interface of the adaptive
hypermedia system as well as to define the adaptation mechanisms. These models
consists of classes and relationships that can be grouped into subsystems.

The following activities are included in this workflow: conceptual design, user
model design, navigation design, presentation design, adaptation design,
architecture design, detailed design of classes, and definition of subsystems and
interfaces.

 Conceptual Design

The activity conceptual design aims to build a domain model including all the
concepts that are relevant to the application and the different users or user groups
identified in the requirements capture workflow. The main objective is to capture
the domain semantics with as little attention as possible paid to the navigation
paths, presentation and interaction aspects. Decisions as to whether each concept
corresponds to one hypermedia page, a hypermedia document or the page is being
generated on-the-fly based on the frame-based internal representation of domain
concepts, are postponed to the implementation phase.

Activities related to the conceptual design are typical object-oriented modeling
activities, such as identification of classes, determination of associations between
classes, and definition of constraints. More details of these activities are given in
Section 6.1 of the previous chapter.

Well-known object-oriented modeling techniques are used at this stage, such as
composition, generalisation and specialisation. Classes are defined by a name,
attributes, operations and variants. The compartment of a class named variant
contains additional information required for the adaptive content functionality, i.e.
to present different content to the user in accordance with the current state of her
user model. UML packages can be used to group classes and associations. OCL

Chapter 7 • The Software Development Process • 239

constraints can be included in the diagram or specified separately (see example
below).

The results of this activity is a UML class model of the problem domain. Classes
and associations defined in this step are used during navigation design to derive
nodes of the hypermedia structure. Associations will be used to derive links.

Example: Online Library

The conceptual model for the Online Library is shown in Figure 7-8. The example
is restricted to this kernel data and functionality although the Online Library
should also include authoring functions. Authoring functions are needed e.g. to
allow the user to visualise and perform changes in her user model.

 User Model Design

The user model design aims at building a user model that represents knowledge,
goals and/or individual features, such as preferences, interests and tasks of the

Publisher

name: String
address: String
...

Publication

title: String
date: Date
...

Author

name: String
e-mail: String
picture: Image
...

Article

title: String
abstract: String

print()

variants

complete (pdf, ps, html)

Library

name: String
address: String
...

*

1

*

1

1..*

1..*

1..*

1..

Keyword

word: String
...

1..*

1..*1..*

1..*

keywordsarticles

articles

articlesauthors

authors

publication

publications
publications

publications

library

libraries

publisher

publishers

has

has

writes

has

contacts

publishes

contains

{type=positive}

Figure 7-8: Conceptual Model of the Online Library Application

240 • The Software Development Process • Chapter 7

users. The model is the view the system has of the user. The main reason for
including a user model is to support an application that dynamically adjusts itself
to the user. Information contained in the user model will influence the layout of the
user interface, navigation and content of the presentation the user accesses.

Activities of the user model design are between others the selection of type of user
model (see Chapter 3), definition of a user class and user attribute class and
categorisation of attributes in dependent and independent of the domain. More
details of these activities are provided in Section 6.2 of the previous chapter.

In the case of a stereotyped-based user model, an instance of the user class is
defined for each stereotype, i.e. for each user group. If an individual user model is
created, an instance of the class user and of the user attributes are generated for
this new user. This includes the beliefs the system has about the specific user.
Sometimes stereotypes are used to initialise user models, i.e. stereotypes are used
for initial assumptions instead of using an initial questionnaire completed by the
user.

Note that stereotype has a different meaning than in Chapter 6 where a UML
stereotype is a UML extension mechanism to define new modeling elements. Here,
stereotype is used to define a small set of user models that are used then to classify
users and assign the properties associated to the most appropriate model for each of
them. The static aspects of the user model are described using a UML class model.

Example: Online Library

The following characteristics of the users are included in the user model of the
Online Library application: articles the user visits, articles that are marked by the
user, positive and negative keywords, preferences the user chooses to be informed
about, new articles and the type of file she selects for the download of the articles.
Some of the values of these user attributes are updated dynamically by the system;
others are set by the user and can only be changed by her. The user model for the
Online Library is shown in Figure 7-9. Class Article of the conceptual model is
appended to the user model diagram to show how the user model is related to the
conceptual model.

Class Visited registers how often an article is visited by the user. The class Marked
models the articles that are marked by the user (bookmarks). They are part of the
domain dependent knowledge, i.e. one instance of these classes is required for each
instance of the class Article. Instead, class UserKeyword models themes of interest. It
is considered background knowledge and its instances are not related to specific
instances of domain classes. Classes FileType and News model preferences of the
user.

Chapter 7 • The Software Development Process • 241

 Navigation Design

Navigation design is a critical step in the design of every hypermedia application.
Even simple applications with a shallow hierarchical structure will very soon
become complex as a result of the addition of new links. Additional links improve
navigability on the one hand but, on the other hand, imply higher risk of losing
orientation. Building a navigation model is not only helpful for the documentation
of the application structure, it also allows for a more structured increase in
navigability.

The navigation design defines the structure of the hypermedia application and
describes how navigation can take place. The basis of the navigation design is the
conceptual model and the outcome is a navigation model, which can be seen as a
view over the conceptual model. The navigation model is defined in a two-step
process. In the first step − the navigation space model − is specified, i.e. which
objects can potentially be reached through navigation and in the second one
− navigation structure design − how these objects are reached. Hence additional
objects are required to access navigation objects.

FileType

type:
enum(pdf,ps,html)

User
username:String
password: String
lastLogin: Date

Marked

 mark: Boolean

UserKeyword

word: String
positive: Boolean

News
notification:
enum(email,page)
frequency: String

 Article
(from Conceptual Model)

title: String
abstract: String

InterestInArticles

changeValue()

**
articlesusers

Visited

count: Integer
lastVisit:Date

Preferences

changed: Date

users

preferences * users

userKeywords *

 *

 *
marks

keywords * *

visits *

readshas

uses

characterises

labels

inv: articles -> forAll (a:Article
| a.visited.count > 3 implies
userKeywords -> exists (k:
Keyword | a.keywords = k and
k.positive = true))

Library
(from Conceptual

Model)

1

currentUser

Figure 7-9: User Model of the Online Library Application

242 • The Software Development Process • Chapter 7

The navigation space model can be seen as a sub-graph of the conceptual model
where some classes which are not relevant for the navigation are eliminated and/or
reduced to attributes of other classes.

The navigation structure model defines the navigation of the application, i.e. how
navigation objects are visited. It is built starting with the navigation space model
and including additional modeling elements, such as access primitives (menus,
indexes, guided tours and queries) and properties to model adaptive navigation.

The activities that are performed for the navigation design in a three-step procedure
are presented in detail in Section 6.3 of the previous chapter. There the modeling
elements mentioned above are also defined. Navigation classes, access primitives
and associations with navigability are graphically represented in UML class
diagrams.

Example: Online Library

Following the steps of the navigation design method presented in Chapter 6 a
navigation space model for the Online Library is built. This model is shown in
Figure 7-10.

1. Classes of the conceptual model that are relevant classes for navigation
are: Library, Publication, Author and Articles.

2. Conceptual classes Publisher and Keyword are not included as navigation
classes, but as derived attributes of Library and Article, respectively.

3. Additional associations between Library and Author are included to allow
direct navigation between instances of these classes.

4. Three additional associations between Library and Article, i.e. all articles,
visited articles and news (new articles) are added, based on the scenarios
described in the requirements capture workflow.

As shown in Figure 7-10 constraints can be attached in a UML note or they can be
specified separately as the invariant for visited articles listed below.

context Library
inv: visitedArticles → select (a:Article | a.visited.count > 1

and lastVisit.year = currentYear)

Chapter 7 • The Software Development Process • 243

The navigation structure model for the Web Site of the Online Library is built
based on the methodical activities described in Section 6.3 of the previous chapter.
Figure 7-11 shows the result of these activities:

1. Enhancement of the navigation space model with access elements for all
navigation classes which have multiplicity greater than one at the
directed association end. Movement of role names from navigation
classes to the access elements. Access elements added in the example
are: PublicationByTitle, ArticleByTitle, NewArticleByTitle, VisitedArticleByTitle,
AuthorByName, ArticleByTitleByPublication (guided tour), SearchAuthor
ByName (query), etc.

2. Addition of menus to all navigation classes, which have at least one
outgoing association, such as LibraryMenu, PublicationMenu and
AuthorMenu. Menus have a relationship of type composition with the
corresponding navigation classes. Associations between navigation

«navigation class»

Publication
title: String
date:Date
/publisher: String

«navigation class»

Author

name: String
e-mail: String
picture: Image
...

«navigation class»

Article

title: String
abstract: String
/keywords: Set(String)

print()

variants
complete(pdf,ps,html)

«navigation class»

Library

name: String
address: String
...

*

* 1..*

1..*

1

*

1..*

1

publications

articles

authors articles

1

1..*

visitedArticles

1

authors
newArticles

articles

*

1..*

1

1

1..* Publisher

1 *

inv: newArticles -> select (a:Article |
a.publicationDate > currentUser.lastLogin)

Figure 7-10: Navigation Space Model of the Online Library Application

244 • The Software Development Process • Chapter 7

classes are transformed in associations between menu and target
navigation classes.

3. Specification of properties {direct guidance} for guided tour, {sorted},
{annotated}, and {removed} for access primitives to indicate adaptation
of navigation to the user model.

4. Addition properties of type {passive navigation} to indicate navigation
performed by the system. In the sample application passive navigation is
added from every navigation object to the NewArticleByTitle index; in the
diagram only one of these associations adorned with the {passive
navigation} property is shown.

visited
articles

?

Publication

Article

Author

ArticleByTitleByAuthor
ByPublication

ArticleByTitle
ByPublication

AuthorByName
ByPublication

Search
ArticleByTitle

publications

authors

AuthorByName

Publication
ByTitle

searchArticles

1

1..*

1

1..*

1..*

1

1..*

1

1..*

1

1

1

1..*

searchAuthors

Search
AuthorByName

1

?

SearchVisited
ArticleByTitle

searchVisitedArticles

1

?

articles

Article
ByTitle

1

news

NewArticle
ByTitle

1

1

1..*

Library

LibraryMenu

articles
authors

1

1

PublicationMenu

articles
1

AuthorMenu

VisitedArticle
ByTitle

Publisher

11..*

{removed,
annotated}

{sorted,
annotated} {sorted,

annotated}
{sorted,
annotated}

{sorted}

{sorted}

{sorted, removed}

{direct
guidance}

{passive
navigation}

Figure 7-11: Navigation Structure Model of the Online Library Application

Chapter 7 • The Software Development Process • 245

 Presentation Design

Presentation design consists of the definition of where and how the navigation
objects are presented to the user. The user interface is modeled with the help of
static and dynamic object-oriented models depicting the layout in a schematic way.

The designer chooses in this step between a multiple-window and a single-window
technique, and between a presentation style with or without frames. The static
presentation model then associates each presentation class to a window or frame
and describes how the attributes of a presentation class are shown to the user. The
static presentation models are derived from the navigation structure model. These
models are: the presentation structure model and the abstract user interface model.

Different types of presentations can be constructed, such as the menu-based or
map-based presentations. The first one consists of a collection of presentation
objects, where navigation is guaranteed by a main menu and indexes. The last one
is also called a tree-structured technique. It supports the visualisation of the
navigation structure and has the advantage of mitigating the problem of “lost in
hyperspace”. One application can use both presentation techniques in combination.
Map-based presentations supports the visualisation of the total or partial navigation
space. Both techniques use framesets to include all the presentation classes that are
presented to the user at a glance.

«frameset»
Main

«pres. class»
LibraryMenu

«window»
Window1

1

1

1

1..*

1..*

1

«presents »

1

1 mainWindow

«window»
Window2

«frame»
MainLeft

«frame»
MainRight

1

«pres. class»
SearchAuthor

«pres. class»
Article

«pres. class»
Author

1

1
subWindow

«presents »

1

1

1 1

1

«pres. class»
LibraryMenu

Author

«pres. class»
AuthorByNameIndex

1

1

«presents »

«presents »

1

«presents »

«presents »

1

«pres. class»
ArticleByTitleIndex

{xor}

{xor}{xor}

Figure 7-12: Presentation Structure Model of the Online Library Application (Partial View)

246 • The Software Development Process • Chapter 7

The goal of the dynamic presentation design is to describe the behaviour of the
presentation objects, i.e. the changes on the user interface when the user interacts
with it or when the system reacts to internal events such as timeouts. Two type of
models can be constructed to represent different aspects of the dynamic of an
(adaptive) hypermedia application. There are: object lifecycle models and
presentation flow models.

Object lifecycles models are used to model the behaviour of complex presentation
objects and the influence they have on the status of other presentation objects (see
Chapter 6). UML state diagrams are used to represent these object lifecycles. As
the design of state charts is time consuming, they are built only if the complexity of
the behaviour of the presentation objects makes this necessary.

The presentation flow model is graphically represented by UML interaction
diagrams, e.g. UML sequence diagrams. These diagrams show which windows and
frames can be opened, which are active, and which objects are displayed in each
window or frame at a certain moment.

See Section 6.4 of the previous chapter for a detailed description of the systematic
construction of these models and the definition of the stereotypes used. A UML
class diagrams and composition are used for the graphical representation of the
presentation structure model and the abstract user interface model.

Example: Online Library

Figure 7-12 shows a partial view of the presentation structure model.

LibraryMenu

Articles

VisitedArticles

Publications

Authors

News

LibraryMenu
Author

Articles

VisitedArticles

Publications

Authors

News

Articles

IndexAuthorByName

Figure 7-13: Presentation Class Figure 7-14: Presentation Class
 of Library Main Menu of Composite Library and AuthorMenu

Chapter 7 • The Software Development Process • 247

Figure 7-13 to Figure 7-17 show some sketches of the abstract user interface model
for the sample application Online Library. For a more detailed description see
Section 6.4.

Figure 7-17 depicts one frameset of the Online Library which has two frames. The
left frame presents the presentation class of the main menu application and the
right frame presents the selected content. Sometimes this kind of representation
results useful as it gives an idea of how pages of the application will look, i.e. a
sketch of the user interface. Note that the LibraryMenu includes an additional item
that allows navigation back to the starting point of the application.

Picture

Name

Address

E-mail

Author

Audio

Title

Abstract

CompleteArticle

Article

StartAudio

{variant:pdf,ps,html} Keywords
...

Figure 7-15: Presentation Class Figure 7-16: Presentation Class
Author Article

MainFrameset

Articles

VisitedArticles

Publications

Authors

News

AuthorIndexByName

{sorted, annotated}

...
Authors Name

LibraryMenu

Home

MainLeft MainRight

1

11

1

«presents» «presents»

Figure 7-17: Abstract User Interface Model of one Online Library Page

248 • The Software Development Process • Chapter 7

A part of a presentation flow model for the sample application Online Library is
shown in Figure 7-18. It consists of the representation of the message flow between
user, window objects and frame objects when the user wants to go from the start
page (root of the tree) to the presentation of an article of a certain author.

 Adaptation Design

Adaptation design consists of the definition of adaptation rules and the graphical
representation of these rules in a UML collaboration model. The rules specify the
conditions under which the content, the navigation and the presentation are
adapted, which actions are performed for the adaptation and how the user model is
updated according to the observations of the user behaviour. The model shows how
rules collaborate with user behaviour, navigation, presentation and user model
elements.

Three types of hypermedia adaptation are distinguished: adaptive content (content-
level adaptation), adaptive navigation support (link-level adaptation) and adaptive
presentation (layout-level adaptation). The first presents to the user content that

u:User

display (LibraryMenu)

execute (OnlineLibrary)

open ()

select (Author)

fill + submit (AuthorForm)

select (ArticleItem)

display (SearchAuthor
Form)

select (SearchAuthorItem)

display (AuthorIndex)

:Window2

display (Author)

display (ArticleIndex)

select (Article)

display (Article)

display (LibraryMenu
Author)

:Window1

«window»

«window»

:MainRight
«frame»

:MainLeft
«frame»

display (LibraryInfo)

Figure 7-18: Part of Presentation Flow Model of the Online Library Application

Chapter 7 • The Software Development Process • 249

has been adapted to the current state of her model. The second consists of
suggesting the “best” link, sometimes forcing the user to follow a determined path.
The most popular techniques for adaptive navigation are: direct guidance, adaptive
ordering, adaptive hiding and adaptive annotation. The third type adjust the layout
without making changes to the content choosing e.g. different fonts, size of images,
colours, etc.

Example: Online Library

In Section 6.5 of the previous chapter a list of rules of the Online Library
application is presented. The following three rules are those used in the adaptation
model shown in Figure 7-19.

:InputSearchByArticle

:Rule 7

:Rule 8

:Rule 10

:UserKeyword

:Visited

:Marked

:ArticleIndex

window1

:SearchArticleByTitle

:MainRight

?
:ArticleByTitle

:Registered
User

1: fill
(SearchArticleForm) 4: register(input)

3: getArticles(input)

15: generate
Presentation()

 5: trigger()

8: trigger()

6: neg:=get (negative)

7: remove (neg)

9: pos:=get (positive)
10: sort (pos)

11: trigger()

16: include()

17: present()

12:marked:= get()

13:visited:= get()

14:annotate
(marked, visited)

2: submit (SearchArticleForm)

Figure 7-19: Adaptation Model of the Online Library Application (Partial View)

250 • The Software Development Process • Chapter 7

• Rule 7: An article included in any ArticleIndex or ArticleGuidedTour is
removed if the negative keyword list includes two or more keywords from
the article.

• Rule 8: The articles in the ArticleIndexByTitle, VisitedArticleIndexByTitle,
NewArticle ByTitle and ArticlesGuidedTour are sorted based on the positive
keywords of the user model.

• Rule 10: Annotation is performed in the article indexes as follows:

− red bullets for articles not visited and not marked,
− white bullets for visited but not marked, and
− blue bullets for visited and marked.

The UML collaboration diagram shows the adaptation process that begins when a
SearchArticleByTitle form is filled by he user. The list of articles is provided by the
ArticleByTitle context, which is adapted through elimination of links and through
addition of links given by positive keywords. The graphical visualisation of the
model permits the recognition of loops in the flow of rules triggered by other rules.

 Architecture Design

The purpose of the architecture design is to outline the architecture (design view)
by identifying the following:

• subsystems and their interfaces,

• design classes, that are relevant for the architecture,

• generic design mechanisms to handle functional and non-functional
requirements, and

Library
Server

Library
DB

«Internet»

User
Client

 Registered
User Client

User

Admin

Library
Server

Library
DB

«Internet»

«Internet»

Registered
 User

«Intranet»

Admin
Client

Figure 7-20: Architecture of the Online Library Application

Chapter 7 • The Software Development Process • 251

• reuse possibilities, such as reusing parts of similar systems or general
software products.

Example: Online Library

A simple architecture for the Online Library application is shown in Figure 7-20.

 Detailed Design of Classes

During the previous modeling activities of the analysis and design workflow: user
model, conceptual, navigation, presentation and adaptation design a set of classes
have been outlined. During the first iterations the classes are usually named, some
attributes are defined and sometimes some operations are identified.

During successive iterations the classes are detailed. The activity of detailing a
class is performed by the hypermedia engineer, who knows the implementation
requirements for classes. This activity includes the following sub-activities: define
the class operations, define class attributes, identify aggregation, association,
inheritance and dependency of classes, describe its methods, determine its states
and establish the requirements relevant to its implementation.

Example: Online Library

The description of the design class AuthorByNameByPublication is shown in Figure
7-21.

Name: AuthorByNameByPublication

Description: is an index of all authors of a publication ordered by name.

Inherits from class: none

Attributes: authorName

Operations: getAuthor ()

Relationships: Author, PublicationMenu

Diagrams: Navigation Structure Diagram

Special requirements: None

Trace: Author

Figure 7-21: Class Description

252 • The Software Development Process • Chapter 7

 Definition of Subsystems and Interfaces

The objective of dividing the system in subsystems is to obtain a set of subsystems
as independent as possible. with the aim to be specified and implemented by
different developers. This independence allows each subsystem to be implemented
by another hypermedia engineer. Subsystems have to provide the right interfaces to
fulfil their purposes. The number of dependencies from one subsystem to the others
and to the interfaces must be minimised.

Example: Online Library

In a simplified Online Library application the following main subsystems are
identified (Figure 7-22).

7.3.3 Implementation

Implementation consists of transformation of the results of the design phase, i.e.
design classes, subsystems and interfaces into an implemented system in terms of
components, e.g. source code, scripts, executables, etc. Implementation issues, such
as conversion of documents, generation of templates and/or dynamic generation of

Browsing UpdatingAdapting

User Model Library DB

Admin AssistantUser Assistant

Figure 7-22: Subsystems of the Online Library Application

Chapter 7 • The Software Development Process • 253

pages have to be considered in this workflow. Sometimes the inverse process of
hyperdocument generation, i.e. the linearisation of hypertext is also part of the
implementation process.

Implementation is accomplished in successive activities starting with generation of
components, assembling subsystems and interfaces and finishing with software
integration. To generate adaptive hypermedia systems the same software tools and
languages are used as for the implementation of high interactive and complex non-
adaptive hypermedia applications. Figure 7-23 presents the workflow implemen-
tation.

The typical components to be produced during implementation of adaptive hyper-
media systems are:

Architectural
Implementation

Hypermedia Engineer Multimedia DesignerArchitect

Implement
User

Model

Implement
User

Interface

Provide
Content

Implement
Hyperspace

Structure

Integrate
Subsystems

Implement
Adaptive

Mechanism

System IntegratorContent Provider

Architecture
[implementation

view]

Content

Deployment
Model

Hyperspace
Structure

User Model

User
 Interface

Adaptive
Mechanism

Adaptive
Hypermedia

System

Build
Integration

Plan

Integration
Plan

Figure 7-23: Implementation Workflow

254 • The Software Development Process • Chapter 7

• media components, such as text, images, video, audio and animation
(they constitute the content of the hypermedia application);

• databases to store the content, i.e. a relational database or a mark-up file
system organised into a hierarchical or graph structure;

• structure components required by the hypermedia paradigm, such as
menus, indices, guided tours and links;

• user interface components, such as windows, frames, buttons, logos,
forms and banners;

• components for the dynamic page generation, such as CGI scripts or Java
servlets;

• search engines;

Implementation is the main focus during construction, but implementation is also
carried out during inception to create a prototype, during elaboration to create the
baseline architecture, during transition to handle late defects and during mainte-
nance to keep a running system.

The implementation activities are performed by five different types of workers: the
architect, content provider, multimedia designer, hypermedia engineer and system
integrator. They produce the following artifacts: the implementation view of the
architecture, the implementation model, the deployment model, the content, the
hyperspace structure, the user interface, the integration plan and the adaptive
hypermedia system.

