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1 Introduction

Flora-2 is a sophisticated object-oriented knowledge base language and application development
platform. It is implemented as a set of run-time libraries and a compiler that translates a unified
language of F-logic [8], HiLog [4], and Transaction Logic [2, 1] into tabled Prolog code.

Applications of Flora-2 include intelligent agents, Semantic Web, ontology management, in-
tegration of information, and others.

The programming language supported by Flora-2 is a dialect of F-logic with numerous ex-
tensions, which include a natural way to do meta-programming in the style of HiLog and logical
updates in the style of Transaction Logic. Flora-2 was designed with extensibility and flexibility
in mind, and it provides strong support for modular software design through its unique feature of
dynamic modules. Other extensions, such as the versatile syntax of Florid path expressions, are
borrowed from Florid, a C++-based F-logic system developed at Freiburg University.1 Extensions
aside, the syntax of Flora-2 differs in many important ways from Florid, from the original ver-
sion of F-logic, as described in [8], and from an earlier implementation of Flora. These syntactic
changes were needed in order to bring the syntax of Flora-2 closer to that of Prolog and make it
possible to include simple Prolog programs into Flora-2 programs without choking the compiler.
Other syntactic deviations from the original F-logic syntax are a direct consequence of the added
support for HiLog, which obviates the need for the “@” sign in method invocations (this sign is
now used to denote calls to Flora-2 modules).

Flora-2 is available on Flora-2 ’s Web site at http://flora.sourceforge.net

Installing Flora-2 in UNIX. To install the latest release of Flora-2 or its current develop-
ment version, download it from http://flora.sourceforge.net into a separate directory outside
the XSB installation tree. After unpacking (or checking out from CVS) the Flora-2 sources will
be placed in the flora2 subdirectory of the current directory. To configure Flora-2 , do the
following:

cd flora2

make clean

./makeflora

(assuming that XSB has been already installed and configured). If an XSB executable is not on your
program search PATH, then in the third command above you need to provide the XSB installation
directory to makeflora as an argument, e.g.,

./makeflora all ~/XSB

if XSB is installed in the directory ∼/XSB.

Installing Flora-2 in Windows. First, you need Microsoft’s nmake, which can be downloaded
from http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe. The

1 See http://www.informatik.uni-freiburg.de/∼dbis/florid/ for more details.
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file Nmake15.exe is a self-extracting archive; when it is run, it extracts the program files for
nmake.exe into the same directory where Nmake15.exe resides. Let’s say this directory is C:\Nmake.
To unpack the Flora-2 file archive, you also need WinZIP.

Once nmake.exe is installed and the Flora-2 archive is unpacked, use the following commands
to configure Flora-2 (assuming that XSB is already installed and configured):

PATH=C:\Nmake;%PATH% ( assuming that nmake.exe is in C:\Nmake)

cd directory-where-you-unpacked-flora2

makeflora clean

makeflora path-to-prolog-executable

Here directory-where-you-unpacked-flora2 is the directory where you unpacked Flora-2 ; it should
have the form something\flora2. The path-to-prolog-executable must be the full path name of the
XSB executable. Note, that unlike Unix, there should be no “all” after “makeflora” in Windows.

It is also recommended that you set the environment variable HOME on your Windows system,
if it is not already defined. Environment variables are usually set by opening the System folder,
which is located inside the Settings folder. Typically, the HOME variable is set to the directory

"C:\Documents and Settings\your-user-name "

This can prevent problems with upgrading to the latest version of Flora-2 .

If you are a developer and wish to recompile the C part of Flora-2 (and provided you have a
Microsoft C++ compiler), then you can type2

makeflora -c path-to-prolog-executable

Normally, however, there is no need to do so.

Installing Flora-2 in Windows under Cygwin. Although Flora-2 runs under native Win-
dows, it runs faster under Cygwin, because the underlying Prolog engine has special optimizations
for GCC.

To install Flora-2 under Cygwin, configure XSB as in Unix and use the default options:

cd XSB/build

./configure

./makexsb

Then change to the Flora-2 directory and configure Flora-2 :

2 A version of this compiler (which is all you need in order to compile XSB or Flora-2 ) can be downloaded free
of charge from http://msdn.microsoft.com/vstudio/express/visualC/default.aspx It is also necessary to install
Windows Platform SDK accessible from the above page.
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cd directory-where-you-unpacked-flora2

make clean

./makeflora all path-to-prolog-executable

If XSB can be found through the PATH environment variable then you can simply type ./makeflora.

Running Flora-2 . Flora-2 is fully integrated into the underlying Prolog engine, including
its module system. In particular, Flora-2 modules can invoke predicates defined in other Prolog
modules, and Prolog modules can query the objects defined in Flora-2 modules. At present, XSB
is the only Prolog platform where Flora-2 can run, because it heavily relies on tabling and the
well-founded semantics for negation, both of which are available only in XSB.

Due to certain problems with XSB, Flora-2 runs best when XSB is configured with local
scheduling, which is the default XSB configuration. However, with this type of scheduling, many
Prolog intuitions that relate to the operational semantics do not work. Thus, the programmer
must think “more declaratively” and, in particular, to not rely on the order in which answers are
returned.

The easiest way to get a feel of the system is to start Flora-2 shell and begin to enter queries
interactively. The simplest way to do this is to use the shell script

.../flora2/runflora

where “...” is the directory where Flora-2 is downloaded. For instance,

~/FLORA/flora2/runflora

At this point, Flora-2 takes over and F-logic syntax becomes the norm. To get back to the
Prolog command loop, type Control-D (Unix) or Control-Z (Windows), or

flora2 ?- end.

If you are using Flora-2 shell frequently, it pays to define an alias, say (in Bash):

alias flora2=’xsb -e "[flora2], flora_shell."’

alias runflora=’~/FLORA/flora2/runflora’

Flora-2 can then be invoked directly from the shell prompt by typing flora2 or runflora. It is
even possible to tell Flora-2 to execute commands on start-up. For instance,

foo> flora2 -e "\_end."

foo> runflora -e "\_end."

will cause the system to execute the help command right after after the initialization. Then the
usual Flora-2 shell prompt is displayed.

Flora-2 comes with a number of demo programs that live in
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.../flora2/demos/

The demos can be run issuing the command “_demo(demo-filename).” at the Flora-2 prompt,
e.g.,

flora2 ?- _demo(flogic_basics).

There is no need to change to the demo directory, as demo knows where to find these programs.

2 Flora-2 Shell Commands

Loading programs from files. The most common shell command you probably need are the
commands for loading and compiling a program:

flora2 ?- [programfile].

or

flora2 ?- load(programfile).

Here program-file can contain a Flora-2 program or a Prolog program. If program-file.flr
exists, it is assumed to be a Flora-2 program. The system will compile the program, if necessary,
and then load it. The compilation process is two-stage: first, the program is compiled into a Prolog
program (one or more files with extensions .P and .fdb) and then into an executable byte-code,
which has the extension .xwam.

If there is no program-file.flr file, the file is assumed to contain a Prolog program and the sys-
tem will look for the file named program-file.P. This file then is compiled into program-file.xwam
and loaded. Note that in this case the program is loaded into a Prolog module of Flora-2 and,
therefore, calls to the predicates defined in that program must use the appropriate module attri-
bution — see Section 11.1 for the details about the module system in Flora-2 .

By default, all Flora-2 programs are loaded into the module called main, but you can also
load programs into other modules using the following command:

flora2 ?- [file>>modulename].

Understanding Flora-2 modules is very important in order to be able to take full advantage
of the system; we will discuss the module system of Flora-2 in Section 11.1. Once the program
is loaded, you can pose queries and invoke methods for the objects defined in the program.

There is an important special case of the load and [...] command when the file name is
(underscore). In that case, instead of looking for the program file .flr, Flora-2 starts reading
user input. At this point, the user can start typing in program clauses, which the system saves in
a temporary file. When the user is done and types the end of file character Control-D (Unix) or
Control-Z (Windows), the file is compiled and loaded. It is also possible to load such a program
into a designated module, rather than the default one, using one of the following commands:
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flora2 ?- [file>>module].

flora2 ?- load(file>>module).

Adding rule-bases to modules. When the load command loads a rule base into a module, it
first wipes out all the rules and facts that previously formed the knowledge base of that module.
Sometimes it is desirable to add the facts and rules contained in a certain file to the already existing
knowledge base of a module. This operation, called add, does not erase the old knowledge base in
the module in question. It is also possible to use the [...] syntax by prefixing the file name with
a +-sign. Here are some examples of adding a rule-base contained in files to existing modules:

flora2 ?- [+foo].

flora2 ?- [+foo>>bar].

flora2 ?- _add(foo).

flora2 ?- _add(foo>>bar).

When using the [...] syntax, adding and loading can be intermixed. For instance,

flora2 ?- [foo>>bar, +foo2>>bar].

This first loads the file foo.flr into the module bar and then adds the rule base contained in
foo2.flr to the same module.

Reporting answers to queries. When the user types in a query to the shell, the query is
evaluated and the results are returned. A result is a tuple of values for each variable mentioned
in the query, except for the anonymous variables represented as “? ” or ?, and named don’t care
variables, which are preceded with the underscore, e.g., ? abc.

By default, Flora-2 prints out all answers. If only one at a time is desired, type in the
following command: one. You can revert back to the all-answers mode by typing all. Note:
one and all affect only the subsequent queries. That is, in

flora2 ?- \_one, goallist1.

flora2 ?- goallist2.

the one directive will affect goallist2, but not goallist1. This is because goallist1 executes
in the same query as one and thus is not affected by this directive.

Flora-2 shell includes many more commands beyond those mentioned above. These com-
mands are listed below. However, at this point the purpose of some of these commands might seem
a bit cryptic, so it is a good idea to come back here after you become more familiar with the various
concepts underlying the system.

Summary of shell commands. In the following command list, the suffixes .flr .P, .xwam are
optional. If the file suffix is specified explicitly, the system uses the file with the given name without
any modification. The .flr suffix denotes a Flora-2 program, the .P suffix indicates that it is a
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Prolog program, and .xwam means that it is a bytecode file, which can be executed by Prolog. If no
suffix is given, the system assumes it is dealing with a Flora-2 program and adds the suffix .flr.
If the file with such a name does not exist, it assumes that the file contains a Prolog program and
tries the suffix .P. Otherwise, it tries .xwam in the hope that an executable Prolog bytecode exists.
If none of these tries are successful, an error is reported.

• end: Show the help info.

• compile(file): Compile FILE.flr for the default module main.

• compile(file>>module): Compile FILE.flr for the module module.

• load(file>>module): Load file.flr into the module module. If you specify file.P or
file.xwam then will load these files.

• load(file): Load file.flr into the default module main. If you specify file.P or
file.xwam then will load these files.

• compile(file): Compile FILE.flr for adding to the default module main.

• compileadd(file>>module): Compile FILE.flr for adding the module module.

• add(file>>module): Add file.flr to the module module.

• add(file): Add file.flr to the default module main.

• [file.{P|xwam|flr} >> module,...]: Load the files in the specified list into the module
module. The files can optionally be prefixed with a “+”, which means that the file should be
added to the module rather than loaded into it.

• demo(demofilename): Consult a demo from Flora-2 demos directory.

• abolish all tables: Flush all tabled data. This is sometimes needed when Prolog’s tabling
gets in the way. We describe tabling (as it pertains to Flora-2 ) in Section 17.

• op(Precedence,Associativity,Operator): Define an operator in shell mode.

• all: Show all solutions (default). Affects subsequent queries only.

• one: Show solutions to subsequent queries one by one.

• trace/ notrace: Turn on/off Flora-2 trace.

• chatter/ nochatter: Turn on/off the display of the number of solutions at the end of query
evaluation.

• end: Say Ciao to Flora-2 , stay in Prolog.

• halt: Quit both Flora-2 and Prolog.
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Of course, many other executable directives and queries can be executed at Flora-2 shell. These
are described further in this manual

In general, Flora-2 built-in predicates whose name is of the form fl[A-Z]... are either the
Flora-2 shell commands or predicates that can be used in Prolog to control the execution of
Flora-2 modules. We will discuss the latter in Section 11.8. Some of these commands — mostly
dealing with loading and compilation of Flora-2 modules — can also be useful within Flora-2
applications.

All commands with a FILE argument passed to them use the Prolog library directory pred-
icate to search for the file, except that the command demo(FILE) first looks for FILE in the
Flora-2 demo directory. The search path typically includes the standard system’s directories
used by Prolog followed by the current directory.

All Prolog commands can be executed from Flora-2 shell, if the corresponding Prolog library
has already been loaded.

After a parsing or compilation error, Flora-2 shell will discard tokens read from the current
input stream until the end of file or a rule delimiter (“.”) is encountered. If Flora-2 shell seems
to be hanging after the message

++FLORA Warning: discarding tokens (rule delimiter ‘.’ or EOF expected)

hit the Enter key once, type “.”, and then Enter again. This should reset the current input buffer
and you should see the Flora-2 command prompt:

flora2 ?-

3 F-logic and Flora-2 by Example

In the future, this section will contain a number of small introductory examples illustrating the use
of F-logic and Flora-2 . Meanwhile, the reader can read the Flora-2 tutorial, which is available
on the Flora-2 Web site: http://flora.sourceforge.net/tutorial.php.

Other tutorials exist for systems that use F-logic as their knowledge representation language. A
tutorial for the Florid project is at http://www.informatik.uni-freiburg.de/∼dbis/florid/.
A tutorial for Ontobroker, a commercial system from Ontoprise.de, can be found at
http://www.ontoprise.de/documents/tutorial flogic.pdf. Flora-2 shares much of the syn-
tax with those other systems with the following notable differences: Flora-2 uses “,” as the sepa-
rator between methods in object formulas, while these other systems use “;”. In addition, Flora-2
does not use the @-sign between method names and arguments.

4 Differences Between Flora-2 Syntax and F-logic Syntax

Flora-2 was developed several years after the publication of the initial works on F-logic [8] and so
it benefits from the experience gained in the use and implementation of the logic. This experience
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led us to introduce some changes to the syntax (and to some degree also to the semantics). The
main differences are enumerated below.

1. Flora-2 uses “,” to separate methods in F-molecules. The version of the logic in [8] used
“;”. In Flora-2 , “;” represents disjunction instead. It is also possible to use “and” instead
of “,” and “or” instead of “;”.

2. Flora-2 does not use the @-sign to separate method names from their arguments. With
HiLog extensions the “@” sign is redundant.

3. p::p is not a tautology in Flora-2 , i.e., “::” is not reflexive. This is because our experience
showed that the non-reflexive use of “::” is a more common idiom in knowledge representation.

4. In [8], types are always inheritable, but values are not. For instance, the property a[b->c]

is not inheritable to the subclasses of a, but the property a[b*->c] is. In Flora-2 , the
notation for types is brought in line with the notation for values. In particular, Flora-2
uses *=> for inheritable types and => for non-inheritable ones. The original F-logic in [8] used
only => (and =>> because it distinguished between functional and set-valued methods), and
both were inheritable.

The semantics of *=> are characterized by the following inference rules:

X[M *=> T], Y::X |= Y[M *=> T]

X[M *=> T], Y:X |= Y[M => T]

which is analogous to the behavior of ->.

5. The type inference rules for input restriction and output relaxation introduced in [8] are not
implemented in Flora-2 .

6. The syntax a[b=>{c,d}] of F-logic, which states that the type returned by the attribute b is
the intersection of the classes c and d, is not allowed. Use a[b=>(c,d)] instead. Flora-2
also allows a[b=>(c;d)], a[b=>(c-d)] and combinations of these operators on types.

7. Instead of class[method => {}] one should use class[method => ()].

8. Equality (the :=: predicate) is implemented only partially in Flora-2 . The main limitation
is that the congruence axiom for equality (“substitution by equals”) works only at the top
level and the first level of nesting. For deeper levels of nesting, substitution by equals has not
been implemented. This is discussed in more detail in Section 15.1.

9. Behavioral inheritance has a different (and better) semantics in Flora-2 compared to [8].
This is discussed in Section 14.

5 Basic Flora-2 Syntax

In this section we describe the basic syntactic structures used to build Flora-2 programs. Subse-
quent sections describe the various advanced features that are needed to build practical applications.
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The complete syntax is given in Appendix A. However, it should be noted that BNF cannot describe
the syntax of FLORA precisely, because it is based on operator grammar (like in Prolog) mixed
with context free grammars in places where operator grammar is inadequate (as, for example, in
parsing if-then-else).

5.1 F-logic Vocabulary

• Symbols: The F-logic alphabet of object constructors consists of the sets C and V (vari-
ables). Variables are symbols that begin with a questionmark, followed by a letter or an
underscore, and then followed by zero or more letters and/or digits and/or underscores (e.g.,
?X, ?name, ? , ? v 5). All other symbols, including the constants (which are 0-ary object con-
structors), are symbols that start with a letter followed by zero or more letters and/or digits
and/or underscores (e.g., a, John, v 10). They are called constant symbols. Constant sym-
bols can also be any string of symbols enclosed in single quotes (e.g., ’AB@*c’). Later, in
Section 25, we introduce additional constants, called typed literals.

In addition to the usual first-order connectives and symbols, there is a number of special
symbols: ], [, }, {, “,”, “;”, %, #, #, -> , => , : , :: , ->->, *->->, :=:, etc.

• Anonymous and don’t care variables: Variables of the form ? or ? are called anonymous
variable. It is used whenever a unique new variable is needed. In particular, two different
occurrences of ? or ? in the same clause are treated as different variables. Named variables
that start with an underscore, e.g., ? foo, are called don’t care variables. Unlike anonymous
variables, two different occurrences of such a variable in the same clause refer to the same
variable. Nevertheless, don’t variables have special status when it comes to error checking
and returning answers. The practice of logic programming shows that a singleton occurrence
of a variable in a clause is often a mistake due to misspelling. Therefore, Flora-2 issues
a warning when it finds that some variable is mentioned only once in a clause. If such an
occurrence is truly intended, it must be replaced by an anonymous variable or a don’t care
variable to avoid the warning message from Flora-2 . Also, bindings for anonymous and
don’t care variables are not returned as answers.

• Id-Terms/Oids: Instead of the regular first-order terms used in Prolog, Flora-2 uses HiLog
terms. HiLog terms [4] generalize first-order terms by allowing variables in the position of
function symbols and even other terms can serve as functors. For instance, p(a)(?X(f,b))
is a legal HiLog term. Formally, a HiLog term is a constant, a variable, or an expression of
the form t(t1, ..., tn) where t, t1, ..., tn is a HiLog term.

HiLog terms over C and V are called Id-terms, and are used to name objects, methods, and
classes. Ground Id-terms (i.e., terms with no variables) correspond to logical object identifiers
(oids), also called object names. Numbers (including integers and floats) can also be used as
Id-terms, but such use might be confusing and is not recommended.

• Atomic formulas: Let O, M, Ri, Xi, C, D, T be Id-terms. In addition to the usual first-order
atomic formulas, like p(X1, . . . , Xn), there are the following basic types of formulas:

1. O[M -> V], O[M *-> V]
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2. O[M -> {V1, . . . , Vn}], O[M *-> {V1, . . . , Vn}]

3. C[M => T], C[M *=> T]

In all of the above cases, O, C, M, Vi, and Ti are HiLog terms, i.e., expressions of the form, a,
f(?X), ?X(s, ?Y), ?X(f, ?Y)(?X, g(k)), etc., where ?X and ?Y are variables and lowercase letters
f, s, etc., are constants.

Expressions (1) and (2) above are data atoms for value-returning methods. They specify
that a method expression M applied to an object O returns the result object V in case (1),
or a set of objects, V1, ..., Vn, in case (2). In all cases, methods are assumed to be set-
valued. However, later we will see that cardinality constraints can be imposed on methods,
so it would be possible to state that a particular method is functional or has some other
cardinality property. The formula (2) says that the result consists of several objects, which
includes V1, V2, ..., Vn. Note that we emphasized “includes” to make it plain that other facts
and rules in the knowledge base can specify additional objects that must be included among
the method result.

When n = 1 in (2), the curly braces can be omitted. For instance, O[M -> V1]. In fact, the
single expression (2) is equivalent to a the following set of expressions, where the result set is
split into singletons:

O[M -> V1]
O[M -> V2]

. . .
O[M -> Vn]

When M is a constant, e.g., abc, then we say that it is an attribute; for example, John[name
-> ’John’]. When M has the form f(X,Y,Z) then we refer to it as a method, f, with
arguments X, Y, and Z; for example, John[salary(1998) -> 50000]. However, as we saw
earlier, method expressions can be much more general than these two possibilities, as they
can be arbitrary HiLog terms.

The expression (3) above is a signature atom. It specifies a type constraint, which says that
the method expression, M, when applied to objects that belong to class C, must yield objects
that belong to class T.

Note: Flora-2 does not automatically enforce type constraints. However, run-time type
checking is possible—see Section 26.2.

Objects are grouped into classes using ISA-atoms:

4. O : C

5. C :: D

The expression (4) states that O is an instance of class C, while (5) states that C is a subclass
of D.

User-defined equality
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6. O1 :=: O2

enables the user to state that two syntactically different (and typically non-unifiable) terms
represent the same object. For instance, one can assert that a :=: b and from then on
everything that is true about a will be true about b, and vice versa. Note that this is
different and more powerful than the unification-based equality builtin =, which exists both
in Flora-2 and Prolog. For instance, =-based formulas can never occur as a fact or in the
rule head, and a = b is always false. More on user-defined equality in Section 15.1.

• F-molecules provide a convenient way to shortcut specifications related to the same object.
For instance, the conjunction of the atoms John : person, John[age -> 31], John[children
-> {Bob,Mary}], and John[children -> John] is equivalent to the following single F-molecule:

John : person[age -> 31, children -> {Bob,Mary,John}]

Note the use of the “,” that separates the expression for the age attribute from the expression
for the children attribute. This is a departure from the original F-logic syntax in [8], which
uses “;” to separate such expressions.

• Rules are, as usual, the constructs of the form head : −body, where head is an F-molecule
and body is a conjunction of F-molecules or negated F-molecules. (Negation is specified using
\+ or not— the difference will be explained later.) Each rule must be terminated with a “.”.

Conjunction is specified as in Prolog, using the “,” symbol. Like in Prolog, Flora-2 also
allows disjunction in the rule body, which is denoted using “;”. As usual in logic languages,
a single rule of the form

head : − John[age -> 31],
(John[children -> {Bob, Mary}] ; John[children -> John]).

(1)

is equivalent to the following pair of rules:

head :- John[age -> 31], John[children -> {Bob,Mary}].
head :- John[age -> 31], John[children -> John].

Disjunction is also allowed inside F-molecules. For instance, the rule (1) can be equivalently
rewritten as:

head :- John[age -> 31, (children -> {Bob,Mary} ; children -> John)].

Note that conjunction “,” binds stronger than disjunction “;”, so the parentheses in the above
example are essential.

• Programs and queries: A program is a set of rules. A query is a rule without the head. In
Flora-2 , such headless rules use ?- instead of :-, e.g.,

?- John[age->?X].

The symbol :- in headless Flora-2 expressions is used for various directives, which are
plenty and will be introduced in due course.
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Example 5.1 (Publications Database) Figure 1 depicts a fragment of a Flora-2 program
that represents a database of scientific publications.

Schema:
conf p :: paper.
journal p :: paper.
paper[authors => person, title => string].
journal p[in vol => volume].
conf p[at conf => conf proc].
journal vol[of => journal, volume => integer, number => integer, year => integer].
journal[name => string, publisher => string, editors => person].
conf proc[of conf => conf series, year => integer, editors => person].
conf series[name => string].
publisher[name => string].
person[name => string, affil(integer) => institution].
institution[name => string, address => string].

Objects:
oj1 : journal p[title -> ’Records, Relations, Sets, Entities, and Things’,

authors -> {omes}, in vol -> oi11].
odi : conf p[ title -> ’DIAM II and Levels of Abstraction’,

authors -> {omes, oeba}, at conf -> ov76].
oi11 : journal vol[of -> ois, number -> 1, volume -> 1, year -> 1975].
ois : journal[name -> ’Information Systems’, editors -> {omj}].
ov76 : conf proc[of -> vldb, year -> 1976, editors -> {opcl, oejn}].
ovldb : conf series[name -> ’Very Large Databases’].
omes : person[name -> ’Michael E. Senko’].
omj : person[name -> ’Matthias Jarke’, affil(1976) -> orwt].
orwt : institution[name -> ’RWTH Aachen’].

Figure 1: A Publications Object Base and its Schema in Flora-2

5.2 Symbols, Strings, and Comments

Symbols. Flora-2 symbols (that are used for the names of constants, predicates, and object
constructors) begin with a letter followed by zero or more letters (A . . . Z, a . . . z), digits (0 . . . 9), or
underscores ( ), e.g., student, apple pie. Symbols can also be any sequence of characters enclosed
in a pair of single quotes, e.g., ’JOHN SMITH’,’default.flr’. Internally, Flora-2 symbols are
represented as Prolog symbols,3 which are used there as names of predicates and function symbols.
All Flora-2 symbols belong to the class symbol.

Flora-2 also recognizes escaped characters inside single quotes (’). An escaped character
normally begins with a backslash (\). Table 1 lists the special escaped character strings and their

3 Symbols are called “atoms” in Prolog, which contravenes the use of this term for atomic formulas in classical
logic and F-logic. We avoid the use of the term “atom” in reference to symbols.
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Escaped String ASCII (decimal) Symbol

\\ 92 \

\n 10 NewLine

\N 10 NewLine

\t 9 Tab

\T 9 Tab

\r 13 Return

\R 13 Return

\v 11 Vertical Tab

\V 11 Vertical Tab

\b 8 Backspace

\B 8 Backspace

\f 12 Form Feed

\F 12 Form Feed

\e 27 Escape

\E 27 Escape

\d 127 Delete

\D 127 Delete

\s 32 Whitespace

\S 32 Whitespace

Table 1: Escaped Character Strings and Their Corresponding Symbols

corresponding special symbols. An escaped character may also be any ASCII character. Such a
character is preceded with a backslash together with a lowercase x (or an uppercase X) followed
by one or two hexadecimal symbols representing its ASCII value. For example, \xd is the ASCII
character Carriage Return, whereas \x3A represents the semicolon. In other cases, a backslash is
recognized as itself.

If it is necessary to include a single quote inside a quoted symbol, that single quote must be
escaped by another single quote, e.g., ’isn’’t’ or by a backslash, e.g., ’isn\’t’.

Character lists. Like Prolog character lists, Flora-2 character lists (charlists) are enclosed in
a pair of double quotes ("). For instance, [102,111,111] is the same as "foo".

Escape characters are recognized inside Flora-2 charlists similarly to Flora-2 symbols. How-
ever, inside a charlist, a single quote character does not need to be escaped. A double quote char-
acter, however, needs to be escaped by another double quote, e.g., """foo""". or by a backslash.

Numbers. Normal Flora-2 integers are decimals represented by a sequence of digits, e.g., 892,
12. Flora-2 also recognizes integers in other bases (2 through 36). The base is specified by a
decimal integer followed by a single quote (’). The digit string immediately follows the single quote.
The letters A . . . Z or a . . . z are used to represent digits greater than 9. Table 2 lists a few example
integers.

Underscore ( ) can be put inside any sequence of digits as delimiters. It is used to partition
some long numbers. For instance, 2’11 1111 1111 is the same as 2’1111111111. However, “ ”
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Integer Base (decimal) Value (decimal)

1023 10 1023

2’1111111111 2 1023

8’1777 8 1023

16’3FF 16 1023

32’vv 32 1023

Table 2: Representation of Integers

cannot be the first symbol of an integer, since variables can start with an underscore. For example,
1 2 3 represents the number 123 whereas ? 12 3 represents a variable named ? 12 3.

Floating numbers normally look like 24.38. The decimal point must be preceded by an integral
part, even if it is 0, e.g., 0.3 must be entered as 0.3, but not as .3. Each floating number may
also have an optional exponent. It begins with a lowercase e or an uppercase E followed by an
optional minus sign (-) or plus sign (+) and an integer. This exponent is recognized as in base 10.
For example, 2.43E2 is 243 whereas 2.43e-2 is 0.0243.

Other data types. Flora-2 supports an array of primitive data types, including string, Boolean,
dateTime, iri, and more. Primitive data types are described in Section 25.

Comments. Flora-2 supports two kinds of comments: (1) all characters following // until the
end of the line; (2) all characters inside a pair of /* and */. Note that only (2) can span multiple
lines.

Comments are recognized like whitespaces by the compiler. Therefore, tokens can also be
delimited by comments.

5.3 Operators

As in Prolog, Flora-2 allows the user to define operators, to liven up the syntax. There are three
kinds of operators: infix, prefix, and postfix. An infix operator appears between its two arguments,
while a prefix operator before its single argument and a postfix operator after its single argument.
For instance, if foo is defined as an infix operator, then ?X foo a will be parsed as foo(?X,a) and
if bar is a postfix operator then ?X bar is parsed as bar(?X).

Each operator has a precedence level, which is a positive integer. Each operator also has a type.
The possible types for infix operators are: xfx, xfy, yfx; the possible types for prefix operators
are: fx, fy; and the possible types for postfix operators are: xf, yf. In each of these expressions,
f stands for the operator, and x and y stand for the arguments. The symbol x in an operator
expression means that the precedence level of the corresponding argument should be strictly less
than that of the operator, while y means that the precedence level of the corresponding argument
should be less or equal than that of the operator.

The precedence level and the type together determine the way the operators are parsed. The
general rule is that precedence of a constant or a functor symbol that has not been defined as an
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operator is zero. Precedence of a Prolog term is the same as the precedence of its main functor. An
expression that contains several operators is parsed in such a way that the operator with the highest
precedence level becomes the main functor of the parsed term, the operator with the next-highest
precedence level becomes the main functor of one of the arguments, and so on. If an expression
cannot be parsed according to this rule, a parse error is reported.

It is not our goal to cover the use of operators in any detail, since this information can be found
in any book on Prolog. Here we just give an example that illustrates the main points. For example,
in Flora-2 , - has precedence level 800 and type yfx, * has precedence level 700 and type yfx,
-> has precedence level 1100 and type xfx. Therefore, 8-2-3*4 is the same as -(-(8,2),*(3,4))
in prefix notation, and a -> b -> c will generate a parsing error.

Any symbol can be defined as an operator. The general syntax is

:- op(Precedence,Type,Name ).

For instance,

:- op(800, xfx, foo)

As a notational convenience, the argument Name can also be a list of operator names of the same
type and precedence level, for instance,

:- op(800,yfx,[+,-]).

It is possible to have more than one operator with the same name provided they have different use
(e.g., one infix and the other postfix). However, the Flora-2 built-in operators are not allowed to
be redefined. In particular, any symbol that is part of F-logic syntax, such as “,’, “.”, “[“, “:”, etc.,
as well as any name that begins with flora or fl followed by a capital letter should be considered
as reserved for internal use.

Although this simple rule is sufficient, in most cases, to keep you out of trouble, you should be
aware of the fact that symbols such as “,”, “;”, “+”, “.”, “->”, “::”, “:-”, “?-” and many other
parts of Flora-2 syntax are operators. Therefore, there is a chance that precedence levels chosen
for the user-defined operators conflict with those of Flora-2 and, as a result, your program might
not parse. If in doubt, check the declarations in the file flroperator.P in the Flora-2 source
code.

The fact that some symbols are operators can sometimes lead to surprises. For instance,

?- (a,b,c).

