Aspect Oriented
Programming with
Aspectd

Tom Janofsky
Harrisburg JUG
September 30, 2004

Tom Janofsky

@ Instructor with Penn State
@ Independent Consultant

@ Present at conferences, users groups

What is AOP?
Aspectd

Join points
Pointcuts
Advice
Introductions
Practical Uses

Conclusions

Agenda

What is AOP?

@ Aspect Oriented Programming
@ Not an OO replacement
@ Technique for handling ‘Crosscutting concerns’

@ Tries to eliminate code-scattering and
tangling

@ Examples: log all exceptions, capture all SQL
statements, authenticate users before access

.
- i 2 I"‘:‘ 1
ey

Fn T
L

E
£
.
.‘ -

What does that mean for classes?

getBalance() getSKU()

getOwner() getQty()
setOwner() setSKU()
setBalance() setQty()

DXV X Vi
Serializable to XML

Why AOP

@ Some things cannot be modeled well in
object hierarchies

@ Similarities in XDoclet,Dynamic Proxies, CLR
(& JSR 201) meta data, EJB/JSP Containers

@ Wants fo
@ 'Separate concerns’

@ Provide language for designating crosscuts

How should it be used?

@ Still unclear

@ Development (Check contracts, Logging, Ensure good coding
practices, Tracing)

@ Testing, profiling

@ Optional runtime components

@ Great for analyzing & debugging ‘foreign’ code
@ Debugging, profiling

@ Implement core system features (Caching, Security)

How do you do AOP?

@ Write your components
@ Write your aspects

@ Weave (link or load time)

H
ow does it work?

u

What is AspectJ?

@ An open source language

@ 100% Java compatible

@ An AOP implementation

® Extension to Java, new sytax

@ Started at Xerox, now an Eclipse project

& Version 1.2 5/2004

Definitions

e AOP

@ Aspect

@ Aspectd
@ Join Point
@ Pointcut
@ Advice

@ Introduction (inter-type declaration)

Getting started

@ Download from eclipse.org/aspect;
@ Run executable JAR
@ Use aspectjrt.jar on CLASSPATH

@ Or, use Eclipse and AJDT

Writing an Aspect

@ Write the class
@ Write the aspect (.java or .aj)
@ Weave with the ajc compiler

@ Run with aspectjrt.jar

Join Points

@ Locations in an execution path

@ Method call - call(public void
setOwner(String))

® Constructor call initialization
(BankAccount.new())

® Method call execution
® Constructor call execution
@ Field get

@ Field set

Join points (cont.)

@ Exception handler execution
@ Class Initialization
@ Object initialization

@ No finer join points in AspectJ (loops, if
checks)

Join point patterns

& Names can be matched with *
o call (* * BankAccount.*(*))

@ Matches all calls on BankAccount, regardless of
visibility or return type, with one argument

@ call (* *(%)
@ Matches all method calls with 1 parameter

@ call (** .(.))

® Matches all method calls

Join Point Patterns
Cont

@ Subtypes can be matched with a +
- call (public void BankAccount+(..))

@ Can also match on throws patferns
call (public void BankAccount+(..) throws
Exception+)

@ Watch out for infinite recursion! - Aspects
match aspects too - Use ! within()

Pointcuts

@ Structure for selecting join points in a
program and collecting context (args, target,
source)

@ Declaring a named pointcut:

pointcut changeBalance() : call (public void
BankAccount.setBalance(java.math.BigDecimal));

@ Can be combined with logical (set) operators,
&&, ||, and !

Pointcuts cont.

® Valid on interfaces and classes

@ Syntax
pointcut name ([parameters]) : designator
(ajoinpoint);

@ Name will be used to link to actions
@ ajoinpoint is a signature match

@ Designator decides when this join point will
match

Set Operators

public aspect BankAspectOr {

pointcut change()
call (public void setBalance(java.math.BigDecimal))
|| call (public void setOwner(String));

before() : change() {
System.out.println(thisJoinPoint.getSignature());

}
}

Available pointcuts

o call
execution
Initialization
handler
get
set
this

Available pointcuts cont.