Adaptive hypermedia applications require the integration of different
implementation techniques, such as static pages specified in markup languages like
HTML, DHTML or XML and pages generated dynamically from information
stored in databases. To build the bridge between Web and the database different
technologies and architectures can currently be used. These include:

• Common Gateway Interface (CGI) that is the oldest method used for
implementing Web database gateways. CGI script progarams are written
in programming languages, such as Perl, C++ or Visual Basic. The
advantage of CGI scripts is it is simple to implement and available on all
Web servers for free. The disatvantage is that database connection can
not be maintained, i.e. each CGI script that queries the database
establishes a new connection between the CGI and the DBMS.

• Active Server Pages (ASP) is a Microsoft technology that allows scripts
embedded in the HTML code, e.g. VBScript, JScript, PerlScript. ASP are
server scripts and support the execution of SQL statements for database
access.

Chapter 7 • The Software Development Process • 255

• JavaServlets run inside a Java Virtual Mashine on the server. The
advantage of JavaServlets approach is its invocations are persistent. They
also are portable across operating systems and Web servers.

• OBDC and JBDC are drivers delivered with databases that allow a direct
connection beween database and application.

In addition, technologies for animation, images, audio and video are used for the
development of multimedia applications. No further details about current
implementation techniques are given here, since implementation techniques are
continually changing and would no longer be up to date in the near future.

♦ Artifacts

During the implementation workflow the artifacts produced are the components of
the system. They are related to the content, user model, user interface, adaptation
process and hyperspace structure. In order to support the development of these
artifacts some models are build or refined. These are the deployment model and the
implementation view of the architecture. The integration plan is also an artifact of
this workflow as is the adaptive hypermedia system itself, which results from the
integration activity.

 Architecture (implementation view)

The architecture description contains an architectural view of the implementation
model showing the artifacts that are relevant to the architecture. These artifacts are:
the subsystems, interfaces and their relationships as well as the key components of
the application.

 Deployment Model

The deployment model is an object model that describes the physical distribution
of the system among computational nodes. It shows the mapping between the
software architecture and the system architecture, i.e. the hardware architecture.

 Integration Plan

The integration plan describes the sequence of incremental iterations required to
construct the adaptive hypermedia system by successive integration of subsystems
and components. It details the parts that are to be added in each iteration and the

256 • The Software Development Process • Chapter 7

functionality that is expected to be implemented after each integration. A partial
system is constructed in each iteration.

 Content

The content includes different types of media, such as text, images, audio, video
and animation. Each media type requires special treatment and appropriate tools to
handle them during creation. Not all content elements are created from scratch,
some are taken from other applications, i.e. they are reused or adapted.

Text is usually the predominant media type in hypermedia applications. If a text is
not specially created for a hypermedia application, it usually requires some
adaptation work. Texts included in adaptive hypermedia applications must be,
whenever possible, specific, concrete and precise. Two types of images are used as
a complement to the text: bitmap graphics and vector graphics. The major sources
of bitmap work are photographs, scanned images, screen dumps and pictures
created using special paint programs.

Audio, video and animation are dynamic time based media. The effective use of
sound can seldom substitute written information, but has the advantage of
attracting the user’s attention. Video provides a rich source of documentation. The
quality of the video material plays an important role in its usefulness in adaptive
teaching applications. Animation adds impact to a presentation and may contribute
enormously in a learning process. The storage of this multimedia content requires
some kind of organisation, such as multimedia databases or a set of files with a
hierarchical directory organisation.

 Hyperspace Structure

The hypermedia structure is given by a hierarchical HTML file organisation or by a
set of templates, which are dynamically filled with data by CGI-scripts at run-time
when these pages are requested. Other technologies are possible, such as the use of
a database request using PHP. The dynamic generation of the pages ensures the
separation of the content from the structure and presentation facilitating
maintenance. In addition, menus and indices have to be created to include
additional navigational support. The dynamic generation of pages requires the
content administration in a database. It is important to improve the quality of the
hypermedia structure with the aim of reducing the “lost in hyperspace” problem.

Chapter 7 • The Software Development Process • 257

 User Interface

The user interface is the component of the application with which the user has the
most direct contact to. It gives the user the look and feel of the application.
Multimedia designer have to find the right balance in terms of size, colours and
position of user interface objects in order to avoid cognitive overloading.

 User Model

The user model is a structure that represents goals, interests, preferences, tasks and
knowledge of the user.

 Adaptive Mechanism

The adaptive mechanism is the implementation of the rules that ensure adaptive
content, adaptive navigation and adaptive presentation as well as update of the user
model with the information provided by the user behaviour observation. User
observation is also responsible for the adaptive mechanism.

 Adaptive Hypermedia System

The hypermedia system is the sum of the content, user model, adaptation
mechanism, hyperspace structure and user interface components that are integrated
to provide the full functionality of the system.

The artifacts in the implemented adaptive hypermedia system (implementation
model) are components, subsystems and interfaces. According to the functionality
of these model elements in the hypermedia system, they are classified into content
model elements, structure model elements and presentation model elements. The
resulting system is a collection of components, and the implemented subsystems
that contain them. Components include both deliverable components, such as
executables, and components from which the deliverables are produced, such as
source code files.

♦ Workers

The implementation of hypermedia applications requires a more heterogeneous
group of workers than the development of traditional software. Content providers
and multimedia designers are required in addition to the architect, the hypermedia
engineer and the system integrator. The component engineer (Unified Process) is

258 • The Software Development Process • Chapter 7

called a hypermedia engineer since his profile contains specific skills required for
hypermedia development.

 Architect

During the implementation phase, the architect is responsible for the integrity of
the implementation model and ensures that the components of this implementation
model are implemented and integrated. He is also responsible for the mapping of
produced components into physical nodes.

The profile of an architect is given in Section 4.1 where the responsibilities of the
architect are defined within the context of the requirements capture workflow.

 Content Provider

The content provider is responsible for providing the raw material that will be
included in the adaptive hypermedia application. This material mainly consists of
text and some images, video, audio and/or animations. He digitises them and
chunks them into appropriate pieces of information as well as providing alternative
content for different user profiles.

The profile of the content provider is characterised by the following skills:

• experience with the legacy applications which are the source of data, and

• text composer experience.

 Multimedia Designer

The multimedia designer is responsible for the production of all multimedia
elements, such as windows, buttons, logos, images, etc. that the application
requires, as well as for the creation or reworking of existing multimedia content,
etc.

The profile of the multimedia designer includes the following skills:

• knowledge of tools for the creation and the manipulation of images,
video, audio and animations,

• experience in the design, integration and synchronisation of multimedia
elements, and

• creativity skills.

Chapter 7 • The Software Development Process • 259

 Hypermedia Engineer

The hypermedia engineer defines and maintains the source code of one or several
components which implement the structure of the hypermedia application. He
assures that these components implement the correct functionality, i.e. the
functionality specified by the design classes and the use cases realisation. Usually
the hypermedia engineer of a complex application is responsible for all the
components of one subsystem.

The profile of the hypermedia engineer is outlined in Section 4.2 together with his
activities in the analysis and design workflow.

 System Integrator

System integration cannot be the responsibility of the hypermedia engineers.
Instead, a system integrator is assigned to plan the sequence of the system’s that
are build in each iteration and the successive integration of the subsystems. A
characteristic of hypermedia applications is the integration of text, images and
time-dependent media, such as video, audio and animations as well as the
integration of components developed using different technologies. The result of the
system integrator’s planning activities is the integration plan.

The profile of the system integrator includes the following skills:

• good communication skills,

• general domain knowledge,

• experience in system integration,

• knowledge of multimedia synchronisation, and

• experience in the implementation language that has been chosen.

♦ Activities

The main goal of the implementation workflow is to obtain an implemented
system. To achieve this goal the system architect outlines the key components of
the implementation model. Based on the implementation model and the content
provided (by the content provider) the hypermedia engineer implements the
hyperspace structure and the system integrator builds the integration plan. The
multimedia designer implements the user interface using the implementation
model and the content. The objective of the system integration activity is to
combine content, hyperspace structure and user interface as well as user model and
adaptation rules. In addition the aim is to test the functionality of each component.

260 • The Software Development Process • Chapter 7

 Architecture Implementation

The objective of architectural implementation is to outline the implementation
model and its architecture and to identify the components that are relevant to the
architecture, such as executable components. A further objective is to map
components to nodes of the network configuration.

 Provide Content

An important activity during the implementation process is to capture or generate
the underlying data for the content and convert it into an appropriate format. The
resources needed for this activity are often underestimated. The conversion process
is required for example when the data to be used in the hypermedia application
comes from legacy applications, such as paper-based documentation, manuals or
image, audio and video archives.

This process involves several activities, such as:

• obtaining the raw data from legacy records or by new recording of
information,

• scanning text and images,

• digitising images and video,

• capturing audio,

• applying character recognition to scanned text,

• adjusting quality, size, colours of images,

• chunking the data into appropriate pieces of information, etc.

The main problem is the difficulty in automating some of these activities, such as
the adjustment of quality of images and the correction of scanned text.

 Implement Hyperspace Structure

Once the suitable data was obtained, the data needs to be organised according to
the structure defined in the navigation and presentation design activities. The
implementation of the hyperspace structure thus involves the following activities:

• implementation of templates,

• introduction of linking mechanisms,

Chapter 7 • The Software Development Process • 261

• storage and organisation of the data, and

• creation of mechanisms for automatic page generation.

 Implement User Interface

The implementation of the user interface is one of the greatest consumers of
implementation time in the development process of adaptive hypermedia
applications. During this activity a user interface is implemented based on the
presentation design. The logical design determines which user interface elements
are needed while the physical design provides a first approach to the visual aspects
and distribution of these user interface elements.

The activity implement user interface is performed by the multimedia designer,
who produces a user interface prototype during the first iterations and a final
version in the last one.

 Implement User Model

The implementation of the user model consists of the definition of the schema of
the user model tables or database, the specification of attributes and possible range
of values for these attributes as well as the implementation of stereotyped profiles.

 Implement Adaptive Mechanism

The implementation of the adaptive mechanism consists of the codification of the
global and/or local rules and the methods that trigger and execute these rules for
adaptation and user model updating. These rules can be stored in a database or can
be implemented as Java classes, for example.

 Build Integration Plan

The objective of this activity is to plan the new components and/or functionality to
be included in the next iteration. The system that is built during an iteration should
not include too many new components or improvements. It should be easy to test
and should allow for easy documentation of the changes. The following steps can
be used as a guide to constructing an integration plan:

• decide which use case to include,

• identify the subsystem or the design classes that participate in the use
case realisation,

262 • The Software Development Process • Chapter 7

• identify the implementation subsystem or components in the
implementation model which can be traced to the subsystem or design
classes of the second step,

• plan to include the implementation of the subsystem or the components in
the subsequent build.

 Integrate Subsystems

Following the plan elaborated during the activity “build integration plan” the
components are included in the current system, compiled and linked. The new
build is then ready for the testing process performed during the supporting
workflow.

7.4 Project Management

The development life cycle of a software application requires the support of a
project management workflow. There exists an abundance of literature on this
topic. The objective of this section is to outline the steps of the project management
process and to show that there are a few aspects related to adaptation that have to
be taken into account and that entail additional risks in comparison to non-adaptive
systems.

All projects have a technical aspect and a management aspect. The purpose of
project management is to control, trace and evaluate the project. Management and
technical aspects of a project have to fit together. A series of milestones are
therefore set. A milestone is a concrete defined or determinable event with
precisely determined artifacts to be delivered. Milestones can be combined with
reviews. There are few tools, which can be effectively used in project management.
They are mostly used for documentation purposes, such as GANTT charts are.

The project management workflow consists of risk management, iteration planning
and iteration evaluation workflows as depicted in Figure 7-1.

7.4.1 Risk Management

Introducing new technologies increases the potential risks of a project.
Technologies, such as servers, components and languages for the implementation
of hypermedia applications are new or improving permanently. Adaptive
hypermedia applications are still at an experimental development stage. It is

Chapter 7 • The Software Development Process • 263

therefore important to identify risks for the project at an early iteration of the
inception phase, to determine how critical these risks are and to define actions to
mitigate them. The risk management workflow is presented in Figure 7-24.

Risks are whatever prevents the success of the project. The success of a project can
be defined as the meeting of all requirements and constraints specified in the
project. Risks can be defined in the software development process more precisely
as a variable that, within its normal distribution, can take a value that endangers or
reduces the success of the project.

Risk management is a procedure the goal of which is to be ensure awareness of
risks as a prerequisite for managing them. Activities, which must carried out, are
the identification of the risks at an early stage, risk evaluation, analysis of risk
impact and definition of a risk strategy to handle the risks. The four main strategies
according to Boehm (1991) are:

ActionList
for risk strategy

Evaluate
Risks

Identify
Risks

Project Manager

Analyse
Risk Impact

Prioritise
Risks

Define Actions
for Risk Strategy

Risk List

Figure 7-24: Risk Management Workflow

264 • The Software Development Process • Chapter 7

• Risk prevention, i.e. the reorganisation of the project so that it cannot be
affected by the risk.

• Risk transfer, i.e. changes in the project so that someone or something
else bears the risk (customer, vendor or bank).

• Risk acceptance, i.e. monitoring the risk symptoms without changes in
the project elaborating a contingency plan just in case the risk emerges.

• Risk mitigation, i.e. taking actions to reduce the probability of impact on
the project.

The Euromethod framework (1996) as well as the Information Services
Procurement Library − ISPL − (1999) are methodologies that include guidelines for
risk management applicable to general software development. The ISP for Web
Engineering book treats, amongst other aspects, risk management in the acquisition
and planning process of Web applications (Koch & Helmerich, 2000).

♦ Artifacts

The artifacts of the risk management workflow are the risk list and the list of
actions necessary to handle these risks as shown in Figure 7-24. The risk list is
produced at the very beginning of the project and completed with the results of the
risk evaluation and an analysis of the risk impact. Both the risk list and action list
must be continuously updated along the whole project.

 Risk List

A risk list is a sorted list of known, open risks to the project, sorted in decreasing
order of importance according to an associated probability of occurrence or the
probability of impact on the project.

For the evaluation of risks it is important to distinguish between direct and indirect
risks. A direct risk is one over which the project has some degree of control;
indirect risks are ones which cannot be controlled.

 Action List (for Risk Strategy)

The action list is a list of appropriate actions that have been selected for each risk.
Selection also implies strategy selection, i.e. a decision as to whether the risk can
be prevented, transferred, accepted or mitigated. Possible actions for the different
risks strategies are suggested by risk management methods.

Chapter 7 • The Software Development Process • 265

♦ Workers

Although a risk expert can be consulted, the project manager is the person
responsible for the overall project development including risk management.

 Project Manager

The project manager is responsible for the communication, planning and evaluation
activities of the project. This includes communication and interactions between
customers, the developing team and users. The project manager allocates resources,
establishes priorities and co-ordinates review activities to ensure the quality of the
project results.

The profile of the project manager includes the following skills:

• experience in planning and co-ordination activities,

• knowledge of the development process,

• knowledge of the business and hypermedia domain,

• knowledge of risk management,

• practice in budgeting and resource planning,

• experience in project documentation, and

• practice in review and versioning planning.

♦ Activities

The activities performed by the project manager in the risk management workflow
are: the identification and evaluation of risks, analysis of risk impact on the project,
prioritisation of risks and the definition of actions for a strategy to handle the risks,
i.e. avoid, transfer, accept or mitigate them (see Figure 7-24).

 Identify Risks

To identify risks the project manager utilises check lists such as the general list of
questions presented by the Rational Unified Process (2000), the list of specific
situational factors for risks presented in ISP Web Engineering (Koch & Helmerich,
2000) or he organises a risk workshop. To give an idea of what risks may arise a
few general risk factors are listed:

• commitment to the project,

• size of project in relation to other projects of the organisation,

266 • The Software Development Process • Chapter 7

• team configuration (work in other projects),

• availability of domain experts,

• dependency on other projects,

• measurement of results, and

• schedule.

A list of a few specific factors that may produce risks in an adaptive hypermedia
development project is given here:

• use of innovative Web technologies,

• complexity of multimedia content, navigation structure and/or
presentation,

• experience of the workers with the implementation of adaptive
mechanisms, and

• difficulty of the user monitoring process.

Example: Online Library

The list of risks of the Online Library project consists of: a team, that has not
worked together before, workers who have no experience in the development of
adaptive systems and a project which plans to use new technologies to ensure a
good performance.

 Evaluate Risks

The evaluation of risks consists of describing the risks and giving an estimation of
how complex or how uncertain they are. For example selecting one of the following
values: high, middle or low complexity or uncertainty.

 Analyse Risk Impact

As for risk evaluation, the impact the risk has on the success of the project can be
classified by selecting the value high, middle or low or by applying a percentage.
The list can be extended to a table with columns for evaluation and impact values.

Chapter 7 • The Software Development Process • 267

 Prioritise Risks

The activity of risk prioritisation involves in the assignment of priorities to risks.
The list can be ordered according to priority set or a priority number can be
included in the table.

Example: Online Library

The following table shows the risk and impact evaluation as well as the priorities
assigned for the treatment of the risks.

Risk Evaluation Impact Priority

team configuration low low 3

no experience in development of
adaptive hypermedia systems

high high 1

use of new technologies middle high 2

Table 7-25: Risks for the Online Library Project

 Define Actions for Risk Strategy

Risk strategy actions are obtained from lists in the relevant literature compiled
specifically for this purpose and then adapted to the project by the project manager.
The adjustment of the list is based on the project manager’s experience in similar
projects, for example.

Example: Online Library

The following table shows risks, and actions to mitigate these risks.

Risk Action

team configuration organise workshops

no experience in development of AHS plan additional time for development
establish strict review process

use of new technologies offer training
plan tool evaluation
plan additional test iterations

Table 7-26: Actions to Mitigate Risks for the Online Library Project

268 • The Software Development Process • Chapter 7

7.4.2 Iteration Planning

In the first iteration a project plan is elaborated that consists of an iteration plan for
each basic phase: inception, elaboration, construction, transition and maintenance.
During each iteration the plan for the next phase is adjusted, possibly including
planning for additional iterations where necessary. This iteration planning is done
within a risk management framework that allows the analysis of the critical success
factors involved and actions, which are planned to reduce these risks. Special
attention must be paid to the milestones to be included in the definition of the
iteration plan for the design and implementation of the adaptive mechanisms.

The objectives have to be mapped onto a schedule, milestones must established
and measurements need to be selected in order to achieve the goals set. Costs and a
schedule are established at this stage for the requirements capture, design,
implementation, quality control and maintenance.

The definition of the initial and final states, cost, milestones and deliverables help
to produce an iteration plan and a delivery plan.

Define
Milestones

Evaluate
Initial State

Project Manager

Assign
Resources

Define
Deliveries

Delivery Plan

Define
Final State

Calculate
Costs

Develop
Iteration

Plan

Iteration Plan

Figure 7-27: Iteration Planning Workflow

Chapter 7 • The Software Development Process • 269

♦ Artifacts

Although a set of activities are performed during the iteration planning workflow,
the results of these activities only support the production of documents for two
main results of the workflow: the delivery plan and the iteration plan. The iteration
planning workflow is shown in Figure 7-27.

 Delivery Plan

A delivery plan is a commitment of results to be delivered fulfilling a set of
conditions relating to schedule, budget and resources conditions.

 Iteration Plan

The iteration plan is a fine-grained plan that includes a time-sequence set of
activities and task, assigned to resources and containing task dependencies for the
iteration. Detailed diagrams are used to show timelines, intermediate milestones,
testing starts, beta releases, demos, etc. for the iteration. An initial iteration plan
has to be elaborated at the beginning of the project, but in each phase the iteration
plan for the next phase is reworked.

The contents of an iteration plan comprises:

• the current status of the project,

• a list of scenarios or use cases that must be completed by the end of the
iteration,

• a list of risks that must be addressed by the end of the iteration,

• a list of changes that must be incorporated in the product,

• a list of activities to perform for the validation, verification and/or
testing, and

• a date for the review of the deliveries.

♦ Workers

The project manager is responsible for the activities performed during the iteration
planning. Project manager skills are described in the risk management workflow
subsection.

270 • The Software Development Process • Chapter 7

♦ Activities

The activities of this workflow are: evaluation of initial state, definition of final
state, calculation of costs, definition of milestones, assignment of resources,
determination of deliveries and determination of review schedule (see Figure 7-
27).

 Evaluate Initial State

Initial and final states are the starting point for a clear definition of the content,
structure, layout and adaptive features. Typical initial states are a non-adaptive
hypermedia system or a non computer-based environment.

 Define Final State

The definition of the final state is the description of the vision of the software
system to be built. It is not only important for the project management; it is also the
starting point of the requirements capture.

Example: Online Library

The idea is to build an online library that gives a personal support to the user. This
Online Library will offer information about publications to registered and
anonymous users. The publication information comprises journals, books and
proceedings...

 Calculate Costs

It can be difficult to estimate the efforts required for software development, quality
assurance and project management without the appropriate experience. In the case
of adaptive hypermedia systems this risk is even greater than for hypermedia
development. Tools and methods used in the development process of general
software may be used for estimation, such as Function Points (Dekkers, 1999),
COCOMO II (Boehm, Abts, Brown, Chulani, Clark & Horowitz, 2000), but there
also exists recent works of De Bra (2000) and Olsina (2000), which have analysed
hypermedia development and proposed new metrics.

It is important to document the resulting cost estimate for the project in order to
use such results in future cost calculations for other projects.

Chapter 7 • The Software Development Process • 271

 Define Milestones

The definition of milestones is established on the basis of a set of tasks or activities
that are defined for the project, the risks that are identified and the overall project
plan.

 Assign Resources

The resources needed for the iteration – human, financial, equipment, etc. have to
be assigned for the next iteration otherwise it is not possible to produce the results
planned in the delivery plan and scheduled in the iteration plan.

 Define Deliveries

For each milestone a report, at least, documenting the status of development must
be delivered. Usually, the deliveries of a milestone are a composite of documents,
models and software components.

A report of the requirements capture describing the use cases, the description of the
architecture, the models of the analysis and design process, the use case realisation,
a glossary, the implementation packages, a first beta release, the release 1.0,
successive etc.

Example: Online Library

The deliveries of the analysis and design step are the detailed description of the use
cases (Figure 7-4), the use case model (Figure 7-5), the glossary (Figure 7-6), the
conceptual model (Figure 7-8), the user model (Figure 7-9) the navigation model
(Figure 7-8), the presentation model (Figures 7-12 and 7-18), the adaptation model
(Figure 7-19), the implemented components and the final integrated version.

 Determine Review Schedule

The review schedule is usually part of the milestones that are defined for the
project. It establishes which milestone require an external review of the deliveries.
The review dates complete the iteration plan.

Example: Online Library

An iteration plan for an elaboration iteration in the Online Library sample consists
of the following items:

272 • The Software Development Process • Chapter 7

• status of the project: rough use case description and first glossary
finished,

• to do in this iteration: detailed description of use cases belonging to the
“update” package,

• workshop organisation: risk of the missing knowledge of the team
members of each other must be solved through three workshops planned
in this iteration,

• update of artifacts of previous iterations: new version of glossary,

• delivery date: 20.9.2000,

• review date: 20.10.2000.