:- (a,b).

will be interpreted as terms ’?-’(a,b,c) and ’:-’(a,b) rather than a query and a directive,
respectively. The reason for this is that, first, such terms are allowed in Prolog and there is no
good reason to ban them in Flora-2 ; and, second, the above syntax is ambiguous and the parser
makes the choice that is consistent with the choice made in Prolog. Typically users do not put
parentheses around subgoals in such cases, and would instead write
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?- a,b,c.

:- a,b.

Note that things like

?- (a,b),c.

?- ((a,b,c)).

will be interpreted as queries, so there are plenty of ways to satisfy one’s fondness for redundant
parentheses.

5.4 Logical Expressions

In a Flora-2 program, any combination of conjunction, disjunction, and negation of literals can
appear wherever a logical formula is allowed, e.g., in a rule body.

Conjunction is represented through the infix operator “,” and disjunction is made using the infix
operator “;”. Negation is made through the prefix operators “\+” and “not”.4 When parentheses
are omitted, conjunction binds stronger than disjunction and the negation operators bind their
arguments stronger than the other logical operators. For example, in Flora-2 the following
expression: a, b; c, not d, is equivalent to the the logical formula: (a ∧ b) ∨ (c ∧ (¬d)).

Logical formulas can also appear inside the specification of an object. For instance, the following
F-molecule:

o[not att1 -> val1, att2 -> val2; meth -> res]

is equivalent to the following formula:

(not o[att1 -> val1], o[att2 -> val2]) ; o[meth -> res]

5.5 Arithmetic Expressions

In Flora-2 arithmetic expressions are not always evaluated. As in Prolog, the arithmetic operators
such as +, -, /, and *, are defined as normal binary functors. To evaluate an arithmetic expression,
Flora-2 provides another operator, is. For example, ?X is 3+4 will bind ?X to the value 7.

When dealing with arithmetic expressions, the order of literals is important. In particular, all
variables appearing in an arithmetic expression must be instantiated at the time of evaluation.
Otherwise, a runtime error will occur. For instance,

?- ?X > 1, ?X is 1+1.

4 In brief, “\+” represents negation as failure and can be applied only to non-tabled Prolog, Flora-2 , or HiLog
predicates. “not”, on the other hand, is negation that implements the well-founded semantics. Refer to Section 13
for more information on the difference between negation operators.
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will produce an error, while

?- ?X is 1+1, ?X > 1.

will evaluate to true.

As in Prolog, the operands of an arithmetic expression can be any variable or a constant.
However, in Flora-2 , an operand can also be a path expression. For the purpose of this discussion,
a path expression of the form p.q should be understood as a shortcut for p[q -> ?X], where ?X is a
new variable, and p.q.r is a shortcut for p[q -> ?X], ?X[r -> ?Y]. More detailed discussion of path
expressions appears in Section 7.

In arithmetic expressions, and all variables are considered to be existentially quantified. For
example, the following query

flora2 ?- John.bonus + Mary.bonus > 1000.

should be understood as

flora2 ?- John[bonus -> ? V1], Mary[bonus -> ? V2], ? V1 + ? V2 > 1000.

Note that in first query does not have any variables, so after the evaluation the system would print
either yes or no. To achieve the same behavior, we use don’t care variables, ? V1 and ? V2. If we
used ?V1 and ?V2 instead, the values of these variables would have been printed out.

Flora-2 recognizes numbers as oids and, thus, it is perfectly normal to have allows arithmetic
expressions inside path expressions such as this: 1.2.(3+4*2).7. When parentheses are omitted,
this might lead to ambiguity. For instance, is the meaning of

1.m+2.n.k

represented by the arithmetic expression (1.m)+(2.n.k), or by the path expressions (1.m+2.n).k,
by (1.m + 2).n.k, or by 1.(m+2).n.k? To disambiguate such expressions, we must remember
that the operator “.” used in path expressions binds stronger than the arithmetic operators +, −,
etc.

Even more interesting is the following example: 2.3.4. Does it represent the path expression
(2).(3).(4), or (2.3).4, or 2.(3.4) (where in the latter two cases 2.3 and 3.4 are interpreted
as decimal numbers)? The answer to this puzzle (according to Flora-2 conventions) is (2.3).4:
when tokenizing, Flora-2 first tries to classify tokens into meaningful categories. Thus, when 2.3
is first found, it is identified as a decimal. Thus, the parser receives the expression (2.3).4, which
it identifies as a path expression that consists of two components, the oids 2.3 and 4.

Another ambiguous situation arises when the symbols - and + are used as minus and plus signs,
respectively. Flora-2 follows the common arithmetic interpretation of such expressions, where
the +/- signs bind stronger than the infix operators and thus 4--7 and 4-+7 are interpreted as
4-(-7) and 4-(+7), respectively.

Table 3 lists various operators in decreasing precedence order, their associativity, and arity.
When in doubt, use parentheses. Here are some more examples of valid arithmetic expressions:
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Precedence Operator Use Associativity Arity

not applicable () parentheses not applicable not applicable

not applicable . decimal point not applicable not applicable

. object reference left binary

: ISA specification left binary

:: subclass specification left binary

600 - minus sign right unary

+ plus sign right unary

700 * multiplication left binary

/ division left binary

800 - subtraction left binary

+ addition left binary

=< less than or equals to not applicable binary

>= greater than or equals to not applicable binary

1000 =:= equals to not applicable binary

=\= unequal to not applicable binary

is assignment not applicable binary

Table 3: Operators in Non-Increasing Precedence Order and Their Associativity and Arity

o1.m1+o2.m2.m3 same as (o1.m1)+(o2.m2)

2.(3.4) the value of the attribute 3.4 on object 2

3 + - - 2 same as 3+(-(-2))

5 * - 6 same as 5*(-6)

5.(-6) the value of the attribute -6 on object 5

Note that the parentheses in 5.(-6) are needed, because otherwise “.-” would be recognized
as a single token. Similarly, the whitespace around “+”, “-”, and “*” are also needed in these
examples to avoid *- and +-- being interpreted as distinct token.

6 Class Expressions

Flora-2 defines a number of set-theoretic operations on classes. For instance, (a, b) represents
intersection, (a; b) represents the union, and (a−b) represents the difference between the extensions
of class a and b. Suppose the following information is given:

a, b, c in class1

c in class2

e in class3

Then (class1− class2); class3 has the extension of a, b, e.

We call the above combinations of types class expressions. Type expressions can occur in
signature expressions as shown below:

cl[attr => ((c1 - c2) ; c3)].

cl[attr *=> ((c1,c2) ; c3)].
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Note that the old F-logic syntax a[b => {c,d}] for type intersection (of c and d) is no longer
permitted.

Flora-2 also defines a number of subclass relationships among class expressions as follows.

1. If c::c1 and c::c2 then c::(c1,c2), i.e., (c1,c2) is the least upper bound of c1 and c2 in
the class hierarchy.

2. If c1::c and c2::c then (c1;c2)::c, i.e., (c1;c2) is the greatest lower bound of c1 and c2

in the class hierarchy.

3. Any class, c, is considered a superclass of (c,? ) and (? ,c). In particular, (c,c)::c. At
present, Flora-2 does not enforce the equality c:=:(c,c).

4. Any class, c, is considered a subtype of (c;? ) and (? ;c). In particular, c::(c;c). At
present, Flora-2 does not enforce the equality c:=:(c;c).

5. Any class, c, is considered a superclass of c-d for any class d.

Unfortunately, these subclass relationships can adversely affect certain user programs and Flora-2
provides an optimization option that allows the user to disable these relationships for programs
that do not need them. See Section 27.2.

Note: Type expressions introduce a potential for infinite answers for seemingly innocuous
queries. For instance, suppose that a:c is true. Then also a:(c,c), a:(c;c), a:(c,(c,c)),
a:(c;(c;c)), etc. So, the query ?- a:?X. will not terminate. To mitigate this problem, when
class expressions are involved Flora-2 guarantees to provide sound answers to queries about class
membership and subclasses only when the arguments are ground; it does not guarantee that all
class expressions will be returned to queries that involve open calls to “::” and “:”.

7 Path Expressions

In addition to the basic F-logic syntax, the Flora-2 system also supports path expressions to
simplify object navigation along value-returning method applications, and to avoid explicit join
conditions [6]. The basic idea is to allow the following path expressions wherever Id-terms are
allowed:

7. O.M

Path expressions are allowed only in rule bodies. The path expression in (7) refers to the unique
object R0 for which O[M -> R0] holds. The symbols O and M stand for an Id-term or path a expression.
Moreover, M can be a method that takes arguments, in which case O.M(P1, . . . , Pk) is a valid path
expressions.

In order to disambiguate the syntax and to specify the desired order of method applications,
parentheses can be used. By default, path expressions associate to the left, so a.b.c is equivalent
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to (a.b).c, which specifies the object o such that a[b -> x] ∧ x[c -> o] holds (note that x = a.b). In
contrast, a.(b.c) is the object o1 such that b[c -> x1] ∧ a[x1 -> o1] holds (note that in this case,
x1 = b.c). In general, o and o1 can be different objects. Note also that in (a.b).c, b is a method
name, whereas in a.(b.c) it is used as an object name and b.c as a method. Observe that function
symbols can also be applied to path expressions, since path expressions, like Id-terms, represent
objects. Thus, f(a.b) is a valid expression.

Note: A path expression can appear wherever an oid can, but not in place of a truth-valued
expression (e.g., a subquery) even though path expressions can be viewed as formulas. Thus,

?- ?P.authors.

is illegal and will cause a compiler error. To use a path expression as a query, square brackets must
be attached. For instance, the following are legal queries:

?- ?P.authors[].

?- ?P.authors[name->?N].

As path expressions and F-molecules can be arbitrarily nested, this leads to a concise and
flexible specification language for object properties, as illustrated in the following example.

Example 7.1 (Path Expressions) Consider again the schema given in Figure 1. If n is the name
of a person, the following path expression is a query that returns all editors of conferences in which
n had a paper:

flora2 ?- ?P[authors -> {?[name ->n]}].at conf.editors[].

Likewise, the answer to the query

flora2 ?- ?P[authors -> {?[name ->n]}].at conf[editors -> {?E}].

is the set of all pairs (P,E) such that P is (the logical oid of) a paper written by n, and E is the
corresponding proceedings editor. If we also want to see the affiliations of the above editors, we
only need to modify our query slightly:

flora2 ?- ?P[authors -> {?[name ->n]}].at conf[year -> ?Y].editors[affil(?Y) -> ?A].

Thus, Flora-2 path expressions support navigation along the method application dimension using
the operator “.”. In addition, intermediate objects through which such navigation takes place can
be selected by specifying the properties of such objects inside square brackets.5

To access intermediate objects that arise implicitly in the middle of a path expression, one can
define the method self as

?X[self -> ?X].

5 A similar feature is used in other languages, e.g., XSQL [7].
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and then simply write . . .[self -> ?O]. . . anywhere in a complex path expression. This would bind
the Id of the current object to the variable ?O.

Example 7.2 (Path Expressions with self) To illustrate convenience afforded by the use of
the self attribute in path expressions, consider the second query in Example 7.1. If, in addition,
we want to obtain the names of the conferences where the respective papers were published, that
query can be reformulated as follows:

?X[self -> ?X].

?- ?P[authors -> ?[name ->n]].at conf[self -> ?C,year -> ?Y].editors[affil(?Y) -> ?A].

8 Truth Values and Object Values

Id-terms, F-logic atoms, and path expressions can all be used as objects. This is obvious for Id-
terms and the object interpretation of path expressions of the form (7) and (8) on page 19 was
discussed through 10 are typically viewed as formulas and, thus, they are assumed to have a truth
value only. However, there also is a natural way to give them object interpretation. For example,
o : c[m -> r] has object value o and some truth value. However, unlike the object value, the truth
value depends on the database (on whether o belongs to class c in the database and whether the
value of the attribute m is, indeed, r.

Although previously we discussed only the object interpretation for path expressions, it is easy
to see that they have truth values as well, because a path expression corresponds to a conjunction
of F-logic atoms. Consequently, all F-molecules of the form (1) through (7) have dual reading: As
logical formulas (the deductive perspective), and as expressions that represent one or more objects
(the object-oriented perspective). Given an intended model, I, of an F-logic program an expression
has:

• An object value, which yields the Id(s) of the object(s) that are reachable in I by the corre-
sponding expression, and

• A truth value, like any other literal or molecule of the language.

An important property that relates the above interpretations is: a molecule, r, evaluates to false if
I has no object corresponding to r.

Consider the following path expression and an equivalent, decomposed expression:

a.b[c -> {d.e}] ⇔ a[b -> ?Xab] ∧ d[e -> ?Xde]∧?Xab[c -> ?Xde]. (2)

Such decomposition is used to determine the truth value of arbitrarily complex path expressions in
the body of a rule. Let obj(path) denote the Ids of all objects represented by the path expression.
Then, for (2) above, we have:

obj(d.e) = {xde | I |= d[e -> xde]}
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where I |= ϕ means that ϕ holds in I. Observe two formulas can be equivalent, but their object
values might be different. For instance, d[e -> f] is equivalent to d.e as a formula. However, obj(d.e)
is f , while obj(d[e -> f]) is d.

In general, for an F-logic database I, the object values of ground path expressions are given by
the following mapping, obj , from ground molecules to sets of ground oids (t, o, c, d, m can be oids
or path expressions):

obj(t) := {t | I |= t[]}, for a ground Id-term t
obj(o[. . .]) := {o1 | o1 ∈ obj(o), I |= o1[. . .]}
obj(o : c) := {o1 | o1 ∈ obj(o), I |= o1 : c}
obj(c :: d) := {c1 | c1 ∈ obj(c), I |= c1 :: d}
obj(o.m) := {r1 | r1 ∈ obj(r), I |= o[m -> r]}

Observe that if t[ ] does not occur in I, then obj(t) is ∅. Conversely, a ground molecule r is
called active if obj(r) is not empty.

Dual representation and meta-predicates. Since path expressions can appear wherever Id-
terms are allowed, the question arises whether a path expression is intended to indicate a truth
value or an object value. For instance, we may want to call a predicate foobar/1, which expects
as an argument a formula because the predicate calls this formula as part of the definition. For
instance, the predicate may take a formula and a variable that occurs in that formula and joins
this formula with some predicate using that variable:

foobar(?Form,?Var) :- ?Form, mypred(?Var).

?- foobar(a[b->?X], ?X).

If all arguments are treated as objects, then the above query would mean

?- a[b->?X], foobar(a,?X).

and an unintended result will be obtained.

The problem here is that the interpretation of F-logic expressions as objects is not always what
we want. In our example, we need to indicate to the compiler that the first argument of foobar/1
ought to be translated into Prolog as follows:

foobar(P,?X)

where P is the object that represents the formula a[b->?X] itself rather than just the oid a.

This can be accomplished using the reification feature of Flora-2 : a formula is compiled into
an object that represents that formula if that formula is wrapped with the ${...} construct as in

?- foobar($a[b->?X], ?X).

Reification is further discussed in Section 12.2.
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9 Boolean Methods

As a syntactic sugar, Flora-2 provides boolean methods, which can be considered as value-
returning methods that return some fixed value, e.g., void. For example, the following facts:

John[is_tall -> void].

John[loves(tennis) -> void].

can be simplified as boolean methods as follows:

John[is_tall].

John[loves(tennis)].

Conceptually, boolean methods are statements about objects whose truth value is the only con-
cern. Boolean methods do not return any value (not even the value void). Therefore, boolean meth-
ods cannot appear in path expressions. For instance, John.is vegetarian, where is vegetarian

is a binary method, is illegal.

Like other methods, boolean methods can be inheritable. To make a boolean method inheritable,
the * sign is prepended to the method name:

buddhist[*is_vegetarian].

John:buddhist.

The above says that all Buddhists are vegetarian and John (the object with oid John) is a
Buddhist. Since is_vegetarian is inheritable, it follows that John is also a vegetarian, i.e.,
John[is_vegetarian].

9.1 Boolean Signatures

Boolean methods can have signatures like value-returning methods. For noninheritable Boolean
methods, signatures are specified as follows:

Class[=>Meth]

For inheritable Boolean methods, signatures are declared similarly:

C[*=>Meth]

10 Anonymous and Generated Oids

For applications where oids are not important, Flora-2 provides the compiler directive _# to
automatically generate a new oid. _# can be used wherever an Id-term is allowed, except in the
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rule body, where such oids make no sense. Like the anonymous variable ?_, each occurrence of _#
represents an anonymous oid. The difference is that such an oid is not only unique in each rule,
but in the source program as well.

Of course, uniqueness is achieved through the use of special “weird” naming schema for such
oids, which internally prefixes them with several ‘‘ $’’s. However, as long as the user does not use
a similar naming convention (who, on earth, would give names that begin with lots of ‘‘ $’’s?),
uniqueness is guaranteed.

For example, in the following program:

_#[ssn->123, father->_#[name->John, spouse->_#[name->Mary]]].

foo[_#(?X)->?Y] :- bar[?Y->?X].

the compiler will generate unique oids for each occurrence of #. Note that, in the second clause,
only one oid is generated and it serves as a method name.

In some situations, it is needed to be able to create a new oid and use it within the same rule
head or a fact. Since such an oid needs to be referenced inside the same program clause, it is no
longer possible to use _#, because each occurrence of _# causes the compiler to generate a new oid.
To solve this problem, Flora-2 allows numbered anonymous oids, which are of the form _#132,
i.e., _# with a number attached to it. For instance,

_#1[ssn->123, father->f(_#1)[name->John, spouse->_#[name->Mary]]].

_#1[self->_#1].

The first time the compiler finds _#1 in the first clause above, it will generate a new oid. However,
the second occurrence of _#1 in the same clause (i.e., f(_#1)) will use the oid previously generated
for the first occurrence. On the other hand, occurrences of _#1 in different clauses are substituted
with different oids. Thus, the occurrences of _#1 in the first and second clauses above refer to
different objects.

Anonymous oids are generated at compile time without regard for the oids that might exist at
run time. Sometimes it is necessary to generate a completely new oid at run time. This can be
accomplished with the newoid{...} builtin. For instance,

flora2 ?- newoid{?X}.

?X = _$_$_flora’dyn_newoid308

1 solution(s) in 0.0000 seconds

Yes

11 Multifile Programs

Flora-2 supports many ways in which a program can be modularized. First, an F-logic program
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can be split into many files with separate namespaces. Each such file can be considered an in-
dependent library, and the different libraries can call each other. In particular, the same method
name (or a predicate) can be used in different files and the definitions will not clash. Second, a
program file can be split of several files, and these files can be included by the preprocessor prior
to the compilation. In this case, all files share the same namespace in the sense that the different
rules that define the same method name (or a predicate) in different files are assumed to be part
of one definition. Third, Flora-2 programs can call Prolog modules and vice versa. In this way,
a large system can be built partly in Prolog and partly in Flora-2 .

We discuss each of the aforesaid modularization methods in turn.

11.1 Flora-2 Modules

A Flora-2 module is a programming abstraction that allows a large program to be split into
separate libraries that can be reused in multiple ways in the same program. Formally, a module
is a pair that consists of a name and a contents. The name must be an alphanumeric symbol
(the underscore, , is also allowed), and the contents consists of the program code that is typically
loaded from some file (but it can also be constructed dynamically by inserting facts into another
module).

The basic idea behind Flora-2 modularization is that reusable code libraries are to be placed
in separate files. To use a library, it must be loaded into a module. Other parts of the program can
then invoke this library’s methods by providing the name of the module (and the method/predicate
names, of course). There is no need to export anything from a library — any public method or
predicate can be called by other parts of the program. (A module can have non-public methods,
if the module is encapsulated — see Section 11.12.) In this way, the library loaded into a module
becomes that module’s content.

Note that there is no a priori association between files and modules. Any file can be loaded
into any module and one program file can even be loaded into two different modules at the same
time. The same module can be reused during the same program run by loading another file into
that module. In this case, the old contents is erased and the module gets new contents from the
second file.

In Flora-2 , modules are completely decoupled from file names. A Flora-2 program knows
only the module names it needs to call, but not the file names. Specific files can be loaded into
modules by another, unrelated bootstrapping program. Moreover, a program can be written in
such a way that it calls a method of some module without knowing that module’s name. The name
of the module can be passed as a parameter or in some other way and the concrete binding of the
method to the module will be done at runtime.

This dynamic nature of Flora-2 modules stands in sharp contrast to the module system of
Prolog, which is static and associates modules with files at compile time. Moreover, to call a
predicate from another module, that predicate must be imported explicitly and referred to by the
same name.

As a pragmatic measure, Flora-2 defines three kinds of modules rather than just one. The
kind described above is actually just one of the three: the user module. As explained, these modules
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are decoupled from the actual code, and so they can contain different code at different times. The
next kind is a Prolog module. This is an abstraction in Flora-2 , which is used to call Prolog
predicates. Prolog modules are static and are assumed to be closely associated with their code. We
describe these modules in Section 11.7. (Do not confuse Flora-2 Prolog modules — an abstraction
used in the language of Flora-2— with Prolog modules, which is an abstraction used in Prolog.)
The third type of modules are the Flora-2 system modules. These modules are preloaded with
Flora-2 programs that provide useful methods and predicates (e.g., I/O) and, thus, are also
static. These modules are described in Section 11.9 and 29. The abstraction of system modules
is a convenience provided by Flora-2 , which enables user programs to perform common actions
using standard names of predicates and methods implemented in those modules. The syntactic
conventions for calling each of these types of modules are similar, but distinct.

11.2 Calling Methods and Predicates Defined in User Modules

If literal is an F-molecule or a predicate defined in another user module, it can be called using the
following syntax:

literal @ module

The name of the module can be any alphanumeric symbol.6 For instance, foo(a) @ foomod tests
whether foo(a) is true in the user module named foomod, and Mary[children -> ?X]@genealogy

queries the information on Mary’s children available in the module genealogy. More interestingly,
the module specifier can be a variable that gets bound to a module name at run time. For instance,

..., ?Agent=zagat, ..., newyork[dinner(italian) -> ?X]@?Agent.

A call to a literal with an unbound module specification or one that is not bound to a symbol will
result in a runtime error.

When calling the literals defined in the same module, the @module notation is not needed, of
course. (In fact, since a program does not know where it will be loaded, using the @-notation to
call a literal in the same module is hard. However, it is possible with the help of the special token
@, which is described later, and is left as an exercise.)

The following rules apply when calling a literal defined in another module:

1. Literal reference cannot appear in a rule head or be specified as a fact. For example, the
following program will generate a parsing error

John[father->Smith] @ foomod.

foo(?X) @ foomod :- goo(?X).

because defining a literal that belongs to another module does not make sense.

6 In fact, any symbol is allowed. However, it cannot contain the quote symbol, “’”.
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2. Module specification is distributive over logical connectives, including the conjunction opera-
tor, “,”, the disjunction, “;”, and the negation operators, “\+” and “not”. For example, the
formula below:

(John[father->Smith], not Smith[spouse->Mary]) @ foomod

is equivalent to the following formula:

John[father->Smith] @ foomod, not (Smith[spouse->Mary] @ foomod)

3. Module specifications can be nested. The one closest to a literal takes effect. For example,

(foo(a), goo(b) @ goomod, hoo(c)) @ foomod

is equivalent to

foo(a) @ foomod, goo(b) @ goomod, hoo(c) @ foomod

4. The module specification propagates to any F-molecule appearing in the argument of a pred-
icate for which the module is specified. For example,

foo(a.b[c->d]) @ foomod

is equivalent to

a[b->?X] @ foomod, ?X[c->d] @ foomod, foo(?X) @ foomod

5. Module specifications do not affect function terms that are not predicates or method names,
unless such a specification is explicitly attached to such a term. For instance, in

flora2 ?- foo(goo(a)) @ foomod.

goo/1 refers to the same functor both in module foomod and in the calling module. However,
if the argument is reified (i.e., is an object that represents a formula — see Section 12.2), as
in

flora2 ?- foo(${goo(a) @ goomod}) @ foomod.

then foo/1 is assumed to be a meta-predicate that receives the query goo(a) in module
goomod as a parameter. Moreover, module specification propagates to any reified formula
appearing in the argument of a predicate for which the module is specified. For example,

flora2 ?- foo(${goo(a)}) @ foomod.

is equivalent to

flora2 ?- foo(${goo(a) @ foomod}) @ foomod.



11 MULTIFILE PROGRAMS 28

11.3 Finding the Current Module Name

Since a Flora-2 program can be loaded into any module, the program does not have a priori
knowledge of the module it will be executing in. However, the program can determine its module
at runtime using the special token @, which is replaced with the current module name when the
module is loaded. More precisely, if @ occurs anywhere as an oid, method name, value, etc., in file
foo.flr then when foo.flr is loaded into a module, say, bar, then all such occurrences of @ are
replaced with bar. For instance,

a[b->_@].

?- a[b->?X].

?X=main

Yes

11.4 Finding the Module That Invoked A Rule

Sometimes it is useful to find out which module called any particular rule at run time. This can
be used, for example, when the rule performs different services for different modules. The name of
the caller-module can be obtained by calling the primitive caller{?X} in the body of a rule. For
instance,

p(?X) :- caller{?X}, (write(’I was called by module: ’), writeln(?X))@_prolog.

When a call to predicate p(?X) is made from any module, say foobar, and the above rule is
invoked as a result, then the message “I was called by module: foobar” will be printed.

11.5 Loading Files into User Modules

Flora-2 provides several commands for compiling and loading program files into specified user
modules.

Compilation. The command

flora2 ?- compile(file>>module).

generates the byte code for the program to be loaded into the user module named module. The
name of the byte code for the program in file.flr, which can later be loaded into the specified module.
In practice this means that the compiler generates files named file module.P and file module.xwam
with symbols appropriately renamed to avoid clashes.

If no module is specified, the command

flora2 ?- compile(file).



11 MULTIFILE PROGRAMS 29

compiles file.flr for the default module main.

Loading. The above commands compile files without actually loading their contents into the
in-memory knowledge base. To load a file, the following commands can be used:

flora2 ?- [myprog].

flora2 ?- load(myprog).

This loads the program in the file myprog.flr into the default user module main. If myprog.flr
is newer than the compiled code, the source file is recompiled.

An optional module name can be given to tell Flora-2 to load the program into the specified
module:

flora2 ?- [myprog >> foomod].

flora2 ?- load(myprog >> foomod).

This loads the Flora-2 program myprog.flr into the user module named foomod, compiling it if
necessary.

The user can compile and load several program files at the same time: If the file was not
compiled before (or if the program file is newer), the program is compiled before being loaded. For
instance, the following command:

flora2 ?- [myprog1, myprog2]

will load both myprog1 and myprog2 into the default module main. However, loading several
programs into the same module is not very useful: the code of the last program will wipe out
the code of the previous ones. This is a general rule in Flora-2 . Thus, loading multiple files is
normally used in conjunction with the module targets:

flora2 ?- [’myprog1.flr’, myprog2 >> foomod].

which loads myprog1.flr into the module main and myprog2.flr into the module foomod.

Adding to already loaded modules. Files can also be added to an existing module, as ex-
plained in the following subsection.

Note that the [...] command can also load and compile Prolog programs. The overall algo-
rithm is as follows. If the file suffix is specified explicitly, the corresponding file is assumed to be
a Flora-2 file, a Prolog file, or a byte code depending on the suffix: .flr, .P, or .xwam. If the
suffix is not given explicitly, the compiler first checks if file.flr exists. If so, the file assumed to be
a Flora-2 program and is compiled as such. If file.flr is not found, but file.P or file.O is, the file
is passed to Prolog for compilation.

Sometimes it is useful to know which user modules are loaded or if a particular user module is
loaded (say, because your might want to load it, if not). To find out which modules are loaded at
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the present time, use the predicate isloaded/1. For instance, the first query, below, succeeds if
the module foo is loaded. The second query succeeds and binds L to the list of all user modules
that are loaded at the present time (aggregate operators, including collectset are discussed in
Section 21.

flora2 ?- isloaded(foo).

flora2 ?- ?L= collectset{?X| isloaded(?X)}.

Inline programs. In some cases—primarily for testing—it is convenient to be able to type up
and load small programs into a running Flora-2 session. To this end, the system provides spe-
cial idioms, [_], [_>>module], [+_], and [+_>>module]. This causes Flora-2 to start reading
program clauses from the standard input and load them into the default module or the specified
module. To indicate the end of the input, the user can type Control-D in Unix-like systems or
Control-Z in Windows. For instance,

flora2 ?- [_>>foo].

aaa[bbb->ccc].

?X[foo->?Y] :- ?Y[?X->bar].

Control-D

A word of caution. It is dangerous to place the load command in the body of a rule if load

loads a file into the same module where the rule belongs. For instance, if the following rule is in
module bar

p(X) :- ..., [foo>>bar], ...

then execution of such a rule is likely to crash Prolog. This is because this very rule will be wiped
out before it finishes execution — something that XSB is not ready for. Flora-2 tries to forewarn
the .user about such dangerous occurrences of load, but it cannot intercept all such cases reliably.

11.6 Adding Rule Bases to Existing Modules

Loading a file into a module causes the knowledge base contained in that module to be erased
before the new information is loaded. Sometimes, however, it is desirable to add knowledge (rules
and facts) contained in a file to an existing module. This operation does not erase the old contents
of the module. For instance each of the following commands

flora2 ?- [+myprog >> foomod].

flora2 ?- add(myprog >> foomod).

will add the rules and facts contained in t=file myprog.flr into the module foomod without erasing
the old contents. The following commands
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flora2 ?- [myprog].

flora2 ?- load(myprog).

will do the same for module main. Note that, in the [...] form, loading and adding can be freely
mixed. For instance,

flora2 ?- [foo1, +foo2]

will first load the file foo1.flr into the default module main and then add the contents of foo2.flr
to that same module.

Like the loading commands, the addition statements first compile the files they load if necessary.
It is also possible to compile files for later addition without actually adding them. Since files are
compiled for addition a little differently from files compiled for loading, we use a different command:

flora2 ?- _compileadd(foo).

flora2 ?- _compileadd(foo >> bar).

11.7 Calling Prolog from Flora-2

Prolog predicates can be called from Flora-2 through the Flora-2 module system Flora-2
models Prolog programs as collections of static Prolog modules, i.e., from Flora-2 ’s point of view,
Prolog modules are always available and do not need to be loaded explicitly because the association
between Prolog programs and modules is fixed.

@ prolog and @ plg. The syntax to call Prolog predicates is one of the following:

flora2 ?- predicate@ prolog(module)

For instance, since the predicate member/2 is defined in the Prolog module basics, we can call it
as follows:

flora2 ?- member(abc,[cde,abc,pqr])@ prolog(basics).

plg instead of prolog also works.

To use this mechanism, you must know which Prolog module the particular predicate is defined
in. Some predicates are defined by programs that do not belong to any module. When such an
Prolog program is loaded, the corresponding predicates become available in the default Prolog
module. In XSB, the default module is called usermod and Flora-2 can call such predicates as
follows:

flora2 ?- foo(?X)@ prolog(usermod).

Note that variables are not allowed in the module specifications of Prolog predicates, i.e.,
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flora2 ?- ?M=usermod, foo(?X)@ prolog(?M).

will cause a compilation error.

Some Prolog predicates are considered “well-known” and, even though they are defined in vari-
ous Prolog modules, the user can just use those predicates without remembering the corresponding
Prolog module names. These predicates (that are listed in the XSB manual) can be called from
Flora-2 with particular ease:

flora2 ?- writeln(’Hello’)@ prolog

i.e., we can simply omit the Prolog module name (but parentheses must be preserved).