@ args
target
cflow
cflowbelow
staticinitialization
withincode
within
if
adviceexecution
preinitialization

Call pointcut

@ Use when you are interested in the
invocation of a method

@ Control is sftill in calling object, use
execution() for control in called object

@ Format:
call (public void
BankAccount.setOwner(String));

Handler pointcut

@ Captures the execution of an exception
handler anywhere in the primary application

@ Format:
handler (ClassCastException)
Remember + patterns apply here as well

State based designators

@ Can be used to expose object to advice, or
narrow pointcut selection

@ this,target,args

@ Format:
pointcut setBalance(BankAccount b) :
call(public void setBalance(*)) && target
(b);
before (BankAccount b) : setBalance(b) {
//b is accessible here

;

Other designators

o cflow,cflowbelow - Allow us to match join
points within a certain program flow

@ staticinitialization - Match class initialization
@ within, withincode - Match class, method
@ Dynamic - If, adviceexecution

@ Pointcut Id (Can combine pointcufs using
names and boolean operators)

Advice

® The second half of AOP

@ Advice is what gefs executed when a join
point is matched

@ Advice is always relative to a joinpoint
Format
type ([parameters]) : join point id (param list)
$

Advice Type

@ before - excellent for preconditions
argument checking, setup code, lazy init

@ after - can be qualified with: after
returning, or after throwing. Cleanup of
resources, checking/manipulating the return
value

@ around - the most powerful advice
can replace invocation, or just surround
use proceed() to call method

thisJoinPoint

@ info about the join point that was just
matched

® the source location of the current join
point

@ the kind of join point that was matched
various string representations of the join
point

@ the argument(s) to the method selected by
the join point

thisJoinPoint

@ the signature of the method selected by the
Join point

@ the target object
@ the executing object

@ thisJoinPointStaticPart exposes args, targef,
and this if designated (no reflection required)

Accessing Objects

@ Use target, args, and this similarly

@ Can be done declaratively
-Add a parameter to the pointcut declaration
-Add && args(s) to the designator
-Add parameter to advice designator
-Add variable name to advice body

@ Also all available reflectively

Exceptions and
precedence

Aspects cant throw exceptions that the pointcuts they are advising
dont throw (Wrap in runtime)

Precedence

use the precedence keyword in an aspect:
declare precedence : A , B;

Sub aspects execute before parents.
Otherwise undefined.

' Multiple advice in an aspect:

natural order (before, after)
order of declaration

Inter-type Declarations

@ Aspectd can be used to change the structure
of existing code
-add members (id fields, dirty flag)
-add methods (toXML, storeToJDBC)
-add types that extend existing types or
-implement interfaces
-declare custom compilation errors or
warnings
-convert checked exceptions to unchecked

Inter-type declarations
cont.

@ Can use from aspects, or regular code

@ Write normal variable and methods in your
aspect, but prefix them with your class name

Inter-type declarations
cont.

@ Very powerful

@ Can do wacky things
-Add concrete fields & methods to interfaces
(no constructors)
-Modify aspects
-Make an existing class dynamically
implement an interface
-Make an existing class extend another

Problems

@ Difficult to know is code is advised
@ Only good tool support in Eclipse
@ Crossing component boundaries

@ How will we model?

@ When usages are appropriate?

@ Not a JSR, infegration questions

@ Refacoring can break it!

Conclusions

@ Powerful, but is it a good idea?
@ Other implementations

@ AspectWerkz (XML)

@ Nanning (Java)

@ JBoss AO

@ Dynaop

More info

@ www.eclipse.org/aspect;
@ Email at tom@tomjanofsky.com

@ Slides and examples www.tomjanofsky.com