7.4.3 Iteration Evaluation

To benefit from the iterative process, the project has to evaluate the results of an
iteration at the end of each iteration and each phase. The project manager is
responsible for this evaluation. The objectives of the iteration evaluation are:

• to adjust and to refine the plan of the next iteration, according to the
lessons learned in the current iteration,

• to modify the process, adapt tools, extend training or change steps
suggested by the experience of this iteration, and

• to review progress against the iteration and project plan.

Evaluate
Implemen-

tation

Project Manager

Evaluate
Requirements

Capture

Evaluate
Analysis and

Design

Produce
Iteration
Report

Iteration Report

Evaluate
Testing

Evaluate
Validation

Evaluate
Verification

Figure 7-28: Iteration Evaluation Workflow

Chapter 7 • The Software Development Process • 273

The iteration report has to give answers to questions, such as:

• Is work proceeding within budget and schedule? or

• Is the quality of the deliveries in line with the requirements specification?

♦ Artifacts

The artifact produced in the iteration evaluation workflow is the iteration report as
it is shown in Figure 7-28.

 Iteration report

The iteration report summarises all the activities and results of the iteration. It’s
main objective, however, is the critical evaluation of the iteration. The report
focuses on problems that emerged during the iteration and solutions that proved to
be effective as well as a description of situations that have not been properly
resolved. The documentation of the lessons learned in the iteration is particularly
important. In a new software development field such as adaptive hypermedia such
material forms the basis of best practice documentation.

The iteration report has to fulfil the layout and level of granularity that is defined
for all documents in the project. Documentation can be standardised through
templates to be used or by guidelines. A useful place to start definitions such as
guidelines or templates are the ISO and IEEE software engineering standards
(IEEE, 1987/1993 and IEEE, 1988/1993).

♦ Workers

The project manager is responsible for the evaluation of the iteration. See the
description above in the risk management workflow subsection.

♦ Activities

A set of activities are performed for the evaluation in each iteration. Not all of the
activities mentioned below are relevant to each iteration; the appropriate activities
are chosen by the project manager, who produces the iteration report based on
these evaluations. The list of evaluation activities include:

• evaluate requirements capture,

• evaluate analysis and design,

274 • The Software Development Process • Chapter 7

• evaluate implementation,

• evaluate validation,

• evaluate verification, and

• evaluation testing.

These activities are not described in detail here. They do not differ from the
evaluation activities of the development process of other kinds of software. The
evaluation is a critical step in an iteration and should not be skipped. If iteration
assessment is not done properly, many of the benefits of an iterative approach will
be lost. The results of the evaluation activities are processed during the report
production activity (see Figure 7-28).

 Produce Iteration Report

As a result of the evaluation an iteration report is produced by the project manager.
This document is not updated. It should include the following information at least:
to what evaluation it applies, what is affected or influenced by the document, a list
of reference documents, models or software that were used as a basis for
evaluation, evaluation criteria established by the iteration plan for functionality,
performance and quality, references to test results, external events, success of the
iteration, problem areas that need to be reworked in upcoming iterations. Focus
should be put on adaptive and innovative aspects of the projects.

Example: Online Library

The following is the iteration report of an elaboration phase in the Online Library
sample:

Iteration Report
 Elaboration Phase: Iteration 3 – Navigation Specification
1. Objectives
 Completeness of navigation model.
2. Scope
 Compare textual requirements description, use case model and navigation
 model.
3. Documentation used
 Requirements description
 Use case model
 Navigation model
4. Objectives reached in the iteration
 Yes, the navigation model is completed.
5. Accordance with schedule plan
 One week delay.
6. Results relative to evaluation criteria

Chapter 7 • The Software Development Process • 275

 The navigation model includes the browsing functionality specified by the
 use cases (see 8).
7. External changes
 Additional comparison with a non-adaptive librarian system X was
 performed.
8. Rework required
 Keywords should also apply to authors, not only for publications and
 articles.

Figure 7-29: Sample Iteration Report for the Online Library Application

7.5 Quality Management

Although quality management is treated as a separate workflow that supports the
development process, it does not mean that quality checks are performed after
implementation has been completed. Quality management comprise validation,
verification and testing. The quality management activities should begin early and
are integrated in the process as shown in Figure 7-1.

• Validation checks whether the result really is what the customer actually
wants.

• Verification checks whether the results agree with the specification.

• Testing checks whether the produced software is correct, i.e. it runs
without failures.

The most important aspect of quality assurance is the attitude of the workers
towards it. They must be conscious that quality management takes time and its
costs must be included in the budget. Validation, verification and testing activities
are part of the life cycle process and must be planned in the same way as design
and implementation activities.

Hypermedia applications as with other software applications require quality
assurance activities. Validation plays an important role, even more so if the
customer is new to the electronic business world. Hypermedia applications require
tests for multimedia components, to prove the quality of the navigation structure
and special test to detect problems in the navigation space, such as the existence of
dangling links. Some tests, like the detection of dangling links must be performed
regularly, especially during maintenance.

The user plays a central role in adaptive hypermedia applications. These
applications therefore require, validation, verification and testing of an appropriate
adaptation to the individual user or user group. Test cases for potential user groups

276 • The Software Development Process • Chapter 7

have to be defined and it is very effective to have the test be performed by a
heterogeneous test group.

The quality of Web sites can be assessed by methods, such as Web-site quality
Evaluation Method (QEM). It is prescriptive and descriptive method based on the
evaluation and comparison quality characteristics and attributes in different phases
of the hypermedia cycle (Olsina, Godoy, Lafuente & Rossi, 1999).

7.5.1 Validation

Validation checks whether the result really is what the customer actually wants, i.e.
it ensures the customer’s satisfaction. Boehm (1981) describes validation with the
question: “Are we building the right product?”.The definition given by the IEEE
Standard Glossary of Software Engineering Terminology (1983) says: validation is
the process by which software conformance to the requirements specification is
tested. The use of use cases and prototypes are good techniques to facilitate a
validation process.

In Web applications users’s needs and typical user behaviour must be analysed to
learn what the user wants. It is difficult to marry the user requirements and the
customer’s vision. Hypermedia systems must be implemented in such a way that it
is possible to incorporate new technologies and new design alternatives in a near
future.

Validate
Architecture

Architecture Reviewer

Requirements
Review
Report

Validate
Requirements

Use Case
Reviewer

Architecture
Review
Report

Figure 6-30: Validation Workflow

Chapter 7 • The Software Development Process • 277

♦ Artifacts

Two artifacts are produced by the architect and requirements reviewer in this
workflow: the architecture review report and the requirements review report
respectively, as shown in the validation workflow of Figure 7-30.

 Architecture Review Report

The architecture review report includes the software architecture document with an
annotation indicating if it is accepted or rejected. In the latter case a list of changes
to be performed has to be included.

 Requirements Review Report

The requirements review report includes the following documents with an
annotation indicating if they are approved, or rejected with indications as to what
reworking is necessary:

• use case model,

• use cases,

• supplementary specifications, and

• glossary.

♦ Workers

The validation activities, i.e. the architecture and requirements validation are
performed by the architecture reviewer and the use case reviewer.

 Architecture Reviewer

The architecture reviewer plans and conducts the formal reviews of the software
architecture in general. The profile of the architecture reviewer has to include the
same skills as that of the architect, focusing more on the technical issues and
critical analysis of the architecture model.

 Use Case Reviewer

The use case reviewer plans and conducts the formal review of the use case model.
The profile of the use case reviewer has to include the following skills:

278 • The Software Development Process • Chapter 7

• knowledge of the business and hypermedia domain,

• general knowledge of user modeling and adaptive systems, and

• UML use case modeling techniques.

♦ Activities

Activities of this workflow are the validation of the architecture and requirements
(see Figure 7-30). Different techniques can be used for the validation:

• walk-throughs – These consist of a detailed going through of all the
documentation, and a comparison of results, such as models, with the
requirements description,

• audits – These consist of a comparison of results against a predefined
checklist or a checklist elaborated at the beginning of an iteration, or

• prototyping – This is the implementation of results in order to check if
the functionality and user interface design conforms with the
requirements.

 Validate Architecture

The validation of the architecture mainly consists of:

• error detection in the architecture model,

• finding requirements that are missing in the architecture design,

• assessing the observation of the user behaviour,

• assessing the adaptive functionality, and

• avoiding architecture over-design.

 Validate Requirements

To validate use cases lists of checkpoints that are part of the Rational Unified
Process (2000) can be used. These lists are not included here, although a few
important checkpoints for hypermedia applications are mentioned and some
specific checkpoints for adaptive hypermedia have been added.

• Do all actors be identified, which is particularly difficult in case of users
of Web applications?

• Are all navigation requirements of the variety of users considered?

• Do customers, users and designers alike understand the names and
descriptions of the use cases?

Chapter 7 • The Software Development Process • 279

• Do use cases reflect the adaptive needs of the actors?

• Do use cases include the capture of user behaviour?

Example: Online Library

Validation of the requirements in the sample application is carried out using the
walk-through technique. The requirements review report includes, for example the
following feedback for the use case select visited articles: add a reference to the
use case that handles the setting of marks by the user.

7.5.2 Verification

Boehm (1981) describes verification with the question: “Are we building the
product right?”. The IEEE Standard Glossary of Software Engineering Terminology
(1983) defines verification as the process of determining whether the product
conforms to the requirements specified in previous phases and it serves as a good
basis for the implementation. All the models developed must therefore be checked
to ensure that they satisfy the functional, non-functional and supplementary
requirements.

Walk-throughs, audits and prototyping are techniques that are also used for
verification. The verification must follow the verification plan included in the
project plan and in the iteration plans. One verification of the design model is
required per iteration in the elaboration and construction phases. Transition and
maintenance phases require reviews if these models are changed.

♦ Artifacts

The following review reports are produced as results of the verification activities:
reports on the architecture, on the models and on the design classes as shown in the
verification workflow of Figure 7-31.

 Architecture Review Report

 See Validation subsection.

280 • The Software Development Process • Chapter 7

 Model Review Report

The model review report is elaborated to list all defects detected in the models and
includes, whenever possible, suggestions for correction and changes.

 Design Class Review Report

The design class review report provides the classification approved or rejected for
each class of each subsystem or package. Defects, corrections and changes are
added to the document.

♦ Workers

The architecture reviewer is responsible for the architecture model review process
and the design reviewer is responsible for the design models and the design
classes.

 Architecture Reviewer

See Validation subsection.

 Design Reviewer

Verify
Architecture

Architecture Reviewer

Model
Review
Report

Verify
Design Model

Design Reviewer

Architecture
Review
Report

Verify
Design Class

Design Class
 Review
Report

Figure 7-31: Verification Workflow

Chapter 7 • The Software Development Process • 281

He produces a review plan for the design that supports a systematic verification of
all design classes and models against the requirements specification The design
reviewer profile has to include the following skills:

• general domain knowledge,

• general knowledge of user modeling and adaptive systems, and

• expertise in UML modeling techniques.

♦ Activities

The verification workflow consists of activities related to a thorough inspection of
the design models in order to reduce as much as possible changes in the design
decision during implementation workflows as much as possible. These activities
are the architecture, design model and design class verification (see Figure 7-31).

 Verify Architecture

See Validation subsection. The verification focuses on the comparison between
architecture model and requirements specification.

 Verify Design Model

The main purpose of the design model verification activity is:

• to ensure that the conceptual model is representative of the domain,

• to verify that the navigation structure is appropriate for the functionality
of the application,

• to compare the adaptive model with the adaptive functionality
specification,

• to detect problems in the presentation model, such as overloading or
missing links, and

• to ensure that the behaviour is allocated to the correct model elements,

Checklists provided by the Rational Unified Process, for example, can be used for
design model verification and specialised for adaptive hypermedia systems.

282 • The Software Development Process • Chapter 7

Example: Online Library

Verification of the models built for the Online Library is for example performed by:

• verifying that the conceptual model is complete, i.e. library, publications,
publishers, authors, articles and keywords (with their attributes, methods
and associations) are all concepts that are needed for an online library;

• verifying that for the navigation structure model all possible searches of
articles, authors, publications are covered, e.g. articles by publications,
articles already visited, relevant new articles, etc.;

• verifying that the each template includes the anchors necessary to
guarantee the navigation specified in the navigation structure model.
(This verification is not necessary if the generation of the templates is
totally automated).

 Verify Design Class

The design class verification must review each model element, i.e. each class,
interface and subsystem. In the case of subsystems, this means ensuring that the
subsystem realises that the behaviour specified in the interfaces has been allocated
to one or more contained classes or subsystems. For classes, this means that the
description of each operation is sufficiently defined so as to be implemented
unambiguously. General checkpoints provided by software development processes
can be used for verification.

7.5.3 Testing

Testing is a process of checking the correctness of the implementation results by
running a system. Testing primarily checks whether the produced software is
correct, i.e. it runs without failures.

The goal is to test functionality, performance, usability, compatibility and
reliability of the implemented system in general and to perform specific tests for
adaptive hypermedia systems, such as:

• an orientation test. This analyses how many steps a user has to go
through to get some piece of information,

• dangling links test. This checks if there is a target node for each link,

• test for unreachable nodes. This checks whether for each node there is a
path starting from a root node of the application to the node,

Chapter 7 • The Software Development Process • 283

• appropriate adaptation test. This checks that there is an adaptation
functionality defined for each attribute value of a user profile attribute.

It is important to test and analyse the impact of adaptive components on user
satisfaction levels, such as it is done by Strachan, Anderson, Sneeby & Evans
(1997).

♦ Artifacts

Testing artifacts are the test plan, test cases, test procedures, test components and
test reports as shown in the testing workflow of Figure 7-32.

 Test Plan

The test plan contains information about the purpose and goals of testing within the
project as well as the strategies to be used to perform testing and the resources

Implement
Test

Test Designer Integration Tester

Test
Plan

Perform
Integration

Test

Hypermedia Engineer

Plan
Test

Design
Test

Test
Procedure

Test
Case

Test
Component

Test
Report

Figure 7-32: Testing Workflow

284 • The Software Development Process • Chapter 7

needed. It is important to communicate the intention of the testing activities
through the test plan.

 Test Case

A test case is a set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to run a particular program path.

 Test Procedure

A test procedure is a set of detailed instructions for the set-up, execution, and
evaluation of results for a given test case (or set of test cases) and a method used to
compare the expected and actual results. The results of a test procedure can be
evaluated by simple visual comparison or by a non-visual method.

 Test Component

The test component is the code, which automates the execution of a test procedure
(or portion of a test procedure). Test components may be created using a test
automation tool, or programmed using a programming language.

 Test Report

The test report contains results from the testing workflow giving feedback about
changes and improvements that must be performed in the next iterations.

♦ Workers

The testing activities are performed by the test designer, hypermedia engineer and
integration tester.

 Test Designer

The test designer is responsible for the elaboration of the test plan together with
the project manager, for the design of the test cases and test procedure. The profile
of the test designer should include the following skills:

Chapter 7 • The Software Development Process • 285

• domain knowledge,

• knowledge of the adaptive hypermedia system or application-under-test,

• knowledge of testing and test automation tools, and

• diagnostic and problem solving skills.

 Hypermedia Engineer

The hypermedia engineer is responsible for implementing the test cases based on
the test design. See the analysis and design workflow for the description of the
profile of a hypermedia engineer.

 Integration Tester

The integration tester is responsible for executing the integration tests and
producing the final test report. His profile skills are similar to the skills required
for a test designer plus programming knowledge.

♦ Activities

The activities of testing are: plan of tests, design and implementation of tests and
execution of these integrated tests (see Figure 7-32).

 Plan Test

The plan test activity consists of collecting test-planning information and creating
an appropriated test plan based on this information. For the plan an acceptable test
sequence has to be defined based on risks, requirements and test resources.

 Design Test

The following steps must be performed for the definition of test cases and test
procedures:

• definition of test conditions,

• identification of use cases to test focusing on adaptive functionality,

• preparation of the appropriate test data, and

• specification of the expected test results.

Test cases may be reused or adapted from an iteration to the next one.

286 • The Software Development Process • Chapter 7

 Implement Test

To implement test means almost always writing or reusing code, so called test
scripts. The test environment has to be set-up including data, hardware, software,
tools, etc. Implemented tests are then executed by the integration tester. Usability
has to be tested, too.

Example: Online Library

The Online Library application is tested by a group of users, who test the
appropriateness of the adaptive functionality. In addition, tests for navigation path
length, a comparison of menu-based and map-based approaches may be performed.

 Perform Integration Test

Test procedures are executed during this activity manually or automatically. The
activity consists of:

1. setting up the environment,

2. executing the test scripts,

3. evaluating results,

4. determining the next action:

• if results are as expected, no action is necessary;

• if results are unexpected, the cause of the problem must be
 determined and resolved.

Chapter 8 • Development of SmexWeb Applications – A Case Study • 287

“ ...the power of a student model does not lie
in its fidelity but in the differences it indicates”

John Self,
Computer-Aided Learning and Instruction

in Science and Engineering,
July 1996.

8 Development of SmexWeb
Applications – A Case Study

The development process of UWE defined in the previous chapter is an approach to
a systematic development of adaptive hypermedia applications. The use of a
software engineering approach instead of an ad hoc implementation improves the
quality of adaptive and user-model-based hypermedia applications, reduces error-
prone implementation and facilitates documentation and maintenance. The
proposed methodology is validated with several applications: two important case
studies – the EBNF-application and the Taxonomy application – and other smaller
non-adaptive applications. These EBNF and the Taxonomy are both, adaptive Web-
based applications for which implementation the SmexWeb framework was used.
EBNF stands for Enhanced Backus-Naur Formalism, a grammar-like technique
used for describing the syntax of programming languages. The EBNF-application is
an exercising system for students visiting an introductory course in computer
science. The Taxonomy application is an exercising system that was developed for
botany students. It supports students to train and test their knowledge in subjects,
such as generative morphology and naming of plants.

The SmexWeb framework and the EBNF-application were developed by Albrecht
(1998) and by Tiller (1998). The Taxonomy application was implemented by
Pezdirc (1999)11.

11 These works have been developed within the scope of their diploma thesis under the author’s
advise at the Institut für Informatik, Ludwig-Maximilians-Universität München, Germany.

288 • Development of SmexWeb Applications – A Case Study • Chapter 8

In this chapter the development process of the EBNF-application is described in
detail while the Taxonomy application only is outlined, as the development process
is very similar. The first section provides an overview of the SmexWeb framework.
Section 2 describes the activities performed and the results obtained in each
particular phase following the UWE approach. In Section 3 the design models
performed for this application are presented. The fourth section outlines the
Taxonomy-application. Section 5 gives some conclusions to the learning process
supported by SmexWeb.

8.1 The SmexWeb Framework

SmexWeb (Student modelled exercising on the Web) is a framework for
implementing learning systems on the Web. In this chapter the user is also called
the learner or student and the developer is called the author (of the learning
material).

SmexWeb consists of a collection of abstract and concrete classes that permits the
development of teaching applications through instantiation, i.e. SmexWeb
applications (Albrecht, Koch & Tiller, 1999). The framework is generic enough to
create courses in any domain. It is a modular approach that allows for the reuse of
domain independent components, so that the author need only define content,
structure and presentation of the lesson as well as the adaptation rules, but not how
the adaptation mechanism is implemented.

SmexWeb applications, similarly to other adaptive Web applications observe each
learner’s behaviour and builds a user model for her. Based on this user model the
application dynamically adapts the material to be taught to the learner’s
characteristics and needs. SmexWeb´s user model is general enough to include
cognitive, knowledge and general abilities of the students. SmexWeb implements a
higher amount of interaction between the system and the learner than common
Web-based systems have achieved so far. Compared to similar systems, the number
of human-machine interactions that can be observed by the system has been
increased in the SmexWeb framework, hence allowing better a estimation of the
user’s needs and making learning more efficient. This is accomplished by using an
extra communication channel between the learner’s computer and the server, in
addition to the stateless Hypertext Transfer Protocol (HTTP) underlying the WWW
rules (Albrecht, 1998).

SmexWeb framework supports adaptive content – adjusting the content of the
pages to the learner’s knowledge and preferences – as well as adaptive navigation
support like link removing, link annotation and link ordering. The author of an

Chapter 8 • Development of SmexWeb Applications – A Case Study • 289

adaptive hypermedia application thus supports the learning process of the student,
suggesting links and annotating them individually. So far, the user still controls the
way trough the course material in an active, self-regulated and goal-oriented
acquisition process.

Yet sometimes in an application it is necessary for the system to take control
(Vassileva & Watson, 1996), contrary to the hypermedia paradigm, where the locus
of control always lies in the hands of the user. SmexWeb applications allow the
system to take control over the process of navigation offering to the learner some
help or guidance, when she seems lost, remains inactive or her behaviour
corresponds to a pattern behaviour (Albrecht, 1998 & Tiller, 1998). This is a new
concept in adaptive hypermedia systems – called passive navigation – used in the
SmexWeb applications for the first time. If the assumptions about a user and her
inactivity indicate that a different page to the one currently displayed is more
appropriate, the system navigates to that page.

Passive navigation widens the classical navigation paradigm of hypermedia systems
as it transfers part of the control from the user to the system, which in pure
hypermedia applications lies entirely on the user side. In this respect the learning
environment resembles more closely a classical teacher/learner situation. The
user’s feeling of being lost and subsequent frustration and demotivation is avoided.

The SmexWeb framework provides a basis for building an authoring tool for
adaptive hypermedia applications.

8.1.1 The Architecture

The components that make up the SmexWeb framework are the Web client, a
HTTP server and the SmexWeb server. The focus of the description is the
SmexWeb server, a collection of reusable abstract and concrete classes written in
the Java12 programming language. The subsystems of the SmexWeb server
framework correspond to the typical Intelligent Teaching Systems (ITS)
components as described in (Beck, Stern & Haugsjaa, 1996) although the Domain
Knowledge and Expert Model components are substituted by the Hyperspace
component. Those modules of the framework that have to be instantiated for a
concrete application are outlined in the subsections below.

The SmexWeb architecture resembles a classical client/server concept that is built
upon the WWW as shown in Figure 8-1. Most information exchanged between

12 Java 1.1

290 • Development of SmexWeb Applications – A Case Study • Chapter 8

client (learner) and server (SmexWeb) via the Internet is transported using HTTP,
which is the native protocol of the WWW. A standard Web server is used to
transfer all the content material to the learner and to pass data on to the SmexWeb
server application and back to the client. The content presented to the learner is
composed of standard HTML pages, which may contain any media type a Web
browser is capable of displaying. Learners have to identify themselves in order to
use a SmexWeb application. The identification is accomplished by using HTTP
access authentication. The adaptation of the pages presented to the learner is
performed by JavaScript13 programs embedded in the HTML code.