@ prologall and @ plgall. The Prolog module specification @ prolog has one subtlety: it does
not affect the arguments of a call. For instance,

flora2 ?- foo(f(?X,b))@_prolog.

will call the Prolog predicate foo/1. Recall that Flora-2 uses HiLog terms to represent objects,
while Prolog uses Prolog terms. Thus, the argument f(?X,b) above will be treated as a HiLog term.
Although it looks like a Prolog term and, in fact, HiLog terms generalize Prolog terms, the internal
representation of HiLog and Prolog terms is different. Therefore, if the fact foo(f(a,b)) is defined
somewhere in the Prolog program then the above query will fail, since a Prolog term f(?X,b) and
a HiLog term f(?X,b) are different even though their textual representation in Flora-2 is the
same.

A correct call to foo/1 in this case would be as follows:

?- foo(f(?X,b)@_prolog)@_prolog.

Here we explicitly tell the system to treat f(?X,b) as a Prolog term. Clearly, this might be too
much writing in some cases, and it is also error prone. Moreover, bindings returned by Prolog
predicates are Prolog terms and they somehow need to be converted into HiLog.

To simplify calls to Prolog, Flora-2 provides another, more powerful primitive: @ prologall.
In the above case, one can call

?- foo(f(?X,b))@_prologall.

without having to worry about the differences between the HiLog representation of terms in
Flora-2 and the representation used in Prolog.

One might wonder why is there the @ prolog module call in the first place. The reason is
efficiency. The @ prologall call does automatic conversion between Prolog and HiLog, which
is not always necessary. For instance, to check whether a term, f(a), is a member of a list,
[f(b),f(a)], one does not need to do any conversion, because the answer is the same whether
these terms are HiLog terms or Prolog terms. Thus,
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?- member(f(a), [f(b),f(a)])@_prolog(basics).

is perfectly acceptable and is more efficient than

?- member(f(a), [f(b),f(a)])@_prologall basics.

Flora-2 provides a special primitive, p2h{...,...}, which converts terms to and from the HiLog
representation, and the programmer can use it in conjunction with @ prolog to achieve a greater
degree of control over argument conversion. This issue is further discussed in Section 12.4.

11.8 Calling Flora-2 from Prolog

Since Prolog does not understand Flora-2 syntax, it can call only predicates defined in Flora-2
programs. To call predicates defined in Flora-2 programs, they must be imported by the Prolog
program.

11.8.1 Importing Flora-2 Predicates into Prolog Shell

To import a Flora-2 predicate into Prolog shell, the following must be done:

• The query

| ?- [flora2], bootstrap flora.

must be executed first.

• One of the following ’ flimport’ queries must be executed in the shell:

| ?- ’ flimport’ flora-predicate/arity as xsb-name( , ,..., )

from filename >> flora-module-name
| ?- ’ flimport’ flora-predicate/arity as xsb-name( , ,..., )

from flora-module-name

We will explain shortly which ’ flimport’ query should be used in what situation.

Note: If Flora-2 is installed outside of the XSB directory structure, then you must let Prolog
know the location of your installation of Flora-2 . This is done by executing the prolog instruction
asserta(library directory(path-to-flora)). For instance

?- asserta(library_directory(’/home/me/flora2’)).

before calling any of the Flora-2 modules. Observe that asserta and not assert must be used.
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11.8.2 Calling Flora-2 from a Prolog Module

To call Flora-2 from within a Prolog program, say test.P, the following must be done:

1. The query

?- [flora2], bootstrap flora

must be executed before compiling or loading test.P — otherwise, the program will not
compile or load.

2. The directive

:- import (’_flimport’)/1 from flora2.

must appear near the top of test.P, prior to any call to Flora-2 predicates.

The first form for ’ flimport’ above is used to both import the predicate and also to load the
program file defining it into a given Flora-2 user module. The second syntax is used when the
Flora-2 program is already loaded into a module and we only need to import the corresponding
predicate.

In ’ flimport’, flora-predicate is the name of the imported predicate as it is known in the
Flora-2 module. For non-tabled predicates, whose name starts with % in Flora-2 , flora-predicate
should have the following syntax: %(predicate-name). For instance, to import a Flora-2 non-
tabled predicate %foobar of arity 3 one can use the following statement:

?- ’_flimport’ ’%’(foobar)/3 as foobar(_,_,_) from mymodule.

The imported predicate must be given a name by which the imported predicate will be known
in Prolog. (This name can be the same as the name used in Flora-2 .) It is important, however,
that the Prolog name be specified as shown, i.e., as a predicate skeleton with the same number
of arguments as in the Flora-2 predicate. For instance, foo( , , ) will do, but foo/3 will not.
Once the predicate is imported, it can be used under its Prolog name as a regular predicate.

Prolog programs can also load and compile Flora-2 programs using the following queries
(again, bootstrap flora must be executed in advance):

:- import ’ load’/1, ’ compile’/1 from flora2.

?- ’ load’(flora-file >> flora-module).
?- ’ load’(flora-file).
?- ’ compile’(flora-file >> flora-module).
?- ’ compile’(flora-file).

The first query loads the file flora-file into the given user module and compiles it, if necessary. The
second query loads the program into the default module main. The last two queries compile the
file for loading into the module flora-module and main, respectively, but do not load it.
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Finally, a Prolog program can check if a certain Flora-2 user module has been loaded using
the following call:

:- import ’ isloaded’/1 from flora2.

?- ’ isloaded’(flora-module-name).

Note that when used inside Prolog the isloaded predicate must be quoted. Quoting is not
necessary when it is used in Flora-2 .

Note: If you are using a release of Flora-2 that is installed outside of the XSB directory
tree, you must make sure that Prolog will find this installation and use it. One way of doing
this was described earlier (by executing an appropriate asserta/1). This method works best if
your application consists of both Flora-2 and Prolog modules, but the initial module of your
application (i.e., the one that bootstraps everything) is a Prolog program. If the initial module is
a Flora-2 program, then the best way is to start XSB and Flora-2 using the runflora script
(page 3) located in the distribution of Flora-2 .

11.8.3 Passing Arbitrary Queries to Flora-2

The method of calling Flora-2 from Prolog, which we just described, assumes that the user knows
which predicates and methods to call in the Flora-2 module. Sometimes, it is useful to be able
to pass arbitrary queries to Flora-2 . This is particularly useful when Flora-2 runs under the
control of a Java or C program.

To enable such unrestricted queries, Flora-2 provides a special predicate, flora query/4,
which is called from Prolog and takes the following arguments:

• String : A string that contains a Flora-2 query. It can be an atom (e.g., ’foo[bar-¿?X].’) or
a list of character codes (e.g., ”foo[bar-¿?X].”).

• Vars: A list of the form [’?Name1’=Var1, ’?Name2’=Var2,...] or of the form ["?Name1"=Var1,

"?Name2"=Var2,...]. ?Name is a name of a variable mentioned in String, for instance, ’?X’
(note: the name must be quoted, since it is an atom). Var is a Prolog (not Flora-2 !) vari-
able where you want the binding for the variable Name in String to be returned. For instance,
if String is ’p(?X,?Y).’ then Vars can be [’?X’ = Xyz, "?Y" = Qpr]. In this case, Xyz
will be bound to the value of ?X in p(?X,?Y) after the execution, and Qpr will be bound to
the value of ?Y in p(?X,?Y).

• Status: Indicates the status of compilation of the command in String. It is a list, which
contains various indicators. The most important ones are success and failure.

• Exception: If the execution of the query is successful, this variable is bound to normal.
Otherwise, this variable will contain an exception term returned by XSB (see the XSB manual,
if you need to process exceptions in sophisticated ways).

In order to use the the flora query/4 predicate from within Prolog, the following steps are
necessary.
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1. If Flora-2 is installed as a standalone application rather than an XSB package, then the
Flora-2 installation directory must be added to the XSB search path:

?- asserta(library_directory(’/home/myHomeDir/flora2’)).

2. The query

?- [flora2], bootstrap flora

must be executed before compiling or loading the Prolog file.

3. flora query/4 must be imported from flora2.

Here is an example of a Prolog file, test.P, which loads and then queries a Flora-2 file, flrtest.flr:

:- import bootstrap_flora/0 from flora2.

?- asserta(library_directory(’/home/myHomeDir/flora2’)),

[flora2],

bootstrap_flora.

:- import flora_query/4 from flora2.

:- import ’_load’/1 from flora2.

?- ’_load’(flrtest).

?- Str="?X[b->?Y].", flora_query(Str,["?X"=YYY,"?Y"=PPP], _Status,_Exception).

After the query to flrtest.flr is successfully executed, the bindings for the variable ?X in the
Flora-2 query will be returned in the Prolog variable YYY. The binding for ?Y in the query will
be returned in the Prolog variable PPP. If there are several answers, you can get them all in a
failure-loop, as usual in Prolog. For instance,

?- Str=’?X[b->?Y].’, flora_query(Str,[’?X’=YYY,’?Y’=PPP], _Status,_Exception),

writeln(’?X’ = YYY),

writeln(’?Y’ = PPP),

fail.

Note that the Prolog variables in the variable list (like YYY and PPP above) can be bound and in
this way input to the Flora-2 query can be provided. For instance,

?- YYY=abc, flora_query(’?X[b->?Y].’,[’?X’=YYY,’?Y’=PPP], _Status,_Exception).

yields the same result as

?- flora_query(’abc[b->?Y].’,[’?Y’=PPP], _Status,_Exception).

However, the user should be aware of the fact that if a query is going to be used many times with
different parameters then the first form is much faster. That is,
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?- YYY=abc1, flora_query(’?X[b->?Y].’,[’?X’=YYY,’?Y’=PPP], _Status,_Exception).

?- YYY=abc2, flora_query(’?X[b->?Y].’,[’?X’=YYY,’?Y’=PPP], _Status,_Exception).

......

is noticeably faster than

?- flora_query(’abc1[b->?Y].’,[’?Y’=PPP], _Status,_Exception).

?- flora_query(’abc2[b->?Y].’,[’?Y’=PPP], _Status,_Exception).

......

if the above queries are executed thousands of times with different parameters abc1, abc2, etc.

11.9 Flora-2 System Modules

Flora-2 provides a special set of modules that are preloaded with useful utilities, such as pret-
typrinting or I/O. These modules have special syntax, modname, and cannot be loaded by the user.
For this reason, these modules are called Flora-2 system modules. For instance, to prettyprint
all the attributes and methods of an object, the following method, defined in the system module
pp, can be used:

flora2 ?- obj[%pp self]@ pp.

Here, the method %pp self is applied to the object obj and will pretty-print the state of that
object. For more details on the existing Flora-2 system modules, see Section 29.

11.10 Including Files into Flora-2 Programs

The last and the simplest way to construct multi-file Flora-2 programs is by using the #include

preprocessing directive. For instance if file foo.flr contains the following instructions:

#include "file1"

#include "file2"

#include "file3"

the effect is the same as if the above three files were concatenated together and stored in foo.flr.
Note, however, that when compiling foo.flr, the compiler has no way of knowing if any of the
included files have changed, because file inclusion is done by the preprocessor. So, it is recommended
to compile such multi-file programs using a Makefile, like in C and C++.

Note that the #include instruction requires that the file name is enclosed in double quotes.
Also, under Windows, backslashes in file names must be doubled. For instance,

#include "..\\foo\\bar.flr"



11 MULTIFILE PROGRAMS 38

11.11 More on Variables as Module Specifications

Earlier we mentioned that a user module specification can be a variable, e.g., a[m->b]@?X, which
ranges over module names. This variable does not need to be bound to a concrete module name
before the call is made. If it is a variable, then ?X will get successively bound to the user modules
where a[m->b] is true. However, these bindings will not include prolog(), prolog(module), or
module.

Dynamic module bindings can be used to implement adaptive methods, which are used in many
types of applications, e.g., agent programming. Consider the following example:

Module foo Module moo

something :- ... ......

something else :- ......

a[someservice( @,?Arg)->?Res]@moo ......

...... a[someservice(?Module,?Arg)-> ?Res] :-

...... something@?Module, ...

...... ......

Here the method someservice in user module moo performs different operation depending
on who is calling it, because something can be defined differently for different callers. When
something else is called in module foo, it invokes the method someservice on object a in mod-
ule moo. The current module name (foo) is passed as a parameter (with the token @). When
someservice is executed in module moo it therefore calls the predicate something in module foo.
If someservice is called from a different module, say bar, it will invoke something defined in that
module and the result might be different, since something in module bar may have a different
definition than in module foo.

An example of the use of the above idea is the pretty printing module of Flora-2 . A pretty-
printing method is called on an object in some user module, and to do its job the pretty-printing
method needs to query the object in the context of the calling module to find the methods that the
object has.

It is also possible to view adaptive methods as a declarative counterpart of the callback functions
in C/C++, which allows the callee to behave differently for different clients.

11.12 Module Encapsulation

So far in multi-module programs any module could call any method or predicate in any other
module. That is, modules were not encapsulated. However, Flora-2 lets the user to encapsulate
any module and export the methods and predicates that other modules are allowed to call. Making
an unexported call will result in a runtime error.

A module is encapsulated by placing an export directive in it or by executing an export

directive at run time. Modules that do not have export directives in them are not encapsulated,
which means that any method or predicate defined inside such a module can be called from the
outside.
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Syntax. The export directive has the form:

:- export MethodOrPredExportSpec1, MethodOrPredExportSpec2, ... .

There can be one or more export specifications (MethodOrPredExportSpec) in each export state-
ment, and there can be any number of different export statements in a module. The effect of all
these statements is cumulative.

Each MethodOrPredExportSpec specifies three things, two of which are optional:

• The list of methods or predicates to export.

• The list of modules to which to export. This list is optional. If it is not given then the
predicates and modules are exported to all modules.

• Whether the above are exported as updatable or not. If a method or a predicate is exported as
updatable, then the external modules can add or delete the corresponding facts. Otherwise,
these modules can only query these methods and predicates. If updatable is not specified,
the calls are exported for querying only.

The exact syntax of a MethodOrPredExportSpec is as follows:

[ updatable] ExportList [ >> ModuleList ]

The square brackets here denote optional parts. The module list is simply a comma-separated list
of modules and ExportList is a comma-separated list of predicate/method/ISA templates. Method
templates have the form

?[ termTemplate -> ?] or
?[ termTemplate ]

and predicate templates are the same as term templates. A term template is a HiLog term that has
no constants or function symbols in it. For instance, p(?,?)(?) and q(?,?,?) are term templates,
while p(a,?)(?) and q(?,?,f(?)) are not.

ISA templates have the form ?:? or ?::?. Of course, ? can also be used instead of ?.

Examples. Here are some examples of export directives:

:- export ?[a(?) -> ?].

:- export ?[b ->?], ?[c(?,?)], ?[d(?)(?,?) -> ?].

:- export (?[e -> ?], ?[f(?,?)]) >> (foo, bar).

:- export updatable (?[g -> ?], ?[h(?,?)]) >> (foo, bar).

:- export updatable (?[g -> ?], ?[h(?,?)]) >> (foo, bar),

(?[k -> ?], m(?,?)(?)) >> abc.
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Observe that the method g and the boolean method h have been exported in the updatable mode.
This means that the modules foo and bar can insert and delete the facts of the form a[g->b] and
a[h(b,c)] using the statements like (assuming that moo is the name of the module that includes
the above directives):

?- insert{a[g->b]@moo}.

?- delete{a[h(b,c)]@moo}.

Parenthesizing rules. Note that in the last three export statements above we used parentheses
to disambiguate the syntax. Without the parentheses, these statements would be understood
differently:

:- export ?[e -> ?], (?[f(?,?)] >> foo), bar.

:- export updatable ?[g -> ?], (?[h(?,?)]) >> foo), bar.

:- export updatable ?[g -> ?], (?[h(?,?)] >> foo), bar,

?[k -> ?], (m(?,?)(?) >> abc).

We should also note that updatable binds stronger than the comma or >>, which means that an
export statement such as the one bellow

:- export updatable ?[g -> ?], ?[h(?,?)] >> foo.

is actually interpreted as

:- export updatable(?[g -> ?]), (?[h(?,?)]) >> foo).

Exporting molecules other than ->. In order to export any kind of call to a non-Boolean
method, one should use only ->. This will allow other modules to make calls, such as a[d(c)(e,f)
*-> ?X], a[b ->-> ?Z], and c[e=>t] to the exported methods. The export directive does not
allow the user to separately control calls to the molecules that involve the method specifiers such
as ->*, =>, ->->, etc.

The export directive has an executable counterpart. For instance, at run time a module can
execute an export instruction such as

?- export ?[e -> ?], (?[f(?,?)] >> foo), bar.

and export the corresponding methods. If the module was not encapsulated before, it will become
now. Likewise, it is possible to execute export directives in another module. For instance executing

?- (export ?[e -> ?], (?[f(?,?)] >> foo), bar)@foo.

will cause the module foo to export the specified methods and to encapsulate it, if it was not
encapsulated before.
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11.13 Importing Modules

Referring to methods and predicates defined in other modules is one way to invoke knowledge
defined separately in another program. Sometimes, however, it is convenient to import the entire
module into another module. This practice is particularly common when it comes to reusing
ontologies.

Flora-2 supports import of modules through the importmodule compile-time directive. Its
syntax is as follows:

:- importmodule module1, module2, ..., module-k.

Once a module is imported, its methods and predicates can be referenced without the need to
use the module idiom.

Importing a module is not the same as including another module as a file with the #include

statement. First, only exported methods and predicates can be referenced by the importing module.
The non-exported elements of an imported module are encapsulated. Second, even when everything
is exported (as in the case when no explicit export directive is provided), import is still different
from inclusion. To see why, consider one module, main, that looks like this:

?- [myprog>>foo].

:- importmodule foo.

p(abc).

?- q(?X).

This module loads a program from the file myprog.flr into a module foo and then imports that
module. The importing module itself contains a fact and a query.

Suppose myprog.flr is as follows:

q(?X) :- p(?X).

p(123).

It is easy to see that the query q(?X) in the importing module main will return the answer ?X =

123. In contrast, if the module main included myprog.flr instead of importing it, i.e., if it looked
like this:

#include "myprog.flr"

p(abc).

?- q(?X).

then the same query would have returned two answers: ?X = 123 and ?X = abc. This is because
the latter program is simply
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q(?X) :- p(?X).

p(123).

p(abc).

?- q(?X).

In other words, in the first case, the query q(?X) still queries module foo even though the query
does not use the foo idiom. The module foo has only one answer to the query, so only one answer
is returned. In contrast, when myprog.flr is included then the resulting program has two p-facts
and two answers are returned.

11.14 Persistent Modules

Normally, the data in a Flora-2 module is transient — it is lost as soon as the system terminates.
The Flora-2 package persistentmodules allows one to make Flora-2 modules persistent. This
package is described in the document A Guide to Flora-2 Packages.

12 HiLog and Metaprogramming

HiLog [4] is the default syntax that Flora-2 uses to represent functor terms (including object Ids)
and predicates. In HiLog, complex terms can appear wherever a function symbol is allowed. For
example, group(?X)(?Y,?Z) is a HiLog term where the functor is no longer a symbol but rather a
complex term group(?X). Variables in HiLog can range over terms, predicate and function symbols,
and even over atomic formulas. For instance,

?− p(?X), ?X(p).

and
?− p(?X), ?X(p), ?X. (3)

are perfectly legal queries. If p(a(b)), a(b)(p), and a(b) are all true in the database, then
?X = a(b) is one of the answers to the query in HiLog.

Although HiLog has a higher order syntax, its semantics is first order [4]. Any HiLog term can be
consistently translated into a Prolog term. For instance, group(?X)(?Y,?Z) can be represented by
the Prolog term apply(apply(group,?X),?Y,?Z). The translation scheme is pretty straightforward
and is described in [4].

Any Id-term in Flora-2 , including function symbols and predicate symbols, are considered
to be HiLog terms and therefore are subject to translation. That is, even a normal Prolog term
will by default be represented using the HiLog translation, e.g., foo(a) will be represented as
apply(foo,a). This guarantees that HiLog unification will work correctly at runtime. For instance,
foo(a) will unify with ?F(a) and bind the variable ?F to foo.

There is one important difference between HiLog, as described in [4], and its implementation in
Flora-2 . In HiLog, functor terms that appear as arguments to predicates and the atomic formulas
(i.e., predicates that are applied to some arguments) belong to the same domain. In contrast, in
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Flora-2 they are in different domains.7 For instance, suppose p(a(b)) is true, and consider the
following query:

?- ?X ∼ a(b), p(?X).

Here ∼ is a meta-unification operator to be discussed shortly, in Section 12.1; it binds ?X to the
atomic formula a(b) in the current module. The answer to this query is ’No’ because ?X is bound
to the atomic formula a(b), while a(b) in p(a(b)) is a HiLog term.

Our earlier query, (3), will also not work (unlike in the original HiLog) because ?X is bound
to a term and not a formula: if we execute the query (3), we will get an error stating that ?X is
bound to a HiLog term, not a predicate, and therefore the query ?X is meaningless. To correct the
problem, ?X must be promoted to a predicate and relativized to a concrete module—in our case to
the current module. So, the following query will work and produce a binding a(b) for ?X.

flora2 ?- p(?X), ?X(p), ?X@ _@.

Like in classical logic, foo and foo() are different terms. However, in programming, it is
convenient to identify these terms when they are treated as predicates. Prologs often disallow the
use of the foo() syntax altogether. The same distinction holds in HiLog: foo, foo() and foo()()

are all different. In terms of the HiLog to Prolog translation, this means that foo is different
from apply(foo) is different from apply(apply(foo)). However, just like in Prolog, we treat p as
syntactic sugar for p() when both occur as predicates. Thus, the following queries are the same:

flora2 ?- p.

flora2 ?- p().

In the following program,

p.

q().

?- p(), ?X().

?- q, ?X().

?- r = r().

the first two queries will succeed (with ?X bound to p or q), but the last one will fail. Identification
of p with p() does not extend to p()(), which is distinct from both p and p() not only as a term
but also as a formula. Thus, in the following program, all queries fail:

p.

q().

?- p()().

?- q()().

?- p = p()().

?- q() = q()().

7 This is allowed in sorted HiLog [3].
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12.1 Meta-programming, Meta-unification

F-logic together with HiLog is powerful stuff. In particular, it lends itself naturally to meta-
programming. For instance, it is easy to examine the methods and types defined for the various
classes. Here are some simple examples:

// all unary methods defined for John

?- John[?M(?) -> ?].

// all unary methods that apply to John,

// for which a signature was declared

?- John[?M(?) => ?].

// all method signatures that apply to John,

// which are either declared explicitly or inherited

?- John[?M => ?].

// all method invocations defined for John

?- John[?M -> ?].

However, a number of meta-programming primitives are still needed since they cannot be di-
rectly expressed in F-logic. Many such features are provided by the underlying Prolog system and
Flora-2 simply takes advantage of them:

?- functor(?X,f,3)@_prolog.

?X = f(_h455,_h456,_h457)@_prolog

Yes

?- compound(f(?X))@_prolog.

?X = _h472

Yes

Note that these primitives are used for Prolog terms only and are described in the XSB manual.
These primitives have not been ported to work with HiLog terms yet.

Meta-unification. In Flora-2 , variables can be bound to both formulas and terms. For in-
stance, in ?X = p(a), p(a) is viewed as a term and ?X is bound to it. Likewise, in ?X = a[m->v],
the F-molecule is evaluated to its object value (which is a) and then unified with ?X. To bind
variables to formulas instead, Flora-2 provides a meta-unification operator, ∼. This operator
treats its arguments as formulas and unifies them as such. For instance, ?X ∼ a[m->v,k->?V]

binds ?X to the F-molecule a[m->v,k->?V] and a[m->v,k->?V] ∼ ?X[?M->v,k->p] unifies the
two molecules by binding ?X to a, ?M to m, and ?V to p.

Meta-unification is very useful when it is necessary to find out the module in which a particular
formula lives. For instance,
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flora2 ?- ?X@?M ~ a[b->c]@foo.

would bind ?X to the formula a[b->c], ?M to the module of ?X. Note that in meta-unification the
variable ?X in the idiom ?X@?M or ?X@foo is viewed as a meta-variable that is bound to a formula.
More subtle examples are

flora2 ?- ?X ~ f(a), ?X ~ ?Y@?M.

flora2 ?- f(a)@foo ~ ?Y@?M.

?M is bound to the current module in the first query and foo in the second one. ?Y is bound to
the (internal representation of the) HiLog formula f(a)@ @ in the first query and f(a)@foo in the
second — not to the HiLog term f(a)!

Another subtlety has to do with the scope of the module specification. In Flora-2 , module
specifications have scope and inner specifications override the outer ones. For instance, in

..., (abc@foo, cde)@bar, ...

the term abc is in module foo, while cde in module bar. This is because the inner module
specification, @foo, overrides the outer specification @bar for the literal in which it occurs (i.e.,
abc). These scoping rules have subtle impact on literals that are computed dynamically at run
time. For instance, consider

flora2 ?- ?X@?M ~ a[b->c]@foo, ?X@bar.

Because ?X gets bound to a[b->c]@foo, the literal ?X@bar becomes the same as (a[b->c]@foo)@bar,
i.e., a[b->c]@foo. Thus, both of the following queries succeed:

flora2 ?- ?X@?M ~ a[b->c]@foo, ?X@bar ~ a[b->c]@foo.

flora2 ?- ?X@?M ~ a[b->c]@foo, ?X@?N ~ a[b->c]@foo.

Moreover, in the second query, the variable ?N is not bound to anything because, as noted before,
the literal ?X@?N becomes (a[b->c]@foo)@?N) at run time and, due to the scoping rules, is the
same as a[b->c]@foo.

12.2 Reification

It is sometimes useful to be able to treat Flora-2 molecules and predicates as objects. For
instance, consider the following statement:

Tom[believes-> Alice[thinks->floraProgramming:coolThing]].

The intended meaning here is that one of Tom’s beliefs is that Alice thinks that programming in
Flora-2 is a cool thing. Unfortunately, this is incorrect, because, as stated, the above formula
has a different meaning:
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Tom[believes-> Alice].

Alice[thinks->floraProgramming:coolThing].

That is, Tom believes in Alice and Alice thinks that Flora-2 programming is cool. This is
different from what we originally intended. For instance, we did not want to say that Alice likes
Flora-2 (she probably does, but she did not tell us). All we said was what Tom has certain beliefs
about what Alice thinks. In other words, to achieve the desired effect we must turn the formula
Alice[thinks->floraProgramming:coolThing] into an object, i.e., reify it.

Reification is done using the operator “${...}”. For instance, to say that Tom believes that
Alice thinks that programming in Flora-2 is a cool thing one should write:

Tom[believes-> ${Alice[thinks->floraProgramming:coolThing]}].

When reification appears in facts or rule heads, then the module specification and the predicate
part of the reified formula must be bound. For instance, the following statements are illegal:

p(${?X@foo}) :- q(?X).

p(${q(a)@?M}).

?- insert{p(${?X@?M})}.

The semantics of reification in Flora-2 is described in [12].

Reification of complex formulas. In Flora-2 , one can reify not only simple facts, but also
anything that can occur in a rule body. Even a set of rules can be reified! The corresponding objects
can then be manipulated in ways that are semantically permissible for them. For instance, reified
conjunctions of facts can be inserted into the database using the insert{...} primitive. Reified
conjunctions of rules can be inserted into the rulebase using the insertrule{...} primitive. Reified
rule bodies, which can include disjunctions, negation, and even things like aggregate functions and
update operators(!), can be called as queries.

request[

input -> ${?Ticket[from->?From, to->?To, not international],

inputAxioms -> ${(?Ticket[international] :-

?Ticket[from->?From:?Country1, to->?To:?Country2],

?Country1 \= ?Country2)

}

].

?- ?Request[input->?Input, inputAxioms->?Rules],

insertrule{?Rules},

?Input.

In the above example, the object request has two attributes, which return reified formulas.
The input attribute returns a Boolean combination of molecules, while inputAxioms returns a
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reified rule. In general, conjunctions of rules are allowed inside the reification operator (e.g.,
${(rule1), (rule2)}), where each rule is enclosed in a pair of parentheses. Such a conjunction
can then be inserted (or deleted) into the rulebase using the insertrule{...} primitive.8

Reification and meta-unification. Reification should not be confused with meta-unification,
although they are close concepts. A reified formula reflects the exact structure that is used to
encode it, so structurally similar, but syntactically different formulas might meta-unify, but their
internal representations could be very different. For instance,

flora2 ?- a[b->?X]@?M ~ ?Y[b->d]@foo.

will return true, because the two molecules are structurally similar and thus meta-unify. On the
other hand,

flora2 ?- ${a[b->?X]@?M} = ${?Y[b->d]@foo}.

will be false, because a[b->?Y]@?X and ?Z[b->d]@foo have different internal representations (even
though their conceptual structures are similar), so they do not unify (using “=”, i.e., in the usual
first-order sense). Note, however, that the queries

?- ${a[b->?Y]@foo} = ${?Z[b->d]@foo}.

?- ?M=foo, ${a[b->?Y]@?M} = ${?Z[b->d]@?M}.

?- a[b->?Y]@foo ~ ?Z[b->d]@foo.

?- ?M=foo, a[b->?Y]@?M ~ ?Z[b->d]@?M.

will all return true, because a[b->?Y]@foo and ?Z[b->d]@foo are structurally similar — both
conceptually and as far as their internal encoding is concerned (and likewise are a[b->?Y]@foo and
?Z[b->d]@foo).

12.3 Meta-decomposition

Flora-2 supports an extended version of the Prolog meta-decomposition operator “=..”. On
Prolog terms, it behaves the same way as one would expect in Prolog. For instance,

flora2 ?- ?X=p(a,?Z)@_prolog, ?X=..?Y.

?X = p(a,?_h4094)@_prolog

?Z = ?_h4094

?Y = [p, a, ?_h4094]

8 In fact, Boolean combinations of rules are also allowed inside the reification operator. However, such combinations
cannot be inserted into the rulebase. Flora-2 does not impose limitations here, since is impossible to rule out that
a knowledge base designer might use such a feature in creative ways.
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The main use of the =.. operator in Flora-2 is, however, for decomposing HiLog terms or of
reifications of HiLog predicates and F-logic (atomic) molecules. The meta-decomposition operator
uses special conventions for these new cases.

For HiLog terms, the head of the list on the fight-hand side of =.. has the form hilog(HiLogPredicateName)

For instance,

flora2 ?- p(a,b) =.. ?L.

?L = [hilog(p), a, b]

For HiLog predicates the head of the list has the form hilog(HiLogPredicateName,Module). For
instance,

flora2 ?- ${p(a,b)}@foo =.. ?L.

?L = [hilog(p,foo), a, b]

For non-tabled HiLog predicates, which represent actions with side-effects, the head of the list is
similar except that ’%hilog’ (quoted!) is used instead of hilog. For instance,

flora2 ?- ${%p(a,b)}@foo =.. ?L.

