
Aspect Oriented
Programming with

AspectJ

Tom Janofsky
Harrisburg JUG

September 30, 2004

Tom Janofsky

Instructor with Penn State

Independent Consultant

Present at conferences, users groups

Agenda
What is AOP?

AspectJ

Join points

Pointcuts

Advice

Introductions

Practical Uses

Conclusions

What is AOP?
Aspect Oriented Programming

Not an OO replacement

Technique for handling ‘Crosscutting concerns’

Tries to eliminate code-scattering and
tangling

Examples: log all exceptions, capture all SQL
statements, authenticate users before access

Why AOP?

DRY (Don’t Repeat Yourself)

BankAcct Product
getBalance()

getOwner()

setOwner()

setBalance()

toXML()

store()

getSKU()

getQty()

setSKU()

setQty()

toXML()

store()
Serializable to XML

Persistable

What does that mean for classes?

Why AOP
Some things cannot be modeled well in
object hierarchies

Similarities in XDoclet,Dynamic Proxies, CLR
(& JSR 201) meta data, EJB/JSP Containers

Wants to

‘Separate concerns’

Provide language for designating crosscuts

How should it be used?
Still unclear

Development (Check contracts, Logging, Ensure good coding
practices, Tracing)

Testing, profiling

Optional runtime components

Great for analyzing & debugging ‘foreign’ code

Debugging, profiling

Implement core system features (Caching, Security)

How do you do AOP?

Write your components

Write your aspects

Weave (link or load time)

How does it work?

Class Aspect

AspectJ Compiler (ajc)

Weaved Class File

What is AspectJ?

An open source language

100% Java compatible

An AOP implementation

Extension to Java, new sytax

Started at Xerox, now an Eclipse project

Version 1.2 5/2004

Definitions
AOP

Aspect

AspectJ

Join Point

Pointcut

Advice

Introduction (inter-type declaration)

Getting started

Download from eclipse.org/aspectj

Run executable JAR

Use aspectjrt.jar on CLASSPATH

Or, use Eclipse and AJDT

Writing an Aspect

Write the class

Write the aspect (.java or .aj)

Weave with the ajc compiler

Run with aspectjrt.jar

Join Points
Locations in an execution path

Method call - call(public void
setOwner(String))

Constructor call initialization
(BankAccount.new())

Method call execution

Constructor call execution

Field get

Field set

Join points (cont.)

Exception handler execution

Class initialization

Object initialization

No finer join points in AspectJ (loops, if
checks)

Join point patterns
Names can be matched with *

call (* * BankAccount.*(*))

Matches all calls on BankAccount, regardless of
visibility or return type, with one argument

call (* *.(*))

Matches all method calls with 1 parameter

call (* * .(..))

Matches all method calls

Join Point Patterns
Cont

Subtypes can be matched with a +
 - call (public void BankAccount+(..))

Can also match on throws patterns
call (public void BankAccount+(..) throws
Exception+)

Watch out for infinite recursion! - Aspects
match aspects too - Use ! within()

Pointcuts

Structure for selecting join points in a
program and collecting context (args, target,
source)

Declaring a named pointcut:
pointcut changeBalance() : call (public void
BankAccount.setBalance(java.math.BigDecimal));

Can be combined with logical (set) operators,
&&, ||, and !

Pointcuts cont.
Valid on interfaces and classes

Syntax
pointcut name ([parameters]) : designator
(ajoinpoint);

Name will be used to link to actions

ajoinpoint is a signature match

Designator decides when this join point will
match

Set Operators

public aspect BankAspectOr {
 pointcut change() :
 call (public void setBalance(java.math.BigDecimal))
 || call (public void setOwner(String));

 before() : change() {
 System.out.println(thisJoinPoint.getSignature());
 }
}

Available pointcuts

call
execution
initialization
handler
get
set
this

Available pointcuts cont.

args
target
cflow
cflowbelow
staticinitialization
withincode
within
if
adviceexecution
preinitialization

Call pointcut

Use when you are interested in the
invocation of a method

Control is still in calling object, use
execution() for control in called object

Format:
call (public void
BankAccount.setOwner(String));

Handler pointcut

Captures the execution of an exception
handler anywhere in the primary application

Format:
handler (ClassCastException)
Remember + patterns apply here as well

State based designators
Can be used to expose object to advice, or
narrow pointcut selection

this,target,args

Format:
pointcut setBalance(BankAccount b) :
 call(public void setBalance(*)) && target
(b);
before (BankAccount b) : setBalance(b) {

//b is accessible here
}

Other designators

cflow,cflowbelow - Allow us to match join
points within a certain program flow

staticinitialization - Match class initialization

within, withincode - Match class, method

Dynamic - If, adviceexecution

Pointcut Id (Can combine pointcuts using
names and boolean operators)

Advice

The second half of AOP

Advice is what gets executed when a join
point is matched

Advice is always relative to a joinpoint
Format
type ([parameters]) : join point id (param list)
{ … }

Advice Type

before - excellent for preconditions
argument checking, setup code, lazy init

after - can be qualified with: after
returning, or after throwing. Cleanup of
resources, checking/manipulating the return
value

around - the most powerful advice
can replace invocation, or just surround
use proceed() to call method

thisJoinPoint

info about the join point that was just
matched

the source location of the current join
point

the kind of join point that was matched
various string representations of the join
point

the argument(s) to the method selected by
the join point

thisJoinPoint

the signature of the method selected by the
join point

the target object

the executing object

thisJoinPointStaticPart exposes args, target,
and this if designated (no reflection required)

Accessing Objects

Use target, args, and this similarly

Can be done declaratively
-Add a parameter to the pointcut declaration
-Add && args(s) to the designator
-Add parameter to advice designator
-Add variable name to advice body

Also all available reflectively

Exceptions and
precedence

Aspects can’t throw exceptions that the pointcuts they are advising
don’t throw (Wrap in runtime)

Precedence
use the precedence keyword in an aspect:
declare precedence : A , B;

Sub aspects execute before parents.

Otherwise undefined.

Multiple advice in an aspect:
natural order (before, after)
order of declaration

Inter-type Declarations

AspectJ can be used to change the structure
of existing code
-add members (id fields, dirty flag)
-add methods (toXML, storeToJDBC)
-add types that extend existing types or
-implement interfaces
-declare custom compilation errors or
warnings
-convert checked exceptions to unchecked

Inter-type declarations
cont.

Can use from aspects, or regular code

Write normal variable and methods in your
aspect, but prefix them with your class name

Inter-type declarations
cont.

Very powerful

Can do wacky things
-Add concrete fields & methods to interfaces
(no constructors)
-Modify aspects
-Make an existing class dynamically
implement an interface
-Make an existing class extend another

Problems
Difficult to know is code is advised

Only good tool support in Eclipse

Crossing component boundaries

How will we model?

When usages are appropriate?

Not a JSR, integration questions

Refacoring can break it!

Conclusions

Powerful, but is it a good idea?

Other implementations

AspectWerkz (XML)

Nanning (Java)

JBoss AO

Dynaop

More info

www.eclipse.org/aspectj

Email at tom@tomjanofsky.com

Slides and examples www.tomjanofsky.com