A SmexWeb application to be utilised by a learner requires only a system that has
Internet access, a standard Web browser, and the SmexWeb URL address. The
utilisation of standard products and technologies and the fact that there is no need
to install another software on the client side, provide the advantages of proven
functionality and efficiency of common products, and greater platform
independence.

13 JavaScript 1.0

client

server

:WebBrowser
:JavaApplet

:SmexWeb Server:HTTP-Server

«http» «CGI + access
authentication»

«socket» internet

Figure 8-1 Architecture of SmexWeb

Chapter 8 • Development of SmexWeb Applications – A Case Study • 291

The SmexWeb server consists of the following components: a Tutor, a User Model,
a Hyperspace and Communication subsystems (see Figure 8-2). These subsystems
implement the functionality described in the Munich Reference Model for adaptive
hypermedia systems in Chapter 4. The Hyperspace subsystem contains the concepts
of the domain model and the adaptation rules. The Communication subsystem
implements the adaptation model. The functionality of the Run Time Layer can be
found in the Tutor.

A typical learner’s request is processed as follows:

1. The HTTP server passes the request on to the SmexWeb server.

2. SmexWeb creates a component called Tutor for every learner logged on to
the system. The Tutor is responsible for keeping all the session’s
information about the learner and for processing her requests.

3. The tutor analyses the information package sent by the learner’s browser
and incorporates relevant information about the learner into the user
model.

4. Once the user model is up to date, the Communication subsystem generates
a small JavaScript program which includes control information that is
necessary in order to constructing an answer to the request. The answer is
based on the data contained in the Hyperspace and adapted according to the
current values of the UserModel.

5. This program is sent back to the browser via the HTTP server.

:SmexWeb Server

: Server : Tutor

: UserModel

: HyperSpace

: Communication

Figure 8-2: The SmexWeb Server

292 • Development of SmexWeb Applications – A Case Study • Chapter 8

6. The client browser executes the JavaScript, which retrieves all the media
necessary for assembling the pages of information and displays them
according to the user model.

In this way the workload is distributed between server and client side.
Furthermore, as the content adaptation takes place on the client side, the amount of
data transferred over the network can be minimised. For the learner this means a
faster response time of the system, which is an important factor in preventing loss
of motivation.

8.1.2 The Tutor

The Tutor subsystem implements an improved Dexter Run-Time Layer. It is the
heart of the server application. Following the metaphor of a private teacher a Tutor
object keeps track of all information bound to a single learner. Several users may
use one SmexWeb application at the same time, each one with her own Tutor, and
with the Tutors working in parallel like task manager of TANGOW (Carro, Pulido
& Rodriguez, 1999). The Tutor assists the learner during the whole session; it
observes the learner working with the material, builds a model of her/his
preferences and capabilities, and gives her assignments and answers to questions
according to this model.

For an accurate representation of the learner’s characteristics, the framework
allows a higher degree of interaction and observation than common Web-based
systems. The WWW paradigm only transmits data when a user follows a link. This
allows for an easy implementation of fill-out questionnaire tests in a learning
environment. Many Web-based teaching environments work in this way. (Kay &
Kummerfield, 1994; Weber & Specht 1997; Nakabayashi et al. 1997) A private
teacher, however will usually judge a learner’s performance not only by the result
of a test but also by how she achieves the solution. The teacher might want to give
the learner some hints along the way.

The WWW paradigm is extended in SmexWeb by an additional communication
channel between client and server to allow for a higher degree of interaction. Java
applets running in the learner’s Web-browser communicate directly with the
SmexWeb server as shown in Figure 8-1. This extension gives the author of a
teaching system the ability to collect more information about the learner, which in
turn enables better adaptation of the material to the learner’s needs.

The Tutor subsystem can be directly used without modification for every SmexWeb
application, since it does not contain any information related to the domain, the
user or the adaptation rules.

Chapter 8 • Development of SmexWeb Applications – A Case Study • 293

8.1.3 The Communication

The task of the Communication subsystem is to produce the answer to a given
request from the client. Information from UserModel and Hyperspace is collected
and integrated to form the answer. As mentioned above, the SmexWeb generates
control information, while the client browser has the task of assembling content
pages.

The author of a concrete SmexWeb application may use the Communication
subsystem without modification, as it provides a default handling. However, he
may change it if desired. The Communication subsystem contains all the heuristics
to translate the information for adaptation provided by the Hyperspace module into
concrete adaptive navigation techniques.

The SmexWeb framework guarantees navigation consistency. This is a difficult
issue in adaptive hypertext systems. A user may want to walk back a path she has
followed for a couple of pages. The material on a page is adapted to the user
according to the user model state at display time. Navigating back to a previously
read page might become confusing, as the user model might have changed over
time and the page might look completely different from what the learner expects.
The SmexWeb framework provides a built in mechanism to avoid frustration
arising in this situation: it maintains a personal history including the already visited
pages and the user model states. When a learner revisits a page using the back
button, the page automatically is displayed as it was when visited the last time.

8.1.4 The UserModel

The user model maintains the assumptions the system has about the user (Kobsa &
Pohl, 1995). Topics to be covered when building an adaptive system are: what
information about the user is to be modeled, how is the model organised and how
is the information about the user acquired.

As discussed in Chapter 3 the user model is divided into three sub-models:
learner’s domain knowledge, the user’s profile including interests and knowledge
in other domains and cognitive characteristics such as preferred media and learning
strategies. The latter two are likely to remain constant for a longer period and may
be reused in different applications.

The framework proposes the use of a short-term as well as a long-term user model.
When a user log-outs, her user model together with the above mentioned history is
stored in a long-term user model so that it can be restored at the beginning of the

294 • Development of SmexWeb Applications – A Case Study • Chapter 8

next session. This way the learner can continue a new session where he finished in
the previous one and the system is set to the previous state.

The SmexWeb framework supports the author in creating a user model for a
SmexWeb application by providing a basic user model and a number of sub-models
as well as access and manipulation mechanisms of these sub-models. The current
version of the framework contains three sub-models, data structure of which is
based on key-value pairs. The author, however, is free to create sub-models of any
kind and complexity reusing only some parts of the UserModel subsystem.
Different values of a user model may depend on each other. To maintain
consistency within the model, SmexWeb provides a mechanism of so-called
consistency rules. Interdependent parts of the model may be connected by those
rules and constraints may be stated. How these constraints are formulated, as
simple conditions or as more complex calculations, is up to the author.

Acquiring the knowledge about a user is achieved using so-called acquisition rules
based on condition-action pairs. Any screened interactions as well as all the
information about a user are available to formulate conditions and subsequent
actions. By instantiating the condition-action pairs, the author has a straightforward
way of implementing his strategies to estimate the learner’s characteristics in a
procedural, hence intuitive way.

8.1.5 The Hyperspace

The Hyperspace subsystem consists of a set of nodes and links. Each node in the
structure is linked to one physical page.

SmexWeb clearly separates the structure of a hypertext document from the physical
pages presented to the learner. This separation is suggested by many well-known
hypertext reference models, such as the Dexter Model (Halasz, 1994). The author
has the freedom to take different steps in the creation process of a course, which
are untied from each other: The representation of the mental model and the
suggestion of individual ways through it are a matter of the courseware structure.
The author builds a graph of links and nodes by instantiating the respective classes
of the framework. She/he declares the importance of the links and nodes for the
individual learner. Different link representations and annotations may be specified,
dependent upon different user model states.

The presentation and adaptation of material is covered during the page creation
step. Each page is a downloadable file referenced by the hypertext structure in the
framework. The idea of writing an adaptive page is based on page fragments, as
suggested by Kay and Kummerfield (1994). SmexWeb widens this concept by

Chapter 8 • Development of SmexWeb Applications – A Case Study • 295

allowing any kind of displayable items. An author can explain concepts in a variety
of ways and assign each fragment to certain users. According to the state of the
user model, the most appropriate alternatives are presented to the user. Examples
are alternative versions of a single word or a whole video that might only be
presented to learners preferring this kind of media.

8.2 Development of the EBNF-Application

The SmexWeb framework was used as basis for the EBNF-application developed
for students visiting an introductory course in computer science. The application
offers the possibility to practice EBNF, a formal grammar used for programming
language description taught on the course. The SmexWeb application on EBNF is
intended for the heterogeneous group of students on this course. These are students
of various subjects whose minor is computer science from the first up to the eighth
semester, together with elderly people. Neither experience in working with
computers and interactive systems nor the ability to understand and apply abstract
formalisms has to be taken as prerequisite.

The idea of the EBNF-application is the following: The student has to respond to
an initial interview to allow the system to build first assumptions about her
knowledge and abilities. Then a first exercise is presented to the learner and the
opportunity to choose alternative exercises from other categories. In the next steps,
the student interactively solves exercises from different categories. The system
supports the student activities in different ways, depending on the estimated
cognitive abilities of the user. Finally, the student is asked to apply the acquired
knowledge and skills to solve a similar exercise without support. The student may
request pages containing context sensitive help and explanation of the domain
concepts at any time. Under certain circumstances, the system may present these
pages to the user by means of passive navigation. The system always suggests one
exercise but offers other exercises with different degree of difficulty to the learners,
e.g. to whom already knows EBNF well.

The activities that have been performed in each development phase to produce the
EBNF-application are briefly explained in the following sub-sections. These
activities follow the guidelines of the UWE methodology described in Chapter 7.

296 • Development of SmexWeb Applications – A Case Study • Chapter 8

8.2.1 Inception Phase (Iteration 1)

The goal of the first iteration in the development process – this is part of the
inception phase – is to determine the feasibility of the project. A project plan is
thus prepared on the basis of a risk analysis and requirements elicitation.

The idea of the exercising session of the EBNF case study was to develop an
application to offer exercises and definitions to a very heterogeneous group of
learners (different background and interests, ages from 20 to 70, etc.). The
SmexWeb-based application should select exercises with adequate degrees of
difficulties, described in a formal or pragmatic way and with or without examples
for each individual learner.

One of the main objectives is to identify and characterise the learners as accurately
as possible. This is a precondition for adapting the exercise material so that it
satisfies individual needs. The characteristics to be modeled are determined based
on the given decisions about the topic and the potential group of users. Classifying
potential users before designing the user model may prevent modeling
characteristics that are too generic. Consequently, the developer can keep the user
model small, the system works more efficiently and the learner’s needs are met
more effectively.

The creation of the user model is often a creative and non-deterministic process
relying heavily on the pedagogical experience of the developer and his knowledge
of existing psychological models. To elicit the information required in this phase a
set of interviews were performed with students, tutors and teachers (Albrecht,
1998). Students were asked to fill in a questionnaire including queries related to
their person (age and genre), their studies (major and minor subjects), their lessons
(theory and exercise sessions that are attended), general computer knowledge
(frequency of use, knowledge about operating systems, programming languages,
and tools), missing information and difficulties in traditional lessons in the
introductory course.

The current user model of the EBNF-course comprises three sub-models as
introduced in Chapter 3. Here they are called the domain, navigation and
individual models. Values for the domain model represent the learner’s knowledge
about the topic of the course; students might have different degrees of EBNF
knowledge when they use the SmexWeb course to practice. Background
knowledge, derived, for instance, from the learner’s major subject, is included in
the user model to support learning by drawing analogies. The most important
attribute of the navigation model captures the learner’s navigation experience. The
individual model represents learning preferences, for instance with brief or
extended explanations, more formal or more pragmatic descriptions.

Chapter 8 • Development of SmexWeb Applications – A Case Study • 297

Table 8-3 summarises the most relevant activities performed during the first
iteration that is part of the inception phase. The table distinguishes which
workflow they belong to and details the main results of the workflow.

 Workflows Activities Results
Risk Management

Identify risks

Evaluate risks
and analyse risk
impact

Define risk
strategy

Risk list: inappropriate group of users, complexity
of the user model, performance problems, etc.

Impact: inadequate testing, inadequate
adaptation, no user acceptance

Strategy: find testing group, test technologies
(java applets, server).
Simple user model is a high risk: no strategy

Iteration Planning Evaluate initial
state
Define final state

Define milestones
and deliveries

Determine
Schedule Review

Initial state: none

Final state: running EBNF exercising session
based on the SmexWeb framework prototype

Milestones are:
- Definition of goal and requirements,
- Architecture and design models,
- Refinement of the design models,
- Construction in two or three iterations

(to be defined in the second iteration),
- Test and adjustments.

Iteration 1 (goal and requirements): 15 days
Iteration 2 (architecture and design models):
1month
Iteration 3 (refinement of design models):
1 month
Iteration 4-5/6 (construction): 4 month
Iteration 6 or 7 (test and adjustment): 15 days

P
ro

je
ct

 M
an

ag
em

en
t

Iteration Evaluation Evaluate
requirements
capture

Evaluate
validation

Iteration report:
- proof of completeness of use case models,
- sufficiency of procedure to capture the
 requirements (interviews),
- sufficiency of review process

298 • Development of SmexWeb Applications – A Case Study • Chapter 8

 Workflows Activities Results
Requirements
Capture

Identify users
Elicit information
and navigational
needs
Find actors and
use cases
Prioritise use
cases
Capture common
vocabulary

Preparation of questionnaire for interviews
Interviews with students and tutors

Outlined use case model

First architecture model

Glossary

Analysis and
Design

User Model
Design

Definition of user attributes, classification of
attributes in three groups: domain, navigation and
individual.

D
ev

el
op

m
en

t P
ro

ce
ss

Implementation Implement UI

Evaluation of applets performance

Validation Validate
requirements

Interviews with teachers and tutors

Verification

Q
ua

lit
y

M
an

ag
em

en
t

Testing Plan and design
tests

Definition and co-ordination of test activities for
the lessons of the next semester

Table 8-3: Activities performed during the Inception Phase
 for the Development of the EBNF-Application

8.2.2 Elaboration Phase (Iterations 2 and 3)

The focus of these two iterations is to produce analysis and design models, which
are the basis for the construction process in iterations 4 and 5. The activities of the
elaboration phase are centred on the design of the conceptual model, user
modeling, structuring of the hyperspace and authoring of the domain pages. A clear
separation of the development of content, navigation structure and presentation can
be observed in this stage and the resulting artifacts. The main activities performed
during these iterations are: the support of a refinement of the use cases, test
planning, implementation of a user interface prototype, actions to mitigate risks
and planning of the sequel iterations.

Important milestones during this phase are the user model initialisation and update
mechanisms. The initialisation of the EBNF-application user model is performed

Chapter 8 • Development of SmexWeb Applications – A Case Study • 299

using the user’s answers to the initial interview. This interview comprises
questions on:

• how frequently the learner uses Web applications,

• which kind of WWW services she uses,

• her major and minor study subject,

• her age,

• why the student is visiting the introductory course in computer science,

• which kind of explanations or examples she prefers (e.g. formal or
pragmatic),

• how does she evaluates her programming experience, and

• a test on basic EBNF knowledge.

The hypertext structure of the EBNF-application reflects the non-linear
representation of the domain knowledge and provides different ways through it.
The developer has to use pedagogical knowledge as well as his domain knowledge
to structure the document and to offer different individual ways of navigating
through the hypertext, based on the current user model.

The developer of an adaptive SmexWeb-based application has great freedom when
designing a user interface based on the notion of logical windows. SmexWeb
supports a multiple-window technique as well as using frames in a window. The

Exersicing Area

Learning
Area

Global Navigation

Thematic
Navigation

«frameset»
EBNF-Session

«frameset»

«frameset»

«frame»

«frame»

Figure 8-4: Frameset proposed for by the SmexWeb Framework

300 • Development of SmexWeb Applications – A Case Study • Chapter 8

EBNF-application uses the standard window partition proposed by SmexWeb. It
consists of four frames, as shown in Figure 8-4. Two of these frames are then
subdivided into another two and three frames, respectively. The metaphor that was
selected is a desk covered with learning material, with a clear separation of
exercising and reference material.

1. The exercising area (upper left) contains the pages with the material the
student is currently working on, e.g. interactive pages for solving
exercises or answering test questions.

2. The learning area (upper right) presents pages related to the current page
in the exercising area, and provides context sensitive help, definitions,
examples or a navigation map.

3. The global navigation area (lower left) comprises navigation facilities
that are always available to the learner, such as access to help, navigation
map, back button (i.e. displaying the previously presented page), forward
or an end application button.

4. The thematic navigation area (lower right) provides the user with the
navigation facilities for the different exercise categories. These anchors
are ordered according to the estimated individual importance and
annotated using icons and greyscale levels. In addition, navigation to the
reference material and to the task definition is provided.

Table 8-5 summarises the main activities performed during the second and third
iterations that are part of the elaboration phase. The table distinguishes which
workflow they belong to and details the main results of the workflow.

 Workflows Activities Results

Risk Management

Define actions for
risk strategy

Risk mitigation by performance tests and by
page generation at client-side using JavaScript

Iteration Planning Define milestones
and deliveries

Updated iteration and delivery plan:
construction phase has to be performed in 2
iterations (4 and 5)
Documentation plan

P
ro

je
ct

 M
an

ag
em

en
t

Iteration Evaluation Evaluate
requirements
capture, analysis
and design

Evaluate validation
and verification

Produce iteration
report

Iteration report:
- Proof of consistency of design models
- Sufficiency of review process
- Quality of validation and verification

Chapter 8 • Development of SmexWeb Applications – A Case Study • 301

 Workflows Activities Results
Requirements
Capture

Elicit additional
requirements
Detail use cases
Structure use cases

Elicit adaptation
capabilities
Elicit UI needs
Prototype UI

Capture common
vocabulary

Software requirements: Apache server14,
JavaApplets15, HTML16, JavaScript, Java
Use case detailed description
Structured use case model with packages:
initialisation, exercising, assistance and
adaptation
Initial interview
Definition of adaptation rules

User interface description (sketches)
Prototype (look and feel), mock ups,
storyboards
Glossary is updated

Analysis and
Design

Conceptual design

User model design

Navigation design

Presentation design

Adaptation design

Conceptual model (see 8.3.2)

User model (see 8.3.3)

Navigation model (see 8.3.4)

Presentation model (see 8.3.5)

Adaptation model (see 8.3.6)

D
ev

el
op

m
en

t P
ro

ce
ss

Implementation Provide content

Content: exercises enunciation, exercises
solutions, help texts, reference material,
exercises implemented as applets

Validation Validate
requirements

Use Cases review report

Verification Verify design model Review of design models
 Q

ua
lit

y
M

an
ag

em
en

t

Testing

Table 8-5: Activities performed during the Elaboration Phase
for the Development of the EBNF-Application

14 http://www.apache.org
15 JavaApplets 1.0
16 HTML Version 3.2

302 • Development of SmexWeb Applications – A Case Study • Chapter 8

Iteration 2 focuses on the elaboration of a detailed description of the use cases, user
model and the conceptual model. The main focus of iteration 3 is the development
of the navigation, presentation and adaptation model.

8.2.3 Construction Phase (Iteration 4 and 5)

The construction of the EBNF-application is performed in two iterations (4 and 5).
Iteration 4 focuses on the implementation of the lessons content, the navigation
structure and the test procedure. Iteration 5 focuses on the implementation of the
adaptive functionality, which includes the capture of the user behaviour and the
adaptation of content and navigation to the current values of the user model.

The initial values of all sub-models are assigned on the basis of a learner’s answers
to the interview questions. From there on, values will be changed dynamically
according to the system’s observation of the learner’s actions while navigating or
solving an exercise.The tests of the EBNF-application with integrated adaptive
functionality are performed in iteration 5. During the construction phase a detailed
plan for the transition and maintenance has to be elaborated.

Table 8-6 summarises the main activities performed in the construction phase. It
includes activities of both the fourth and fifth iterations.

 Workflows Activities Results
Risk Management

Evaluate risks and
analyse risk impact

Define actions for
risk strategy

Risk of technology dependency (Versions of
Java, browsers, etc)

Action: maintenance plan

Iteration Planning Define milestones
and deliveries

Updated iteration and delivery plan: transition
plan for regular use in introductory courses

Documentation plan

P
ro

je
ct

 M
an

ag
em

en
t

Iteration
Evaluation

Evaluate
requirements
capture, analysis and
design,
implementation

Evaluate validation,
verification and
testing
Produce iteration
report

Iteration report:
- Proof of consistency of design
- models
- Sufficiency of tests plan
- Quality of testing

Chapter 8 • Development of SmexWeb Applications – A Case Study • 303

 Workflows Activities Results
Requirements
Capture

Detail use cases

Elicit adaptation
capabilities

Capture common
vocabulary

Use case detailed description is completed

Refinement of adaptation rules

Glossary is updated

Analysis and
Design

User model design
Conceptual design
Navigation design
Presentation design
Adaptation design

Design classes

All design models are refined

Classes for the user model, domain and
adaptation are designed

D
ev

el
op

m
en

t P
ro

ce
ss

 Implementation Provide content

Implement
hyperspace structure

Implement user
model
Implement adaptive
mechanism
Implement UI

Build integration plan

Integrate
subsystems

Content pages: exercise enunciation, help
texts, reference texts
Coding of hyperspace components

Coding of user model components

Adaptation rules and mechanisms

Templates for the user interface

Version of iteration 4 without adaptive
functionality
Version of iteration 5 includes user model and
adaptation
Integration in iteration 5

Validation Validate
requirements

Requirements review report

Verification Verify design model

Design models review report

Q
ua

lit
y

M
an

ag
em

en
t

Testing Implement test

Perform integration
test

Test of components

Test of application without and with adaptive
functionality

Table 8-6: Activities performed during the Construction Phase
for the Development of the EBNF-Application

304 • Development of SmexWeb Applications – A Case Study • Chapter 8

Figure 8-7 to Figure 8-9 show pages of the user interface of the implemented
EBNF-application. Figures 8-7 and 8-8 depict the same concept (the initial
exercise) to the learner. The cognitive preferences and abilities of a learner
represented in the user model, dictate the appropriate form of presentation
provided. A formal way of explaining the problem is shown in Figure 8-7, while a
more pragmatic formulation appears in Figure 8-8.

Figure 8-9 shows an interactive exercise in the EBNF-application implemented
with an applet in the left hand part of the window. Hence, not only final solutions
to the exercise, but also important steps the user follows to reach the solution are
transmitted to the SmexWeb server and are used in the observation process of the
user’s behaviour.

Figure 8-7: Formal Description of the Exercise’s Task of the EBNF-Application

Chapter 8 • Development of SmexWeb Applications – A Case Study • 305

8.2.4 Transition Phase (Iteration 6)

The focus of the transition phase is on the testing of the EBNF-application, the
corrections of defects discovered during testing and the deployment of the
application. Table 8-10 summarises the main activities performed during the sixth
iteration. Note that activities detailed on the lower part of the table are performed
before activities detailed in the first rows.