?L = [%hilog(p,foo), a, b]

For F-logic molecules, the head of the list has the form flogic(MoleculeSymbol,Module). The
MoleculeSymbol argument represents the type of the molecule and can be one of the following:
->, *->, =>, *=>, +>>, *+>>, ->->, *->->, :, ::, boolean (tabled Boolean methods), *boolean
(inheritable tabled Boolean methods), %boolean (procedural, nontabled Boolean methods), :=:,
[] (empty molecules, such as a[]). Here is a number of examples that illustrate the use of =.. for
decomposition of F-logic molecules:

$a[b->c]@foo =.. [flogic(->,foo), a, b, c]

$a[b*->c]@foo =.. [flogic(*->,foo), a, b, c]

$a[b=>c]@foo =.. [flogic(=>,foo), a, b, c]

$a[b*=>c]@foo =.. [flogic(*=>,foo), a, b, c]

$a[b+>>c]@foo =.. [flogic(+>>,foo), a, b, c]

$a[b*+>>c]@foo =.. [flogic(*+>>,foo), a, b, c]

$a[b->->c]@foo =.. [flogic(->->,foo), a, b, c]

$a[b*->->c]@foo =.. [flogic(*->->,foo), a, b, c]

$a:b@foo =.. [flogic(:,foo), a, b]

$a::b@foo =.. [flogic(::,foo), a, b]

$a:=:b@foo =.. [flogic(:=:,foo), a, b]

$a[]@foo =.. [flogic([],foo), a]

$a[p]@foo =.. [flogic(boolean,foo), p]

$a[*p]@foo =.. [flogic(’*boolean’,foo), a, p]

$a[%p]@foo =.. [flogic(’%boolean’,foo), a, p]
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The =.. operator is bi-directional, which means that either one or both of its arguments can
be bound. For instance,

flora2 ?- ?X =.. [flogic(’*boolean’,foo),a ,p].

?X = ${a[*p]@foo}

At present, the =.. operator does not do reified terms that represent aggregate operators,
update predicates, and other Flora-2 statements that are not part of the extended F-logic or
HiLog syntax. In such cases, the query simply fails. In the future, =.. might be extended to some
of these additional classes of terms.

The original Prolog’s =.. is also available using the idiom (... =.. ...)@ prolog. This is
rarely used, however. One might use this when the term to be decomposed is known to be a Prolog
terms (in this case the Prolog’s operator will run slightly faster) or if one wants to process the
Prolog terms into which Flora-2 literals are encoded internally (which is probably hardly ever
necessary).

12.4 Passing Parameters between Flora-2 and Prolog

The native HiLog support in Flora-2 causes some tension when crossing the border from one
system to another. The reason is that Flora-2 terms and Prolog terms have different internal
representation. Even though XSB supports HiLog (according to the manual, anyway), this support
is incomplete and is not integrated well into the system — most notably into the XSB module
system. As a result, XSB does not recognize terms passed to it from Flora-2 as HiLog terms
and, thus, many useful primitives will not work correctly. (Try ?- writeln(foo(abc))@ prolog

and see what happens.)

To cope with the problem, Flora-2 provides a primitive, p2h{?Plg,?Hlg}, which does the
translation. If the first argument, ?Plg, is bound, the primitive binds the second argument to the
Hilog representation of the term. If ?Plg is already bound to a Hilog term, then ?Hlg is bound
to the same term without conversion. Similarly, if ?Hlg is bound to a HiLog term, then ?Plg gets
bound to the Prolog representation of that term. If ?Hlg is bound to a non-HiLog term, then ?Plg

gets bound to the same term without conversion. In all these cases, the call to p2h{...} succeeds.
If both arguments are bound, then the call succeeds if and only if

• ?Plg is a Prolog term and ?Hlg is its HiLog representation.

• Both ?Plg and ?Hlg are identical Prolog terms.

Note that if both ?Plg and ?Hlg are bound to the same HiLog term then the predicate fails. Thus,
if you type the following queries into the Flora-2 shell, they both succeed:

flora2 ?- p2h{?X,f(a)}, p2h{?X,?X}.

but the following will fail:
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flora2 ?- p2h{f(a),?X}, p2h{?X,?X}.

flora2 ?- p2h{f(a),f(a)}.

The first query succeeds because ?X is bound to a prolog term, and by the above rules p2h{?X,?X}
is supposed to succeed. The second query fails because ?X is bound to a HiLog term and, again
by the above rules, p2h{?X,?X} is supposed to fail. The reason why the last query fails is less
obvious. In that query, both occurrences of f(a) are HiLog terms, as are all terms that appear in a
Flora-2 program (unless they are marked with @ prolog or @ prologall module designations).
Therefore, again by the rules above the query should fail.

One should not try to convert certain Prolog terms to HiLog and expect them to be the same as
similarly looking Flora-2 terms. In particular, this applies to reified statements. For instance, if
?X = $a[b->c] then ?- p2h{?X,?Y}, ?Y = $a[b->c] is not expected to succeed. This is because
p2h{...} does not attempt to mimic the Flora-2 compiler in cases where conversion to HiLog
(such as in case of reified statements) makes no sense. Doing so would have substantially increased
the run-time overhead.

Not all arguments passed back and forth to Prolog need conversion. For instance, sort/2,
ground/1, compound/1, and many others do not need conversion because they work the same for
Prolog and HiLog representations. On the other hand, most I/O predicates require conversion.
Flora-2 provides the io library, described in Section 29, which provides the needed conversions
for the I/O predicates.

Another mechanism for calling Prolog modules, described in Section 11.7, is to use of the
@ prologall and @ prologall(module) specifiers (@ plgall also works). These specifiers cause
the compiler to include code for automatic conversion of arguments to and from Prolog represen-
tation. However, as mentioned above, such conversion is sometimes not necessary and the use of
@ prologall might incur unnecessary overhead.

13 Negation

Flora-2 supports two kinds of negation: the usual Prolog’s negation as failure [5] and negation
based on well-founded semantics [9, 10]. Both types of negation are compiled into clauses that
invoke the corresponding operators in Prolog.

We should remark that originally, the term “negation as failure” was used to denote the treat-
ment of negation in Prolog. This style of negation is unsatisfactory in many respects because it
does not have a model-theoretic characterization and because operationally it often leads to infi-
nite loops. To overcome this problem, several different semantics were introduced, including the
aforesaid well-founded semantics. At some point later, the meaning of the term negation as failure
was broadened to refer to the class of all these forms of negation. When ambiguity may arise, we
will be referring to Prolog-style negation as failure.
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13.1 Two Operators for Negation

Prolog-style negation as failure is specified using the operator \+. Negation based on the well-
founded semantics is specified using the operator not. The well-founded negation, not, applies to
predicates that are tabled (i.e., predicates that do not have the % prefix which will be discussed in
detail in Section 17) or to F-molecules that do not contain procedural methods (i.e., methods that
are prefixed with a %).

The semantics for negation as failure is simple. To find out whether \+?G is true, the system
first asks the query ?- ?G. If the query succeeds then \+?G is said to be satisfied. Unfortunately,
this semantics is problematic. It cannot be characterized model-theoretically and in certain simple
cases the procedure for testing whether \+?G holds may send the system into an infinite loop. For
instance, in the presence of the rule %p :- \+ %p, the query ?- %p will not terminate. Negation
as failure is the recommended kind of negation for non-tabled predicates (but caution needs to be
exercised).

The well-founded negation, not, has a model-theoretic semantics and is much more satisfactory
from the logical point of view. Formally, this semantics uses three-valued models where formulas
can be true, false, or undefined. For instance, if our program has the rule p :- not p then the
truth value of p is undefined. Although the details of this semantics are somewhat involved [10],
it is usually not necessary to know them, because this type of negation yields the results that the
user normally expects. The implementation of the well-founded negation in XSB requires that it is
applied to goals that consist entirely of tabled predicates or molecules. Although Flora-2 allows
not to be applied to non-tabled goals, this may lead to unexpected results. For instance, Section 18
discusses what might happen if the negated formula is defined in terms of an update primitive.

For more information on the implementation of the negation operators in XSB we refer the
reader to the XSB manual.

Both \+ and not can be used as operators inside and outside Flora-2 molecules. For instance,

flora2 ?- not %p(a).

flora2 ?- \+ %p(a).

flora2 ?- not X[foo->bar, bar->foo].

flora2 ?- X[not foo->bar, bar->foo, \+ %p(?Y)].

are all legal queries. Note that \+ applies only to non-tabled constructs, such as non-tabled
Flora-2 predicates and procedural methods.

We should warn against one pitfall however. Sometimes it is necessary to apply negation to
several separate literals and write something like

flora2 ?- \+ (%p(a),%q(?X)).

flora2 ?- not (p(a),q(?X)).

flora2 ?- not (?X[foo->bar], ?X[bar->foo]).

This is incorrect however, since in this context Flora-2 (and Prolog as well) will interpret not

and \+ as predicates with two arguments, which are likely to be undefined. The correct syntax is:
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flora2 ?- \+ ((%p(a),%q(?X))).

flora2 ?- not ((%p(a),%q(?X))).

flora2 ?- not ((?X[foo->bar], ?X[bar->foo])).

i.e., an additional pair of parentheses is needed to indicate that the sequence of literals form a
single argument.

13.2 True vs. Undefined Formulas

The fact that the well-founded semantics for negation is three-valued brings up the question of
what exactly does the success or failure of a call means. Is undefinedness covered by a success or
by failure? The way this is implemented in XSB is such that a call to a literal, P , succeeds if and
only if P is true or undefined. Therefore, it is sometimes necessary to be able to separate true
from undefined facts. In Flora-2 , this separation is accomplished with the Flora-2 primitives
true{Goal} and undefined{Goal}. For good measure, the primitive false{Goal} is also thrown
in. For instance,

a[b->c].

e[f->g] :- not e[g->g].

?- true{a[b->c]}.

Yes

?- unknown{e[f->g]}.

Yes

?- false{k[l->m]}.

Yes

It should be noted that the primitives true{...} and unknown{...} can be used only in the top-
level queries. Otherwise, correctness of the result is not guaranteed. The expression false{Goal}
is equivalent to not Goal, and can be used anywhere.

13.3 Unbound Variables in Negated Goals

When negation (either \+ or not) is applied to a non-ground goal, one should be aware of the
following peculiarity. Consider \+ ?Goal, where ?Goal has variables that are not bound. As men-
tioned before, \+ ?Goal is evaluated by posing ?Goal as a query. If for some values of for the
variables in ?Goal the query succeeds, then \+ ?Goal is false; it is true only if for all possible sub-
stitutions for the variables in ?Goal the query is false (fails). Therefore \+ ?Goal intuitively means
∀?Vars¬ ?Goal, where ?Vars represents all the nonbound variables in ?Goal. The well-founded
negation has the same flavor: if ?Goal is non-ground then not ?Goal means ∀?Vars¬ ?Goal.
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Of course, one should keep in mind that since neither \+ nor not is a classical negation, none of
the above formulas is actually equivalent to ∀?Vars¬ ?Goal, if ¬ is understood as classical negation.
A more precise meaning is that not ?Goal is true if and only if for every ground instance ?Goal′ of
?Goal, the literal not ?Goal′ is true in the well-founded semantics. Similarly, \+ ?Goal evaluates
to true if and only if for every ground instance ?Goal′ of ?Goal, the query \+ ?Goal′ succeeds
according to the negation-as-failure semantics.

To illustrate this, consider the following example:

p(a,b).

q(?X,?Y) :- not p(?X,?Y).

flora ?- q(?X,?Y).

When not p(?X,?Y) is called in the query evaluation process, the variables are unbound, so for
the query to return a positive answer, the literal p(t,s) should be false for every possible terms t
and s. Since p(a,b) is true, our query q(?X,?Y) fails. In contrast, the query

flora2 ?- q(b,?Y).

will succeed because this will cause the query not p(b,?Y) to be evaluated. But this query will
return positive answer because p(b,?Y) is false for all ?Y. Note that even when the query succeeds
the unbound variable that occurs in the scope of the negation operator remains unbound:

flora2 ?- not p(b,?Y).

?Y = _h1747

1 solution(s) in 0.0000 seconds on speedy.foo.org

14 Inheritance

In general, inheritance means that attribute and method specifications for a class are propagated
to the subclasses of that class and to the objects that are instances of that class.

F-logic (and Flora-2 ) distinguishes between attributes and methods that can inherit values
from superclasses and those that do not. The syntax that we have seen so far in this manual applies
to non-inheritable attributes only. Inheritable attributes are declared using the *=> style arrow and
defined using the *-> style arrow. Note that while -> typically occurs in facts and rules that define
the properties of individual objects, *-> normally occurs in definitions of classes.

Non-inheritable attributes sometimes correspond to what is known as class variables in tra-
ditional object-oriented languages. For example, the attribute “average age” would be such an
attribute for class person. It does not make sense to propagate this attribute and its value to the
instances of that class, because the concept of an average age does not apply to individual people.
Similarly, it does not make sense to propagate this attribute to subclasses, such as student, because
the average age of students is likely to be different from that of persons, and therefore the inherited
value would be of no use. In Flora-2 , we would specify such a fact as follows:
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person[avg_age -> 40].

Similarly, attributes that typically refer to individuals are better specified as non-inheritable, be-
cause normally there is nothing to inherit these attributes to:

John[age -> 30].

Inheritable attributes typically define default properties of the objects in a class, such as

british[nativeLanguage *-> ’English’].

If John:british is true, then, without evidence to the contrary, we can derive John[nativeLanguage
-> ’English’]. If we are also told that scottish::british, i.e., Scottish people are also British,
then we can derive (again, in the absence of a counter-evidence) that scottish[nativeLanguage

*-> ’English’].

Note that the form of the arrow, ->, mutates when an attribute or a method is inherited to a
member of a class. In general, an inheritable attribute is inherited to a subclass as an inheritable
attribute and to a member of a class as a non-inheritable attribute. In other words, *=> and *-> do
not change when inherited to subclasses, but they change to => and ->, respectively, when inherited
to class members.

14.1 Structural vs. Behavioral Inheritance

F-logic supports two types of inheritance: structural and behavioral. Structural inheritance ap-
plies to signatures only. For instance, if student::person and a program defines the signature
person[name*=>string] then the query ?- student[name*=>?X] succeeds with ?X=string.

Behavioral inheritance is much more complicated. It is non-monotonic in the sense that addition
of new facts might falsify previously true facts.

The following is a Flora-2 program for the classical Royal Elephant example:

elephant[color*=>color].

royal_elephant::elephant.

clyde:royal_elephant.

elephant[color*->gray].

The question is what is the color of clyde? clyde’s color has not been defined in the above
program. However, since clyde is an elephant and the default color for elephants is gray, clyde
must be gray. Thus, we can derive:

clyde[color->gray].

Observe that when inheritable methods are inherited from a class by its members, the attribute
becomes non-inheritable. On the other hand, when such a method is inherited by a subclass from
its superclass, then the method is still inheritable, so it can be further inherited by the members
of that subclass or by its subclasses. For instance, if we have
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circus_elephant::elephant.

then we can derive

circus_elephant[color*->gray].

Non-monotonicity of behavioral inheritance becomes apparent when certain new information
gets added to the knowledge base. For instance, suppose we learn that

royal_elephant[color*->white].

Although we have previously established that clyde is gray, this new information renders our
earlier conclusion invalid. Indeed, Since clyde is a royal elephant, it must be white, while being an
elephant it must be gray. The conventional wisdom in object-oriented languages, however, is that
inheritance from more specific classes must take precedence. Thus, we must withdraw our earlier
conclusion that clyde is gray and infer that he is white:

clyde[color->white].

Nonmonotonicity also arises due to multiple inheritance. The following example, known as the
Nixon Diamond, illustrates the problem. Let us assume the following knowledge base:

republican[policy *-> nonpacifist].

quaker[policy *-> pacifist].

nixon:quaker.

Since Nixon is a Quaker, we can derive nixon[policy -> pacifist] by inheritance from the
second clause. Let us now assume that the following information is added:

nixon:republican.

Now we have a conflict. There are two conflicting inheritance candidates: policy *-> pacifist

and policy *-> nonpacifist. In Flora-2 , such conflicts cause previously established inheri-
tance to be withdrawn and the value of the attribute policy becomes undefined for object nixon.9

Behavioral inheritance in F-logic is discussed at length in [13]. The above non-monotonic
behavior is just the tip of an iceberg. Much more difficult problems arise when inheritance interacts
with regular deduction. To illustrate, consider the following program:

b[m*->c].

a:b.

a[m->d] :- a[m->c].

9 This behavior can be altered by adding additional rules. For instance, one could define a predicate hasPriority

and then define

?Obj[policy->?P] :- ?Obj:?Class, ?Class[policy*->?P], not hasPriority(?AnotherClass,?Class).



14 INHERITANCE 56

In the beginning, it seems that a[m->c] should be derived by inheritance, and so we can derive
a[m->d]. Now, however, we can reason in two different ways:

1. a[m->c] was derived based on the belief that attribute m is not defined for the object a.
However, once inherited, we must necessarily have a[m->{c,d}]. So, the value of attribute m

is not really the one produced by inheritance. In other words, inheritance of a[m->c] negates
the very premise on which the original inheritance was based, so we must undo the operation
and the ensuing rule application.

2. We did derive a[m->d] as a result of inheritance, but that’s OK — we should not really
be looking back and undo previously made inheritance inferences. Thus, the result must be
a[m->{c,d}].

A similar situation (with similarly conflicting conclusions) arises when the class hierarchy is not
static. For instance,

d[m*->e]

d::b.

b[m*->c].

a:b.

a:d :- a[m->c].

If we inherit a[m -> c] from b (which seems to be OK in the beginning, because nothing overrides
this inheritance), then we derive a:d, i.e., we get the following: a:d::b. This means that now d

seems to be negating the reason why a[m -> c] was inherited in the first place. Again, we can
either undo the inheritance or adopt the principle that inheritance is never undone.

A semantics that favors the second interpretation was proposed in [8]. This approach is based
on a fixpoint computation of non-monotonic behavioral inheritance. However, this semantics is
very hard to implement efficiently, especially using a top-down deductive engine provided by the
underlying Prolog engine. It is also unsatisfactory in many respects because it is not based on a
model-theory. Flora-2 uses a different, more cautious semantics for inheritance, which favors the
first interpretation above.

Details of this semantics are formally described in [13]. Under this semantics, clyde will still
inherit color white, but in the other two examples a[m->c] is not inherited. The basic intuition
can be summarized as follows:

1. Method definitions in subclasses override the definitions that appear in the superclasses.

2. In case of a multiple inheritance conflict, the result of inheritance is undefined. More precisely,
Flora-2 is based on a three-valued logic and in this case the truth value is “unknown.”

3. Inheritance from the same source through different paths is not considered a multiple inher-
itance conflict. For instance, in

a:c. c::e. e[m*->f].

a:d. d::e.
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Even though we derive c[m*->f] and d[m*->f] by inheritance, these two facts can be further
inherited to the object a, since they came from a single source e.

On the other hand, in a similar program

a:c. c[m*->f].

a:d. d[m*->f].

inheritance does not take place (the truth value of a[m->f] is “undefined”), because the two
inheritance candidates, c[m*->f] and d[m*->f], are considered to be in conflict.

Note that in the last example one might argue that even if we did inherit both facts to a

there would be no discrepancy, because in both cases the values of the attribute m agree with
each other. However, Flora-2 views this agreement accidental, as it depends on the data
currently stored in the database. Had one of the values changed to, say, d[m->g], there would
be a conflict.

4. At the level of methods of arity > 1, a conflict is considered to have taken place if there are
two non-overwritten definitions of the same method attached to two different superclasses.
When deciding whether a conflict has taken place we disregard the arguments of the method.
For instance, in

a:c. c[m(k)*->f].

a:d. d[m(u)*->f].

a multiple inheritance conflict has taken place even though in one case the method m is applied
to object k, while in the other it is applied to object u.

On the other hand,

a:c. c[m(k)*->f].

a:d. d[m(k,k)*->f].

do not conflict, because m/1 in the first case is a different method than m/2 in the second.
Similarly,

a:c. c[m(k)()*->f].

a:d. d[m(u)()*->f].

are not considered in conflict because here it is assumed that the method names are m(k) and
m(u), which are distinct names.

In the examples that we have seen so far, path expressions used only non-inheritable attributes.
Clearly, there is no reason to disallow inheritable attributes in such expressions. To distinguish
inheritable attributes from non-inheritable ones, Flora-2 uses the symbol ! in its path expressions.
For instance,

clyde!color means: some ?X, such that clyde[color*->?X]}.



14 INHERITANCE 58

14.2 Code Inheritance

The type of behavioral inheritance defined in the previous subsection is called value inheritance.
It originates in Artificial Intelligence, but is also found in modern main stream object-oriented
languages. For instance, it is related to inheritance of static methods in Java. With this inheritance,
one would define a method for a class, e.g.,

cl[attr->14].

cl[foo(?Y) *-> ?Z] :- cl[attr->?V], ?Z is ?V+?Y.

Every member of this class will then inherit exactly the same definition of foo, which refers to the
class property attr. Since the method definition has no way to refer to the instances on which it is
invoked, this method yields the same result for all class instances. One way to look at this is that
class instances do not really inherit the definition of the method. Instead, the method is invoked
in the context of the class where it is defined and then the computed value is inherited down to all
instances (provided that they do not override the inheritance). So, if a:cl and b:cl then a.foo(4)

and b.foo(4) will return exactly the same value, 18.

A more common kind of methods is called instance methods in Java. In this case, the method
definition refers to instances of the class in whose context the method is supposed to be invoked.
The invocation takes place as follows. First, a class member inherits the code of the method. Then
the code is executed in the context of that class member.

In F-logic this kind of inheritance is called code inheritance and was studied in [14]. Code
inheritance is not yet supported by Flora-2 . However, with some loss of elegance and extra work,
code inheritance can often be simulated using value inheritance. The method consists of three
steps.

1. Define desired methods for all appropriate objects irrespective of classes. Definitions of these
methods are the ones to be inherited using simulated code inheritance.

2. Define attributes whose values are the names of the methods defined in (1). These attributes
will be subject to value inheritance.

3. Specify how the “real” methods in (1) represented by the “fake” methods in (2) are to be
invoked on class instances.

We illustrate this process with the following example. First, assume the following database:

aa:c1.

bb:c2.

c1::c2.

aa[attr1->7, attr2->2].

bb[attr1->5, attr2->4].

We are going to show how code is inherited from c2 to bb. In an attempt to inherit the same code
from c2 to aa, it will be overwritten by code from c1 and the latter will be inherited by aa.
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// method foo/1 defined for every instance

?X[foo(?Y) -> ?Z] :- ?X[attr1->?V], ?Z is ?V+?Y.

// method bar/1 defined for every instance

?X[bar(?Y) -> ?Z] :- ?X[attr2->?V], ?Z is ?V*?Y.

Unlike Java, the above code is not really local to any class, and this is one aspect in which simulation
of code inheritance by value inheritance is inelegant. Next we define meth — the method whose
value inheritance will simulate the inheritance of code of foo and bar.

c1[dispatch(meth) *-> bar].

c2[dispatch(meth) *-> foo].

Clearly, the object bb will inherit dispatch(meth)->foo from c2, while the object aa will inherit
dispatch(meth)->bar from c1; inheritance from c2 is overwritten.

Next, we define how methods are to be invoked in a way that resembles code inheritance:

?X[?M(?Y) -> ?Z] :- ?X[dispatch(?M)->?RealMeth], ?X[?RealMeth(?Y) -> ?Z].

When ?M is bound to a particular method, say meth, and this method is invoked in the context
of a class instance, ?X, the invocation ?X[meth(?Y)->?Z] first computes the value of the attribute
dispatch(meth), which gives the name of the actual method to be invoked. The value of the
dispatch(meth) attribute (represented by the variable ?RealMeth) is obtained by value inheri-
tance. As explained above, this value is foo when ?X is bound to bb and bar when ?X = aa.
Finally, the real method whose name is obtained by value inheritance is invoked in the context of
the class instance ?X. One can easily verify the following results:

flora2 ?- aa[meth(4) -> ?Z].

?Z = 8

flora2 ?- bb[meth(4) -> ?Z].

?Z = 9

This is exactly what would have happened in Java if aa inherited the instance method whose code
is equivalent to the definition of bar/1 and if bb inherited the code of foo/1.

15 Custom Module Semantics

Flora-2 enables the user to choose the appropriate semantics for any user module. This is done
with the help of the following directive:

:- setsemantics{Option1 , Option2 , ...}
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Three kinds of options are allowed:

Equality: equality(none), equality(basic); equality(none) is the default.

Inheritance: inheritance(none), inheritance(flogic); inheritance(flogic) is the default.

Custom: custom(none), custom(filename ); custom(none) is the default.

These options are described in more detail in the following subsections. Within each group only
one choice can be present or else an error will result. It is not required that all options be present
— defaults are substituted for the missing options.

The compiler directive described above determines the initial semantics used by the module in
which the instruction occurs. However, it is also possible to change the semantics at run time using
the executable directive:

?- setsemantics{Option1 , Option2 , ...}

Note the use of ?- here: the symbol :- in the first directive designates the directives that are used
at compile time only. Executable directives, on the other hand, can occur in any query or rule
body. It is also possible for one module to change the semantics in another module. Typically this
is needed when one module creates another. In this case the new module is created with the default
semantics, and the setsemantics executable directive makes it possible to change the semantics
of such a module. Here is an example:

?- setsemantics{equality(basic), custom(’a/b/c’)}.

The order of the options in the directive does not matter.

Changing module semantics — precautions. Changing module semantics on the fly at run-
time is a rather drastic operation. It is therefore not recommended to do this in the body of a rule,
especially if the rule defines a tabled HiLog predicate or an F-logic molecule. The only safe way to
execute setsemantics is in a query at the top level. For instance,

?- setsemantics{...}.

15.1 Equality Maintenance

User-defined equality. Flora-2 users can define equality explicitly in the source program using
the predicate :=:, e.g.,

John:=:Batman.

?X:=:?Y :- ?X[similar->?Y].
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Once two oids are established to be equal with respect to :=:, whatever is true of one object is
also true of the other. Note that :=: is different from the built-in =. The latter is a predefined
primitive, which cannot occur in the facts or in the rule head. Since = is understood as unification,
ground terms can be =-equal only if they are identical. Thus, a=a is always true and a=b is always
false. In contrast, the user can assert a fact such as a:=:b, and from then on the object a and
the object b are considered the same (modulo the equality maintenance level, which is described
below).

Equality maintenance levels. Once an equality between terms is derived, this information may
need to be propagated to all F-logic structures, including the subclass hierarchy, the ISA hierarchy,
etc. For instance, if x and y are equal, then so must be f(x) and f(y). If x:a has been previously
derived then we should now be able to derive y:a, etc. Although equality is a powerful feature,
its maintenance can slow the program down quite significantly. In order to be able to eat the cake
and have it at the same time, Flora-2 allows the user to control how equality is handled. by
providing the following three compiler directives:

:- setsemantics{equality(none)}. (default)

:- setsemantics{equality(basic)}.

The first directive, setsemantics{equality(none)}, does not maintain any equality and :=:

behaves similarly to the regular unification operator but additional facts and rules can be inserted
to augment the definition of this predicate. Under this semantics, :=: is not transitive and the
special congruence properties of equality are not supported (for instance, p(a) and a:=:b do not
imply p(b)). The directive setsemantics{equality(basic)} guarantees that :=: obeys the usual
rules for equality, i.e., transitivity, reflexivity, symmetry, and (limited) substitution.

If a Flora-2 module does not define facts of the form a:=:b, which involve the equality
predicate :=:, then the default equality maintenance level is none. If the program does define such
facts, then the default equality maintenance level is basic, because it is assumed that the use of
:=: in the program is not accidental. In any case, the explicit equality(...) option overrides
the default.

Note that even if the module might have path expression in the head, the default equality level
is still none (unless :=: is used). The reason for this is that such path expressions do not always
require equality maintenance, so the user has to request it explicitly. For instance, if in the above
example we never insert John[mother->Sally] then no equality maintenance will be required even
if the program defines the fact John.mother[father->Bob], as above. However, if this fact is
inserted, then the equality maintenance level appropriate for this case is flogic (basic will not be
sufficient).

Locality of equality. Equality in Flora-2 is always local to the module in which it is derived.
For example, if a:=:b is derived by the rules in module foo then the query

flora2 ?- (a:=:b)@foo.

will succeed, but the query
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flora2 ?- (a:=:b)@bar.

will fail (unless, of course, a:=:b is also derived by the rules in module bar).

Since equality information is local to each module, the directives for setting the equality level
affect only the particular user modules in which they are included. Thus, equality can be treated
differently in different modules, which allows the programmer to compartmentalize the perfor-
mance problem associated with equality and, if used judiciously, can lead to significant gains in
performance.

Run-time changes to the equality maintenance level. In Flora-2 , the desired level of
equality maintenance can also be changed at run time by executing a goal such as

?- setsemantics{equality(basic)}.

Furthermore, Flora-2 allows one user module to set, at run time, the level of equality maintenance
in another user module:

?- setsemantics{equality(basic)}@foobar.

This might be useful for dynamic modules, i.e., modules that are not associated with any files and
whose content is generated completely dynamically. (See Section 18.)

Using the preprocessor to avoid the need for equality maintenance. One final advice
regarding equality. In many cases, programmers tend to use equality as an aliasing technique for
long messages, numbers, etc. In this case, we recommend to use the preprocessor commands, which
achieve the same result without loss of performance. For instance,

#define YAHOO ’http://yahoo.com’

?- YAHOO[fetch -> ?X].

Assuming that fetch is a method that applies to strings that represent WWW sites and that
fetches the corresponding Web pages, the above program will fetch the page at the Yahoo site,
because Flora-2 compiler will replace YAHOO with the corresponding string that represents a
URL.

Limitations of equality maintenance in Flora-2 . The implementation of equality in Flora-2
supports only a limited version of the congruence axiom due to the overhead associated with such
an implementation. A congruence axiom states that if α = β then β can be substituted for any
occurrence of α in any term. For instance, f(x, α) = f(x, β). In Flora-2 , however, the query

a :=: b.

?- g(a) :=: g(b).
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will fail. However, equal terms can be substituted for the arguments of F-logic molecules and HiLog
predicates. For instance, the queries

a:=:b.

a[f->c].

p(a,c).

?- b[f->c].

?- p(b,c).

will succeed.

15.2 Choosing an Inheritance Semantics

As mentioned earlier, the setsemantics directive accepts two options: inheritance(none) and
inheritance(flogic). The default is flogic; this type of inheritance is described in Section 14.

With inheritance(none), behavioral inheritance is turned off in the corresponding module.
This can significantly improve performance in cases when inheritance is not needed.

Note that inheritance(none) does not turn off inheritance of signatures. Inheritance of signa-
tures can be used for run-time type checking and it makes no good sense to disable it. Preserving
inheritance of signatures does not affect the performance either.

15.3 Ad Hoc Custom Semantics

The setsemantics directive allows the user to include additional axioms that define the semantics
of a particular module. These axioms should be stored in a file and included into the module using
the compiler or executable directive

:- setsemantics{custom(filename )}.

However, the default is custom(none)10 To take advantage of this feature, the user must write the
axioms using the same API that is used for Flora-2 trailers, which are located in the closure

directory of the distribution. This API will be described at a later date.

15.4 Querying Module Semantics

In addition to the ability to change the semantics of a module, Flora-2 also lets the user query
the semantics used by any given module through the semantics primitive. The syntax is similar
to the setsemanticsdirective:

?- semantics{ Option1, Option2, ...}.

?- semantics{ Option1, Option2, ...}@modulename.

10 Which implies that if the file has the name none then a full path name should be specified — just “none” implies
no custom file.
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The options are the same as in the case of the setsemantics directive, but variables are allowed
in place of the specific semantic choices, e.g., equality(X). The options unify with the current
semantic settings in the module, so queries such as

?- semantics{equality(X), custom(none)}.