Figure 8-8: Pragmatic Description of the Exercise’s Task of the EBNF-Application

306 • Development of SmexWeb Applications – A Case Study • Chapter 8

The EBNF-application was tested twice by students visiting an introductory course
in computer science17. Both tests were performed by a group of about 15 students
aged between 22 and 66. They used the system for an average of about 40 minutes.
After they had answered the initial questionnaire about general and topic-
dependent themes presented to them by the system, the students were able to use
the EBNF-application without further explanations.

The students were not explicitly told that the system would try to adapt to their
needs. The answers to the questions allowed the system to obtain initial values for
the user model. One of the goals of SmexWeb is to facilitate the development of
applications that not require any specific guidance or introduction to the system.

17 “Einführung in die Informatik für Studierende anderer Fachbereiche”, Institut für Informatik,
Ludwig-Maximilians-Universität München, WS 97/98 (Wirsing/Frühwirth) and WS 98/99
(Wirsing).

Figure 8-9: An Interactive Exercise of the EBNF-Application

Chapter 8 • Development of SmexWeb Applications – A Case Study • 307

 Workflows Activities Results
Risk Management

Evaluate risks and
analyse risk impact

Define actions for risk
strategy

Risks: insufficient time for reworking,
insufficient or inadequate tests

Strategy: Assign more resources for tests
and corrections

Iteration Planning Define milestones and
deliveries

Determine review
schedule

Plan for corrections and tests

System is deployed after finalisation of tests
and corrections

P
ro

je
ct

 M
an

ag
em

en
t

Iteration Evaluation Evaluate
implementation

Evaluate testing
Produce iteration report

Iteration report:
- Corrections done
- Changes in documentation
- Test results: students feedback

Online documentation is delivered

Requirements
Capture

Structure use cases

Capture common
vocabulary

Use cas model is updated according to
implemented version

Glossary is updated

Analysis and
Design

Conceptual design
User model design
Navigation design
Presentation design
Adaptation design

Design models are updated according to
implemented version

D
ev

el
op

m
en

t P
ro

ce
ss

Implementation Implement hyperspace
structure
Implement user model
Implement adaptive
mechanism
Implement UI

Defects discovered in implemented version
are corrected

Validation

Review

Verification

Review

Q
ua

lit
y

M
an

ag
em

en
t

Testing Perform integration
tests

Integrated version is tested by developers
and group of learners

Table 8-10: Activities performed during the Transition Phase
 for the Development of EBNF-Application

308 • Development of SmexWeb Applications – A Case Study • Chapter 8

An off-line interview was performed after each student finished the EBNF
exercising session. Most of the students gave very positive feedback and were
highly motivated during the use of the system. Neither performance difficulties nor
system problems arose during the tests sessions. The EBNF-application worked in
a highly efficient and stable way. System response time was very short compared to
network latency and data transfer time.

8.2.5 Maintenance Phase (Iteration >= 7)

Table 8-11 summarises the main activities performed during maintenance.

 Workflows Activities Results
Risk Management

Define actions for risk
strategy

Test modifications before deployment of
changed version

Iteration Planning Define milestones and
deliveries

Plan changes and tests
New version is delivered

P
ro

je
ct

 M
an

ag
em

en
t

Iteration Evaluation Evaluate
implementation
Evaluate testing
Produce iteration
report

Iteration report:
- Changes done
- Changes in documentation
- Test results

Requirements
Capture

Elicit information
requirements
Elicit navigation needs
Elicit adaptation
capabilities
Elicit UI needs

Elicit additional
requirements

Use cases detail description are changed to
show
- Changes in contents
- Modification in navigation
- structure
- Modifications of adaptation rules
- Changes in presentation needs
- Changes in user descriptions
List of non-functional requirements is
changed

Analysis and
Design

Conceptual design
User model design
Navigation design
Presentation design
Adaptation design

Design models are modified to reflect
changes in requirements

D
ev

el
op

m
en

t P
ro

ce
ss

Implementation Provide content
Implement hyperspace
structure
Implement user model
Implement adaptive
mechanism
Implement UI

Components are modified to maintain the
application updated

Chapter 8 • Development of SmexWeb Applications – A Case Study • 309

 Workflows Activities Results
Validation Validate requirements

Review documentation

Verification Verify design model

Review documentation

Q
ua

lit
y

M
an

ag
em

en
t

Testing Perform integration
tests

Changed version is tested

Table 8-11: Activities performed during the Maintenance Phase
 for the Development of the EBNF-Application

The main focus of the maintenance phase is on performing the changes that are
necessary to ensure a stable, efficient and updated EBNF-application. Many
iterations may be performed until the application is no longer used or replaced by
another one.

8.3 Analysis and Design Models for the
EBNF-Application

The following sections focus on the models that represent the results of the
requirements capture workflow, and the analysis and design workflow. These
models are: the use case, conceptual, user, navigation, presentation and adaptation
model. They are constructed according to the methodology detailed in Chapter 6. A
summary of the UML Profile used for the graphical notation is the subject
contained in the Appendix.

Some details of the EBNF-application are omitted in the diagrams of the models
presented in the following sections so as not to overload these diagrams. These
details require additional views of the models that are not included in this chapter.

8.3.1 Use Case Model

The main result of the requirements capture is the use case model. In the
requirements capture workflow the following actors and use cases are identified for
the EBNF-application.

• Actors: Learner and SmexWeb-Tutor. A tutor is an instance of a
SmexWeb component that is assigned to each learner who registers
herself for a SmexWeb application.

310 • Development of SmexWeb Applications – A Case Study • Chapter 8

• Use cases: read introduction, respond interview, read session’s goal, read
exercise task, read example, read reference material, solve exercise,
evaluate solution, ask for help, follow link, observe navigation, present
exercise, update user model and execute adaptation rule.

These use cases can be grouped into the following packages: initialisation,
exercising, assistance and adaptation. The use cases of the first three packages are
triggered by the actor Learner; the use cases of the last package are initiated by the
actor SmexWeb-Tutor. The distribution of the use cases is as follows:

• Initialisation: read introduction, respond interview, and read session’s
goal.

• Exercising: read exercise task, solve exercise, and follow link.

• Assistance: read example, read reference material, and ask for help.

• Adaptation: evaluate solution, present page, update user model, observe
navigation, and execute adaptation rules.

Note that some use cases express the functionality provided by the SmexWeb
framework. These use cases include activities that are application independent.
Hence, the EBNF-application need not realise the use cases update user model,

observe navigation or execute adaptation rules. Figure 8-12 shows the actors and
the use cases that are identified for the EBNF-application.

read exercise
task

read
session’s goal

respond
interview

solve
exercise

follow link

read
example

Learner
SmexWeb

Tutor

«extends»

read reference
material

ask for
help

read
introduction

evaluate
solution

observe
navigation

present
result

«extends»

«extends»

execute
adaptation

rules

update
user model

Figure 8-12: Use Case Model of the EBNF-Application

Chapter 8 • Development of SmexWeb Applications – A Case Study • 311

8.3.2 Conceptual Model

The conceptual model is a model of the problem domain, i.e. an EBNF exercising
session. It includes all the concepts that are relevant to the EBNF-application. The
main objective is to capture the domain semantics. Navigation and presentation
aspects are treated separately in the elaboration of navigation and presentation
models. Adaptive content is represented by the variant compartments of the classes
Exercise, Task, Example and ReferenceMaterial.

Exercises are classified into the following categories in the attempt to simulate a
classroom session:

Initial
 Interview

EBNF-Session
Introduction

EBNF-Exercise

Understanding
EBNF

Solving with
EBNF

Directly
Solving
(Test)

Applying
EBNF-Knowledge

Recognising
 Mountains

Building
Mountains

Building
Rules

Recognising
Rules

Solution

Answer

Help

Context
Sensitive Help

EBNF-
Reference

EBNF-
Definition

EBNF-
History

« prerequisite»

« prerequisite»

« prerequisite»

1
1

1

1..*0..1

1

next

0..*

1

1

task

1

result

0..*

examples

1

material

help

name: String
content: JavaApplet

executeApplet()
evaluate()

11..*

1

1..* 11..*

Navigation
Map map

1

exercises

Evaluation
1

1

answers

General
Introduction

1

1

ebnf

1..*

1..*

1..*

1..*

1

1

interview

1

help1..*

1..*

Task

variant
formal, pragmatic

Reference
Material

variant
brief, detailed

Example

variant
formal, pragmatic

Figure 8-13: Conceptual Model of the EBNF-Application

312 • Development of SmexWeb Applications – A Case Study • Chapter 8

• Exercises to help understand EBNF (also called playing exercises). This
category includes two subcategories, i.e. exercises for:

− recognition of mountains, and

− construction of mountains.

• Exercises to help on using EBNF. This category also includes two
subcategories, i.e. exercises for:

− recognition of EBNF rules, and

− construction of EBNF rules.

• Exercises that are part of a multiple choice test. These can be solved

 directly.

• Exercises to apply the EBNF knowledge acquired while solving exercises
in the other categories.

The conceptual model is represented as a UML class diagram based on the
methodology presented in Section 6.2. Figure 8-13 shows the conceptual model of
the EBNF-application.

8.3.3 User Model

The interviews performed as part of the requirements capture workflow in the
inception phase have identified a heterogeneous group of students. There are
learners with or without computer experience or Web experience and with or
without knowledge of the EBNF subject. They have preferences for formal or
pragmatic explanations and require different levels of help.

The topic of EBNF requires that the learner’s cognitive abilities to formalise and to
think in abstract terms be represented. The information gained in this early
interviewing process is used to define the structure of the user model of the
application. It comprises three sub-models, that is the domain model, the
background knowledge model and the individual model (i.e. cognitive preferences).
Values for the domain model represent the learner’s knowledge about EBNF. The
background knowledge model captures her experience with Web-applications. The
individual model represents learning preferences, such as brief or detailed expla-
nations, exercise’s tasks and examples described formally or pragmatically and a
presentation with or without examples.

The domain knowledge level is the result of the knowledge the system believes the
learner has. This knowledge is calculated on the basis of the knowledge that the
learner acquires by solving the exercise or she proves to have (knowledge related to

Chapter 8 • Development of SmexWeb Applications – A Case Study • 313

the exercise). The exercise-related knowledge is measured on the basis of the
amount of errors the learner makes while solving the exercise and a final status of
the solving process. This status indicates whether the exercise was never intended
to be solved, whether the resolving process was not completed, whether the result
is incorrect or whether it was solved correctly. The attribute relevance indicates
whether the system believes that an exercise is recommendable for the learner at a
certain moment. The possible values are: none, not recommended, neutral and
recommended.

The EBNF-application distinguishes different types of learners (stereotypes) from
beginner to expert. The learner type is adjusted using the current exercise domain
knowledge and the navigation experience of the learner.

The aim was to build a very simple user model for the EBNF-application. Even
though the user model and the update mechanism are simple, the results have been
very effective (Albrecht, Koch & Tiller, 2000). Figure 8-14 shows the user model
for the EBNF-application.

1

*
users

preferences *

has
User

 username: String
 password: String

Exercise
Knowledge

errors: Integer
status: Enum(not,
incomplete, complete)

EBNF-Exercise

 name: String
content: JavaApplet

Preferences
initialised: Date
lastChange:Date

ExampleStyle

 with: Boolean

ExplanationStyle

detailed: Boolean

Formality

formal: Boolean

 Navigation

 type: Boolean
 speed: Time

navigation

Domain
Knowledge

 level: Integer

 calculate()

users

users

domain
knowledge

 *

 * partial
knowledge

exercises

resolves

behaves

 *

LearnerType

 stereotype:
 Enum (a,b,c)

learnerType

navigation

 *

learnerType makesErrors

 *

 *

error
behaviour

 *

surfs

Figure 8-14: User Model for the EBNF-Application

314 • Development of SmexWeb Applications – A Case Study • Chapter 8

8.3.4 Navigation Model

The navigation model of the EBNF-application consists of the navigation space
model that shows which objects can be navigated and the navigation structure
model that shows how they can be visited during an EBNF exercise session.

Two views of the navigation space model (exercise and general view) are shown in
Figure 8-15 and Figure 8-16, respectively. They are constructed based on the
conceptual model of Figure 8-13 and the guidelines provided by Section 6.4.1 as
follows:

• Navigation classes for all conceptual classes are created with the
exception to the abstract classes Help, ReferenceMaterial, Understanding
EBNF, UsingEBNF and the class Solution. The latter is not a navigation
target as the exercise solution is not shown to the learner. The tutor
merely informs the learner as to whether the exercise has been correctly
resolved or not, and uses this information for adaptation and to update the
user model.

• The conceptual class Answer is transformed in an attribute of the
navigation class Exercise since the information is relevant for the
application, but it is not a navigation target.

«exercise»
EBNF-Exercise

Context
Sensitive Help

EBNF-Reference

EBNF-Definition

EBNF-History

Variant
formal, pragmatic

0..1
1

next
0..*

1

task

examples

1

1

material

help

name: String
content: JavaApplet
/answer: Answer
executeApplet()
evaluate()

Navigation
Map

map

1..*

1..*

1

evaluation

history

definition

1

1..*

examples

0..*

1

1..*

1..*

1..*

1..*

Task

Example

Evaluation

1..*

1

1..*

Figure 8-15: Exercise View of the Navigation Space Model of the EBNF-Application

Chapter 8 • Development of SmexWeb Applications – A Case Study • 315

• A stereotype «exercise» is introduced, with the aim of obtaining a more
readable UML class diagram and making a more general navigation
space model possible. The relationship between objects of the
stereotyped classes «exercise», i.e. classes RecognisingMountains,
BuildingMountains, RecognisingRules, BuildingRules, DirectSolving, Applying
EBNF-Knowledge and classes Task, Example, Evaluation, Help and
ReferenceMaterial are described in the exercise view depicted in Figure 8-
15.

• An association of type direct navigability is added between Exercise and
Example. Another association between Evaluation and EBNF-Exercise
shows that after an evaluation the learner can try to solve the exercise
again.

• The association between GeneralIntroduction and ThemeIntroduction is not
included (see Figure 8-16), as the system needs the learner’s interview

Initial
 Interview

EBNF-Session
Introduction

«exercise»
Solving Directly

«exercise»
Applying

EBNF-Knowledge

«exercise»
Recognising
 Mountains

«exercise»
Building

Mountains

«exercise»
Building

Rules

«exercise»
Recognising

Rules

11

1

1..*

1

1..*

1

1..*

interview

General
Introduction

1..*

1

 ebnf

1

applying
applyingapplying

1

1

1solving solving

recognising

recognising

building

building

solving directly

understanding understanding

1..*

1..*
1..* 1..*

1

1

1

1

1

1

Help
interview

help
1 1

1

1

Figure 8-16: General View of the Navigation Space Model of the EBNF-Application

316 • Development of SmexWeb Applications – A Case Study • Chapter 8

responses to initialise the user model.

• Associations of type «prerequisite» are explicitly modeled at subclass
level.

• Some role names are omitted in the diagram of Figure 8-16 to avoid
overloading.

The navigation space model is transformed in successive steps in the navigation
structure model. Again two views of the model are presented. Figure 8-17 shows
the exercised view of the navigation structure model of the EBNF-application and
Figure 8-18 shows the general view of the navigation structure model. In Figure 8-
17 the variants compartment should be added for completeness; they are omitted
here to obtain a simpler diagram.

The exercise view of the navigation structure model is obtained by the addition of
four menus and a guided tour. Neither indices nor queries are used in this
application. The general view of the navigation structure model is built by the
enhancement of the navigation space model by menus and properties. Adaptive
navigation consists of sorted, annotated and removed links and the utilisation of the
passive navigation technique (Albrecht, Koch & Tiller, 2000). The properties
{annotated}, {removed} and {sorted} are used to indicate where the adaptive
mechanism is applied.

«exercise»
EBNF-Exercise

Navigation
Map

EBNF-Reference

EBNF-Definition

EBNF-History

Variant
formal, pragmatic

name: String
content: JavaApplet
/answer: Answer
executeApplet()
evaluate()

Context
Sensitive Help

Task

Example

Evaluation

ReferenceMenu

definition
material
history

TaskMenu

map
help

example

AssistanceMenu TaskExampleMenu

task
example

next exercise
evaluation

ExerciseMenu

Figure 8-17: Exercise View of the Navigation Structure Model of the EBNF-Application

Chapter 8 • Development of SmexWeb Applications – A Case Study • 317

8.3.5 Presentation Model

The presentation model covers the static and dynamic aspects of the presentation.
For the EBNF-application a presentation structure model, a presentation flow
model and an abstract user interface model are outlined. Some of these results are
presented in this section.

The presentation structure model provides the static description of the EBNF-
application’s presentation. This is defined as a multiple-window application.

EBNF-Session
Introduction

«exercise»
Applying

EBNF-Knowledge

«exercise»
Building

Rules

«exercise»
Recognising

Rules

General
Introduction

SessionMenu

recognise mountains
solve directly
build mountains

apply knowledge

Help

«exercise»
Solving
Directly

«exercise»
Building

Mountains

«exercise»
Recognising
 Mountains

recognise mountains
build rules

build mountains
recognise rules

build rules
apply knowledge recognise rules

apply knowledge

SolvingDirectlyMenu

BuildingRulesMenu

BuildingMountainsMenu

RecognisingRulesMenu

RecognisingMountainsMenu

{annotated, sorted}

{annotated, sorted} {annotated, sorted}

{annotated}

{annotated} {annotated}

interview
help

Initial
Interview

IntroductionMenu

Figure 8-18: General View of the Navigation Structure Model of the EBNF-Application

318 • Development of SmexWeb Applications – A Case Study • Chapter 8

Presentations of the general introduction, the interview or general help are shown
in the EBNF-Introduction window; they do not require any frames.

For the exercising session itself, i.e. for the presentation of all pages related to the
exercises, an EBNF-Exercising window is used. A Session frameset is defined,
which contains four areas: an exercising area, a learning area, an area for global
navigation and a thematic navigation area. See Section 8.2.2 for more details about
the objective and content of these frames. For the learning area and for the global
navigation two frames are defined, LearningArea and GlobalNavigation, respectively.
For each of the other two areas a frameset is defined, which includes two and three
frames, respectively.

The ExercisingArea frameset thus consists then of an InteractiveExercising frame,
where the user resolves the exercise and an ExerciseNavigation frame that enables
the student to ask for evaluation and to access the next exercise. The
ThematicNavigation is also a frameset with three frames: the ExerciseCategory
Navigation, TaskNavigation and ReferenceNavigation. The first is a list of annotated
and sorted links to other categories of exercises. The second supports navigation to
the exercise task definition and examples. The third supports navigation to general
EBNF-material, such as a definition of EBNF, References to EBNF and EBNF-
history.

The number of menus contained in the navigation structure model requires this
nested, and complex frameset structure. For each navigation class and access
primitive a presentation class with the same name is defined.

The designer decided to use three windows: one for the introduction and interview,
one for the exercises and one for the context sensitive help. The presentation
structure model shown in Figure 8-19 depicts in which frames, framesets and
windows these presentation classes are presented to the user.

Some simplifications have been made to avoid an overloaded diagram. Only the
association on the left side of a group of associations starting from the same class is
provided with the stereotype label «presents». Not all presentation classes have
been included in the diagram for reasons of space. In the frame InteractiveExercising
the following classes can be presented as alternatives to those already depicted in
Figure 8-19: BuildingMountains, RecognisingRules, BuildingRules, SolvingDirectly and
Evaluation. The frame LearningArea can present the presentation classes Task,
Example, NavigationMap, Help, Definition, Reference and History. The list of
presentation classes shown in the ExerciseCategoryNavigation is also incomplete; the
classes BuildingMountainsMenu, RecognisingRulesMenu and BuildingRulesMenu have
on purpose not been included.

Chapter 8 • Development of SmexWeb Applications – A Case Study • 319

«f
ra

m
es

et
»

EB
NF

-S
es

sio
n

«w
in

do
w»

EB
NF

-In
tro

du
ct

io
n

1.
.*

«f
ra

m
e»

Le
ar

ni
ng

A
re

a

«p
re

se
nt

s »

{x
or

}

«p
re

s.
 c

la
ss

»
In

te
rv

ie
w

«p
re

s.
 c

la
ss

»
G

en
er

al
In

tro
du

ct
io

n
«p

re
s.

 c
la

ss
»

He
lp

«f
ra

m
es

et
»

E
xe

rc
is

in
gA

re
a

«f
ra

m
es

et
»

T
he

m
at

ic
N

av
ig

at
io

n
«f

ra
m

e»
G

lo
ba

lN
av

ig
at

io
n

«p
re

s.
 c

la
ss

»
G

lo
ba

lN
av

.M
en

u

«f
ra

m
e»

R
ef

er
en

ce
N

av
.

«p
re

s.
 c

la
ss

»
R

ef
er

en
ce

M
en

u

«f
ra

m
e»

T
as

kN
av

.
«f

ra
m

e»
E

xe
rc

is
eC

at
eg

or
yN

av
.

«f
ra

m
e»

In
te

ra
ct

iv
eE

xe
rc

is
in

g
«f

ra
m

e»
E

xé
rc

is
eN

av
.

«p
re

s.
 cl

as
s»

T
as

kM
en

u

«p
re

s.
 c

la
ss

»
T

as
kE

xa
m

pl
eM

en
u

«p
re

s.
 c

la
ss

»
S

es
si

on
M

en
u

«p
re

s.
 c

la
ss

»
S

ol
vi

ng
D

ire
ct

ly
M

en
u

«p
re

s.
 c

la
ss

»
R

ec
og

ni
si

ng
M

ou
nt

ai
ns

.M
en

u
...

«p
re

s.
 c

la
ss

»
T

as
k

«p
re

s.
 c

la
ss

»
N

av
ig

at
io

nM
ap

«p
re

s.
 c

la
ss

»
H

is
to

ry

«p
re

s.
 c

la
ss

»
E

xe
rc

is
eM

en
u

«p
re

s.
 c

la
ss

»
R

ec
og

ni
si

ng
M

ou
nt

ai
ns

«p
re

s.
 c

la
ss

»
E

B
N

F
-S

es
si

on
In

tr
od

uc
tio

n

«p
re

s.
 cl

as
s»

A
pp

ly
in

g
E

B
N

F
-

K
no

w
le

dg
e

...

...
...

{x
or

}
{ x

or
}

{x
or

}

{x
or

}
{ x

or
}

{x
or

}

{x
or

}
{x

or
}

«p
re

se
nt

s »
«p

re
se

nt
s »

«p
re

se
nt

s »
«p

re
se

nt
s »

«p
re

se
nt

s »
«p

re
se

nt
s »

«p
re

se
nt

s »

1.
.*

1.
.*

1.
.*

«w
in

do
w»

EB
NF

-E
xe

rc
isi

ng

«w
in

do
w»

EB
NF

-D
ia

lo
g

«s
ta

rts
»

«p
re

s.
 c

la
ss

»
Co

nt
ex

tS
en

sit
ive

He
lp

«p
re

se
nt

s »

Figure 8-19: Presentation Structure Model of the EBNF-Application

320 • Development of SmexWeb Applications – A Case Study • Chapter 8

The presentation flow model describes how the control flows from one frame to
another, i.e. shows which frame is active at each moment. The UML sequence
diagram depicted in Figure 8-20 shows the flow of control of the following typical
scenario in the EBNF-application: the user tries to solve an exercise, after looking
at the result of the evaluation, she asks for some help and looks at the related
examples, then she solves the exercise again and continues with an exercise from
another category of exercises.

The abstract user interface design proposed in Section 6.5.1. of Chapter 6 provides
a sketching technique with UML notation. It can be used in a previous stage to the
elaboration of a user interface prototype. An abstract user interface diagram for an
exercise of the category “building rules” is shown in Figure 8-21.

«frame»
:Learning

Area

«frame»
:Global

Navigation

«frame»
:Task

Navigation

«frame»
:Exercise

CategoryNav.

«frame»
:Interactive
Exercising

«frame»
:Exercise

Navigation
l: Learner

submit exercise solution

evaluate

result

ask for help

display help

select option examples

display
examples

submit exercise solution

evaluate

select other exercise group

display exercise

display menu

display navigation map

«window»
EBNF-Dialog

open window

display context sensitive help

Figure 8-20: Presentation Flow Model for one Scenario of the EBNF-Application

Chapter 8 • Development of SmexWeb Applications – A Case Study • 321

8.3.6 Adaptation Model

The adaptation process is rule-based. Two types of rules can be defined in the
SmexWeb framework: local rules and global rules. The primary trigger of a rule is
the user behaviour. Local rules are based on current behaviour while global rules
are based on a set of recent activities of the user.

The EBNF-application observes the following user behaviour:

• navigation through categories of exercise chosen,

• amount of back and forward navigation,

• navigation to additional information, such as examples, help, and
reference material,

• final result resolving an exercise is evaluated,

• errors made resolving an exercise, and

Definition

Evaluate

Reference

History

ReferenceMenu

BuildingRules

Rule

1

1

«presents»

TaskNav.

EBNF-Session

Global
Navigation

ThematicNavigation

ExercisingArea

Learning
Area

Interactive
Exercising

ExerciseNavigation

ExerciseCategoryNavigation

ReferenceNav.

Image

Rule-text

ExerciseMenu

«presents»

1

1

End

GlobalNav.Menu

Back

Forward

Help

Navigation
Map

11
«presents»

«presents»
1

1
TaskMenu

Task

Example

«presents»

Example

1

Example
Text

Example
Image

1

1

«presents»

1

RecogniseRules

ApplyKnowledge

BuildingRulesMenu

Image1

Image2
«presents»

1

1

{annotated, removed,sorted}

{formal or pragmatic}

Figure 8-21: Abstract User Interface Model of the Exercise “Building Rules”

322 • Development of SmexWeb Applications – A Case Study • Chapter 8

• inactivity, i.e. no browsing activity during, for example, 5 minutes.

These behaviours can be classified into browsing (first three items), input (fourth
and fifth) and inactivity (last one).

The following rules are part of the EBNF-application. A textual description of
some rules is presented here. In a further iteration a formal language can be used
for the description of these rules.

For the EBNF-application only acquisition and adaptation rules are defined. Rules
for finding concepts are not needed in this application, as each concept is also a
page. Two types of acquisition rules are distinguished: initialisation rules and user
model update rules. The initialisation rules are used to construct a user model
providing user attributes with initial values. These values are determined using the
information obtained from the interviewing process. User model update rules will
change these values based on observations of the user’s behaviour while she
navigates and solves the exercises.

The following is an informal description of some initialisation rules:

• Rule 1: Navigation experience is determined by the kind of Web services
the learner uses and the frequency with which she uses them.

• Rule 2: The values of the learner’s preferences (ExampleStyle,
ExplanationStyle and Formality) are initialised on the basis of the major and
minor subjects studied by the student, her age and her interests.

• Rule 3: The initial DomainKnowledge is set as a function of the result of
the test on EBNF basic concepts.

• Rule 4: The initial LearnerType is chosen in accordance with the kind of
lectures the learner visits, her navigation experience and the domain
knowledge.

The following is an informal description of some updating rules:

• Rule 5: The result of the evaluation of the answer to an exercise is stored
as the status of the exercise. Possible values are: not resolved (if it was
not intended to be resolved), incomplete, incorrect and correct.

• Rule 6: Each error performed by the learner while resolving an exercise
increments the errors counter of the exercise.

• Rule 7: DomainKnowledge is update using the current values of errors and
the status of ExerciseKnowledge.

Chapter 8 • Development of SmexWeb Applications – A Case Study • 323

• Rule 8: Navigation expertise is updated on the basis of the learner’s
navigation activities, such as back and forward navigation or selection of
certain navigation paths.

• Rule 9: The LearnerType is updated according with the changes in
navigation expertise and domain knowledge level.

• Rule 10: For each exercise node the relevance is adjusted in accordance
with the current value of the DomainKnowledge.

The following are examples of adaptation rules:

• Rule 11: If the user prefers formal descriptions, the task and the examples
are displayed in their formal variant, otherwise they are presented as the
more pragmatic variant.

• Rule 12: If the user prefers brief explanations, all type of reference
material, such as EBNF-definition, EBNF-Reference and EBNF-History
are presented in their brief variant, otherwise in their detailed variant.

• Rule 13: Annotation is performed in the menus, e.g. SessionMenu,
RecognisingRulesMenu and SolvingDirectlyMenu, as follows:

− happy smiley for a recommended category of exercises,

− neutral smiley for a category of exercises, which are whether
 specially encouraged to be solved or discouraged, and

− unhappy smiley for a non-recommended category.

• Rule 14: If the learner remains inactive for more than three minutes, then
the context sensitive help associated to that exercise is shown (passive
navigation).

• Rule 15: Items of the navigation menus (i.e. SessionMenu,
RecognisingMountainsMenu, BuildingMountainsMenu, RecognisingRules
Menu, BuildingRulesMenu and SolvingDirectlyMenu) are sorted in accor-
dance with the relevance of the target node the item links to.

Figure 8-22 shows part of an adaptation model for the EBNF-application. The
model is represented as a collaboration diagram. The graphical visualisation
permits the recognition of loops in the flow of rules triggered by other rules.

324 • Development of SmexWeb Applications – A Case Study • Chapter 8

8.4 The Taxonomy Application

The Taxonomy application is an adaptive hypermedia application based on the
SmexWeb framework that was built to support students in their studies of
taxonomy in the botanical field.

The application consists of the presentation of different types of questions to the
user, an evaluation of their responses, an update of the user model based on these
answers and the selection of another appropriate question for a particular user
based on the current values of the user model. As the Taxonomy application is

:Rule 11 :Rule 16

:Navigation
Expertise

:SessionMenu

:Registered
User

1: select item(RecogniseMountains)

4: trigger() 13: trigger()

3: update()
9: trigger()

8: include()

21: present()

5:get(level)

:Rule 8

 2: trigger()

:Domain
Knowledge

:Learner
Type

6:get(stereotype)

:Recognising
Mountains

:InteractiveExercising

7: select()

:Rule 12

12: include()

:Task

:LearningArea

11: select()

:Rule 14

19: include()

:Recognising
MountainsMenu

:ExerciseCategory
Navigation

18: select()

16:get(relevance)

:EBNF-Exercising

20: present()

14: get(relevance)

15: trigger()
:Exercise

Knowledge

22: present()

17:get(stereotype)

Figure 8-22: Adaptation Model of the EBNF-Application (Partial View)

Chapter 8 • Development of SmexWeb Applications – A Case Study • 325

supposed to be used in one to six sessions, the system’s beliefs about the user are
also stored in a long-term user model. The exercises (questions) are classified
according to the type of answer expected for these questions: true/false, a single
statements, multiple statement or multiple choice (Pezdirc, 1999).

The development of the Taxonomy application also implied an improvement in the
SmexWeb framework, as a database connection was added to the framework. It
enables the generation of the page content from the information stored in a
database. The JDBC18 driver and the MySQL19 database were used for this
purpose.

The Taxonomy application was tested using a group of students from a seminar on
plants identification and classification20.

8.5 Learning process supported by SmexWeb

SmexWeb supports an active, constructive, cumulative, self-regulated and goal-
oriented knowledge acquisition process in which the learners play an important
role. Classical psychological theories view learning as something that happens from
the outside in – passive reception –, as knowledge is transferred from the expert to
the novice. Nowadays cognitive theories have reversed this orientation emphasising
that learning occurs from the inside out although the importance of the learner’s
environment is not questioned (Shuell, 1992). Web applications developed based
on the SmexWeb framework are adaptive Web-based applications that support
learning processes based on the well-known metaphor of problem solving.

 Learning with a SmexWeb applications is:

• Active as the learner must carry out cognitive operations (learning by
doing).

• Constructive in the sense that it helps every learner to create her own
knowledge structures. New information is perceived and interpreted in a
unique manner based on the learner’s prior knowledge and other personal
factors.

18 JDBC (Java DataBase Connectivity) http://splash.javasoft.com/database/jdbc/jdb c.drivers.html
19 MySQL Version 3.21.33. http://www.mysql.com
20 “Praktikum zur Artenvielfalt/Pflanzenbestimmung”, Döbbeler/Rambold, Botanischen Institut
der Ludwig-Maximilians-Uuniversität München, SS99.

326 • Development of SmexWeb Applications – A Case Study • Chapter 8

• Cumulative, because it builds upon and is influenced by the learner’s
prior knowledge, which is registered in the user model.

• Self-regulated as the learner determines the duration and frequency of the
sessions. Students are also free to decide which link to choose next,
although they are assisted by the system with some guidance and help.

• Goal-oriented for the learner. The application presents clear goals to be
achieved during each session within the context of the general goal of
acquiring knowledge about certain topics. The learner can then establish
her goal for the session.

Chapter 9 • Conclusions • 327

“If we end up producing a structure in hyperspace

that allows us to work together harmoniously,
that would be a metamorphosis”

Tim Berners-Lee,
Weaving the Web, 1999.

9 Conclusions

The impact of new information technologies on society has not only stimulated the
development of systems using these technologies, but has also increased the
interest in studies related to the development process of such systems. Object-
orientation, hypermedia, components and distributed systems are typical examples
of information technologies, which became popular in the nineties. The expansion
of the Web brought hypermedia systems, in particular, to the attention of managers,
business and marketing people, developers, designers, programmers, and, last but
not least, researchers. The ubiquity of the Web brought the need of personalisation
adapting hypermedia applications to the user. The expansion of the Web made us
consider disciplined ways to master the complexity of these applications.

Until now adaptive hypermedia applications have mostly been constructed as
successive refinements of initial prototypes generally in experimental envi-
ronments. But an important increase in industrial personalised applications is
expected, based on the maturity reached by these adaptive systems and the user
modeling techniques. However, the construction will have to be performed in a
more systematic way following guidelines, constructing adequate models, and
using appropriate tools, i.e. the production of adaptive hypermedia systems thus
requires a tailored software engineering process.

In this work such an engineering approach for adaptive hypermedia systems (UWE)
is presented. The UWE approach supports hypermedia issues, such as navigation
and hypertext structure, and adaptive issues, such as user modeling and adaptation
mechanisms.

328 • Conclusions • Chapter 9

The main characteristics of the UWE approach are:

• It is an entirely object-oriented approach.

• It presents a reference model formally specified in OCL.

• It supports visual design modeling techniques.

• It provides a UML profile for adaptive hypermedia applications.

• It defines a development process that covers the whole lifecycle of
adaptive hypermedia applications.

A clear separation of adaptive and non-adaptive topics also makes of the
engineering approach presented here an ideal methodology for the analysis and
design of general hypermedia applications.

The next three sections outlines concluding remarks on the main issues relating to
the engineering approach on which this work focuses: the reference model, the
modeling techniques and the development process. The last section proposes some
future research.

9.1 Concluding Remarks about the Reference Model

The Munich Reference Model for adaptive hypermedia systems presented in this
work (Chapter 4) is a Dexter-based approach, which uses the well-known Dexter
metamodel language. It is a formal, object-oriented approach that benefits from a
combination of graphical specification in UML (1999) and constraints specified in
OCL.

UML class diagrams allow for a visual representation of the Munich reference
model showing the concepts of the system and how they are related. This graphical
representation is missing when specification languages such as VDM (Jones,
1990), Z (Halasz & Schawarz, 1990) or ObjectZ (Van Ossenbruggen & Eliëns,
1995) are used.

OCL (Warmer & Kleppe, 1999) is used intensively for the specification of
invariants for the model elements and the pre- and post-conditions of the
operations, which describe the functionality of an adaptive hypermedia system.

During the development of this thesis De Bra, Houben and Wu (1999)
independently wrote an interesting work in the area of adaptive hypermedia. Their
work presents the Adaptive Hypermedia Application Model (AHAM). Both that
model and the reference model presented in this thesis are Dexter-based models.

Chapter 9 • Conclusions • 329

AHAM addresses pedagogical applications, which perform adaptations based on
user models represented by tables. AHAM is described with tuples; a formal
description in Z is in preparation. The Munich reference model focuses on an
object-oriented approach presenting a semi-formal visual model in UML and a
formal specification in OCL. It has no restriction for the type of adaptive
hypermedia systems.

OCL is quite a new language and only few works report about the experience using
OCL, such as the article of Baar (2000). Besides some minor improvements that
would optimise the specification, it transpires that OCL is adequate for a
specification of this type. The readability of the specification could be enhanced by
the addition of some constructs, such as domain and range, for example. Some
difficulties have been observed in the definition of the transitive closure. The
specification presented by Mandel and Cengarle (1999) was improved by the use of
the construct “let in”, which has been included in the UML version 1.3. Even
though computing length of the transitive closure has been reduced, it remains
unnecessarily complex. An additional problem is that OCL requires an isQuery
value equal true for each function included in a post-condition. In contrast, the
visualization using UML diagrams and visual representation of some constraints in
the diagrams through associations and multiplicity allows for a more compact and
intuitive specification.

The Munich reference model serves as a basis for the definition of the modeling
techniques used in the design of adaptive hypermedia applications (Chapter 6). The
domain model requires a conceptual design of the problem domain, which will
evolve into a navigation model and a presentation model. The user model and the
adaptation model find their pendant in the design. The user model is used to define
user attributes and their relationships to the domain model. The adaptation model
is used to specify the set of acquiring and adaptation rules as well as the
collaborations between these rules and elements of the domain model and user
model.

9.2 Concluding Remarks about
the Modeling Techniques

Particular attention is paid to the analysis and design of adaptive hypermedia
applications. Within the scope of this work special modeling techniques were
developed to support the analysis and design workflow of the development process.
These are centred on the hypermedia and adaptive design issues, making a clear

330 • Conclusions • Chapter 9

separation between content, structure, presentation, user modeling and adaptation
mechanisms.

The modeling techniques – known as UHDM – consists of a set of modeling
elements, models and a method that specifies how to build these models. The set of
modeling elements is defined as a UML profile for adaptive hypermedia
applications based on the UML extension mechanisms, including mainly
descriptive and restrictive stereotypes (Berner, Glinz & Joos, 1999). The models
are represented with UML diagrams, i.e. the techniques support visual modeling.
Some of the modeling elements occurring in such diagrams are defined by
stereotypes. The definition of new stereotypes means that extra effort needs to be
put in reading the diagrams, but once one gets used to them, the diagrams are more
meaningful in terms of Web analysis and design. The advantages of the presented
techniques are the use of UML, the consideration of specific Web aspects in
designing Web applications through the definition of specialised modeling
elements, and the creation of tailored models to express navigation, presentation
and adaptation.

The strength of this approach is that for each model, a detailed list of construction
steps is provided, many of which can be performed automatically, for instance,
when constructing the navigation structure model from the navigation space model.
In addition, the method describes how templates for the Web application can be
systematically generated from the navigation structure model. However, there are
still several steps for which decisions by the designers are essential. This is true, in
particular, for the construction of the navigation space model based on the
conceptual model, the user model definition and the specification of the adaptation
mechanism. The design is partly a creative process where a complete automation is
not possible. In such a process it is extremely supportive to follow modeling
guidelines and to use patterns in order to achieve a systematic construction.

The modeling techniques specify how to build:

• the navigation space model based on the conceptual model,

• the user model with the aim of capturing the user’s knowledge and
preferences,

• the navigation structure model from the navigation space model,

• the static and dynamic presentation model from the navigation structure
model, and

• the adaptation model needed to update the user model and to adapt the
application.

Chapter 9 • Conclusions • 331

These modeling techniques (UHDM), described in Chapter 6, are part of the UWE
approach for adaptive hypermedia (Web) applications.

9.3 Concluding Remarks about
the Development Process

The methodology proposed for the development of adaptive hypermedia appli-
cations (UWE) presented in this work (Chapter 7) is based on the Unified Process.
It uses the UML profile and modeling techniques described briefly in the above
section (for meore details see Chapter 6). The aim is to cover the whole lifecycle of
such adaptive hypermedia systems. Therefore specific artifacts, workers and
activities required to support user modeling and adaptation have been defined and
supporting workflows for project and quality management have been added as part
of the here presented engineering approach.

UWE is a specialisation of the Unified Process for the adaptive hypermedia domain
and at the same time it is an extension of the Unified Process to include project
management and quality management support. UWE is an object-oriented, iterative
and incremental process, which consists of a set of workflows. The workflows of
the development process are the requirements capture, analysis and design, and
implementation. The workflows of the project management are risk management,
iteration planning and iteration evaluation. Validation, verification and testing are
part of the quality management. Based on time, the process is divided into
iterations, which belong to one of the following phases: inception, elaboration,
construction, transition or maintenance. UWE describes the set of activities,
workers and artifacts required for each workflow focusing on the user modeling
and adaptive issues of the application to be developed.

UWE, such as the Unified Process and the Rational Unified Process is a best
practice approach. It therefore describes the software development as an iterative
process that manages requirements, uses component-based architectures, uses
visual modeling techniques and controls quality. The disadvantage of being best
practice-based is that the methodology will evolve and will be continuously
updated. UWE is flexible enough to allow tailoring over time and adaptation to the
developers’ needs.

332 • Conclusions • Chapter 9

9.4 Proposing Future Research

Web engineering – hypermedia engineering for the Web – is a new discipline,
which is still evolving. Even more innovative is the personalised Web discipline
based on adaptive hypermedia techniques. There is still much work needed to
improve the current hypermedia and Web engineering approaches. This will be
done mostly in small steps through the continuous adjustment of methodologies,
techniques, notations and tools. This work aims to be one of those small steps.

There are many open issues, which still need to be addressed and integrated, such
as patterns for adaptive hypermedia systems, sharing of user models, tool support
and incorporation of agent technologies.

Throughout the description of the modeling techniques used for the design of
adaptive hypermedia systems a set of domain patterns are presented (Chapter 6),
such as the access structure, presentation structure and adaptation. It is shown how
these patterns can be combined with the design method (Gamma et. al., 1995).
Patterns identified in this work have to be described with an appropriate level of
abstraction and formalisation, an adequate classification, focusing the problem they
address and with a discussion of advantages and disadvantages that their use
implies (Paolini & Garzotto, 1999 and Nanard & Nanard, 1999).

The use of user models across many applications will simplify the development of
adaptive applications as the complete user modeling is outsourced. A future
methodology for Web design will also have to scope with the design of multi-modal
interfaces including e.g. speech. Synchronisation problems will have to be solved
in these kinds of flexible Web applications.

Another important future step will be to construct a case tool to support the UWE
methodology or to extend the functionality of an existing case tool to support it.
The stereotypes defined for hypermedia (Web) applications in Chapter 6 will be
implemented as a plug-in feature of the open-source tool ArgoUML (2000). Tools
for UML are developing fast, but there is an enormous scope for improvement;
indeed there is widespread dissatisfaction with the state of the art. They need to
increase their capabilities to provide automatic verification of models, to support
the use of patterns, and to allow for constraint specification with OCL. In addition,
they must include special features for Web development since Web applications are
becoming one of the most important group of software applications.

Agent technology will also play a more essential role in software applications than
they do nowadays. Digital agents act in an independent manner (not only when the
system is used) collecting information, negotiating with other agents, performing

Chapter 9 • Conclusions • 333

adaptation and learning from past actions. There will be agents suggesting patterns
and workflow activities, agents helping in modeling and implementation, and
agents finding information. Agents collect information about the user, create
personalised environments to search and work and offer assistance in all types of
user-computer interactions, i.e. agents are autonomous and adaptive (Lieberman,
1995, Thomas & Fischer, 1996,and Mladenic, 2000).

Future research should result in the development of more formal methods for
eliciting requirements and modeling these requirements in an unambiguous way.
Formal methods are also required for the development of verification and testing
procedures for adaptive hypermedia applications. The methodology propose in this
work, for example, still requires validation and testing for a wide spectrum of Web
applications (Chapter 8), in particular for e-commerce applications.

The UML-based Web engineering approach must also evolve to scope with
technological changes. A new Web, called Semantic Web – World Wide
Knowledge (Berners-Lee, 1999) will add certain intelligence to the current Web.
The Semantic Web is defined as a knowledge-based model for hypermedia that
will support a Web structure enriched by computer power, which allows
interpretation of nodes and links and reasoning based on the interpretation. Thus, it
should be investigated how the proposed typed and semantic links influence the
design and implementation of adaptive hypermedia applications.

Appendix • UML Extension for Hypermedia • 335

“ Reading about using the UML is one thing,
but it’s only through using the language

that you will come to master it”
Grady Booch, James Rumbaugh and Ivar Jacobson,

The Unified Modeling Language: User Guide,
1999.

Appendix UML Extension for Hypermedia

This Appendix presents the UML Profile for adaptive hypermedia applications.
The stereotypes are defined and explained in Chapter 6. It is a UML extension
based on the general extension mechanisms provided by the UML. The extension
includes specific stereotypes to model the navigation, presentation and adaptive
aspects of hypermedia applications. The models that benefit from the UML
extension are the navigation space model, the navigation structure model, the
adaptation model and the presentation models, i.e. presentation structure model,
the presentation flow model and the abstract user interface model.

There are only a few stereotypes that are specific to the modeling of adaptive
features. Thus, the stereotypes are grouped in stereotypes for general hypermedia
and specific stereotypes for adaptive hypermedia.

For standards elements of the UML and standard stereotypes defined in the UML
see Booch, Rumbaugh and Jacobson (1999).

 Stereotypes for Modeling Hypermedia Applications

The UML Profile defines the following stereotypes for the design of general
hypermedia applications. They are used in the construction of the navigation space
model, the navigation structure model and the presentation models.