?- semantics{inheritance(flogic), equality(?X), custom(?Y)}@foo.

are allowed. The order of the options in a semantics-query does not matter.

The @module part in the semantics primitive must be bound to a module name at the time
the query is executed. However, it is still possible to find out which modules have any given
combination of semantic options by examining every loaded module via the isloaded/1 builtin
and then posing the desired semantics{...} query.

16 Cardinality Constraints

The earlier versions of F-logic made a distinction between functional and set-valued attributes and
methods. The former were allowed to have only one value for any particular object and the latter
could have any. In Flora-2 , this dichotomy was replaced with the much more general mechanism
of cardinality constraints. These constraints can be specified in signature expressions, which we
have earlier used only to define types of attributes and methods. The extended syntax is as follows:

Cl[Meth{LowerBound:UpperBound}=>Cl2]

Cl[Meth{LowerBound:UpperBound}*=>Cl2]

The first signature applies to object Cl and to its noninheritable method Meth. The second expres-
sion applies to the inheritable method Meth of Cl, of the subclasses of Cl, and to noninheritable
method Meth of the objects that belong to class Cl. (Recall that inheritable methods are inherited
as inheritable methods to subclasses, but they become non-inheritable once they are inherited to
class members.)

The lower and upper bounds in cardinality constraints can be non-negative integers, variables,
or the symbol *. Variables can occur in signatures in rule bodies when one wants to query the
bounds of the cardinality constraints and * means infinity.

For example,

c1[m{2:?X}=>c2] :- ?X=3.

means that the method m of class c1 must have at least 2 at most 3 values. Similarly,

c1[m{2:*}=>c2].

means that m has at least 2 values; there is no upper bound.

We can query the specified cardinality constraints by putting variables in the appropriate places.
For instance, consider the following knowledge base loaded into module foo:
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C[m{3:*}*=>B].

C[m{?x:1}=>B] :- ?x=0.

v:C.

C2::C.

v2:C2.

C[m->{1,2}].

v[m->2].

C2[m*->{1,2,3}].

The query

?- ?C[?M{?L:?H}=>?]@foo.

will yield three solutions:

?C = C

?M = m

?L = 0

?H = 1

?C = v

?M = m

?L = 3

?H = *

?C = v2

?M = m

?L = 3

?H = *

Note that the objects v and v2 are in the answer to the query because they inherited the cardinality
constraint for non-inheritable version of m from the first clause, C[m3:**=>B].

On the other hand, the query

?- ?C[?M{?L:?H}*=>?]@foo.

has two solutions:

?C = C

?M = m

?L = 3

?H = *
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?C = C2

?M = m

?L = 3

?H = *

Class C is in the result because the constraint is specified explicitly and C2 is in the result because
it inherited the constraint from C.

17 Flora-2 and Tabling

17.1 Tabling in a Nutshell

Tabling is a technique that enhances top-down query evaluation with a mechanism that remembers
the calls made previously in the process. This technique is known to be essentially equivalent to the
Magic Sets method for bottom-up evaluation. However, tabling combined with top-down evaluation
has the advantage of being able to utilize highly optimized compilation techniques developed for
Prolog. The result is a very efficient deductive engine.

XSB lets the user specify which predicates must be tabled. The Flora-2 compiler automati-
cally tables F-molecules and HiLog predicates. If the user wants to use a non-tabled predicate, she
must use a predicate name that begins with the “%” sign.

For instance, in the following rules, tc/2 is tabled but %edge/2 is not tabled.

tc(X,Y) :- %edge(?X,?Y).

tc(X,Y) :- %edge(?X,?Y), tc(?Y,?Z).

A predicate with the % prefix is logically unrelated to the predicate without the % prefix. Thus,
p(a)(b) being true does not imply anything about %p(a)(b), and vice versa.

Identifiers and variables that are prefixed with the “%” sign can appear only as predicate for-
mulas, predicate names, or Boolean method names. However, a variable prefixed with “%” can
not be a stand-alone formula, unless it is associated with a module specification. The following
occurrences of “%” are legal

?- insert{%p(a)}, %?(?X). // %? is a variable ranging over non-tabled

// predicate names

?- a[%b(c)], a[%?Y]. // %b and %?Y are procedural Boolean methods

?- %?X@?M ~ %p(a). // %p - a non-tabled predicate

but the following are not:

?- p(%a). // %a appears as a term, not formula

?- ?X = %a. // %a appears as a term, not formula
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?- %?X = a. // %?X appears as a term, not formula

?- a[%b(c)->d]. // %b is not a Boolean method

?- %?X ~ %p(a). // %?X as a stand-alone formula

The first formula is illegal because %a occurs as a term and not as a predicate (it can be made legal
by reifying the argument: p(${%a})). In the second and third formulas %a and %?X also appear as
unreified arguments. The fourth formula is illegal because %b(c) is not a Boolean method. The
last one is illegal because %?X can not be a stand-alone formula (it can be made legal by associating
a module with it).

Occurrences of variables that are prefixed with % are treated specially. First, it should be kept
in mind that %?X and ?X represent the same variable. If ?X is already bound to something then
all both of them mean the same thing. However, ?X itself can range not only over predicates but
also terms, conjunctions/disjunctions of predicates, and even rules. In contrast, %?X with module
specification can be bound only to non-tabled formulas and ?X with module specification can be
bound only to tabled formulas. Thus error messages will be issued for the following two queries:

?- ?X ~ p(a), %?X@?M ~ p(a).

?- ?X ~ a[%b], ?X@?M ~ a[%b].

The following query fails because %?X and ?X represent the same variable: the first conjunct deter-
mines the binding for ?X, and this binding does not match the expression on the right side of ∼ in
the second conjunct.

?- %?X@?M ~ %p(a), ?X ~ p(a).

In the query, ?X is bound to the non-tabled formula %p(a), and this does not meta-unify with the
tabled formula p(a).

When a bound variable occurs with an explicit module specification, then the following rules
apply:

• If the idiom ?X@module is used, ?X can be bound only to a tabled predicate, a tabled molecular
formula, or a Hilog term (not a predicate). Otherwise, an error is issued. If ?X is already
bound to a tabled predicate or molecular formula, then the explicit module specification
(@module) is discarded. When ?X is bound to a HiLog term, e.g., p(a)(?Z), ?X@module
represents the tabled predicate p(a)(?Z)@module.

• If the idiom %?X@module is used, ?X can be bound to only a non-tabled predicate, a non-
tabled molecular formula, or a Hilog term. If ?X is already bound to a non-tabled predicate
or molecular formula, the explicit module specification is discarded, as before. If ?X is bound
to a HiLog term, then %?X@module represents the non-tabled predicate p(a)(?Z)@module.

Due to these rules, the first query below succeeds, while the second fails and the third causes an
error.
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flora2 ?- ?X = p(a), %?X@?M ~ %p(a), ?X@?N ~ p(a)@foo.

flora2 ?- ?X ~ p(a), ?X@?M ~ p(a)@foo.

flora2 ?- ?X ~ p(a), %?X@?M ~ %p(a)@foo.

The first query succeeds because ?X is bound to the term p(a), which %?X@?M promotes to a
non-tabled predicate with yet-to-be-determined module. The meta-unification that follows then
binds ?M to main. Similarly ?X@?N promotes the term p(a) to a tabled predicate with a yet-
to-be-determined module, and meta-unification binds ?N to foo. The second query fails because
?X is already bound to a tabled predicate and therefore ?X@?M represents p(a)@main, which does
not meta-unify with p(a)@foo. The third query gives an error because ?X is bound to a tabled
predicate, while %?X@?M expects a non-tabled predicate or a HiLog term.

When ?X and %?X occur with explicit module specifications and are unbound then the occur-
rences of %?X indicate that ?X is expected to be bound to predicate names, Boolean method names,
or predicate/molecular formulas that correspond only to non-tabled methods or predicates. Like-
wise, an occurrence of an unbound ?X indicates that ?X is expected to be bound to predicate names
or predicate/molecular formulas that correspond to tabled methods or predicates.

%-prefixed variables and meta-programming. In meta-unifications, update operations and
the clause construct, variables that are prefixed with a “%” to indicate non-tabled occurrences
must have explicit module specifications. An unprefixed variable without a module specification,
such as ?X, can meta-unify with both tabled and non-tabled predicates. However, when an explicit
module specification is given, such as in ?X@main, unprefixed variables can be bound only to tabled
predicates. For example, all of the following queries succeed without errors.

?- ?X ~ %p(a).

?- ?X ~ p(a).

?- ?X ~ a[b->c]@foo.

?- ?X ~ a[%b]@?M.

?- ?X@?M ~ p(a).

?- %?X@foo ~ a[%b]@?M.

In the context of update operations, Flora-2 uses the same rules for variables of the form %?X

and ?X. Therefore, the following operations will succeed:

?- insert{p(a),%q(b)}. // Yes

?- delete{?X@_@}. // Yes, with ?X is bound ${p(a)}

?- delete{%?X@_@}. // Yes, with ?X is bound ${%q(b)}

?- insert{p(a),%q(b)}. // Yes

?- delete{?X}. // Yes, ?X is bound to ${p(a)} or ${%q(b)}

These rules also apply to queries issued against rule bases using the clause primitive (see
Section 20 for the discussion of this primitive) or to deletion of rules with the deleterule primitive.

?- insertrule{p(?X) :- q(?X)}.
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?- insertrule{%t(?X) :- %r(?X)}.

?- insertrule{pp(?X) :- q(?X), %r(?X)}.

?- clause{?X,?Y}. // all three inserted rules above would be retrieved

?- clause{%?X@_@,?Y}. // ?X = %t(?_var) and ?Y = %r(?_var)

?- clause{?X@_@,?Y@_@}. // ?X = p(?_var) and ?Y = q(?_var)

?- clause{?X@_@,?Y}. // the first and the third rules would be retrieved

It is important to keep in mind that Prolog does not reorder F-logic molecules and predicates
during joins. Instead, all joins are performed left-to-right. Thus, program clauses must be written
in such a way as to ensure that smaller predicates and classes appear early on in the join. Also,
even though XSB tables the results obtained from previous queries, the current tabling engine
has several limitations. In particular, when a new query comes in, XSB tries to determine if this
query is “similar” to one that already has been answered (or is in the process of being evaluated).
Unfortunately, the default notion of similarity used by XSB is fairly weak, and many unnecessary
recomputations might result. Recently, a new technique, called subsumptive tabling, has been
implemented in XSB. It is known that subsumptive tabling can speed up certain queries by an
order of magnitude. A future version of Flora-2 might take advantage of this technique.

17.2 Discarding Information Stored in Prolog Tables

When Prolog (and Flora-2 ) evaluate a program, all tabled predicates are partially materialized
and all the computed tuples are stored in Prolog tables. Thus, if you change the underlying set
of facts (via insert and delete operations), the existing tables must be discarded in order to allow
Prolog to recompute the results. We discuss updates and the problems caused by tabling Section 18.

There are two ways to discard tabled information in Flora-2 . One, and the safest way is to
use the operator refresh{...}. Inside the braces you list the calls for which you want to discard
table information. For instance,

flora2 ?- refresh{p(a,?X), ?X[meth(?_)->b]}.

will discard any tabling information that is related to p(a,?X) and ?X[meth(? )->b]. To affect
the tables in another module, attach the module name to the corresponding literals. For instance,

flora2 ?- refresh{(p(a,?X), ?X[meth(?_)->b])@foo}.

Sometimes it may be desirable to discard all table information in the current run of the program.
This can be done by issuing the query ?- abolish all tables/0 described in the XSB manual.
However, this should be done with great caution, because abolish all tables/0 is not a safe
query (it can crush XSB!).

If you really need to use abolish all tables/0, it cannot be used in the following cases:

1. in the body of a rule that defines an object attribute or method

2. in the body of a rule that defines a tabled HiLog predicate
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This is because internally the above entities are represented using tabled predicates. Execution of
abolish all tables/0 in the body of such a rule would destroy the table for the predicate being
computed by that rule.

More generally, no tabled predicate or object molecule of the above sort can depend via rules
— directly or indirectly — on abolish all tables/0. However, it is safe to use this predicate in
the body of a rule that defines a procedural method (defined next).

Note: Neither refresh{...} nor abolish all tables can occur under the scope of the negation
operator not (either directly or indirectly).

17.3 Procedural Methods

Because tabling is not integrated with the update mechanism in Prolog, it can have undesirable
effect on predicates with non-logical “side effects” (e.g., writing or reading a file) and predicates
that change the state of the database. If a tabled predicate has a side effect, the first time the
predicate is called the side effect is performed, but the second time the call simply returns with
success or failure (depending on the outcome of the first call), because Prolog will simply look it
up in a table. Thus, if the predicate is intended to perform the side effect each time it is called, it
will not operate correctly.

Object-oriented programs often rely on methods that produce side effects or make updates. In
Flora-2 we call such methods procedural. Because by default Flora-2 tables everything that
looks like an F-molecule, these procedural methods are potentially subject to the aforesaid problem.

To sidestep this problem, Flora-2 introduces a new syntax to identify procedural methods —
by allowing the “%” sign in front of a procedural method. For instance, the following rule defines
an output method that, for every object, writes out its oid:

?O[%output] :- write(?O)@_prolog.

Like boolean methods, procedural methods can take arguments, but do not return any values. The
only difference is that procedural methods are not tabled, while boolean methods are.

17.3.1 Procedural Signatures

Procedural methods can have signatures like other kinds of methods. For noninheritable Boolean
methods, signatures are specified as follows:

Class[=>%Meth]

Flora-2 does not support inheritable procedural methods at present, but the syntax permits
signatures for such methods (which are just ignored):

C[*=>%Meth]
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17.4 Operational Semantics of Flora-2

Although Flora-2 is a declarative language, it provides primitives, such as input/output, certain
types of updates, cuts, etc., which have no logical meaning. In such cases, it is important to have an
idea of the procedural semantics of Flora-2 . This procedural semantics is essentially the same as
in XSB and when no tabled predicates or F-logic molecules are involved, the behavior is the same
as in Prolog. However, when tabled HiLog predicates or F-logic molecules (other than procedural
methods) are used the programmer must have some understanding of the way XSB evaluates tabled
predicates.

XSB has two configuration modes that affect tabled predicates: batched and local (the default).
These modes affect scheduling, i.e., the order in which answers to the literals in a rule body are
computed. (The current release does not work under batched scheduling, so reading on is even
more important to understand the flow of control under local evaluation.)

Under the batched scheduling, the behavior is similar to that of Prolog. Under the local schedul-
ing, answers to the entire clique of inter-dependent predicates is computed before the computation
proceeds to the next literal in a rule body. The following little program illustrates the difference:

a:b.

d:b.

c:b.

?X[foo(?Y)] :- ?X:?Y, writeln(?X)@_prolog.

%q(?X,?Y) :- ?X:?Y, writeln(?X)@_prolog.

?- ?X[foo(?Y)], writeln(done)@_prolog.

?- %q(?X,?Y), writeln(done)@_prolog.

The two queries are essentially the same, the first is an F-logic molecule and so it is implemented
internally as a tabled XSB predicate. The second query is implemented as a non-tabled predicates.
Thus, despite the fact that the two queries are logically equivalent, they are not operationally equiv-
alent under local scheduling. Indeed, a simple experiment shows that the answers to the above two
queries are produced in different orders (as seen by the order of execution of the print statement. In
the first query, ?X[foo(?Y)] is evaluated completely before proceeding to writeln(done)@ prolog

and thus the executions of writeln(?X)@ prolog are grouped together. In the second case, exe-
cutions of writeln(?X)@ prolog and writeln(done)@ prolog alternate, because q/2is not tabled
and thus its evaluation follows the usual Prolog semantics.

On the other hand, if we have

?X[foo(?Y)] :- ?X:?Y, writeln(?X)@_prolog.

q(?X,?Y) :- ?X:?Y, writeln(?X)@_prolog.

?- ?X[foo(?Y)], writeln(done)@_prolog.

?- q(?X,?Y), writeln(done)@_prolog.
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then the two queries will behave the same, as both q/2 and ?X[foo(?Y)] would then be imple-
mented internally as tabled predicates. Likewise, if we replace foo with %foo then the corresponding
molecule would be represented internally as a non-tabled predicate. Thus, the two queries in the
program

?X[%foo(?Y)] :- ?X:?Y, writeln(?X)@_prolog.

%q(?X,?Y) :- ?X:?Y, writeln(?X)@_prolog.

?- %?X[foo(?Y)], writeln(done)@_prolog.

?- %q(?X,?Y), writeln(done)@_prolog.

will produce the same result where a, b, c and done alternate in the output.

17.5 Cuts

No discussion of a logic programming language is complete without a few words about the infamous
Prolog cut (!). Although Prolog cut has been (mostly rightfully) excommunicated as far as Database
Query Languages are concerned, it is sometimes indispensable when doing “real work”, like pretty-
printing Flora-2 programs or implementing a pattern matching algorithm. To facilitate this kind
of tasks, Flora-2 lets the programmer use cuts. However, the current implementation of XSB has
a limitation that Prolog cuts cannot “cut across tabled predicates.” If you get an error message
telling something about cutting across the tables — you know that you have cut too much!

The basic rule that can keep you out of trouble is: do not put a cut in the body of a rule after
any F-molecule or tabled predicate. However, it is OK to put a cut before any F-molecule. It is
even OK to have a cut in the body of a rule that defines an F-molecule (again, provided that the
body has no F-molecule to the left of that cut). If you need to use cuts, plan on using procedural
methods or non-tabled predicates.

Also, when XSB is configured for local scheduling, cuts across tables are much less likely,
because under this strategy XSB tries to compute the entire clique of interrelated predicates before
it proceeds to the next body literal (which could be the dreadful cut). Thus, something like

?X[%foo(?Y)] :- ?Z[moo->?W], ?W:?X, !, rest.

will not cause problems under the local scheduling, but

?X[foo->?Y] :- ?Z[moo->?W], ?W:?X, !, rest.

will likely result in a runtime error. The reason is that in the first case the molecule ?X[%foo(?Y)]

is implemented as a non-tabled predicate, so by the time the evaluation reaches the cut, both
?Z[moo->?W] and ?W:?X will be evaluated completely and their tables will be marked as “complete.”
In contrast, in the second example, ?X[foo->?Y] is implemented as a tabled predicate, which is
interrelated with the predicates that are used to implement ?Z[moo->?W] and ?W:?X. Thus, the
cut would occur in the middle of the computation of the table for ?X[foo->?Y] and an error will
result.
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In a future release, XSB will implement a different tabling schema. While cutting across tables
will still be prohibited, it will provide an alternative mechanism that achieves many of the goals a
cut is used for.

18 Updating the Knowledge Base

Flora-2 provides primitives to update the runtime database. Unlike Prolog, Flora-2 does not
require the user to define a predicate as dynamic in order to update it. Instead, every predicate
and object has a base part and a derived part. Updates directly change only the base parts and
only indirectly the derived parts.

Note that the base part of a predicate or an object contains both the facts that were inserted
explicitly into the database and the facts that you specified in the program. For instance, in

p(a).

a[m->b].

the fact p(a) will be placed in the base part of the predicate p/1 tt and it can be deleted by the
delete primitive. Likewise, the fact a[m->b] is updatable. If you do not want some facts to be
updatable, use the following syntax:

p(a) :- true.

a[m->b] :- true.

Flora-2 updates can be non-transactional, as in Prolog, or transactional, as in Transaction
Logic [2, 1]. We first describe non-transactional updates.

18.1 Non-transactional (Non-logical) Updates

The effects of non-transactional updates persist even if a subsequent failure causes the system to
backtrack.

Flora-2 supports the following non-transactional update primitives: insert, insertall,
delete, deleteall, erase, eraseall. These primitives use special syntax (the curly braces)
and are not predicates. Thus, it is allowed to have a user-defined predicate such as insert.

Insertion. The syntax of an insertion is as follows (note the {,}s!):

insop {literals [| query ]}

where insop stands for either insert or insertall. The literals part represents a comma separated
list of literals, which can include predicates and F-molecules. The optional part, |query, is an
additional condition that must be satisfied in order for literals to be inserted or deleted (depending
on what insop is). The semantics is that query is posed first and, if it is satisfied, literals is inserted
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(note that the query may affect the variable binding and thus the particular instance of literals
that will be inserted). For instance, in

flora2 ?- insert{p(a),Mary[spouse->Smith,children->Frank]}

flora2 ?- insert{?P[spouse->?S] | ?S[spouse->?P]}

the first statement inserts a particular molecule. In the second case, the query ?S[spouse->?P] is
posed and one answer (a binding for ?P and ?S) is obtained. If there is no such binding, nothing
is inserted and the statement fails. Otherwise, the instance of ?P[spouse->?S] is inserted for that
binding and the statement succeeds.

The insert statement has two forms: insert and insertall The difference between insert

and insertall is that insert inserts only one instance of literals that satisfies the formula, while
insertall inserts all instances of the literals that satisfy the formula. In other words, query is
posed first and all answers are obtained. Each answer is a tuple of bindings for some (or all) of
the variables that occur in literals. To illustrate the difference between insert and insertall,
consider the following queries:

flora2 ?- p(?X,?Y), insert{q(?X,?Y,?Z)|r(?Y,?Z)}.
flora2 ?- p(?X,?Y), insertall{q(?X,?Y,?Z)|r(?Y,?Z)}.

In the first case, if p(x,y) and r(y,z) are true, then the fact q(x,y,z) is inserted. In the
second case, if p(x,y) is true, then the update means the following:

For each z such that r(y,z) holds, insert q(x,y,z).

The primitive insertall is also known as a bulk-insert operator.

Unlike insert, the operator insertall always succeeds and it always leaves its free variables
unbound.

The difference between insert and insertall is more subtle than it may appear from the
above discussion. In the all-answers mode, the above two queries will actually behave the same,
because Flora-2 will try to find all answers to the query p(?X,?Y), r(?Y,?Z) and will do the
insertion for each answer. The difference becomes apparent if Flora-2 is in one answer at a time
mode (because one was executed in a preceding query) or when the all-answers mode is suppressed
by a cut as in

flora2 ?- p(?X,?Y), insert{q(?X,?Y,?Z)|r(?Y,?Z)}, !.

flora2 ?- p(?X,?Y), insertall{q(?X,?Y,?Z)|r(?Y,?Z)}, !.

In such cases, the first query will indeed insert only one fact, while the second will insert all.

Note that literals appearing inside an insert primitive (to the left of the | symbol, if it is
present) are treated as facts and should follow the syntactic rules for facts and literals in the
rule head. In particular, path expressions are not allowed. Similarly, module specifications inside
update operators are illegal. However, it is allowed to insert facts into a different module so module
specifications are permitted in the literals that appear in the insert{...} primitive:
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flora2 ?- insert{(Mary[children->Frank], John[father->Smith]) @ foomod}

The above statement will insert Mary[children->Frank] and John[father->Smith] into module
foomod.

Note that module specifications are also allowed in the condition part of an update operator
(to the right of the | mark):

flora2 ?- insert{Mary[children->?X]@foobar | adult(?X)@infomod}

Updates to Prolog modules is accomplished using the usual Prolog’s assert/retract:

flora2 ?- assert(foo(a,b,c))@ prolog.

The following subtleties related to updates of Prolog modules are worth noting. Recall Section 12.4
on the issues concerning the difference between the HiLog representation of terms in Flora-2 and
the one used in Prolog. The problem is that foo(a,b,c) is a HiLog term that Prolog does not
understand and will not associate it with the predicate foo/3 that it might have. To do it right,
use explicit conversion:

flora2 ?- p2h{?PrologRepr,foo(a,b,c)}, assert(?PrologRepr)@ prolog.

This will insert foo(a,b,c) into the default XSB module called usermod.

If all this looks too complicated, Flora-2 provides a higher-level primitive, @ prologall

(equivalently @ plgall), as described in Section 11.7. This module specifier does automatic con-
version of terms to and from Prolog representation, so the above example can be written much
more simply:

flora2 ?- assert(foo(a,b,c))@ prologall.

Another possible complication might be that If foo/3 is defined in another Prolog module, bar,
and is imported by usermod, then the above statement will not do anything useful due to certain
idiosyncrasies in the XSB module system. In this case, we have to tell the system that foo/3 was
defined in Prolog module bar. Thus, foo/3 was defined as a dynamic predicate in the module bar,
we have to write:

flora2 ?- assert(foo(a,b,c)@ prolog(bar))@ prolog.

Note that if we want to assert a more complex fact, such as foo(f(a),b,c), we would have to use
either

flora2 ?- assert(foo(f(a)@ prolog(bar),b,c)@ prolog(bar))@ prolog.

or @ prologall:
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flora2 ?- assert(foo(f(a),b,c)@ prologall(bar))@ prolog.

We should also mention one important difference between insertion of facts in Flora-2 and
Prolog. Prolog treats facts as members of a list, so duplicates are allowed and the order matters.
In contrast, Flora-2 treats the database as a set of facts with no duplicates. Thus, insertion of a
fact that is already in the database has no effect.

Deletion. The syntax of a deletion primitive is as follows:

delop {literals [| query ]}

where delop can be delete, deleteall, erase, and eraseall. The literals part is a comma
separated list of F-molecules and predicates. The optional part, |query, represents an additional
constraint or a restricted quantifier, similarly to the one used in the insertion primitive.

For instance, the following predicate:

flora2 ?- deleteall{John[?Year(?Semester)->?Course] | ?Year < 2000}

will delete John’s course selection history before the year 2000.

Note that the semantics of a delete{literal|query} statement is that first the query literal ∧
query should be asked. If it succeeds, then deletion is performed. For instance, if the database is

p(a). p(b). p(c). q(a). q(c).

then the query below:

?- deleteall{p(?X)|q(?X)}

will succeed with the variable ?X bound to a and c, and p(a), p(c) will be deleted. However,
if the database contains only the facts p(b) and q(c), then the above predicate will succeed
(deleteallalways succeeds) and the database will stay unchanged.

Flora-2 provides four deletion primitives: delete, deleteall, erase, and eraseall. The
primitive delete removes at most one fact at a time from the database. The primitives deleteall
and eraseall are bulk delete operations; erase is kind of a hybrid: it starts slowly, by deleting
one fact, but may go on a joy ride and end up deleting much of your data. These primitives are
described below.

1. If there are several bindings or matches for the literals to be deleted, then delete will choose
only one of them nondeterministically, and delete it. For instance, suppose the database
contains the following facts:

p(a). p(b). q(a). q(b).
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then

?- delete{p(?X),q(?X)}

will succeed with ?X bound to either a or b, depending on the ordering of facts in the database
at runtime.

However, as with insertion, in the all-answers mode the above deletion will take place for each
binding that makes the query true. To avoid this, use one answer at a time mode or the cut.

2. In contrast to the plain delete primitive, deleteall will try to delete all bindings or matches.
Namely, for each binding of variables produced by query it deletes the corresponding instance
of literal. If query ∧ literal is false, the deleteall primitive fails. To illustrate, consider the
following:

flora2 ?- p(?X,?Y), deleteall{q(?X,?Y,?Z)|r(?Y,?Z)}.

and suppose p(x,y) is true. Then the above statement will, for each z such that r(y,z) is
true, delete q(x,y,z).

For another example, suppose the database contains the following facts:

p(a). q(b). q(c).

and the query is ?- deleteall{p(a),q(?X)}. The effect will be the deletion of p(a) and of
all the facts in q. (If you wanted to delete just one fact in q, delete should have been used.)

Unlike the delete predicate, deleteall always succeeds. Also, deleteall leaves all variables
unbound.

3. erase works like delete, but with an object-oriented twist: For each F-logic fact, f , that it
deletes, erase will traverse the object tree by following f ’s methods and delete all objects
reachable in this way. It is a power-tool that can cause maiming and injury. Safety glasses
and protective gear are recommended.

Note that only the base part of the objects can be erased. If the object has a part that is
derived from the facts that still exist, this part will not be erased.

4. eraseall is the take-no-prisoners version of erase. Just like deleteall, it first computes
query and for each binding of variables it deletes the corresponding instance of literal. For each
deleted object, it then finds all objects it references through its methods and deletes those.
This continues recursively until nothing reachable is left. This primitive always succeeds and
leaves its free variables unbound.
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18.2 Backtrackable (Logical) Updates

The effects of transactional updates are undone upon backtracking, i.e., if some post-condition fails
and the system backtracks, a previously inserted item will be removed from the database, and a
previously deleted item will be put back.

The syntax of transactional update primitives is similar to that of non-transactional ones and
the names are similar, too. The syntax for transactional insertion is:

t insop{literals [| formula]}

while the syntax of a transactional deletion is:

t delop{literals [| query ]}

where t insop stands for either t insert or t insertall, and t delop stands for either of the fol-
lowing four deletion operations: t delete, t deleteall, t erase, and t eraseall. The meanings
of literals and query is the same as in Section 18.1.

t insert, t insertall, t delete, t deleteall, t erase, and t eraseall work similarly to
insert, delete, deleteall, erase, and eraseall, respectively, except that the new operations
are transactional. Please refer to Section 18.1 for details of these operations.

To illustrate the difference between transactional and non-transactional updates, consider the
following execution trace immediately after the Flora-2 system starts:

flora2 ?- insert{p(a)}, fail.

No

flora2 ?- p(a).

Yes

flora2 ?- t_insert{q(a)}, fail.

No

flora2 ?- q(a).

No

In the above example, when the first fail executes, the system backtracks to insert{p(a)} and
does nothing. Thus the insertion of p(a) persists and the following query p(a) returns with Yes.
However, when the second fail executes, the system backtracks to t insert{q(a)} and removes
q(a) that was previously inserted into the database. Thus the next query q(a) returns with No.
This behavior is similar to database transactions, whence the name “transactional” update.
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Notes on working with transactional updates. Keep in mind that some things that Prolog
programmers routinely do with assert and retract goes against the very concept of transactional
updates.

• fail-loops are not going to work (will leave the database unchanged) for obvious reasons.
The while and until loops should be used in such situations.

• Tabled predicates or methods must never depend on transactional updates. First, as explained
on page 82, tabled predicates should not depend on any predicates that have side effects,
because this rarely makes sense. Second, when evaluating tabled predicates, XSB performs
backtracking unbeknownst to the programmer. Therefore, if a tabled predicate depends on
a transactional update, backtracking will happen invisibly, and the updates will be undone.
Therefore, in such situations transactional updates will have no effect.

• As before, t insertall, t deleteall, and t eraseall primitives always succeed and leave
the free variables unbound. Likewise, in the all-answers mode, the primitives t insert,
t delete, and t erase behave similarly to the bt*all versions in other respects, i.e., they
will insert or delete facts for every answer to the associated query. This can be prevented
with the use of the cut or the one directive.

Unimplemented: In the current release, arithmetic expressions in the query part of an update
must have their variables be bound by the subgoals that precede the update primitive, except that
the literal part does not currently bind. For instance,

flora2 ?- delete{?X[salary->?Y] | ?Y<20000}.

is going to cause a run-time error. This limitation will be removed in a future release.

18.3 Updates and Tabling

Changing tabled predicates or predicates on which tabled predicates depend. We have
earlier remarked in Section 17.3 that tabling and database updates do not mix well. One problem
is that the results from previous queries are stored in Prolog tables, and database updates do not
modify those tables. Thus, in Prolog the user might get the following counterintuitive result, if the
predicate p/1 is tabled:

| ?- assert(p(a)).

yes

| ?- p(a)

yes

| ?- retract(p(a)), p(a).

yes
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What is going on here? The last positive answer is a consequence of the fact that Prolog tables
remember that the fact p(a) is true from the evaluation of the second query. So, when the same
query is asked after retract, a “stale” answer is returned from the tables. Similarly, tabling might
interact poorly with assert in the following case:

| ?- p(b).

no

| ?- assert(p(b)), p(b).

no

The reason for the bad answer is, again, that Prolog remembers that p(b) was false the last time
it looked up this fact, even though this answer has become stale after the insertion.