336 • UML Extension for Hypermedia • Appendix

Stereotype / Icon Applies to Meaning

anchor class Specifies a class whose objects are clickable
areas, which have associated links to other
nodes.

anchored collection class

Specifies a class whose objects are collections
of anchors.

audio class Specifies a class whose objects are audio
sequences that can be started, stopped, rewound
and forwarded.

button class Specifies a class whose objects are clickable
areas, which have actions associated to them.

collection class Specifies a class whose objects are a set of
other elements, such as text, image, etc. It is not
specified how the set will be displayed.

direct navigability

association Specifies that the target object is accessed by
direct navigation from the source object. The
direction of navigation is shown by an arrow that
is attached to one or both ends of the association
(bidirected).

external node

class Specifies a class whose objects are targets
belonging to another hyperspace.

form class Specifies a class whose objects are used to
request information, which will be supplied in one
or more input fields or will be selected by options
from a browser or checkbox.

frame class Specifies the lower level area a frameset is
divided into.

...

. . .

Appendix • UML Extension for Hypermedia • 337

Stereotype / Icon Applies to Meaning

frameset class Specifies a class whose objects are top level
elements modeled by a composite that contains
lower level objects (frames). Framesets are
always contained in a window and may be
nested.

guided tour

class Specifies a class whose objects provide
sequential access to instances of a navigation
class. The directed association that connects a
guided tour to a navigation class has the property
{ordered}.

image class Specifies a class whose objects are a visual and
displayable multimedia object.

index

class Specifies a class of composite objects that
contain an arbitrary number of index items. Each
index item is in turn an object which has a name
and owns a link to an instance of a navigation
class.

menu

class Specifies a class of composite objects that
contain a fixed number of menu items. Each
menu item has a constant name and owns a link
either to an instance of a navigation class, an
index, a guided tour, a query or another menu.

navigation

class Specifies a class whose objects are obtained
from corresponding conceptual objects and are
visited by the user during navigation.

presentation

class Specifies a class whose objects are the
presentation of navigation objects or an access
primitive, such as an index, a guided tour, query
or menu. It is a container, which comprises
elements like texts, images, video, anchors, etc.

338 • UML Extension for Hypermedia • Appendix

Stereotype / Icon Applies to Meaning

presents association Specifies that the target object is displayed in the
location indicated by the source object.

query

class Specifies a class whose objects have query
strings as attributes. These strings may be, for
instance, OCL select operations.

text class Specifies a class whose objects are sequences
of characters.

video class Specifies a class whose objects are video
sequences that can be started, stopped, rewound
and forwarded.

window

class Specifies a class whose objects have assigned
an area of the user interface, where framesets or
presentation objects are displayed. They can be
moved, resized and reduced to icons. Each
window object includes at least two buttons, one
to be transformed into an icon and one to be
closed.

 Stereotypes for Modeling Adaptive Features

The UML Profile defines the following stereotypes to model the adaptive
functionality of adaptive hypermedia systems. They are used in the construction of
the navigation structure model, the adaptation model and the presentation models.

Stereotype / Icon Applies to Meaning

adapted language presentation
class

Specifies that the presentation object’s text is
presented in a language that depends on the
user model.

?

Appendix • UML Extension for Hypermedia • 339

Stereotype / Icon Applies to Meaning

annotated menu item
index item

anchor

Specifies that an index item, a menu item or an
anchor has a visual annotation indicating its
relevance.

direct guidance guided tour
anchor

Specifies that the system decides, which is the
“best” target node.

layout variant presentation
class

Specifies that the presentation object’s layout is
user model dependent.

passive navigation association Specifies that the navigation following the
association is performed by the system, e.g.
when the user remains inactive.

removed menu item
index item

anchor

Specifies that if the system believes that an item
or anchor is not relevant for the user, it is visually
removed.

rule class Specifies a class whose objects contain
principles that determines how to update the user
model, how to find appropriate concepts or how
to adapt the application.

sorted menu item
index item

anchor

Specifies that the corresponding object belongs
to a group of items or anchors that are sorted to
indicate their relevance.

user behaviour class Specifies a class whose objects contain the
result of user observation.

References • 341

“Wisdom is not a product of schooling,
but the lifelong attempt to acquire it”

Einstein

 References

Albrecht F. (1998). SmexWeb: Ein adaptives Web-basiertes Übungssystem. Diplomarbeit,
Ludwig-Maximilians-Universität München.

Albrecht F., Koch N. & Tiller T. (1999). Making Web-based Training More Effective.
Proceedings of the Seventh Workshop ABIS-99: Adaptivität und Benutzer-
modellierung in interaktiven Softwaresystemen, T. Joerding (Ed.).

Albrecht F., Koch N. & Tiller T. (2000). SmexWeb: An Adaptive Web-based Hypermedia
Teaching System. Journal of Interactive Learning Research, Special Issue on
Intelligent Systems/Tools in Training and Lifelong Learning. Kommers P. &
Mizoguchi R. (Eds.), 367-388.

Anderson J. & Skwarecki E. (1986). The Automated Tutoring of Introductory Computer
Programming. Communications of the ACM, 29, 9, 842-849.

Ardissono L. & Goy A. (1999). Tailoring the Interaction with Users in Electronic Shops. In
User Modeling Conference, 35-44.

ArgoUML (2000). http://www.tigris.org

Armstrong R., Freitag D., Joachims T. & Mitchell T. (1995). WebWatcher: A Learning
Apprentice for the World Wide Web. AAAI Spring Symposium on Information
Gathering from Distributed Heterogeneous Environments.

Asnicar F. & Tasso C. (1997). ifWeb: A Prototype of User-Model-Based Intelligent Agent
for Document Filtering and Navigation in the World Wide Web. Proceedings of
the Workshop Adaptive Systems and User Modeling on the World Wide Web.
User Modeling Conference´97.

Avison D. & Fitzgerald G. (1995). Information Systems Development: Methodologies,
Techniques and Tools. Mc Graw-Hill.

342 • References

Åberg J. & Shahmemehri N. (1999). Web Assistants: Towards an Intelligent and Personal
Web Shop. Proceedings of the 2nd Workshop on Adaptive Systems and User
Modeling on the WWW.

Baar T. (2000). Experiences with the UML/OCL-Approach in Practices and Strategies to
Overcome Deficiencies. Net.ObjecctDays 2000, Germany.

Balasubramanian V., Bieber M. & Isakowitz T. (1996). Systematic Hypermedia Design.
Technical report, CRIS Working Paper Series, Stern School of Business, New
York University.

Ballacker K., Lawrence S, & Giles L. (2000). Discovering Relevant Scientific Literature
on the Web. IEEE Intelligent Systems, 15 (2), 42-47.

Baumeister H., Koch N.& Mandel L. (1999). Towards a UML Extension for Hypermedia
Design. Proceedings of The Unified Modeling Language Conference: Beyond the
Standard (UML´99). France R. and Rumpe B. (Eds). LNCS 1723, Springer Verlag,
614-629.

Beck J., Stern M. & Haugsjaa E. (1996). Applications of AI in Education. ACM
Crossroads, 3 (1). http://www.acm.org/crossroads/xrds3-1/aied.html.

Benyon D. & Murray D. (1993). Applying User Modeling to Human-Computer Interaction
Design. Artificial Intelligence Review, 7, 199-225, Kluwer Academic Publishers.

Berner S., Glinz M. & Joos S. (1999). A Classification of Stereotypes for Object-oriented
Modeling Languages. In Proceedings UML’99–The Unified Modeling Language:
Beyond the standard Conference. France R. and Rumpe B.(Eds.).LNCS 1723.
Springer Verlag, 249-264.

Berners-Lee T. (1999). Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web. Harper San Fransisco.

Bichler M. & Nusser S. (1996). Developing Structured WWW-Sited with W3DT. WebNet
96.

Boehm B. (1981). Software Engineering Economics. Prentice Hall.

Boehm B. (1988). A Spiral Model for Software Development and Enhancement.
Computer, May, 61-72.

Boehm B. (1991). Software Risk Management: Principles and Practices. IEEE Software,
32-41.

Boehm B., Abts C., Brown A., Chulani S., Clark B. & Horowitz E. (2000). Software Cost
Estimation with Cocomo II. Prentice Hall.

Booch G. (1994). Object-oriented Analysis and Design with Applications. Cummings
Publishing Company.

Booch G., Rumbaugh J. & Jacobson I. (1999). The Unified Modeling Language: A User
Guide. Addison Wesley.

Boyle T. (1997). Design for Multimedia Learning. Prentice Hall.

Boyle T. & Encarnaçao M. (1994). MetaDoc: An Adaptive Hypertext Reading System.
User Modelling and User Adapted Interaction, 4 (1), 1-19.

References • 343

Brajnik G. & Tasso C. (1992). A Flexible Tool for Developing User Modeling.
Proceedings of UM´92 User Modeling Workshop.

Brusilovsky P. (1996a). Adaptive Hypermedia: An Attempt to Analyze and Generalize.
Proceedings of First International Conference on Multimedia, Hypermedia and
Virtual Reality 1994. Brusilovsky P. & Streitz N. (Eds.) LNCS 1077, Springer
Verlag, 288-304.

Brusilovsky P. (1996b). Methods and Techniques of Adaptive Hypermedia. International
Journal of User Modeling and User-Adapted Interaction. Kluwer Academic
Publishers, Vol 6, 2-3, 87-129.

Brusilovsky P. (1997). Efficient Techniques for Adaptive Hypermedia. Intelligent
Hypertext: Advanced Techniques for the World Wide Web. Nicholas C. &
Mayfield J. (Eds.), Springer Verlag, 12-30.

Brusilovsky P. (1998). Methods and Techniques of Adaptive Hypermedia. Adaptive
Hypertext and Hypermedia. Brusilovsky P. et al. (Eds.), Kluwer Academic
Publishers, 1-43.

Brusilovsky P. & Cooper D. (1999). ADAPTS: Adaptive Hypermedia for a Web-based
Performance Support System. 2nd Workshop on Adaptive Systems and User
Modeling on the WWW.

Brusilovsky P. & Eklund, J. (1998). A Study of User Model Based Link Annotation in
Educational Hypermedia. Journal of Universal Computer Science, 4 (4), 429-
448, Springer Science Online.

Brusilovsky P., Schwarz E. & Weber G. (1996a). ELM-ART: An Intelligent Tutoring
System on World Wide Web. Proceeding of Third International Conference on
Intelligent Tutoring Systems ITS-96, LNCS 1086, Springer Verlag, 261-269.

Brusilovsky P., Schwarz E. & Weber G. (1996b). A Tool for Developing Adaptive
Electronic Textbooks on WWW. Proceeding of WebNet´96, Worl Conference of
the Web Society, 64-69.

Bull S. & Smith M. (1997). A Pair of Student Models to Encourage Collaboration. User
Modeling Proceedings of the Sixth International Conference, UM97, A. Jameson,
C. Paris and C. Tasso (Eds.), Springer Verlag Wien, 339-341.

Bulterman D., Rutledge L., Hardman L. & van Ossenbruggen J. (1999). Supporting
Adaptive and Adaptable Hypermedia Presentation Semantics. The 8th IFIP 2.6
Working Conference on Database Semantics (DS-8): Semantic Issues in
Multimedia Systems.

Bush, V. (1945). As We May Think. The Atlantic Month, 176 (1), 101-108.

Campbell B. & Goodman J. (1988). HAM: A General Purpose Hypertext Abstract
Machine, Communications of the ACM, Vol. 31 (7).

Carneiro L., Cowan D. & Lucena C. (1993). Introducing ADV Charts: A Graphical
Specification of Abstract Data Views. Proceedings of CASCON´93.

Carro R., Pulido E. & Rodriguez P. (1999). TANGOW: Task-based Adaptive learNer
Guidance on the WWW. Proceedings of the Second Workshop on Adaptive
Systems and User Modeling on the World Wide Web, 49-57.

344 • References

Cas K. & Bingler D. (1998). Adaptive Briefing Books basierend auf einer client-server
Architektur. ABIS-98:Workshop on Adaptivitiy and User Modeling in Interactive
Software Systems, FORWISS Report.

Ceri S., Fraternali P. & Bongio A. (2000). Web Modeling Language (WebML): A
Modeling Language for Designing Web Sites. Proceedings of WWW9.

Chin D. (1993). Acquiring User Models. Artificial Intelligence Review. Kluwer Academic
Publishers. 185-197.

Collins J., Greer J., Kumar V. & McCalla G. (1997). Inspectable User Models for Just-in-
time Workplace Training. User Modeling Proceedings of the Sixth International
Conference, UM97, Jameson A., Paris C. and Tasso C. (Eds.), Springer Verlag
Wien, 327-337.

Conallen J. (1999). Building Web Applications with UML. Addison-Wesley.

Conklin J. (1987). Hypertext: A Survey and Introduction. IEEE Computer 20 (9), 17-41.

Corbett A. & Anderson J. (1995). Knowledge Tracing: Modeling the Acquisition of
Procedural Knowledge. User Modeling and User-Adapted Interaction, Kluwer
Academic Publishers, 4, 253-278.

Cordingley E. (1989). Knowledge Elicitation Techniques for Knowledge-based Systems.
Knowledge Elicitation: Principles, Techniques and Applications, Diaper (Ed.),
Ellis Horwood.

De Bra P. & Calvi L. (1998). AHA: A Generic Adaptive Hypermedia System. Proceeding
of the 2nd Workshop on Adaptive Hypertext and Hypermedia, HYPERTEXT´98, 5-
11.

De Bra P. (1999). Design Issues in Adaptive Web-Site Development. Proceedings of the
2nd Workshop on Adaptive Systems and User Modeling on the WWW.

De Bra P., Brusilovsky P. & Houben G.J. (1999). Adaptive Hypermedia: From System to
Framework. ACM Computing Surveys, Vol 31 (4).

De Bra P., Houben G.-J. & Kornatzky Y. (1992). An Extensible Data Model for
Hyperdocuments. Proceedings of the 4tth ACM Conference on Hypertext, 222-
231.

De Bra P., Houben G.-J. & Wu H. (1999). AHAM: A Dexter-based Reference Model for
Adaptive Hypermedia. Proceedings of the ACM Conference on Hypertext and
Hypermedia, 147-156.

De Bra, P. (2000). Using Hypertext Metrics to Measure Research Output Levels.
Scientometrics, Kluwer Academic Publishers, 47 (2), 227-236.

Dekkers, C. (1999). Function Points and Use Cases – Where’s the Fit? IT Metrics
Strategies, January.

de La Passardiere B. & Dufresne A. (1992). Adaptive Navigational Tools for Educational
Hypermedia. Proceedings of Computer Assisted Learning, Springer Verlag, 55-
567.

De Marco T. (1979). Structured Analysis and System Specification. Prentice Hall.

References • 345

De Troyer O. & Leune C. (1997). WSDM: A User-centered Design Method for Web Sites.
Proceedings of the 7th International World Wide Web Conference.

de Vries E., Tiberhien A. & Guy P. (1995). Learning Processes and Knowledge Represen-
tation in the Design of Educational Hypermedia. Proceedings of Hypermedia
Design 95.

Diaz A., Isakowitz T., Maiorana V. & Gilabert G. (1995). RMC: A Tool to Design WWW
Applications. Proceedings of the 5th International World Wide Web Conference.

Dillenbourg P. & Self J. (1990). A Framework for Learner Modeling. Technical Report
AI-49. Lancaster University, England.

Eklund J. & Zeiliger R. (1996). Navigating the Web: Possibilities and Practicalities for
Adaptive Navigational Support. Proceedings of Second Australian World Wide
Web Conference, AusWeb96.

Encarnaçao M. (1997). Concept and Realization of Intelligent Support in Interactive
Graphics Applications. Ph.D. Thesis.

Encarnacão M. & Stork A. (1996). An Integrated Approach to User-centered Interface
Adaptation. Technical Report WSI-96-10, University of Tübingen.

Euromethod (1996). Euromethod Framework.

Espinoza F. & Höök C. (1996). An interactive WWW Interface to an Adaptive
Information System. Proceeding of User Modeling´96 Conference.

Evans A., France R., Lano K. & Rumpe B. (1998). The UML as a Formal Modelling
Notation. Proceedings of the UML´98 Workshop, Bézivin J. & Muller P. (Eds.),
LNCS 1618, Springer Verlag, 336-348.

Fink J. (1998). Implikationen aus dem Datenbank- und Transaktionsmanagement für
anwendungs-orientierte Serversysteme zur Benutzermodellierung. ABIS-98:
Workshop on Adaptivitiy and User Modeling in Interactive Software Systems,
FORWISS Report, 7-15.

Fink J., Kobsa A. & Nill A. (1997). Adaptable and Adaptive Information Access for all
Users Including the Disabled and the Elderly. User Modeling Proceedings of the
Sixth International Conference, UM97, Jameson A., Paris C. and Tasso C. (Eds.),
Springer Verlag Wien, 171-173.

Fink J. & Kobsa A. (2000). A Review and Analysis of Commercial User Modeling Servers
for Personalization on the World Wide Web, User Modeling and User Adapted
Interaction, Kluwer Academic Publishers, 10 (2-3), 209-249.

Furuta R. & Stotts P. (1990). The Trellis Hypertext Reference Model. Proceeding NIST
Hypertext Standardization Workshop.

Gamma E., Helm R., Johnson R. & Vlissides J. (1995). Design Pattens. Addison Wesley.

Garlatti S., Iksal S. & Kervella P. (1999). Adaptive On-line Information System by Means
of a Task Model and Spatial Views. Second Workshop on Adaptive Systems and
User Modeling on the WWW, 59-66.

Garzotto F., Mainetti L. & Paolini P. (1995). Hypermedia Design Analysis.
Communications of the ACM, 8(38), 74-86.

346 • References

Garzotto F., Paolini P & Schwabe D. (1993). HDM: A Model-based Approach to
Hypertext Application Design. ACM Transactions of Information Systems, 11(1),
1-26.

Gellersen H-W. & Gaedke M. (1999). Object-oriented Web Application Development.
IEEE Internet Computing, Jan-Feb, 60-68.

Giangrandi P. & Tasso C. (1997). Managing Temporal Knowledge in Student Modeling.
User Modeling Proceedings of the Sixth International Conference, UM97,
Jameson A., Paris C. and Tasso C. (Eds.), Springer Verlag Wien, 415-426.

Gogolla M. & Richters M. (2000). Definition of UML with UML and OCL: State of the
Art (in German) GROOM Workshop.

Graham J., Henderson-Sellers B. & Younessi H. (1997). The OPEN Process Specifica-
tion. Addison Wesley.

Greer J. (1996). Student Modeling Tutorial. User Modeling Conference.

Greer J., McCalla G., Collins J., Kumar V., Bishop A. & Vassileva J. (1998). The
Intelligent Helpdesk: Supporting Peer-Help in a University Course. Proceeding of
ITS´98.

Grønbæk K. & Trigg R. (1994). Design Issues for a Dexter-Based Hypermedia System.
Communications of the ACM 37(2), Grønbæk K. and Trigg R. (Eds.), 40-49.

Grønbæk K. & Trigg R. (1996). Towards a Dexter-based Model for Open Hypermedia:
Unifying embedded refrences and link objects. Proceedings of the Hypertext´96
Conference.

Gutierrez J., Pèrez T., Usandizaga I. & Lopistéguy P. (1996). HyperTutor: Adapting
hypermedia systems to the user. Proceedings of the 5th International Conference
on User Modeling UM-96.

Halasz F. & Schwartz M. (1990). The Dexter Hypertext Reference Model. NIST Hypertext
Standardization Workshop.

Halasz F. & Schwartz M. (1994). The Dexter Hypertext Reference Model. Communica-
tions of the ACM 37(2), Grønbæk K. and Trigg R. (Eds.), 30-39.

Hardman L., Bulterman C. & van Rossum G. (1994). The Amsterdam Hypermedia Model.
Communications of the ACM 37(2), Grønbæk K. and Trigg R. (Eds.), 50-62.

Harel D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3).

Harel D. & Gery E. (1997). Executable Object Modeling with Statecharts. IEEE
Computer, 30 (7), 31-42.

Henderson-Sellers B. (1995). Who Needs an Object-oriented Methodology Anyway?
Journal of Object Oriented Programming, 8 (6), 6-8.

Henderson-Sellers B. & Firesmith D. (1997). Evaluating Third Generation OO Software
Development Approaches. Submitted to Information and Software Technology.

References • 347

Hennicker R. & Koch N. (2000a). A UML-based Methodology for Hypermedia Design.
Proceedings of the Unified Modeling Language Conference, UML´2000, Evans
A. and Kent S. (Eds.). LNCS 1939, Springer Verlag, 410-424.

Hennicker R. & Koch N. (2000b). Systematic Design of Web Applications. Unified
Modeling Language: Analysis, Design, and Development Issues”, Siau K. &
Halpin T. (Eds.). Idea-Group Publishing, 1-20.

Henze N. & Nejdl W. (1999). Adaptivity in the KBS Hyperbook System. Workshop on
Adaptivity and User Modeling on the WWW, International Conference on User
Modeling UM´99.

Hitz M. & Kappel G. (1999). UML@Work. dpunkt.verlag.

Höök K. (1998). Evaluating the Utility and Usability of an Adaptive Hypermedia System.
Knowledge-Based Systems, Elsevier, 10, 311-319.

Höök K., Karlgren J. & Waern A. (1995). A Glass Box Intelligent Help Interface.
Proceedings of First Workshop on Intelligent Multimodal Interfaces.

Horvitz E. (1997). Agents with Beliefs: Reflections on Bayesian Methods for User
Modeling. Tutorial UM97: User Modeling Proceedings of the Sixth International
Conference.

Huang X., McCalla G., Greer J., Neufeld E. (1991). Revising Deductive Knowledge and
Stereotypical Knowledge in a Student Model. User Modeling and User-Adapted
Interaction Journal, Vol 1, 87-115.

IEEE Standard Glossary of Software Engineering Terminology (1983).

IEEE (1987/1993). IEEE Standard for Software Project Management. 1058.1-1987
(R1993).

IEEE (1988/1993). IEEE Standard for Software Review and Audits. 1028-1988 (R1993).

IEEE (1989/1995). IEEE Standard Quality Assurance Plans (ANSI) together with IEEE
Guide for Software Quality Assurance Planning (ANSI), 730-1989 and 730.1-
1995.

Iivari J. & Maansaari J. (1998). The Usage of Systems Development Methods: Are we
Stuck to Old Practices? Information and software Technology, Elsevier, 40, 501-
510.

Isakowitz T., Stohr E. & Balasubramanian P. (1995). A Methodology for the Design of
Structured Hypermedia Applications. Communications of the ACM, 8(38), 34-44.

ISO/IEC 9126 (1991). International Standard: “Information technology – Software
Product Evaluation – Quality Characteristics and Guidelines for their Use”.

ISPL (1999). Information Services Procurement Library. Ten Hagen & Stam Verlag.

iVALS (2000). Internet Values and Lifestyles. Stanford Research Institute.
http://future.sri.com/

Jacobson I. (1992). Object-oriented Software Engineering: A Use case driven Approach.
Addison Wesley.

348 • References

Jacobson I., Booch G., & Rumbaugh J. (1999). The Unified Software Development
Process. Addison Wesley.