Fortunately, Flora-2 is much more update-friendly than plain Prolog, and in situations similar
to the above it will behave correctly:

flora2 ?- insert{o[m->v]}.

Yes

flora2 ?- o[m->v].

Yes

flora2 ?- delete{o[m->v]}, o[m->v].

No

flora2 ?- insert{o[m->v]}, o[m->v].

Yes

Nevertheless, there still are problems with facts that depend through rules on facts that were
inserted or deleted. This problem is illustrated by the following program.

a[b->c] :- d[e->f].

d[e->f].

Consider the following query

flora2 ?- a[b->c].

Yes
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Suppose that next we delete the fact d[e->f]. Then we will get the following counterintuitive
results:

flora2 ?- delete{d[e->f]}.

Yes

flora2 ?- a[b->c].

Yes

The reason for this behavior is, as before, that the stale positive answer to the query a[b->c] has
been recorded in Prolog tables. In order to invalidate this answer it would be necessary to keep
track of the dependencies among different facts, which Prolog currently does not do (and it would
be very hard and inefficient to keep this information at the Flora-2 level).

Nevertheless, Flora-2 provides partial solution to this problem in the form of the refresh{...}
operator, which lets the programmer to explicitly remove stale answers from tables. For instance,
in the above case we could do the following:

flora2 ?- refresh{a[b->c]}, a[b->c].

No

In general, refresh{...} can take a comma-separated list of facts to be purged from the tables,
and the facts can even contain unbound variables. In the latter case, any stale call that unifies
with the given facts will be refreshed. For instance,

flora2 ?- refresh{a[b->?X], c:?Y, p(z,?V)@foo}.

Yes

will refresh the tables for a[b->?X] and c:?Y in module main, and for p(z,?V) in module foo.

Sometimes it is desirable to completely get rid of all the information stored in tables (for
instance, when it is hard to track down all the facts that might depend on the changed base facts.
In such a case, the command

flora2 ?- abolish_all_tables.

can be used. However, this command is unsafe: If it is executed during the computation of a
subquery that involves an F-logic molecule or a tabled predicate, then the system might crash.
(This is an unsafe, low level XSB builtin.) The only safe way to execute abolish all tables is as
a separate query.
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Note: Neither the update operators, such as insert/delete, nor the refresh{...} operator,
nor abolish all tables can occur under the scope of the negation operator “not” (either directly
or indirectly). If they do, XSB will likely crash. Typically it will first issue an error message telling
you that an update has been issued under the scope of the negation operator.

Tabled predicates that depend on update operations. A related issue is that a tabled
predicate (or an F-logic molecule) might occur in the head of a rule that has an update operation
in its body, or it may be transitively dependent on such an update. Note that this is different from
the previous issue, where tabled predicates did not necessarily depend on update operations but
rather on other predicates that were modified by these update operations.

In this case, the update operation will be executed the first time the tabled predicate is evalu-
ated. Subsequent calls will return the predicate truth value from the tables, without invoking the
predicate definition. Moreover, if the update statement is non-logical (i.e., non-transactional), then
it is hard to predict how many times it will be executed (due to backtracking) before it will start
being ignored due to tabling.

If Flora-2 compiler detects that a tabled literal depends on an update statement, a warning
is issued, because such a dependency is most likely a mistake. This warning is issued also for
procedural methods (i.e., Boolean methods of the form %foo(...)) when a tabled literal depends
on them. Moreover, because non-tabled HiLog predicates are regarded as having procedural side-
effect by default, this warning is also issued when a tabled literal depends on non-tabled HiLog
predicates.

There are situations, however, when dependency on an update makes perfect sense. For instance,
we might be computing a histogram of some function by computing its values at every point and
then adding it to the histogram. When a value, f(a), is computed first, the histogram is updated.
However, subsequent calls to f(a) (which might be made during the computation of other values
for f) should not update the histogram. In this case it makes sense to make f/1 into a tabled
predicate, whose definition will include an update operator. For this reason, a compiler directive
ignore depchk is provided to exempt certain predicates and methods from such dependency checks.

The example below shows the usage of the ignore depchk directive.

:- ignore_depchk %ins(?), ?[%?]@?.

t(?X,?Y) :- %ins(?X), ?Y[%close]@_io.

%ins(?X) :- insert{?X}.

No dependency warning is issued for this program. However, without the ignore depchk direc-
tive, three warnings would be issued saying that tabled literal t(?X,?Y) depends on %ins(?X),
?Y[%close], and insert. Notice that ignore depchk %ins(? ) tells the compiler to ignore not
only dependencies on %ins/1, but also all dependencies that have %ins/1 in the path.

The ignore depchk directive can also be used to ignore direct dependencies on updates. For
example,

:- ignore depchk insert{? ,? |? }.
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ignores dependencies on conditional insertions which insert two literals such as insert{a,b,|c,d,e}.
And

:- ignore depchk insert{?}.

ignores dependencies on unconditional insertions which insert exactly one literal such as insert{p(a)}
but not insert{p(a),p(b)}.

18.4 Updates and Meta-programming

The update operators can take variables in place of literals to be inserted. For instance,

flora2 ?- ?X ∼ a[b->c], insert{?X}.

One use for this facility is when one module, foo, provides methods that allow other modules to
perform update operations on objects in foo. For instance, foo can have a rule

%update(?X,?Y) :- delete{?X}, insert{?Y}.

Other modules can then issue queries like

?- John[salary->?X]@foo, ?Y is ?X+1000,

%update(John[salary->?X],John[salary->?Y])@foo.

18.5 Updates and Negation

Negation applied to methods that have side effects is typically a rich source of trouble and confusion.

First of all, applying negation to Flora-2 molecules that involve non-transactional updates
does not have logical semantics, and thus the programmer must have good understanding of the
procedural semantics of Flora-2 (Section 17.4). In this case, negation applied to methods or pred-
icates that produce side-effects through updates or I/O is that of negation as failure (Section 13.1).

When only transactional updates are used, the semantics is well defined and is provided by
Transaction Logic [2, 1]. In particular, negation is also well defined. However, simply negating
an update, A is useless in programming, since it simply means to jump to a random state that
is not reachable via execution of A. As explained in [2, 1], negation is typically useful only in
conjunction with ∧, where it acts as a constraint, or with the hypothetical operator of possibility
3. In most cases, when the programmer wants to apply negation to a method that performs logical
(transactional) updates, he has ¬3method in mind, i.e., a test to verify that execution of method
is not possible.

At present this operator is not implemented in Flora-2 and neither \+ nor not will not
produce correct results. The difference with the logical formula ¬3method is that the latter does
not change the current state of the underlying database, while \+method will try to execute method.
If it succeeds, then \+method will fail, but the changes made by method will not be undone.
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18.6 Words of (Extreme) Caution

XSB has certain well-known bugs, which are very hard to fix and which can corrupt its internal
state irreparably. One such thing is the issue of backtracking over updates; especially over deletions.

Here we are not talking about Flora-2 ’s transactional updates, which are implemented prop-
erly and are safe. Instead, a problem arises when backtracking over updates happens in the XSB
program into which Flora-2 programs are compiled. If this happens, the program might crash
or produce random, unexplainable results. Unfortunately, it is not easy to spot such cases by just
looking at a source code of your Flora-2 program, because much is done by the runtime system
behind the scene. Here we provide high-level tips that can help avoid the problem.

First, make sure that when you use non-transactional updates and your program backtracks
over them, deleted facts are never queried again. This situation is analogous to backtracking over
updates in XSB.

Second, Flora-2 may backtrack over updates if your top-level query calls an update directly
or indirectly. This may happen when the interpreter is in the all-answers mode ( all) even if
the logic of your program does not call for backtracking. Indeed, in the venerable Prolog way all
answers can be obtained only by backtracking, and this is what Flora-2 does behind the scene.
In this situation, transactional updates are as vulnerable as non-transactional ones because after
each iteration that returns an answer to the top level all updates are committed and can no longer
be backtracked over (due to the aforesaid XSB bug).

The only (more or less) sure remedy in this situation is to ensure that backtracking does not
occur at the top level. For instance, if the top-level query is a procedural method, then semantically
it would be correct to put a cut at the end of the query:

?- ?X[%some_method(?SomeArgs)], something, !.

This will work if XSB is configured for the local scheduling strategy (which is currently the default).
If it is configured for the batched strategy (see XSB manual for how to do this), then the above trick
will work only is something does not have tabled predicates or those predicates are fully evaluated
by the time something succeeds.

In some cases cuts can be also inserted in the rules that define procedural methods if the logic
of the program ensures that backtracking over those methods should not occur.

19 Insertion and Deletion of Rules

Flora-2 supports non-transactional insertion of rules into modules as well as deletion of inserted
rules. A Flora-2 module gets created when a program is loaded into it, as described in Section 2,
or it can be created using the primitive newmodule. Subsequently, rules can be added to an existing
module. Rules that are inserted via the insertrule and add commands are called dynamic and
the rules loaded using the load or [...] commands are called static or compiled. Dynamic rules
can be deleted via the deleterule command. As mentioned in Section 18, Flora-2 predicates
and molecules can have both static and dynamic parts and no special declaration is required to
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make a predicate dynamic. The same molecule or a predicate can be defined by a mixture of static
or dynamic rules.

In this section, we will first look at the syntax of creating new modules. Then we will describe
how to insert rules and delete rules. Finally, we address other related issues, including tabling,
indexing, and the cut.

19.1 Creation of a New Module and Module Erasure at Run-time

The syntax for creating a new module is as follows:

newmodule {modulename }

This creates a blank module with the given name and default semantics. If a module by that name
already exists, an error results. A module created using newmodule can be used just as any module
that was created by loading a user program.

A dual operation to module creation is erasemodule with the following syntax:

erasemodule {modulename }

19.2 Insertion of Rules

Dynamic rules can be inserted before all static rules, using the primitive insertrule a, or after all
static rules, using the primitive insertrule z or just insertrule. Several rules can be inserted
in the same command. The syntax of inserting a list of rules is as follows:

insruleop {rulelist }

where insruleop is either insertrule a, insertrule z, or insertrule, rulelist is a comma-separated
list of rules. The rules being inserted should not terminate with a period (unlike the static program
rules):

?- insertrule_a{?X:student :- %enroll(?X,?_T)}.

The above inserts the rule ?X:student :- %enroll(?X,? T) in front of the current module.

If a rule is meant to be inserted into a module other than the current one, then the rule needs
to be parenthesized and the module name must be attached using the usual module operator @. If
several rules need to be inserted using the same command, each rule must be parenthesized. For
example, the following statement inserts the same rule into two different modules: the current one
and into module mod1.

?- insertrule_a{(?X:student :- %enroll(?X,?_T)),

(?X:student :- %enroll(?X,?_T))@mod1}.

As a result, the rule ?X:student :- %enroll(?X,? T) will be inserted in front of each of these
two modules. For this to be executed successfully, the module mod1 must already exist.
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19.3 Deletion of Rules

Rules inserted dynamically using insertrule a can be deleted using the primitive deleterule a,
and rules inserted using insertrule z can be deleted using the primitive deleterule z. If the user
wishes to delete a rule that was previously inserted using either insertrule a or insertrule z

then the primitive deleterule can be used. Similarly to rule insertion, several rules can be deleted
in the same command:

delruleop {rulelist }

where delruleop is either deleterule a or deleterule z and rulelist is a comma-separated list of
rules. Rules in the list mast be enclosed in parentheses and should not terminate with a period.

To delete the rules inserted in the second example of Section 19.2, we can use

flora2 ?- deleterule_a{(?X:student :- %enroll(?X,?_T)),

(?X:student :- %enroll(?X,?_T))@mod1}.

or

flora2 ?- deleterule{(?X:student :- %enroll(?X,?_T)),

(?X:student :- %enroll(?X,?_T))@mod1}.

Flora-2 provides a flexible way to express rules to be deleted by allowing variable rule head,
variable rule body, and variable module specification. For example, rule deletions below are all
valid:

flora2 ?- deleterule{(?H:-q(?X))@foo}.

flora2 ?- deleterule{(p(?X):-q(?X))@?M}.

flora2 ?- deleterule{?H:-?B}.

The last query attempts delete every dynamically inserted rule. So, it should be used with great
caution.

We should note that a rule with a composite head, such as

o[b->?V1,c->?V2] :- something(?V1,?V2).

is treated as a pair of separate rules

o[b->?V1] :- something(?V1,?V2).

o[c->?V2] :- something(?V1,?V2).

Therefore
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flora2 ?- deleterule{o[b->?V1] :- something(?V1,?V2)}.

will succeed and will delete the first of the above rules. Therefore, the following action will fail
afterwards:

flora2 ?- deleterule{o[b->?V1,d->?V2] :- ?Body}.

A Problem with Cuts What is behind rule insertion is pretty simple. As we know from
Section 18, every predicate and object has a base part and a derived part. Now we further divide
the derived part into three sub-parts: the dyna sub-part (the part that precedes all other facts in
the predicate), the static sub-part, and the dynz sub-part. All rules inserted using insertrule a

go into the dyna sub-part; all the rules in the program file go into the static sub-part; and all the
rules inserted using insertrule z go into the dynz sub-part.

This works well when there are no cuts in rules inserted by insertrule a. With the cuts, the
program might not behave as expected. For example, if we have the following program:

p(?X) :- r(?X).

r(a).

q(b).

?- insertrule_a{p(?X) :- q(?X),!}.

?- p(?X).

we normally expect the answer to be b only. However, Flora-2 will return two answers, a and b.
This is because the cut affects only the dynamic part of p(?X), instead of all the rules for p/1.

20 Querying the Rule Base

The rule base can be queried using the primitive clause. The syntax of clause is as follows:

clause{head,body}

where head can be anything that is allowed to appear in a rule head and body can be anything
that can appear in a rule body. In addition, explicit module specifications are allowed in the rule
heads in the clause primitive. Both head and body represent templates that unify with the actual
rules and those rules that unify with the templates are returned.

The following example illustrates the use of the clause primitive. Suppose we have previously
inserted several rules:

flora2 ?- insertrule_a{tc(?X,?Y) :- e(?X,?Y)}.

flora2 ?- insertrule_a{tc(?X,?Y) :- tc(?X,?Z), e(?Z,?Y)}.

flora2 ?- newmodule{foo}.

flora2 ?- insertrule_a{(tc(?X,?Y) :- e(?X,?Y)@_@)@foo}.

flora2 ?- insertrule_a{(tc(?X,?Y) :- tc(?X,?Z), e(?Z,?Y)@_@)@foo}.
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Then the query

flora2 ?- clause{?X,?Y}.

will list all the inserted rules. In this case, four rules will be returned. To query specific rules in a
specific module — for example, rules defined for the predicate tc/2 in the module foo — we can
use

flora2 ?- clause{tc(?X,?Y)@foo,?Z}.

We can also query rules by providing patterns for their bodies. For example, the query

flora2 ?- clause{?X, e(?_,?_)}.

will return the first and the third rules.

Querying the rules with composite involves the following subtlety. Recall from Section 19.3 that
a rule with a composite head, such as

o[b->?V1,c->?V2] :- something(?V1,?V2).

is treated as a pair of rules

o[b->?V1] :- something(?V1,?V2).

o[c->?V2] :- something(?V1,?V2).

Therefore, if we delete one of these rules, for instance,

flora2 ?- deleterule{o[b->?V1] :- something(?V1,?V2)}.

then a query with a composite head that involves the head of the deleted rule will fail (unless there
is another matching rule). Thus, the following query will fail:

flora2 ?- clause{o[b->?V1,d->?V2], Body}.

The clause primitive can be used to query static rules just as it can be used to query dynamic
rules. The normal two-argument primitive queries all rules. If one wants to query only the static
(compiled) rules or only dynamic (inserted) rules, then the three-argument primitive can be used.
For example,

flora2 ?- clause{static,?X,?Y}.

flora2 ?- clause{dynamic,?X,?Y}.

Withing the dynamic rules, one can separately query just the dynamic rules that precede all the
static rules (using the flag dyna) or just those dynamic rules that follow all the static ones (with
the dynz flag):
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flora2 ?- clause{dyna,?X,?Y}.

flora2 ?- clause{dynz,?X,?Y}.

Due to a limitation of the underlying Prolog system, the clause primitive cannot query rules
whose size exceeds the limit imposed by the Prolog system. A warning message is issued when
a rule exceeds this limit and thus cannot be retrieved by clause. The only way to remedy this
problem is to split the long rule into smaller rules by introducing intermediate predicates.

21 Aggregate Operations

The syntax for aggregates is similar to the syntax used in the Florid system.11 A Flora-2
aggregate query has the following form:

agg{?X[?Gs] | query}

where agg represents the aggregate operator, ?X is called the aggregation variable, ?Gs is a list
of comma-separated grouping variables, and query is a logical formula that specifies the query
conditions. The grouping variables, ?Gs, are optional. The query part can be any combination of
conjunction, disjunction, and negation of literals.

All the variables appearing in query but not in ?X or ?Gs are considered to be existentially
quantified. Furthermore, the syntax of an aggregate must satisfy the following conditions:

1. All names of variables in both ?X and ?Gs must appear in query;

2. ?Gs should not contain ?X.

Aggregates are evaluated as follows: First, the query condition specified in query is evaluated
to obtain all the bindings for the template of the form <?X, ?Gs>. Then, these tuples are grouped
according to each distinct binding for <?Gs>. Finally, for each group, the aggregate operator is
applied to the list of bindings for the aggregate variable ?X.

The following aggregate operators are supported in Flora-2 : min, max, count, sum, avg,
collectset and collectbag.

The operators min and max can apply to any list of terms. The order among terms is defined
by the Prolog operator @=<. In contrast, the operators sum and avg can take numbers only. If the
aggregate variable is instantiated to something other than a number, sum and avg will discard it
and generate a runtime warning message.

For each group, the operator collectbag collects all the bindings of the aggregation variable
into a list. The operator collectset works similarly to collectbag, except that all the duplicates
are removed from the result list.

The aggregates min, max, sum, count, and avg fail if query fails. In contrast, collectbag and
collectset succeed even if query returns no binding. In this case, these aggregates return the
empty list.

11 See http://www.informatik.uni-freiburg.de/∼dbis/florid/ for more details.
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In general, aggregates can appear wherever a number or a list is allowed. Therefore, aggregates
can be nested. The following examples illustrate the use of aggregates (some borrowed from the
Florid manual):

flora2 ?- ?Z = min{?S|John[salary(?Year)->?S]}.

flora2 ?- ?Z = count{?Year|John.salary(?Year) < max{?S|John[salary(?Y)->?S], ?Y < ?Year}}.

flora2 ?- avg{?S[?Who]|?Who:employee[salary(?Year)->?S]} > 20000.

If an aggregate contains grouping variables that are not bound by a preceding subgoal, then this
aggregate would backtrack over such grouping variables (In other words, grouping variables are
considered to be existentially quantified). For instance, in the last query above, the aggregate will
backtrack over the variable ?Who. Thus, if John’s and Mary’s average salary is greater than 20000,
this query will backtrack and return both John and Mary.

The following query returns, for each employee, a list of years when this employee had salary
less than 60. This illustrates the use of the collectset aggregate.

flora2 ?- ?Z = collectset{?Year[?Who]|?Who[salary(?Year)->?X], ?X < 60}.

?Z = [1990,1991]

?Who = Mary

?Z = [1990,1991,1997]

?Who = John

21.1 Aggregation and Set-Valued Methods

Aggregation is often used in conjunction with set-valued methods, and Flora-2 provides several
shortcuts to facilitate this use. In particular, the operators ->-> and *->->, for non-inheritable
and inheritable multivalued methods, collects all the values of the given method for a given object
in a set. The semantics of these operators is as follows:

O[M->->L] :- L=collectset{V|O[M->V]}

O[M*->->L] :- L=collectset{V|O[M*->V]}

Note that in O[M->->L] and O[M*->->L] L is a list of oids.

Having special meaning for ->-> and *->-> means that these constructs cannot appear in the
head of a rule. One other caveat: recursion through aggregation is not supported and can produce
incorrect results.

Sets collected in the above manner often need to be compared to other sets. For this, Flora-2
provides another pair of primitives: +>> and *+>> for non-inheritable and inheritable methods,
respectively. The atom of the form o[m+>>s] is true if the set of all values of the non-inheritable
attribute m for object o contains every element in the list s.

For instance, the following query tests whether all Mary’s children are also John’s children:



22 CONTROL FLOW STATEMENTS 91

flora2 ?- Mary[children->->?L], John[children+>>?L].

As with ->-> and *->->, the use of +>> and *+>> is limited to rule bodies.

22 Control Flow Statements

Flora-2 supports a number of control statements that are commonly used in procedural languages.
These include if - then - else and a number of looping constructs.

22.1 If-Then-Else

This is the usual conditional control flow construct supported by most programming languages.
For instance,

flora2 ?- if (foo(a),foo2(b)) then (abc(?X),cde(?Y)) else (qpr(?X),rts(??Y)).

Here the system first evaluates foo(a),foo2(b) and, if true, evaluates abc(?X),cde(?Y). Other-
wise, it evaluates qpr(?X),rts(?Y). Note that if, then, and else bind stronger than the conjunc-
tion “,”, the disjunction “;”, etc. This is why the parentheses are needed in the above example.

The abbreviated if-then construct is also supported. However, it should be mentioned that
Flora-2 gives a different semantics to if-then than Prolog does. In Prolog,

..., (Cond -> Action), Statement, ...

fails if Cond fails and Statement is not executed. If the programmer wants such a conditional
succeed even if Cond fails, then (Cond->Action; true) must be used. Our experience shows,
however, that it is the latter form that is used in most cases in Prolog programming, so in Flora-2
the conditional

..., if Cond then Action, Statement, ...

succeeds even if Cond fails and Statement is executed next. To fail when Cond fails, one should
explicitly use else: if Cond then Action else fail. More precisely:

• if Cond then Action fails if and only if Cond succeeds but Action fails.

• if Cond then Action else Alternative succeeds if and only if Cond and Action both
succeed or Cond fails while Alternative succeeds.

Note that the if-statement is friendly to transactional updates in the sense that transactional
updates executed as part of an if-statement would be undone on backtracking, unless the changes
done by such updates are explicitly committed using the commit method of the system module db

(see Section 29.2).
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22.2 Loops

unless-do. This construct is an abbreviation of if Cond then true else Action. If Cond is
true, it succeeds without executing the action. Otherwise, it executes Action and succeeds or fails
depending on whether Action succeeds or fails.

while-do and do-until. These loops are similar to those in C, Java, and the like. In while

Condition do Action, Condition is evaluated before each iteration. If it is true, Action is exe-
cuted. This statement succeeds even if Condition fails at the very beginning. The only case when
this loop fails is when Condition succeeds, but Action fails (for all possible instantiations).

The loop do Action until Condition is similar, except that Condition is evaluated after
each iteration. Thus, Action is guaranteed to execute at least once.

These loops work by backtracking through Condition and terminate when all ways to satisfy
it have been exhausted (or when Action fails). The loop condition should not be modified inside
the loop body. If it is modified (e.g., new facts are inserted in a predicate that Condition uses),
XSB does not guarantee that the changes will be seen during backtracking and thus the result of
such a loop is indeterminate. If you need to modify Condition, use the statements while-loop

and loop-until described below.

The above loop statements have special semantics for transactional updates. Namely, changes
done by these types of updates are committed at the end of each iteration. Thus, if Condition
fails, the changes done by transactional updates that occur in Cond are undone. Likewise, if Action
fails, backtracking occurs and the corresponding updates are undone. However, changes made by
transactional update statements during the previous iteration remain committed. If the current
iteration finishes then its changes will also remain committed regardless of what happens during
the next iteration.

while-loop and loop-until. This pair of loop statements is similar to while-do and do-until,
except that transactional updates are not committed after each iteration. Thus, failure of a state-
ment following such a loop can cause all changes made by the execution of the loop to be undone. In
addition, while-loop and loop-until do not work through backtracking. Instead, they execute as
long as Condition stays true. Therefore, the intended use of these loop statements is that Action
in the loop body must modify Condition and, eventually, make it false (for instance, by deleting
objects or tuples from some predicates mentioned in Condition).

As in the case of the previous two loops, while-loop and loop-until succeed even if Condition
fails right from the outset. The only case when these loops fail is when Action fails — see Sec-
tion 22.3 for ways to avoid this (i.e., to continue executing the loop even when Action fails) and
the possible pitfalls.

The statements while-loop and loop-until are more expensive (both time- and space-wise)
than while-do and do-until. Therefore, they should be used only when truly transactional
updates are required. In particular, such loops are rarely used with non-transactional updates.
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22.3 Subtleties Related to the Semantics of the Loop Statements

Observe that while-loop and loop-until assume that the condition in the loop is being updated
inside the loop body. Therefore, the condition must not contain tabled predicates. If such predicates
are involved in the loop condition, the loop is likely to execute infinitely many times.

Also, keep in mind that in any of the four loop statements, if Action fails before Condition

does, the loops terminate and fail. Therefore, if the intention is that the loop should continue even
if Action fails, use the

(Action ; true)

idiom in the loop body. In case of while-do and do-until, continuing execution of the loop is not a
problem, because these loops work by backtracking through Condition and the loop will terminate
when there is no more ways to backtrack. However, in case of while-loop and loop-until, there
is a potential pitfall. The problem is that these loops will continue as long as there is a way to
satisfy Condition. If condition stays true, the loop continues forever. Therefore, the way to use
these loops is to make sure that Condition is modified by Action. If Action has non-transactional
updates, the user must ensure that if Action fails then Condition is modified appropriately anyway
(for otherwise the loop will never end). If Action is fully transactional and it fails, then using the
(Action ; true) idiom in the loop body will definitely make the loop infinite, so the use of this
idiom in the body of while-loop and loop-until is dangerous if there is a possibility that Action
will fail, and it is useless if the action is expected to always succeed.

23 Constraint Solving

The following feature temporarily does not work, since beginning with XSB 2.6 constraint solving
is being revamped and is not supported.

Flora-2 provides an interface to constraint solving capabilities of the underlying Prolog en-
gine. Currently XSB supports linear constraint solving over the domain of real numbers (CLPR).
However, we must warn that the XSB implementation of CLPR has many rough spots – do not
say that we did not warn! To pass a constraint to a constraint solver in the body of a Flora-2
rule (or query), simply include it inside curly braces.

Here is a 2-minute introduction to CLPR. Try the following program:

?- insert{p(1.0),p(2.0),p(3.0)}.

?- ?X>0, ?X<5, p(?X).

Intuitively, one would expect 2.0 and 3.0 as answers. However, if you actually try to run this
program, you will be disappointed — an error message will be reported:

++Error[XSB]: [Runtime/P] Type Error: Uninstantiated Arithmetic Expression
Aborting...
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This happens because ordinarily Prolog views >/2 and </2 as predicates with infinite number of
facts. Since there are infinite number of values for ?X that make ?X > 0 true, it reasons, the query
does not make sense.

Constraint logic programming takes a different view: it considers ?X>0, ?X<5 to be a constraint
on the set of solutions of the query p(?X). This approach allows Prolog to return meaningful
solutions to the above query. However, the user must explicitly tell the system which view to take
— the “dumb” view that treats arithmetic built-ins are infinite predicates or a “smart” view, which
treats them as constraints. The smart view is indicated by enclosing constraints in curly braces.
Thus, the above program becomes:

?- [clpr]. % must be loaded prior to the use of constraint solver

?- insert{p(1.0),p(2.0),p(3.0)}.

?- {?X>0, ?X<5}, p(?X).

?X = 2.000000e+00

?X = 3.000000e+00

2 solution(s) in 0.0000 seconds

Note that the package clpr must be loaded in advance.

It should be kept in mind that the constraint solver is very picky about the type of values it is
willing to work with. It insists on floats and will refuse to convert integers to floats. For instance,
if the insert statement were as follows:

flora2 ?- insert{p(1),p(2),p(3)}.

then the user would have been rewarded with the following obscure message:

type error( h5356 = 3,2,a real number,3)

It is trying to tell the user that a floating number is expected and the integer 3 will not do.

24 Exception Handling

Flora-2 supports the common catch/throw paradigm through the primitives catch{?Goal, ?Error,

?Handler} and throw{?Error}. Here ?Goal can be any Flora-2 query, ?Error is a HiLog (or
Prolog) term, and ?Handler is a Flora-2 query that will be called if an exception that unifies
with ?Error is thrown during the execution of ?Goal. For instance,

%someQuery(?Y) :- ?Y[value->?X], ?X > 0, %doSomethingUseful(?X).

%someQuery(?Y) :- ?Y[value->?X], ?X =< 0, throw{myError(’?X non-positive’, ?X)}.
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?- %p(?Y), catch{%someQuery(?Y), myError(?Reason,?X), %handleException(?Reason,?X)}.

%handleException(?Reason,?X) :-

format(’~w: ?X=~w~n’,[?Reason,?X])@_prolog(format), fail.

The catch construct first calls the query %someQuery/1. If ?X is positive then nothing special
happens, the query executes normally, and catch{...} has no effect. However, if ?X turns out to
be non-positive then the query throws an exception myError(’?X non-positive’, ?X), where ?X

is bound to the non-positive value that was deemed by the logic of the program to be an exceptional
situation. The term thrown as an exception is then unified with the term myError(?Reason,?X)

that was specified in catch{...}. If the two terms do not unify (e.g., if the error specified in catch

was something like myError(foo,?X)) then the exception is propagated upwards and if the user
program does not catch it, the exception will eventually be caught by the Flora-2 command loop.
In out concrete case, however, the thrown term and the exception specified in catch unify and thus
%handleException/2 is called with ?Reason and ?X bound by this unification.

The queries ?Goal and ?Handler in the catch{...} primitive can be F-logic molecules, not just
predicates. However, ?Error — both in catch and in throw — must be HiLog or Prolog terms.
No molecules are allowed inside these terms unless they are reified. That is, myError(’problem
found’, a[b->c]) will result in a parser error, but an exception of the form myError(’problem

found’, ${a[b->c]}) is correct because the molecule is reified.

Some exceptions are thrown by Flora-2 itself, and applications might want to catch them:

• ’ $flora undefined’(?MethodSpec,?ErrMsg) — thrown when undefinedness checking is in
effect (see Section 26.1) and an attempt is made to execute an undefined method or predicate.
The first argument in the thrown exception is a specification of the undefined predicate or
the method that caused the exception. The second argument is the error message.

• ’ $flora abort’ or ’ $flora abort’(?Message) — thrown when Flora-2 encounters other
kinds of errors. This exception comes in two flavors: with an error message and without.

A user program can also throw this exception when immediate exit to the top level is required.
The safest way to do so is by calling %abort(?Message)@ sys, as explained in Section 29.3.

These exceptions are defined by Flora-2 under the symbolic names FLORA UNDEFINED EXCEPTION

and FLORA ABORT. When a user application needs to catch these errors we recommend to include
the file flora exceptions.flh in the program and use the above symbolic names. For instance,

#include "flora_exceptions.flh"

?- ..., catch{myQuery(?Y),

FLORA_ABORT(FLORA_UNDEFINED_EXCEPTION(?MethSpec,?Message),?_),

myHandler(?MethSpec)}.