Jacobson I. & Thomas D. (1995). Extensions: A Technique for Evolving Large Systems.
SIGS, Report on Object Analysis & Design, 1 (5), 7-9.

Jameson A. (1995). Numerical Uncertainty Management in User and Student Modeling:
An Overview of Systems and Issues. International Journal of User Modeling and
User-adapted Interaction, 5 (3), Kluwer Academic Publishers.

Jameson A. (1998). User Modeling: An Integrative Overview. Tutorial ABIS98:Workshop
on Adaptivitiy and User Modeling in Interactive Software Systems, FORWISS
Report.

Jörding T., Michel S. & Popella M. (1998). TELLIM – Ein System für adaptive
multimediale Produktpräsentationen im World Wide Web. ABIS-98:Workshop on
Adaptivitiy and User Modeling in Interactive Software Systems, FORWISS
Report.

Jones, C. (1990). Systematic Development using VDM. Prentice Hall International.

Jungmann M. & Paradies T. (1997). Adaptive Hypertext in Complex Knowledge
Domains. Proceedings of the Flexible Hypertext Workshop (Hypertext´97).

Kass R. & Finin T. (1988). The Need for User Models in Generig Expert System
Explanations. Technical Report University of Pensylvania.

Kass R. (1989). Building a User Model Implicitly from a Cooperative Advisory Dialogue.
Proceedings of the Second International Workshop on User Modeling.

Kay J. & Kummerfield R. J. (1994). An Individualised Course for the C Programming
Language. Proceedings of the Second International WWW Conference ’94.

Kay J. (1993). Reusable Tools for User Modelling. Artificial Intelligence Review, Vol 7,
Academic Publishers, 241-251.

Kay J. (1995). The UM Toolkit for Cooperative User Modeling. User Modeling and
User-Adapted Interaction (UMUAI), 4, Kluwer Academic Publisher, 149-196.

Kobryn C. (1999). UML 2001: A Standardization Odyssey. Communications of the ACM,
42 (10), 29-37.

Kobsa A., Müller D. & Nill A. (1994). KN-AHS: An Adaptive Hypertext Client of the
User Modeling System BGP-MS. Proceedings of Fourth International
Conference on User Modeling, Mitre Corporation.

Kobsa, A. & Pohl W. (1995). The User Modeling Shell System BGP-MS. User Modeling
and User-Adapted Interaction, 4 (2), 59-106.

Kobsa A. & Wahlster W. (1989). User Models in Dialog Systems. Springer Verlag.

Koch N. (1998). Towards a Methodology for Adaptive Hypermedia Systems
Development. Proceedings of the Sixth Workshop ABIS-98: Adaptivität und
Benutzermodellierung in interaktiven Softwaresystemen, U. Timm, and M. Roessel
(Eds.), 41-52, FORWISS.

References • 349

Koch N. (1999). A Comparative Study of Methods for Hypermedia Development. Ludwig-
Maximilians-University Munich, Institute of Computer Science, Technical Report
9905.

Koch N. (2000a). Hypermedia Systems Development based on the Unified Process.
Ludwig-Maximilians-University Munich, Institute of Computer Science,
Technical Report 0003.

Koch N. (2000b). UML+OCL Specification of the Dexter Hypertext Reference Model.
Ludwig-Maximilians-University Munich, Institute of Computer Science,
Technical Report 0008.

Koch N., Baumeister H., Hennicker R. & Mandel L. (2000). Extending UML to Model
Navigation and Presentation in Web Applications. Workshop on the UML and
Modeling Web Applications, UML´2000.

Koch N. & Helmerich A. (2000). Information Services Procurement for Web
Engineering. Ten Hagen & Stam Verlag.

Koch N. & Mandel L. (1999) Using UML to Design Hypermedia Applications. Ludwig-
Maximilians-University Munich, Institute of Computer Science, Technical Report
9901.

Koch N. & Turk A. (1997). Towards a Methodical Development of Electronic Catalogues.
International Journal of Electronic Markets. University of St. Gallen,
Switzerland.,Vol 7 (3), 28-31.

König R. (1976). Das Interview: Formen, Technik, Auswertung. Kiepenheuer & Witsch.
10. Auflage.

Kruchten P. (1998). The Rational Unified Process: An Introduction. Addison Wesley.

Lang H.-W. (1988). Transitive Closure on the Instruction Systolic Array. Proceedings of
the International Conference on Systolic Arrays, K. Bromley K., Kung S.,
Swartzlander E. (Eds.), 295-304.

Lange D. (1996). An Object-oriented Design Approach for Developing Hypermedia
Information Systems. Journal of Organizational Computing and Electronic
Commerce, 6(3), 269-293.

Lee H. Lee C.& Yoo C. (1998). A Scenario-based Object-Oriented Methodology for
Developing Hypermedia Information Systems. Proceedings of 31st Annual
Conference on Systems Science, Sprague R. (Ed.).

Lieberman H. (1995). Letizia: An Agent That Assists Web Browsing. International Joint
Conference on Artificial Intelligence, Montreal.

Linard M. & Zeiliger R. (1995). Designing Navigation Support for an Educational
Software. Proceedings of 5th International Conference EWHCI’95. Blumental,
Gornostaev, Unger (Eds). LNCS 1015, SpringerVerlag, 63-78.

Lowe D. & Hall W. (1999). Hypermedia & the Web: An Engineering Approach. John
Wiley & Sons.

Lowe D. & Webby R. (1998). The IMPACT Process Modelling Project: Work in Progress.
Workshop on Hypermedia Development. Hypertext´98.

350 • References

Magglio P. & Barret R. (1997). How to Build Modeling Agents to Support Web Searchers.
User Modeling Proceedings of the Sixth International Conference, UM97,
Jameson A., Paris C. and Tasso C. (Eds.), Springer Verlag Wien, 5-16.

Mandel L. & Cengarle M.V. (1999). On the Expressive Power of OCL. Proceedings of the
World Congress on Formal Methods (FM´99). LNCS 1708, Springer Verlag, 854-
874.

Mandl H. & Reinmann-Rothmeier G. (1997). Zukunft Cyberspace? Europas Weg in die
globale Informationsgesellschaft. Presentation at the Europian Colloquium in
Regensburg, Germany.

Marinilli M., Micarelli A. & Sciarrone F. (1999). A Case-based Approached to Adaptive
Information Filtering for the WWW. Second Workshop on Adaptive Systems and
User Modelling on the World Wide Web.

Mathé N. and Chen J. (1996). User-centered Indexing for Adaptive Information Access.
User Modeling and User-Adapted Interaction, 6 (2-3), 225-261.

McTear M. (1993). User modelling for Adaptive Computer Systems: A Survey of Recent
Developments. Artificial Intelligence Review, 7, 157-184, Kluwer Academic
Publishers.

Mislevy R. & Gitower D. (1995). The Role of Probability-based Inference in an Intelligent
Tutoring System. International Journal of User Modeling and User-adapted
Interaction, Kluwer Academic Publishers, 5 (3).

Mladenic D. (2000). http://www.cs.cmu.edu/afs/cs/project/theo-4/text/learning/www/pww
/index.html

Murphy M. & McTear M. (1997). Learner Modeling for Intelligent CALL. User
Modeling Proceedings of the Sixth International Conference, UM97, Jameson A.,
Paris C. and Tasso C. (Eds.), Springer Verlag Wien, 301-312.

Murugesan S., Deshpande Y. Hansen S. & Ginige A. (1999). Web Engineering: A new
Discipline for Development of Web-based Systems. Proceedings of the First ICSE
Workshop on Web Engineering, International Conference on Software
Engineering.

Nakabayashi K., Maruyama M., Koike Y., Kato Y., Touhei H. & Fukuhara Y. (1997).
Architecture of an Intelligent Tutoring System on the WWW. Proceedings of the
Eighth World Conference of the AIED Society.

Nanard J. & Nanard M. (1995). Hypertext Design Environments and the Hypertext Design
Process. Communication of the ACM, August 1995, 38 (8), 49-56.

Nanard J. & Nanard M. (1999). Toward and Hypermedia Design Pattern Space.
Hypertext´99 Workshop on Design Patern in Hypermedia.

Nelson T. (1960). Computer Lib/Dream Mashines, 1974. Microsoft Press.

Nielsen J. (1999). User Interface Directions for the Web. Communications of the ACM, 42
(1), 65-72.

Nwana H. (1990). Intelligent Tutoring Systems: An Overview. Artificial Intelligent
Review, 4, 251-277.

References • 351

Oestereich B. (1999). Developing Software with UML: Object-Oriented Analysis and
Design in Practice. Addison-Wesley.

Olsina L. (1998). Building a Web-based Information System Applying the Hypermedia
Flexible Process Modeling Strategy. 1st International Workshop on Hypermedia
Development, Hypertext´98.

Olsina L., Godoy D., Lafuente G. & Rossi G. (1999). Assessing the Quality of Academic
Web Sites. In New Review Hypermedia Multimedia Journal, Taylor Graham
Publishers, UK, Vol 5, 81-103

Olsina L. (2000). Metodología Cuantitativa para la Evaluación y Comparación de la
Calidad de Sitios Web. PhD. Thesis. UNLP, Argentina (in Spanish).

OMG (2000). http://cgi.omg.org/news/pr97/umlprimer.html

Paiva A., Self J. & Hartley R. (1995). Externalising Learner Models. Proceedings of
AIED95. AACE Publication.

Paiva A. & Self J. (1995). TAGUS: A User and Learner Modeling Workbench.
International Journal of User Modeling and User-adapted Interaction, Kluwer
Academic Publishers, 5 (3), 197-224.

Paiva A., Self J. & Hartley R. (1995). Externalising Learner Models. Proceedings of
AIED95, AACE Publication.

Palvia P. & Nosek J. (1993). A Field Examination of System Life Cycle Techniques and
Methodologies. Information and Management, 25(2), 73-84.

Paolini P. & Garzotto F. (1999). Toward and Hypermedia Design Pattern Space.
Hypertext´99 Workshop on Design Patern in Hypermedia.

Pastor O., Insfrán E. Pelechano V., Romero J. & Merseguer J. (1997). OO-Method: An
OO Software Production Environment Combining Conventional and Formal
Methods. Proceedings of CAISE´97, LNCS 1250, Springer-Verlag, 144-158.

Paterno F. & Mancini C. (1999). Designing Web Interfaces Adaptable to Different Types
of Use. Proceedings of the Workshop Museums and the Web. http://www.
acrhimuse.com/mw99/

Pezdirc L. (1999). Entwicklung einer Datenbankunterstützung und eines Kommunika-
tionsforums für ein webbasiertes Tutoring-System. Diplomarbeit, Ludwig-
Maximilians-Universität München.

Pohl W. (1999). Logic-Based Representation and Reasoning for User Modeling Shell
Systems. User Modeling and User-Adapted Interaction International Journal,
Kluwer Academic Publishers, Vol 9 (3), 217-282.

Pohl W. & Höhle J. (1997). Mechanisms for Flexible Representation and Use of
Knowledge in User Modeling Shell Systems. User Modeling Proceedings of the
Sixth International Conference, UM97, Jameson A., Paris C. and Tasso C.
(Eds.), Springer Verlag Wien, 403-414.

Preece J., Rogers Y., Sharp H., Benyon D., Holland S. & Carey T. (1994). Human-
Computer Interaction. Addison-Wesley.

352 • References

Ragnemalm E (1995). Student Diagnosis in Practice; Bridging the Gap. User Modeling
and User-Adapted Interaction (UMUAI) International Journal, 5, Kluwer
Academic Publishers 93-116.

Ramscar M., Pain H. & Lee J. (1997). Do We Know What the User Knows, and Does It
Matter? The Epistemics of User Modelling. Proceedings of the International
Conference of User Modeling 97. Jameson A. & Paris C. (Eds.) Springer Verlag,
429-431.

Rational Unified Process (2000). Rational Software. http://www.rational.com/rup

Rich E. (1979). User Modeling Via Stereotypes. Cognitive Science 3, 329-354.

Richters M. & Gogolla M. (1999). A Metamodel for OCL. Proceedings of the
Conference The Unified Modeling Language beyond the standard (UML´99).
LNCS 1723, Springer Verlag, 156-171.

Ritter S. (1997). PAT Online: A Model-tracing Tutor on the World Wide Web.
Proceedings of Workshop on Intelligent Systems on the World Wide Web, 8th
Conference of the AIED Society .

Robilliard P. (1999). The Role of Knowledge in Software Development. Communications
of the ACM, 42 (1), 87-92.

Rössel M. (1998). Pragmatische Benutzermodellierung im adaptiven multimedialen
Präsentationssystem AMPres. ABIS-98:Workshop on Adaptivitiy and User
Modeling in Interactive Software Systems, FORWISS Report.

Rossi G. (1996). OOHDM: Object-Oriented Hypermedia Design Method. PhD thesis,
PUC-Rio, Brazil (in Portuguese).

Rossi G., Schwabe D. & Garrido A. (1996). Towards a Pattern Language for Hypermedia
Applications. Proceedings of the 3rd Annual Conference on Pattern Languages of
Programs 96.

Rossi G., Schwabe D., & Lyardet F. (2000). Web Applications Models are More than
Conceptual Models. Proceedings of the Web Engineering Workshop at WWW9.

Rumbaugh J. (1995). What is a Method? Journal of Object Oriented Programming, 8(6)
10-16,26.

Sano D. (1996). Designing Large-Scale Web Sites: A Visual Design Methodology. Wiley
Computer Publishing.

Sauer S. & Engels G. (1999). Extending UML for Modeling Multimedia applications.
Proceedings of the IEEE Symposium of Visual Languages – VL´99, IEEE
Computer Society.

Scharl A. (1999). A Conceptual, User-Centric Approach to Modeling Web Information
Systems. Proceedings of 5th Australian World Wide Web Conference (AusWeb
99). Southern Cross University Press, 33-49.

Schneider G. & Winters J. (1998). Applying Use Cases: A Practical Guide. Addison-
Wesley, Object Technology Series.

Schneiderman B. (1998). Designing the User Interface: Strategies for effective Human-
Computer Interaction. Addison Wesley.

References • 353

Schuhbauer H. (1998). Das Benutzerprofil in einem Freizeitberatungszentrum.
Proceedings of ABIS-98: Workshop on Adaptivitiy and User Modeling in
Interactive Software Systems, FORWISS Report.

Schwabe D. & Almeida Pontes R. (1998). OOHDM-WEB: Rapid Prototyping of
Applications in the WWW. Technical Report PUC-RioInf.MCC-08/98.

Schwabe D. & Rossi G. (1998). Developing Hypermedia applications using OOHDM.
Proceedings of Workshop on Hypermedia development Process, Methods and
Models, Hypertext´98.

Self J. (1988). The Use of Belief Systems for Student Modelling. Proceedings of the First
European Congress on Artificial Intelligence and Training.

Self J. (1991). Formal Approaches to Student Modeling. Technical Report AI-59.
Lancaster University, England.

Self J. (1996). Deconstructionist Student Models in the Computer-Based Learning of
Science. Proceedings of Computer-Aided Learning and Instruction in Science
and Engineering. LNCS 1108, Springer Verlag, 27-36.

Selic B. (1999). Using UML in the Real-Time Domain. Communications of the ACM, 42
(10), 46-54.

Shuell T. (1992). Designing Instructional Computing Systems for Meaningful Learning.
Adaptive Learning Environments, Foundations and Frontiers, M. Jones and P.
Winne (Eds.), Springer-Verlag, 19-53.

Siau K. & Cao Q. (2001). Unified Modeling Language (UML) – A Complexity Analysis.
Journal of Database Management, 26-34, to appear.

Sleeman D. & Brown J.S. (1982). Intelligent Tutoring Systems: Introduction. Academic
Press, London, 1-12.

SmexWeb: Student Modelling Exercising on the Web (1998).
http://pst1.pst.informatik.uni-muenchen.de:8000

Sommerville I. (1982). Software Engineering. Addison Wesley.

Spivey J. (1992). The Z Notation: A Reference Manual. Series in Computer Science.
Prentice Hall International, second edition.

Stein A., Gulla J. & Thiel U. (1997). Making Sense of User’s Mouse Clicks: Abductive
Reasoning and Conversational Dialogue Modeling. User Modeling Proceedings of
the Sixth International Conference, UM97, Jameson A., Paris C. and Tasso C.
(Eds.), Springer Verlag Wien, 89-100.

Strachan L., Anderson J., Sneby M. & Evans M. (1997). Pragmatic User Modelling in a
Commercial Software System. User Modeling Proceedings of the Sixth
International Conference, UM97, Jameson A., Paris C. and Tasso C. (Eds.),
Springer Verlag Wien, 189-200.

Streitz N. (1990). Hypertext: Ein innovatives Medium zur Kommunikation von Wissen.
Hypertext und Hypermedia, Gloor P. and Streitz N. (Eds.), Springer-Verlag.

354 • References

Thomas, C., and Fischer, G. (1996). Using Agents to Improve the Usability and Usefulness
of the World Wide Web. In Proceedings of the 5th International Conference on
User Modeling, 5-12.

Thomson J., Greer J. & Cooke J. (1998). Algorithmically Detectable Design Patterns for
Hypermedia Collections. Proceedings of Workshop on Hypermedia development
Process, Methods and Models, Hypertext´98.

Thüring M., Hannemann J. & Haake J. (1995). Hypermedia and Cognition: Designing for
Comprehension. Communications of the ACM, 38 (8), 57-66.

Tiller T. (1998). Eine Hypertext-Struktur für abgeschlossene adaptive Systeme.
Diplomarbeit, Ludwig-Maximilians-Universität München.

Timm U. & Rosewitz M. (1998). Benutzermodellierung in der Elektronischen
Produktberatung – Konzept und prototypische Realisierung in einer On-line
Umgebung. Proceedings of ABIS-98: Workshop on Adaptivitiy and User
Modeling in Interactive Software Systems, FORWISS Report.

Tochtermann K. (1994). Ein Modell für Hypermedia. Ph.D. Thesis. Universität Dortmund.

Tochtermann K. and Dittrich G. (1996). The Dortmund Family of Hypermedia Models.
Journal of Universal Computer Science, 2(1), Springer Verlag.

UML Version 1.3 (1999). Unified Modeling Language. The Object Management Group.
http://www.omg.org

van Ossenbruggen J. and Eliëns A. (1995). The Dexter Hypertext Reference Model in
Object-Z. http://www.cs.vu.nl/~dejavu/papers/dexter-full.ps .gz

Vassileva J. (1990) A Classification and Synthesis of Student Modeling Techniques in
Intelligent Computer-assisted Instruction. Proceedings of ICCAL´90 Computer
Assisted Learning. Norrie D., Six H.-W.(Eds.). LNCS 438, Springer Verlag, 202-
213.

Vassileva J. (1992). A Three-dimensional Perspective on the Current Trends in Student
Modeling. Proceedings of EW´92- East-west Conference on Emerging Techno-
logies in Education, 315-320.

Vassileva J. (1994). A Practical Architecture for User Modeling in a Hypermedia-Based
Information System. Proceedings of the 4th International Conference on User
Modeling, 115-120.

Vassileva J. (1995). Reactive Instructional Planning to Support Interactive Teaching
Strategies. Proceedings of the 7th World Conference on AI and Education, AACE,
334-342.

Vassileva J. (1996). A Task-centered Approach for User Modelling in a Hypermedia
Office Documentation System, User Modeling and User-Adapted Interaction
Journal, 6, 185-223. Kluwer Academic Publishers.

Vassileva J. (1997). Dynamic Course Generation on the WWW. Proceedings of
Workshop Intelligent Educational Systems on the World Wide Web in AI-ED´97:
Eighth World Conference on Artificial Intelligence in Education.

References • 355

Vassileva J. & Wasson B. (1996). Instructional Planning Approaches: from Tutoring
Towards Free Learning. Proeedings of EuroAIED’96, 1-8.

Wahrshall S. (1962). Theorem on Boolean Matrices. J. Assoc. Comput. Mach. 9, 11-12.

Warmer J. & Kleppe A. (1999). The Object Constraint Language: Precise Modeling with
UML. Object Technology Series. Addison-Wesley.

Wasson B. (1990). Determining the focus of instruction: Content planning for intelligent
tutoring systems. Doctoral Thesis, Department of Computer Science, University of
Saskatchewan.

Waters J. (2000). Getting Personal on the Web. Application Development Trends,
Communications Publication, 7 (5), 25-32.

Weber G. & Specht M. (1997). User Modeling and Adaptive Navigation Support in
WWW-Based Tutoring Systems. Proceedings of the Sixth International
Conference of User Modeling, UM´97, Jameson A., Paris C. and Tasso C. (Eds.),
Springer Verlag, 289-300.

Weidenhaupt K., Pohl K., Jarke M. & Haumer P. (1999). Scenarios in System
Development: Current Practice. IEEE Software, 2, 34-45.

Wieringa R., Dubois E. & Huyts S. (1997). Integrating Semi-formal and Formal
Requirements. Proceedings of Conference on Advanced Information Systems
Engineering, CAiSE´97, Olivé A. & Pastor J. (Eds.), 19-32.

Wilkinson N. (1995), Using CRC Cards: An Informal Approach to Object-oriented
Development. SIGS Books.

Wirfs-Brock R., Wilkerson B. & Wiener L. (1993). Object-Oriented Software Design.
Hauser-Prentice Hall.

Wirsing M. & Knapp A. (1996). A Formal Approach to Object-Oriented Software
Engineering. Proceedings of International. Workshop of Rewriting Logic and Its
Applications, Meseguer J. (Eds.) and Electronic Notes Theoretical Computer
Science, Elsevier, Vol 4, 321-359, revised version.

Wu H, Houben G.-J. & De Bra P. (1998). AHAM: A Reference Model to Support
Adaptive Hypermedia Authoring. Proceedings of InfWet 98.

Wu H., Houben G.-J., & De Bra, P. (1999). Authoring Support for Adaptive Hypermedia
Applications. Proceedings of the ED-MEDIA Conference, AACE, 364-369.

The Author

Nora Parcus de Koch was born in 1951 in Buenos Aires, Argentina. She received
degrees in Computer Science at the University of Buenos Aires in 1974 and 1985.
From 1975 to 1979 she worked at the Central Bank of Argentina as application
developer. She was a teaching assistant first and a professor later at the University
of Buenos Aires until moving to Germany in 1985. From 1986 to 1994 she worked
as a consultant for several German and Argentinean companies. She started with
her PhD Thesis during her work as researcher at the chair of Martin Wirsing at the
Ludwig-Maximilians-Universität (LMU) München (1995-1998). Currently she
works at F.A.S.T. Gesellschaft für angewandte Softwaretechnologie mbH and is
involved in a variety of both, national and European projects focusing on Web
engineering, visual modeling and development processes. At the same time she is a
guest researcher at the LMU. Her publications are published under the name Nora
Koch (http://www.pst.informatik.uni-muenchen.de/~kochn).