?- ..., catch{yourQuery(?Y),FLORA_ABORT(?Message,?_),yourHandler(?Message)}.

The catch{...} primitive can also catch exceptions thrown by the underlying Prolog system.
For this to happen you need to know the format (i.e., the exact terms) of the exceptions thrown
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by Prolog (which can be found in the manual). One exception that some sophisticated Flora-2
program might need to catch is thrown by Prolog when a Flora-2 application calls an undefined
Prolog predicate. The format of the corresponding exception term is

error(undefined_predicate(PredName,Arity,Module),Message,_)

where Module is the name of the Prolog module (not Flora-2 module!) in which the predicate
PredName/Arity was called. If you call a Prolog predicate in a Prolog module that does not exist,
then Prolog will throw the exception

error(existence_error(module,Module),_)

Note that the thrown exception will contain a module name but not the predicate.

Although Prolog (obviously) throws Prolog terms as exceptions, there is no need to worry
about making sure that the terms caught by the Flora-2catch{...} primitive are also specified
as Prolog terms. he primitive takes care of the Prolog-to-HiLog conversion automatically.

25 Primitive Data Types

An extensive data type support is being planned for Flora-2 in the future. At present, Flora-2
supports the built-in data types long, integer, double, decimal, string, symbol, object, iri,
(international resource identifier), time, date, dateTime, and duration.

Following the now accepted practice on the Semantic Web, Flora-2 denotes the constants that
belong to a particular primitive data type using the idiom "literal "ˆˆtype . The literal part rep-
resents the value of the constant and the type part is the type. For instance, "2004-12-24"ˆˆ date,
"2004-12-24T15:33:44"ˆˆ dateTime.

A type name must be an atom. Some data types, like time, dateTime, etc., are exact analogues
of the corresponding XML Schema types. In this case, their names will be denoted using symbols
that have the form of a URI. For instance, ’http://www.w3.org/2001/XMLSchema#time’. How-
ever, for convenience, all type names will have one or more Flora-2 -specific abbreviated forms,
such as time or t. These abbreviated forms are case-insensitive. So, time and TiMe are as-
sumed to be equivalent. In addition, when the type names have the form of an IRI, the compact
prefix representation is supported (see Section 25.2 below). For instance, if xsd is a prefix name for
’http://www.w3.org/2001/XMLSchema#’ then the constant "12:33:55"ˆˆ’http://www.w3.org/
2001/XMLSchema#time’ can be written as "12:33:55"ˆˆxsd#time’. Taking into the account
the various abbreviations for this data type, we can also write it as "12:33:55"ˆˆ time or even
"12:33:55"ˆˆ t.

Variables can be also typed, i.e., restricted to be bound only to objects of a particular primitive
data type. The notation is ?variablename ˆˆtypename . For instance, the variable ?Xˆˆ time can
be bound only to constants that have the primitive types time.

The methods that are applicable to each particular primitive type vary from type to type.
However, certain methods are more or less common:
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• toString, which applies to a data type constant and returns its printable representation.
For instance, if ?Y is bound to "12:44:23"ˆˆ time then ?Y[ toString->’12:44:23’] will
be true.

• toType( parameters ), which applies to the any class corresponding to a primitive data type
(for instance, time). Most types will have two versions of this method. One will apply to ar-
guments that represent the components of a data type. For instance, time[ toType(12,23,45)

-> "12:23:45"ˆˆ time]. The other will apply to the constant symbol representation of the
data type. For instance, time[ toType(’12:23:45’)->"12:23:45"ˆˆ time].

• isTypeOf( constant ), which applies to every data type class (e.g., time) and determines
whether constant has the given primitive type ( time in this example).

• equal( constant ), which tells when the given datatype constant equals some other term.

• lessThan( constant ), which tells when one constant is less than some other terms. For
integers, floats, time, dates, durations, and strings, this method corresponds to the natural
order on these types. For other types this method returns false.

• typeName, which tells the type name (and thus also class) of the given data type.

All these methods are available in Flora-2 system module basetype.

In addition, each primitive data type has a builtin class associated with it. For instance, the
primitive data type integer has an associated class named integer and the data type dateTime

has an associated class under the same name.

Note: Since builtin classes have infinite extensions, you can only have ground membership
tests with respect to these classes. Non-ground tests are permitted, but are evaluated to false. For
instance, the following query fails.

flora2 ?- ?X:\_symbol.

No

We now describe each data type separately.

25.1 Flora-2 Symbols

Before describing the actual data types, we would like to remind that in Section 5.1 we introduced
alphanumeric constants, such as abc12, and sequences of symbols enclosed in single quotes, such
as ’aaa 2*)@’, and called them constant symbols. These are not the only constants in Flora-2 .
In the following subsections we will introduce typed literals that represent time, URIs, and more.

Constant symbols belong to Flora-2 builtin class symbol. In addition, this class contains
IRIs, which are described next. An IRI of the form "some-string"ˆˆ iri is assumed to be identical
to a constant symbol ’some-string’. However, this feature has not been fully implemented.
Namely, a query
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?- foobar = "foobar"^^_iri.

fails. However, the methods defined for the IRIs are applicable. For instance,

?- ’http://foo@bar.com’[_scheme->?X]@_basetype.

binds ?X to http, as is expected of URIs. Such methods will give syntax error if applied to symbols
that are not IRIs:

?- foo[_host->?X]@_basetype.

++Abort[FLORA]> invalid IRI literal

25.2 The iri Data Type

The canonical representation of the constants of type IRI (international resource identifiers, a
generalization of IRIs, universal resource identifiers) is "some iri "ˆˆ iri, where literal must have
a lexical form corresponding to IRIs on the WWW. IRIs have shorthand notation "some iri ",
as mentioned before. The full IRI name of this type is ’http://www.w3.org/2007/rif#iri’.

IRIs can come in the usual full form or in an abbreviated form known as the ciri form (for
compact IRI ).

An a compact form of an IRI (ciri) consists of a prefix and a local-name as follows: PREFIX-
NAME#LOCALNAME. Here PREFIXNAME is an alphanumeric identifier that must be defined
as a shortcut for an IRI elsewhere (see below). LOCALNAME can be a string, an alphanumeric
identifier, or a quoted atom. (If LOCALNAME contains non-alphanumeric symbols, it must be
enclosed in double quotes as in "ab%20".) A compact IRI is treated as a macro that expands into
a full IRI by concatenating the expansion of PREFIXNAME with LOCALNAME.

The prefix of a compact IRI must be defined as follows:

:- iriprefix PREFIXNAME = PREFIXIRI.

Here PREFIXIRI can be an alphanumeric identifier, a quoted atom, or a character list. Prefixes can
also be defined on command line at run time:

?- iriprefix PREFIXNAME = PREFIXIRI.

Such a prefix becomes defined only after the command is executed. If a prefix is used before it is
defined, an error will result. For example,

:- iriprefix w3c = "http://www.w3c.org/", AAAWEB = "http://www.AAA.com/".

Defines two prefixes, which can be used in subsequent commands like this:

?- ?X = w3c#a.
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This will bind ?X to "http://www.w3c.org/a". Likewise,

?- ?Y = AAAWEB#"ab%20"

binds ?Y to "http://www.AAA.com/ab%20".

Note that prefix definitions are local to the module where they are defined. If we define the
following prefixes in module foo:

?- iriprefix W3="http://www.w3.org/", W4="w4/".

and then load the following file into module main

:- iriprefix W3 = "http://w3.org/".

C[a->_"http://www.w3.org/abc"].

D[a->_"http://w3.org/cde"].

r(?X):-?X[a->(W3#abc)@foo].

s(?X):-?X[a->W3#cde].

then the different occurrences of W3 will have different expansions. Thus, the answer to

?- r(?X).

will be C and the answer to

?- s(?X).

will be D. Note that a reference to W3#... in a module where the prefix W3 is not defined will result
in an error.

For convenience, some IRI prefixes are predefined:

xsd ’http://www.w3.org/2001/XMLSchema#’

rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’

rdfs ’http://www.w3.org/2000/01/rdf-schema#’

owl ’http://www.w3.org/2002/07/owl#’

rif ’http://www.w3.org/2007/rif#’

However, one can always override these builtin definitions using either a compile time directive
iriprefix or a runtime query iriprefix.

All constants of the primitive type IRI are members of the built-in class iri.

The IRI data type supports the following methods, which are available in Flora-2 module
basetype. They are described here by their signatures.
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Class methods:

• iri[ toType( symbol) => iri]

• iri[=> isTypeOf( object)]

Component methods:

• iri[ scheme *=> symbol]

• iri[ user *=> symbol]

• iri[ host *=> symbol]

• iri[ port *=> symbol]

• iri[ path *=> symbol]

• iri[ query *=> symbol]

• iri[ fragment *=> symbol]

Note that the exact meaning of the above components depends on the URI scheme. For http,
ftp, file, etc., the meaning the first five components is clear. The query is an optional part of
the IRI that follows the ?-sign, and fragment is the last part that follows #. Some components
might be optional for some URI schemes. For instance, for the urn and file schemata, only the
path component is defined. For mailto scheme, port, path, query, and fragment are not defined.
If a scheme is not recognized then the part of the URI that follows the scheme goes into the path

component unparsed.

Other methods:

• iri[ toString *=> symbol]

• iri[*=> equals( object)]

• iri[ typeName *=> symbol]

Examples:

• "http://foo.bar.com/abc"

• "http://foo.bar.com/abc"ˆˆ iri

• ?- iri[ toType(’http://foo.bar.com/abc’) ->

"http://foo.bar.com/abc"ˆˆ iri]@ basetype

• ?- "http://foo.bar.com/abc"ˆˆ iri[ host -> ’foo.bar.com’]@ basetype
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25.3 The Primitive Type dateTime

This data type corresponds to the XML Schema dateTime type. The constants of this data type
have the form "ZYYYY-MM-DDTHH:MM:SS.sZHH:MM"ˆˆ dateTime. The symbols -, :, T, and . are
part of the syntax. The leftmost Z is an optional sign (-). The part that starts with the second Z is
optional and represents the time zone (the second Z is a sign, which can be either + or -; note that
the first Z can be only the minus sign or nothing). The part that starts with T is also optional; it
represents the time of the specified day. The part of the time component of the form .s represents
fractions of the second. Here s can be any positive integer.

The constants of this primitive type all belong to the class dateTime. The name of this type
has the following synonyms: dt, ’http://www.w3.org/2001/XMLSchema#dateTime’.

The following methods are available in the Flora-2 system module basetype; they are de-
scribed by their signatures below.

Class methods:

• dateTime[ toType( integer, integer, integer, integer, integer, integer, decimal,

integer, integer, integer) => dateTime]

The meaning of the arguments is as follows (in that order): date sign, year, month, day, hour,
minute, second, zone sign, zone hour, zone minute. All arguments, except date sign and zone
sign, are assumed to be positive integers, while date sign and zone sign can be either 1 or -1.

• dateTime[ toType( symbol) => dateTime]

• dateTime[=> isTypeOf( object)]

Tells if object belongs to the primitive type dateTime.

Component methods:

• dateTime[ dateSign *=> integer]

• dateTime[ year *=> integer]

• dateTime[ month *=> integer]

• dateTime[ day *=> integer]

• dateTime[ hour *=> integer]

• dateTime[ minute *=> integer]

• dateTime[ second *=> integer]

• dateTime[ zoneSign *=> integer]

• dateTime[ zoneHour *=> integer]

• dateTime[ zoneMinute *=> integer]
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Other methods:

• dateTime[ toString *=> symbol]

• dateTime[*=> equals( object)]

• dateTime[*=> lessThan( object)]

• dateTime[ typeName *=> symbol]

• dateTime[ add( duration) *=> dateTime]

Examples:

• "2001-11-23T12:33:55.123-02:30"ˆˆ dateTime

• "2001-11-23T12:33:55.123-02:30"ˆˆ’http://www.w3.org/2001/XMLSchema#dateTime’

• "2001-11-23"ˆˆ dateTime

• "-0237-11-23T12:33:55"ˆˆ dateTime

Note that this date refers to year 238 BCE.

• ?- "2001-11-23"ˆˆ dateTime[ day -> 23]@ basetype

• ?- "2001-11-23"ˆˆ dateTime[ toString -> ’2001-11-23T00:00:00+00:00’]@ basetype

• ?- "2001-11-23T18:33:44-02:30"ˆˆ dateTime[ add("-P22Y2M10DT1H2M3S"ˆˆ duration)

-> "1979-09-13T17:31:41-02:30"ˆˆ dateTime]@ basetype

25.4 The Primitive Type date

This type corresponds to the XML Schema date type. Constants of this type have the form
"ZYYYY-MM-DDSHH:MM"ˆˆ date. The symbols - and : are part of the syntax. The symbol S

represents the timezone sign (+ or -). The timezone part (beginning with S) is optional. The
leftmost Z is the optional sign (-). Note that unlike dateTime, which represents a single time
point, date represents duration of a single day.

All constants of this type belong to the built-in class date. The type name date has the
following synonyms: d, ’http://www.w3.org/2001/XMLSchema#date’.

The following methods are defined for this type and are available through the system module
basetype.
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Class methods:

• date[ toType( integer, integer, integer, integer, integer, integer, integer) =>

date]

The meaning of the arguments is as follows (in that order): date sign, year, month, day, zone
sign, zone hour, zone minute. All arguments, except date sign and zone sign, are assumed to
be positive integers, while date sign and zone sign can be either 1 or -1.

• date[ toType( symbol) => date]

• date[=> isTypeOf( object)]

Tells if object belongs to the primitive type date.

Component methods:

• date[ dateSign *=> integer]

• date[ year *=> integer]

• date[ month *=> integer]

• date[ day *=> integer]

• date[ zoneSign *=> integer]

• date[ zoneHour *=> integer]

• date[ zoneMinute *=> integer]

Other methods:

• date[ toString *=> symbol]

• date[*=> equals( object)]

• date[*=> lessThan( object)]

• date[ typeName *=> symbol]

• date[ add( duration) *=> date]

Examples:

• "2001-11-23-2:30"ˆˆ date

• "2001-11-23"ˆˆ date

• "-237-11-23"ˆˆ date

Note that this date refers to year 238 BCE.
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• ?- "2001-11-23"ˆˆ date[ day -> 23]@ basetype

• ?- "2001-11-23"ˆˆ date[ toString -> ’2001-11-23+00:00’]@ basetype

• ?- "2001-11-23-02:30"ˆˆ date[ add("-P2Y2M10D"ˆˆ duration) ->

"1979-09-13-02:30"ˆˆ dt]@ basetype.
Note that when adding duration to a date, the time-part of the duration constant must be
empty.

25.5 The Primitive Type time

This primitive type corresponds to the XML Schema time data type Constants of this type have
the form "HH:MM:SS.sZHH:MM"ˆˆ time. The symbols : and . are part of the syntax. The part
.s is optional. It represents fractions of a second. Here s can be any positive integer. The sign Z

represents the sign of the timezone (+ or -). The following HH represents time zone hours and MM

time zone minutes. The time zone part is optional.

The name of this type has the following alternative versions: t and ’http://www.w3.org/2001/

XMLSchema#time’. All constants of that type are also assumed to be members of the built-in class
time.

The following methods are available for the class time and are provided by the module
basetype. Their signatures are given below.

Class methods:

• time[ toType( integer, integer, decimal, integer, integer, integer) => time]

The arguments represent hour, minute, second, time zone sign, time zone hour, and time zone
minute.

• time[ toType( symbol) => time]

• time[=> isTypeOf( object)]

Tells if object belongs to the primitive type time

Component methods:

• time[ hour *=> integer]

• time[ minute *=> integer]

• time[ second *=> integer]

• time[ zoneSign *=> integer]

• time[ zoneHour *=> integer]

• time[ zoneMinute *=> integer]
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Other methods:

• time[ toString *=> symbol]

• time[*=> equals( object)]

• time[*=> lessThan( object)]

• time[ typeName *=> symbol]

• time[ add( duration) *=> time]

Examples:

• "11:24:22"ˆˆ time

• "11:24:22"ˆˆ’http://www.w3.org/2001/XMLSchema#time’

• ?- time[ toType(12,44,55) -> "12:44:55"ˆˆ time]@ basetype

• ?- "12:44:55"ˆˆ time[ minute -> 44]@ basetype

• ?- "12:44:55"ˆˆ time[ toString -> ’12:44:55’]@ basetype

• ?- "12:44:55"ˆˆ time[ add("PT2M3S"ˆˆ duration) -> "12:46:58"ˆˆ time]@ basetype

Note that when adding duration to time, the date-part of the duration constant must not be
present.

25.6 The Primitive Type duration

The primitive type duration corresponds to the XML Schema duration data type. The constants
that belong to this type have the form "sPnYnMnDTnHnMnS"ˆˆ duration. Here s is optional sign
-, Pindicates that this is a duration data type, and Y, M, D, H, M, S denote year, month, date, hour,
minutes, and seconds. T separates date from time. The symbols P, Y, M, D, H, M, and S are part of
the syntax. The symbol n stands for any positive number (for instance, the number of hours can
be more than 12 and the number of minutes and seconds can exceed 60). The part that starts with
T is optional and any element in the date and the time parts can be omitted.

The constants of this data type all belong to the class duration.

The type name has the following synonyms: ’http://www.w3.org/2001/XMLSchema#duration’,
du.

The following classes are available in module basetype. Their signatures are shown below.
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Class methods:

• duration[ toType( integer, integer, integer, integer, integer,

=> duration]

The meaning of the arguments (in that order) is: year, month, day, hour, minute, second.

• duration[ toType( symbol) => duration]

• duration[=> isTypeOf( object)]

Tells if am object belongs to the primitive type duration.

Component methods:

• duration[ year *=> integer]

• duration[ month *=> integer]

• duration[ day *=> integer]

• duration[ hour *=> integer]

• duration[ minute *=> integer]

• duration[ second *=> integer]

Other methods:

• duration[ toString *=> symbol]

• duration[*=> equals( object)]

• duration[*=> lessThan( object)]

• duration[ typeName *=> symbol]

• duration[ add( duration) *=> duration]

Examples:

• "P5Y5M10DT11H24M22S"ˆˆ duration

• ?- "-P2Y05M10DT11H24M22"ˆˆ duration[ minute -> 24]@ basetype
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25.7 The Primitive Type boolean

This corresponds to the XML Schema Boolean type. Constants of this type have the form
"true"ˆˆ boolean "false"ˆˆ boolean or the shorter form true, false. A synonym for this
type name is ’http://www.w3.org/2001/XMLSchema#boolean’.

All constants in this type belong to the built-in class boolean. The following methods are
available in module basetype.

Class methods:

• boolean[ toString => symbol]

• boolean[=> isTypeOf( object)]

Other methods:

• boolean[ toString *=> symbol]

• boolean[*=> equals( object)]

• boolean[*=> lessThan( object)]

Note: false[ lessThan( true)].

• boolean[ typeName *=> symbol]

• boolean[ rawValue *=> symbol]

Extract the short representation value from the boolean data type.

Caveat: The long form and the short form must really be the same, i.e., "true"ˆˆ boolean and
true must denote the same constant. However, this has not been implemented yet. To extract the
short representation part from a boolean data type one should use the method rawValue. For
instance, ?- "true"ˆˆ boolean[ rawValue->?X]@ basetype.

25.8 The Primitive Type double

This corresponds to the XML Schema type double. The constants in this type all belong to the
class double and have the form "value"ˆˆ double, where value is a floating point number that
uses the regular decimal point representation with an optional exponent. Doubles have a short
form where the ”...”̂ ˆ double wrapper is removed.

This type name has a synonym ’http://www.w3.org/2001/XMLSchema#double’. The follow-
ing methods are available for type double in module basetype.
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Class methods:

• double[ toType( decimal) => double]

Converts decimals to doubles. Error, if overflow.

• double[ toType( long) => double]

Converts long integers to doubles.

• double[=> isTypeOf( object)]

Instance methods:

• double[ floor *=> integer]

• double[ ceiling *=> integer]

• double[ round *=> integer]

Other methods:

• double[ toString *=> symbol]

• double[*=> equals( object)]

• double[*=> lessThan( object)]

• double[ typeName *=> symbol]

• double[ rawValue *=> number]

Extract the number part of the double data type.

Examples: "2.50"ˆˆ double, 2.50, 25E-1.

Caveat: The long form and the short form must really be the same, i.e., "2.50"ˆˆ double and
2.50 must denote the same constant. However, this has not been implemented yet. In fact, it
is not even possible to do arithmetics with the long representation of doubles. To extract the
number part from a double data type one should use the method rawValue. For instance, ?-
"1.2"ˆˆ double[ rawValue->?X]@ basetype.

25.9 The Primitive Type long

This data type corresponds to XML Schema’s long integers. The constants in this data type
belong to class long and have the form "value"ˆˆ long, where value is an integer in its regular
representation in the decimal system. A shorter form without the "..."ˆˆ long wrapper is also
allowed. This type name has a synonym: ’http://www.w3.org/2001/XMLSchema#long’.
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Class methods:

• long[ toType( symbol) => long]

Converts strings to long integers, if the string represents an integer in textual form. If it does
not then this method fails.

• long[ toType( integer) => long]

Converts long integers to arbitrary big integers.

• integer[=> isTypeOf( object)]

Other methods:

• long[ toString *=> symbol]

• long[*=> equals( object)]

• long[*=> lessThan( object)]

• long[ typeName *=> symbol]

• long[ rawValue *=> number]

Extract the number part of the long data type.

Examples: 123, 55, "55"ˆˆ long.

Caveat: The long form and the short form must really be the same, i.e., "123"ˆˆ long and
123 must denote the same constant. However, this has not been implemented yet. In fact, it
is not even possible to do arithmetics with the long representation of long integers. To extract
the number part from a long data type one should use the method rawValue. For instance, ?-
"12"ˆˆ long[ rawValue->?X]@ basetype.

25.10 The Primitive Types decimal and integer

At present, Flora-2 does not implement the decimal and the integer types, which correspond
to XML Schema arbitrary precision types decimal and integer. Instead, decimal is a synonym for
double and integer for long. As usual, there are corresponding classes integer and decimal.

25.11 The Primitive Type string

This corresponds to the XML Schema type string. The constants in this class belong to type
string and the type name has the synonym http://www.w3.org/2001/XMLSchema#string. The
values of this class have the form "value"ˆˆ string. Alphanumeric strings that start with a letter
do not need to be quoted. In the full representation (with the "..."ˆˆ string wrapper), the
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double quote symbol and the backslash must be escaped with a backslash. In short representation,
the single quote symbol and the backslash must be escaped with a backslash.

The following methods are available in module basetype:

Class methods:

• string[=> isTypeOf( object)]

• string[ toType( symbol) => string]

Instance methods:

• string[*=> contains( string)]

• string[ concat( string) *=> string]

• string[ reverse *=> string]

• string[ length *=> integer]

• string[ toUpper *=> string]

• string[ toLower *=> string]

• string[*=> startsWith( string)]

• string[*=> endsWith( string)]

• string[ substring( integer, integer) *=> string]

Returns a substring of the object string, where the starting and the ending position of the
substring are given by the arguments of the method. -1 in argument 2 means the end of the
string.

Other methods:

• string[*=> equals( object)]

• string[*=> lessThan( object)]

• string[ typeName *=> symbol]
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Examples:

• "abc"ˆˆ string

• ’abc’

• ”a string\n"ˆˆ string

• ’a string\n’

• ’a\tstring\b’

• ’string with a \’quoted\’ substring’

Caveat: The long form and the short form must really be the same, i.e., "abc"ˆˆ string and
abc must denote the same constant. However, this has not been implemented yet. To extract
the atom part from a long data type one should use the method rawValue. For instance, ?-
"abc"ˆˆ string[ rawValue->?X]@ basetype.

25.12 The Primitive Type list

This is the usual Prolog list type. The members of this type have the form [elt1, ..., eltn]ˆˆ list

(short form [elt1, ..., eltn]) and belong to class list.

The following methods are available from the standard module basetype:

Class methods:

• list[=> isTypeOf( object)]

• list[ toType( list) => list]

Other methods:

• list[*=> contains( list)]

Tells if a list object contains the method’s argument as a sublist.

• list[*=> member( object)]

The method’s argument and the list-object may not be fully ground. In this case, the method
succeeds, if the argument to the method unifies with a member of the list.

• list[ append( list) *=> list]

• list[ length *=> long]

Computes the length of the list.

• list[ reverse *=> list]



26 DEBUGGING USER PROGRAMS 112

• list[ sort *=> list]

• list[*=> startsWith( list)]

• list[*=> endsWith( list)]

• list[*=> subset( list)]

True if the list object contains the argument list.

Other methods:

• list[ toString *=> symbol]

• list[*=> equals( object)]

• list[ typeName *=> symbol]

Examples:

• [a,b,c]

• [a,b|?X]

• [a,b,c|[d,e]]

26 Debugging User Programs

Flora-2 comes with an interactive, Prolog-style debugger, which is described in Appendix B. The
compiler makes many useful checks, such as the occurrence of singleton variables, which is often an
error (see Section 5.1). More checks will be provided in the future.

In addition, it is possible to tell Flora-2 to perform various run-time checks, as described
below.

26.1 Checking for Undefined Methods and Predicates

Flora-2 has support for checking the invocation of undefined methods and predicates at run
time. This feature can be of great help because a trivial typo can cause a method/predicate call to
fail, sending the programmer on a wild goose chase after a hard-to-find bug. It should be noted,
however, that enabling these checks can slow the runtime by up to 2 times (typically about 50%
though), so we recommend this to be done during debugging only.

To enable runtime checks for undefined invocations, Flora-2 provides two methods, which
can be called at any time during program execution (and thus enable and disable the checks
dynamically):
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?- Method[%_mustDefine(?Flag)]@_sys.

?- Method[%_mustDefine(?Flag(?Module))]@_sys.

The argument ?Flag can be on, off, or it can be a variable. The argument ?Module must be a
valid loaded Flora-2 module name or it can be a variable. When the flag argument is on, the
first method turns on the checks for undefinedness in all modules. The second method does it in a
specific module. When the flag argument is off, the above methods turn the undefinedness checks
off globally or in a specific module, respectively.

When either ?Flag or ?Module (or both) is a variable, the above methods do not change the
way undefined calls are treated. Instead, they query the state of the system. For instance, in

?- Method[%_mustDefine(?Flag)]@_sys.

?- Method[%_mustDefine(?Flag(foo))]@_sys.

?- Method[%_mustDefine(on(?Module))]@_sys.

the first query binds ?Flag to on or off depending on whether the checks are turned on or off
globally. The second query reports on the state of the undefinedness checks in Flora-2 module
foo, while the third query tells in which modules these checks are turned on.

In addition to turning on/off the checks for undefinedness on the per-module basis, Flora-2
provides a way to turn off such checks for individual predicates and methods:

?- Method[% mustDefine(off,Predicate/Method-spec)]@_sys.

For example,

?- Method[%_mustDefine(off,?(?)@foo)]@_sys.

specifies that all undefinedness errors of predicates that unify with ?(?)@foo are ignored, provided
that foo is a loaded module. Note that the module must always be specified. For instance, to
ignore undefinedness checking in the current module, use

?- Method[%_mustDefine(off,?(?)@ _@)]@_sys.

Note that the use of the current module symbol @ is essential in this example. Omitting it is
probably not what you want because the module specification sys propagates inward and so the
above statement (without the @) would turn off undefinedness checks in module sys instead of
the current module.

One can also turn undefinedness checks is all modules by putting a variable in the module
position:

?- Method[%_mustDefine(off,?(?)@ ?Mod)]@_sys.

However, this must not be an anonymous variable like ?, ? , or a don’t care variable like ? Something.
If one uses an anonymous or a don’t care variable then undefinedness checks will be ignored only
in some randomly picked module.

A pair of parenthesis is needed when multiple predicates/methods are listed in one call.
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?- Method[%_mustDefine(off,(?:class@foo, ?[%?]@ _@))]@_sys.

The undefinedness exception in Flora-2 can be caught using Flora-2 ’s catch{...} builtin.
For instance, suppose FOO is a predicate or an F-molecule whose execution might trigger the unde-
finedness exception. Then we can catch this exception as follows:

#include "flora_exceptions.flh"

..., catch{FOO, FLORA_UNDEFINED_EXCEPTION(?Call,?ErrorMessage), handler(?Call)}, ...

Here FLORA UNDEFINED EXCEPTION is the exception name defined in the Flora-2 system file
flora exceptions.flh, which must be included as shown. The predicate handler/1 is user-
defined (can be a molecule as well), which will be called when an undefinedness exception occurs.
The variable ?Call will be bound to an internal representation of the method or predicate call that
caused the exception. For instance, if we define

handler(?_) :- !.

then the undefinedness exception that occurs while executing FOO will be ignored and the call to
FOO will succeed.

Undefinedness check and meta-programming. We should note one subtle interaction be-
tween these checks and meta-programming. Suppose your program does not have any class mem-
bership facts and the undefinedness checks are turned on. Then the meta-query

flora2 ?- a:?X.

would cause the following error:

++Error[FLORA]: Undefined class ?:? in user module main

Likewise, if the program does not have any method definitions, the query ?- ?X[?Y->?Z]. would
cause an error. This might not be what one expects because the program in question might be
exploring the schema or the available data, and the intention in the above cases might be to fail
rather than to get an error.

One way of circumventing this problem is to insert some unusual facts into the database and
special-case them in the program. For instance, you could put the following facts into the program
to silence the above errors:

ads_asd_fsffdfd : ads_asd_fsffdfd.

ads_asd_fsffdfd[ads_asd_fsffdfd -> ads_asd_fsffdfd].

You can then arrange the logic of your program so that anything that contains ads asd fsffdfd

is discarded.



26 DEBUGGING USER PROGRAMS 115

Another way to circumvent the problem is to turn the undefinedness checks off temporarily. For
instance, suppose the query ?- ?X:a causes unintended undefinedness error in module foo. Then
we can avoid the problem by posing the following query instead:

flora2 ?- Method[%_mustDefine(off(foo))]@_sys,

?X:a,

Method[%_mustDefine(on(foo))]@_sys.

A more selective way to circumvent this problem is to turn off undefinedness checking just for the
offending classes. For instance,

?- Method[%_mustDefine(off,?:a@ _@)]@_sys.

The fourth way is to deal with the exception is to use Flora-2 ’s catch{...} builtin (note the
curly braces):

#include "flora_exception.flh"

?- catch{?X:a, FLORA_UNDEFINED_EXCEPTION(?,?)@_prolog, true}.

Undefinedness check and update operators. Although undefinedness checking can be turned
on and off at will, it cannot always capture all cases correctly. Namely, if an insert or delete
statement is executed while undefinedness checking is off, the corresponding methods will not be
properly captured an spurious undefinedness errors might result. For instance, if

?- insert{a[meth->b]}, delete{a[meth->b]}.

?- Method[%_mustDefine(on)]@_sys.

are executed then the query flora2 ?- a[meth->b] will cause the undefinedness error. However,

?- insert{a[meth->b]}, delete{a[meth->b]}.

?- Method[%_mustDefine(on)]@_sys.

?- a[meth->b].

will not flag the method meth as undefined.

26.2 Type Checking

Although Flora-2 allows specification of object types through signatures, type correctness is not
checked automatically. A future versions of Flora-2 might support some form of run-time type
checking. Nevertheless, run-time type checking is possible even now, although you should not
expect any speed here and this should be done during debugging only.

Run-time type checking is possible because F-logic naturally supports powerful meta-programming,
although currently the programmer has to do some work to make type checking happen. For in-
stance, a programmer can write simple queries to check the types of methods that might look
suspicious. Here is one way to construct such a type-checking query:
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type_error(?O,?M,?R,?D) :-

%% Values that violate typing

?O[?M->?R], ?O[?M=>?D], not ?R:?D

;

%% Defined methods that do not have type information

?O[?M->?R], not ?O[?M=>?_D].

?- type_error(?Obj,?Meth,?Result,?Class).

Here, we define what it means to violate type checking using the usual F-logic semantics. The
corresponding predicate can then be queried. A “no” answer means that the corresponding attribute
does not violate the typing rules.

In this way, one can easily construct special purpose type checkers. This feature is particularly
important when dealing with semistructured data. (Semistructured data has object-like structure
but normally does not need to conform to any type; or if it does, the type would normally cover only
certain portions of the object structure.) In this situation, one might want to limit type checking
only to certain methods and classes, because other parts of the data might not be expected to have
regular structure.

Note that in a multi-module program, the module information should be added to the various
parts of the above type-checker. It is reasonable to assume that the schema information and the
definition for the same object resides in the same module (a well-designed program is likely to satisfy
this requirement). In this case, a type-checker that take the module information into account can
be written as follows:

type_error(?O,?M,?R,?D) :-

%% Values that violate typing

(?O[?M->?R], ?O[?M=>?D])@?Mod1, not ?R:?D@?Mod1

;

%% Defined methods that do not have type information

(?O[?M->?R], not ?O[?M=>?_D])@?Mod1.

?- type_error(?Obj,?Meth,?Result,?Class).

We should note that type-checking queries in Flora-2 are likely to work only for “pure”
queries, i.e., ones that do not involve built-ins like arithmetic expressions. Built-ins pose a problem
because they typically expect certain variable binding patterns when these built-ins are called. This
assumption may not hold when one asks queries as general as type error.

To facilitate all these checks, Flora-2 provides a method, % check, in class Type of module
typecheck. Its syntax is:

?- Type[%_check(?Atom,?Result)]@_typecheck.

The ?Atom variable must be bound to an atomic F-logic molecule as described below. ?Result gets
bound to the evidence of type violation (one or two atoms that violate the typing constraint).

• If ?Atom is of the form ?[?Meth->?]@?Mod then all type constraints for ?Meth are checked in
module ?Mod. Missing types (semistructured data) are flagged. If ?Mod is a variable, then
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the constraints are checked in all modules. ?Meth can also be a variable. In this case all
non-procedural methods will be checked.

• If ?Atom is of the form ?[?Meth=>?]@?Mod then the type constraints for ?Meth are checked in
module ?Mod but missing types (semistructured data) are ignored. As before ?Mod and ?Meth

can be variables.

• If ?Atom is of the form ?[?Meth*->?]@?Mod then only the consistency between *-> and *=> is
checked. The ->-style molecules are ignored. Missing types (semistructured data) are flagged.

• If ?Atom is of the form ?[?Meth*=>?]@?Mod then again only the consistency between *-> and
*=> is checked. The ->-style molecules are ignored. Missing types (semistructured data) are
ignored.

For example, if our knowledge base consists of:

a[b->c].

a[b=>d].

c:d.

then the query will fail, as the typing is correct:

?- Type[%_check(?[?Meth->?],?Result)]@_typecheck.

But if, in addition, we had

a[b->e].

a[foo->e].

then the above query would yield multiple evidences of type inconsistency:

?Result = (${a[b -> e]}, ${a[b => d]})

?Result = ${a[foo -> e]}

The first means that the atom a[b -> e] violates the type constraint specified by the signature
a[b => d]. The second means that the specified atom does not have a corresponding signature.
On the other hand,

?- Type[%_check(?[?Meth=>?],?Result)]@_typecheck.

will yield only the first evidence because a[foo->e] does not violate any typing constraints for
semistructured data.

If the object position in the first argument of % check is bound then this object is treated as a
class and only the objects in that class will be type-checked. For instance, if we also had
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q[foo->bar].

q:qq.

in our knowledge base then the query

?- Type[%_check(qq[?Meth->?],?Result)]@_typecheck.

will return one evidence of type inconsistency:

?Result = ${q[foo -> bar]}

because q is the only object in class qq that has type violations.

An easy way to remember which type of atoms represent what kind of type checking is to think
that => represents typing and, therefore the =>-style atoms mean that only the methods that have
typing information will be type-checked. The ->-style atoms, on the other hand, mean that all
methods will be checked—whether they have signatures or not. Similarly, *-> and *=> means that
only the default values (represented by *->) will be checked (and *=>, in addition, restricts the
checks to the methods that have type information).

26.3 Checking Cardinality of Methods

Flora-2 does not automatically enforce the cardinality constraint specified in method signatures.
However, the type system module in Flora-2 provides methods for checking cardinality con-
straints for methods that have such constraints declared in their signatures.

In practice as well as in theory things are more complicated however. First, it is theoretically
impossible to have a query that will flag a violation of a cardinality constrain if and only if one
exists and will terminate.

In practice, the constraint checking methods in the type system library may trigger run-time
errors if there are rules that use non-logical features or certain builtins in their bodies. Therefore,
in practice, the user should use the constraint-checking methods only for purely logical methods.
Cardinality constraints declared for methods that are defined with the help of non-logical features
should be used for documentation only.

The above problems aside, it is easy to verify that a particular satisfies a cardinality constraint.
For instance, if method foo is declared as

someclass[foo {2:3}*=> sometype].

then to check that the cardinality constraint is not violated, one can ask the following query:

flora2 ?- Cardinality[%_check(?Obj[foo =>?])]@_typecheck.

If no violations are found, the above query will fail. If there are violations of this constraint then
?Obj will get bound to the objects for which the violation was detected. For instance, consider the
following knowledge base:
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cl[foo {2:3}*=> int].

c::cl.

o1:c.

o2:c.

o3:c.

o1[foo->{1,2,3,4}].

o3[foo->{3,4}].

c[foo *-> 2].

cl[foo *-> {3,4,5}].

Then the query

?- Cardinality[%_check(?O[foo=>?])]@_typecheck.

will return ?O = o1 and ?O = o2 because o1 has a non-inheritable method foo with four values
while at most 3 are allowed according to the signature. The object o2 is returned because foo has
no values for that object, while at east 2 are required. The object o3 is not returned because it
does not violate the constraint. Similarly, the query

?- Cardinality[%_check(?O[foo*=>?])]@_typecheck.

will return ?O = c because the inheritable version of method foo has only 1 value for that class,
while at least two are required by the signature. The class cl is not returned because it does not
violate the constraint.

In general, the allowed forms of the method % check in class Cardinality are as follows. The
argument is always a signature atom (no need to specify reification ${...}). The method type of the
signature can be either => or *=>. The => version checks non-inheritable methods. Such a method
would normally be declared as a class property for a particular class or it would be inherited by an
object from its superclass. The *=> version checks inheritable methods. Such a method would be
either declared as inheritable in a class-object or it would be inherited by a subclass of that class.
Whenever an evidence of type violation is required as an answer, the corresponding component of
the signature should be specified as an unbound variable. For instance,

• Cardinality[% check(?Object[?Method => ?])]@ typecheck

Checks cardinality constraints for ?Method of type => in the current module.

• Cardinality[% check(?Obj[?Method *=>?]@?Module)]@ typecheck

Checks cardinality constraints for ?Method of type *=> in module ?Module. If ?Module is
unbound and a cardinality constraint violation is detected in some module then ?Module is
bound to that module.

• Cardinality[% check(?Obj[?Method {?LoBound:?HiBound} => ?]@?Mod)]@ typecheck

Like the previous query, but the variables ?LoBound and ?HiBound, which must be unbound
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variables, can be used to indicate which bounds are violated. If the lower bound is violated,
then ?LoBound will be bound to the violated lower bound; otherwise, it is bound to ok. If the
higher bound is violated, then ?HiBound is bound to the violated higher bound; otherwise it
is bound to ok.

If ?Mod is unbound then it will be bound to the module(s) in which the cardinality constraint
is violated.

For instance, for the above program the query

?- Cardinality[%_check(?O[foo {?Low:?High} *=> ?]@?Module)]@_typecheck.

will bind ?O to c, ?Mod to main, ?Low to 2, and ?High to ok. Indeed, only the lower bound of
the cardinality constraint c[foo 2:3*=> int] (which was inherited from cl) is violated by
the class c.

?- Cardinality[%_check(?O[foo {?Low:?High} => ?])]@_typecheck.

will return the following results:

?O = o1

?Low = ok

?High = 3

?O = o2

?Low = 2

?High = ok

26.4 Logical Assertions that Depend on Procedural and Non-logical Features

On page 82 we mentioned the potential problems when tabled predicates or F-logic molecules
depend on updates. A similar problem arises when such statements depend on non-logical features,
such as var(...) or on statements that have side effects, such as I/O operations (e.g., write(’foo
bar’)@ prolog). Since tabled statements in Flora-2 are considered purely logical, one cannot
assume that the evaluation happens in the same way as in Prolog. For instance, consider the
following program:

?O[bar] :- ?O:foo.

?O:foo :- writeln(’executed’)@_prolog.

?- abc[bar].

Despite what one might expect, the above query will cause “executed” to be printed twice — once
when abc[bar] will be proved for the first time and once when the system will attempt some other
way of proving abc[bar]. (The system may not realize that the second proof is not necessary.) In
general, procedural and side-effectful statements might be executed even if the attempt to prove
the statement in the rule head ultimately fails.
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Flora-2 issues warnings when it finds that a tabled predicate depends on non-logical or side-
effectful statements, but it does not warn about all Prolog predicates of this kind. Therefore, caution
needs t be exercised in specifying purely logical statements and warnings should not be ignored.
If you are certain that a particular suspicious dependency is harmless, use the ignore depchk

directive to suppress the warning.

27 Optimizations

27.1 Manual Optimizations

Left-to-right processing. The first rule in improving the performance of Flora-2 programs is
to remember that query evaluation proceeds from left to right. Therefore it is generally advisable
to place subgoals with smaller answer sets as close to the left of the rule body as possible. And,
like in databases, Cartesian products should be avoided at all costs.

Nested molecules and path expressions. Flora-2 compiler makes decisions about where to
place the various parts of complex F-logic molecules, and the programmer can affect this placement
by writing molecules in various ways. For instance,

?- ..., ?X[attr1 -> ?Y, attr2 -> ?Y], ...

is translated as

?- ..., ?X[attr1 -> ?Y], ?X[attr2 -> ?Y], ...

so the first attribute will be computed first. If the second attribute has a smaller answer set, the
attributes in the molecule should be written in the opposite order. The other consideration has to
do with literals that have nested molecules in them. For instance, the following query

?- ..., ?X[attr1->?Y[attr2->?Z]], f(?P[attr3->?Q]), ...

is translated as

?- ..., ?X[attr1->?Y], ?Y[attr2->?Z], f(?P), ?P[attr3->?Q], ...

i.e., the nested literals follow their hosts in the translation. Thus, writing terms in this way is con-
sidered a hint to the compiler, which indicates that bindings are propagated from ?X[attr1->?Y]

to ?Y[attr2->?Z], etc. If, on the other hand, ?Y[attr2->?Z] has only one solution then, per-
haps, writing ?Y[attr2->?Z], ?X[attr1->?Y] might produce a more efficient code. The same
considerations apply to f(?P[attr3->?Q]).

Similarly to nested molecules, the Flora-2 compiler assumes that path expressions represent
a hint that bindings are propagated left-to-right. In other words, in ?X.?Y.?Z, ?X will be bound
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first. Based on this, the oids, of the objects ?X.?Y are computed, and then the attribute ?Z is
applied. In other words, the translation will be ?X[?Y->?Newvar1], ?Newvar1[?Z->?Newvar2].

Unfortunately, unlike in databases, statistical information is not available to the Flora-2
compiler and only a few heuristics (such as variable binding analysis, which the compiler does not
perform) can be used to optimize such queries. If the order chosen by the compiler is not right, the
programmer can always unnest the literals and place them in the right order in the rule body.

Open calls vs. bound calls. In Prolog it is much more efficient (space- and time-wise) to make
one unbound call than multiple bound ones. For instance, suppose we have a class, cl, that has
hundreds of members, and consider the following query:

flora2 ?- ?X:cl[attr->?Y].

Here, Prolog would first evaluate the open call ?X : cl and then for each answer x for ?X it will
evaluate x[attr->?Y]. If the cost of computing x[attr->?Y] is higher than the cost of x : cl and
the number of answers to ?X[attr->?Y] is not significantly higher than the number of answers to
?X:cl, then the following query might be evaluated much faster:

flora2 ?- ?X[attr->?Y], ?X:cl.

In this query, a single call ?X[attr->?Y] is evaluated first and then x:cl is computed for each an-
swer for ?X. Since, as we remarked, the cost of this call can be much smaller than the combined cost
of multiple calls to x[attr->?Y] for different x. If the number of bindings for ?X in ?X[attr->?Y]

that are not members of class cl is small, the second query might take significantly less space and
time.

27.2 Invoking the Flora-2 Runtime Optimizer

Flora-2 has a rudimentary runtime optimizer, which can be invoked by executing the following
commands:

flora2 ?- _optimize(?OptimizerOption)

flora2 ?- _optimize(?OptimizerOption,?Module)

The first command invokes the optimizer with the option ?OptimizerOption in all modules and
the second command does the same in a given module. The commands

flora2 ?- _resetoptimization(?OptimizerOption)

flora2 ?- _resetoptimization(?OptimizerOption,?Module)

disables the corresponding optimizer options.

It should be noted that different queries require different optimizations and any given option
might improve the performance of one set of queries while degrading the performance of others.
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Some queries may not even work with certain optimizations and produce runtime errors. Therefore,
Flora-2 gives the user the means to turn the optimizations on and off depending on the situation.

At present, Flora-2 has only two optimization option:

local_override

class_expressions

Invoking optimize(local override,somemodule) can, in some cases, speed up query processing
by the factor of 10. This optimization typically helps programs that use inheritance, but inheritance
is overwritten by locally defined methods in most of the cases.

Invoking optimize(class expressions,somemodule) always improves performance, some-
times significantly and sometimes negligibly. However, this is done at the expense of disabling the
subtype relationships that involve class expressions (see Section 6). So, while class expressions

optimization is on the usual subclass relationships among these expressions does not hold. For
instance, c::(c;d) and (c,d)::c are false.

28 Compiler Directives

Executable vs. compile-time directives. Like Prolog compiler, Flora-2 compiler can take
compiler directives. Like in Prolog, these directives can be executable or compile-time, and this
distinction is very important. Executable directives are treated as queries and they begin with ?-.
Compile-time directives begin with :-.

Executable directives are mostly used to control how the Flora-2 shell interprets the expres-
sions that the user types in. These directives have no effect during the compilation of program
files. Instead, when they are executed as queries they affect the shell. In contrast, compile-time
directives affect the compilation of the files they occur in. Also, if a module is loaded into the main
module in the shell, then all compile time directives in that module are executed in the shell as
well, so there is no need to explicitly execute these directives in the shell. Flora-2 requires that
all compile-time directives appear at the top of the program prior to the first appearance of a rule
or a fact, because such a directive has effect only after it is found and processed.

To better understand the issue, consider the following simple program (say, in file test.flr):

:- _op(400,xfx,fff).

a fff b.

?- ?X fff ?Y.

If you load this program then it will execute correctly and return the bindings a and b for ?X and
?Y, respectively. If you execute the same query ?X fff ?Y in the Flora-2 shell, the result will
still be correct because Flora-2 made sure that the directive op(400,xfx,fff) in test.flr was
executed in the shell as well. On the other hand, if the program was

?- _op(400,xfx,fff).
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a fff b.

?- ?X fff ?Y.

then fff would be known to the shell, but, unfortunately, we will not get that far to find out: The
compiler will issue an error, since fff will not be known as an operator during the compilation of
the program.

Summary of directives. The following is a summary of all supported compiler directives:

:- setsemantics{Option1, Option2, ...}
Sets the semantic options in the current user module. The currently allowed options are:

equality(none) (default), equality(basic),
inheritance(none), inheritance(flogic),
custom(none) (default), and custom(filename ).

With equality(none), equality is not maintained, and the symbol :=: works like an ordinary
predicate. With equality(basic), the predicate :=: is treated as equality.

?- setsemantics{Option1, Option2, ...}
This is an executable version of the setsemantics directive.

?- setsemantics{Option1, Option2, ...}@module
Same as above, except that equality maintenance is set for the specified user module.

:- index Arity-Argument

Says that all tabled HiLog predicates of arity Arity should be indexed on argument number
Argument (the count starts at 1). This directive should appear at the beginning of a module
to have any effect. Normally predicates in Flora-2 are indexed on predicate name only. The
above directive changes this so that indexing is done on the given argument number instead.

Note that the index directive is not very useful for predicates that mostly contain facts,
because these are trie-indexed anyway (regardless of what you say). Thus, this instruction
is useful only for predicates with partially instantiated arguments that appear in the rule
heads.
This is an executable version of the index directive. The module of the predicates can be
specified.

:- index %Arity-Argument

The index directive for non-tabled HiLog predicates.

?- (index %Arity-Argument )[@module ]

The executable index for non-tabled HiLog predicates.

:- op(precedence,type,operator)
Defines operator as a Flora-2 operator with the given precedence and type. The type is
the same as in Prolog operators, i.e., fx, xf, xfy, etc. Note that the op directive is confined
to the module in which it is executed or defined. For instance, if example.flr has a call (a
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foo b)@bar, the symbol foo is declared as an operator in the program loaded to module bar,
but not in example.flr, then a syntax error will result, because example.flr does not know
about the operator declaration for foo.

:- op(precedence,type,[operator, ..., operator])
Same as above, except that this directive defines a list of operators with the same precedence
and type.

?- op(precedence,type,operator)@module
Same as above, except that a module is also given. However, unless the module is main, this
directive acts as a no-op.

table functor/arity, ..., functor/arity
Requests that the specified first order predicates must be tabled.

29 Flora-2 System Modules

Flora-2 provides a number of useful libraries that other programs can use. These libraries are
statically preloaded into modules that are accessible through the special @ modname syntax, and
they are called system modules. We describe the functionality of these modules below. Some of
these modules also have longer synonyms. These synonyms are mentioned below, if they exist.

29.1 Input and Output

This library simplifies access to the most common Prolog I/O facilities. This library is preloaded
into the system module io and can be accessed using the @ io syntax.

The purpose of the I/O library is not to replace the standard I/O predicates with Flora-2
methods, but rather to relieve the user from the need to do explicit conversion of arguments between
the HiLog representation of terms used in Flora-2 and the standard Prolog representation of the
underlying engine.12 However, for uniformity, the io library also provides certain methods that
do not suffer from the conversion problem.

The library contains two types of I/O operations: stream-based I/O and port-based. Stream-
based I/O is based on the standard Prolog I/O primitives. It uses symbols as file handles. Port-
based I/O is specific to XSB. Its file handles are internally represented as numbers. Although
stream-based I/O is often easier to use, there are many more port-based primitives that can ac-
complish various low-level I/O operations. This Flora-2 library provides just a few common ones.
See the XSB manual, volume 2, for a complete list of these primitives.

The methods and predicates accessible through the io library are listed below. Note that some
operations are defined as procedural methods and others as predicates. This is because we use the
object-oriented representation only where it makes sense — we avoid introducing additional classes
and objects that require more typing just for the sake of keeping the syntax object-oriented.

12 See Section 12 for a discussion of the problems associated with this representation mismatch.
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Stream-based I/O.

• %see(?Filename), ?Filename[%see] — open ?Filename and make it into the current input
stream.

• %seeing(?Stream) — binds ?Stream to the current input stream.

• %seen — closes the current input stream.

• %tell(?Filename), ?Filename[%tell] — opens ?Filename as the current output stream.

• %telling(?Stream) — binds ?Stream to the current output stream.

• %told — closes the current output stream.

• %write(?Obj) — writes ?Obj to the current output stream.

• ?Stream[%write(?Obj)] — writes ?Obj to the stream ?Stream.

• %writeln(?Obj), ?Stream[%writeln(?Obj)] — same as above, except that the newline
character is output after ?Obj.

• %nl — writes the newline character to the current output stream.

• %read(?Result) — binds ?Result to the next term in the current input stream.

• ?Stream[%read(?Result)] — same as above, but use ?Stream as the input stream.

Port-based I/O.

• ?Filename[%open(?Mode,?Port)] — opens ?Filename with mode ?Mode (which can be r,
w, or a) and binds ?Port to the file handle.

• ?Port[%close] — closes the file handle to which ?Port is bound.

• ?Port[%read(?Result)] — bind ?Result to the next term in the previously open input
?Port.

• %stdread(?Result) — same, but use the standard input as the port.

• ?Port[%write(?Result)] — write ?Result out to the previously open output ?Port.

• %stdwrite(?Result) — same, but use standard output as the port.

• %fmt write(?Format,?Term) — C-style formatted output to the standard output. See the
XSB manual, volume 2, for the description of all the options.

• ?Port[%fmt write(?Format,?O)] — same, but use ?Port for the output.

• %fmt write string(?String,?Format,?Obj — same as above, but bind ?String to the
result. See the XSB manual for the details.
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• %fmt read(?Format,?Result,?Status) — C-style formatted read from standard input. See
the XSB manual.

• ?Port[%fmt read(?Format,?Result,?Status)] — same, but use ?Port for input.

• %write canonical(?Term) — write ?Term to standard output in canonic Prolog form.

• ?Port[%write canonical(?Term)] — same, but use ?Port for output.

• %read canonical(?Term) — read standard input and bind ?Term to the next term in the
input. The term must be in canonical Prolog form, or else an error will result. This method
is much faster than the usual read operation, but it is not as versatile, as it assumes that
input is in canonical form.

• ?Port[%read canonical(?Term)] — same, but use ?Port for input.

• %readline(?Type,?String) — read the standard input and bind ?String to the next line.
?Type is either atom or charlist. The former means that ?String is to be bound to a Prolog
atom and the latter binds it to a list of characters.

• ?Port[%readline(?Type,?String)] — same, but use ?Port for input.

Common file operations. The io module also provides a class File, which has methods for
the most common file operations. These include:

• File[%exists(?F)]. True if file ?F exists.

• File[%readable(?F)]. True if file ?F is readable.

• File[%writable(?F)]. True if the file is writable.

• File[%executable(?F)]. True if the file is executable.

• File[%modtime(?F,?T)]. Binds ?T to the last modification time of ?F.

• File[%mkdir(?F)]. Makes a directory named after the value of ?F.

• File[%rmdir(?F)]. Removes the directory ?F.

• File[%chdir(?F)]. Changes the current directory to ?F.

• File[%cwd(?F)]. Binds ?F to the current working directory in the shell.

• File[%link(?F,?Dest)]. Creates a link named after ?F to the existing file ?Dest.

• File[%unlink(?F)]. Removes the link ?F.

• File[%remove(?F)]. Removes the file ?F.

• File[%tmpfilename(?F)]. Binds ?F to a temporary file with a completely new name.

• File[%isabsolute(?F)]. True if ?F is an absolute path name.
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• File[%rename(?F,?To)]. Renames file ?F to file ?To.

• File[%basename(?F,?Base)]. Binds ?Base to the base name of file path ?F. For instance,
?- File[%basename(’/a/b/cde’,?Base)] would bind ?Base to cde.

• File[%extension(?F,?Ext)]. Binds ?Ext to the extension of the file ?F. For instance, ?-
File[%extension(’/a/b/cde.exe’,?Ext)] would bind ?Ext to exe.

• File[%dirname(?F,?Dir)]. Binds ?Dir to the directory name of file ?F.

• File[%expand(?F,?Expanded)]. Expands the file ?F by attaching the directory name (if the
file is not absolute) and binds ?Expanded to that expansion.

• File[%newerthan(?F,?F2)]. True if ?F is a newer file than ?F2.

• File[%copy(?F,?To)]. Copies the contents of the file ?F to ?To.

29.2 Storage Control

Flora-2 keeps the facts that are part of the program or those that are inserted by the program in
special data structures called storage tries. The system module db accessible through the module
reference @ db, provides primitives for controlling this storage. This module also has a longer
synonym storage.

• %commit — commits all changes made by transactional updates. If this statement is executed
in the middle of an update transaction, changes made by transactional updates prior to this
will be committed and will not be undone even if a subsequent subgoal fails.

• %commit(?Module) — commits all changes made by transactional updates to facts in the user
module ?Module. Backtrackable updates to other modules are unaffected.

• %purgedb(?Module) — deletes all facts previously inserted into the storage associated with
module ?Module.

29.3 System Control

The system module sys provides primitives that affect the global behavior of the system. It is
accessible though the system module reference @ sys (or through its synonym system).

• Libpath[%add(?Path)] — adds ?Path to the library search path. This works similarly to
the ?PATH environment variable in that when the compiler or the loader are trying to locate
a file specified by its name only (without directory, etc.) then they examine the files stored
in the directories on the library search path.

• Libpath[%remove(?Path)] — removes ?Path from the library search path.
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• Libpath[%query(?Path)] — queries the library search path. If ?Path is bound, checks if
the specified directory is on the library search path. Otherwise, binds (through backtracking)
?Path to each directory on the library search path.

• Tables[%abolish] — discards all tabled data in Prolog.

This module also provides the following amenities:

• %abort(?Message) — puts ?Message on standard error stream and terminates the current
execution. Message can also be in the form (?M1, ?M2, ..., ?Mn). In this case, all the
component strings are concatenated before printing them out.

User aborts can be caught as follows:

?- catch{?Goal, FLORA_ABORT(FLORA_USER_ABORT(?Message),?_), ?Handler}

In order to be able to use the predefined constants FLORA ABORT and FLORA USER ABORT the
program must contain the include statement

#include "flora_exceptions"

• %warning(?Message) — prints a warning header, then message, ?Message, and continues.
Output goes to standard error stream. ?Message can be of the form (?M1, ?M2, ..., ?Mn).

• %message(?Message) — Like warning/1, but does not print the warning header. ?Message
can be of the form (?M1, ?M2, ..., ?Mn).

29.4 Cardinality Constraint Checking

This system module of Flora-2 provides methods for testing cardinality constraints of the methods
defined in the Flora-2 knowledge base. The module defines the transactional method % check in
class Cardinality of module typecheck. This method is described in Section 26.3.

29.5 Data Types

This system module of Flora-2 provides methods for accessing the components of data types such
as dateTime, iri, and so on. Data types are described in Section 25.

29.6 Reading and Compiling Input Terms

Sometimes it may be necessary for an application to read and compile Flora-2 statements from
an input source. To this end, the parse system library provides the following predicates and
methods.
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• ?- %read(?Code,?Mod,?Stat)@ parse.

Read the next term from the standard input and compile it. The resulting term is bound to the
variable ?Code. The term can also be a reified formula and even a reified rule. Such a formula/rule
can be used in a query or inserted into the knowledge base as appropriate. If the input term is
not reified, the ?Mod parameter has no effect. If the formula is reified, them it will be built for the
module specified in ?Mod. If ?Mod is unbound then the default module main is assumed.

?Status is bound to the status code returned by the predicate and has the form [OutcomeFlag,

EOF flag|ErrorList], where:

OutcomeFlag = null/or/error
null - a blank line was read, no code generated (?Code = null)
ok - good code was generated, no errors
error - parsing/compilation errors

EOF flag = eof/not eof
not eof - end-of-file has not been reached
eof - if it has been reached.

ErrorList - if OutcomeFlag=null/ok, then this list would be empty.
if OutcomeFlag=error, then this would be a list of the

form [error(N1,N2,Message), ...], where N1, N2 encode the line
and character number, which is largely irrelevant in this context.
Message is an error message. Error messages are displayed.

Example:

?- %read(?Code,foobar,?Stat)@_parse.

f(a). <-----user input

?Code = f(a)

?Stat = [ok, not_eof]

?- %read(?Code,foobar,?Stat)@_parse.

${a[b->c]}. <-----user input

?Code = ${a[b -> c]@foobar}

?Stat = [ok, not_eof]

• ?- %readAll(?Code,?Mod,?Stat)@ parse.

Used for reading terms one-by-one and returning answers interactively. The meaning of the argu-
ments is the same. Under one-at-a-time solution ( one), will wait for input, return compiled code,
then wait for input again, if the user types ”;”. If the user types RET then this predicate succeeds
and exits. Under all-solutions semantics ( all), will wait for inputs and process them, but will not
return answers unless the file is closed (e.g., Ctl-D at standard input).
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• ?- ?Source[%readAll(?Module,?CodeList)]@ parse.

This collects all answers from a source, which can be either a file or a string. If the source is
a string, it should be specified as string(Str), where Str is either an atom or a variable that
is bound to an atom. If the source is a file then it should be specified as file(FileName),
where FileName is an atom that specifies a file name (or a variable bound to it). The mean-
ing of ?Module is the same as before. ?CodeList contains the result. It is bound to a list of
the form [code(TermCode1,Status1), code(TermCode2,Status2), ...], where TermCode is the
compiled code of a term in the source, and ?Status is the status of the compilation for this term.
It has the form [OutcomeFlag, EOF flag|ErrorList], as explained before.

30 Notes on the Programming Style and Common Pitfalls

Programming in Flora-2 is similar to programming in Prolog, but is more declarative. For one
thing, F-molecules are always tabled, so the programmer does not need to worry about tabling the
right predicates. Second, there is no need to worry that a predicate must be declared as dynamic
in order to be updatable. Third — and most important — the facts specified in the program are
considered to be part of the database. In particular, their order does not matter and duplicates
are eliminated automatically.

30.1 Facts are Unordered

The fact that Flora-2 does not assume any particular order for facts has a far-reaching implication
on the programming style and is one of the pitfalls that a programmer should avoid. In Prolog, it
is a common practice to put the catch-all facts at the end of a program block in order to capture
subgoals that do not match the rest of the program clauses. For instance,

p(f(?X)) :- ...

p(g(?X)) :- ...

%% If all else fails, simply succeed.

p(?_).

This will not work in Flora-2 , because p(? ) will be treated as a database fact, which is placed
in no particular order with respect to the program. If you want the desired effect, represent the
catch-all facts as rules:

p(f(?X)) :- ...

p(g(?X)) :- ...

%% If all else fails, simply succeed. Use rule notation for p/1.

p(?_) :- true.

30.2 Testing for Class Membership

In imperative programming, users specify objects’ properties together with the statements about
the class membership of those objects. The same is true in Flora-2 . For instance, we would
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specify an object John as follows, which is conceptually similar to, say, Java:

John : person

[ name->’John Doe’,

address->’123 Main St.’,

hobby->{chess, hiking}

].

However, in Flora-2 attributes can also be specified using rules. For instance, we can say that (in
our particular enterprise) an employee works in the same building where the employee’s department
is located:

?X[building->?B] :- ?X:employee[department->?_[building->?B]].

Our experience in teaching F-logic programming to users indicates that initially there is a tendency
to confuse premises with consequents when it comes to class membership. So, a common mistake
is to write the above as

?X:employee[building->?B] :- ?X[department->?[building->?B]].

A minute reflection should convince the reader that his is incorrect, since the above rule is equivalent
to two statements:

?X[building->?B] :- ?X[department->?_[building->?B]].

?X:employee :- ?X[department->?_[building->?B]].

It is the second statement, which is problematic. Certainly, we did not intend to say that any object
with a department attribute pointing to an object with a building attribute is an employee!

It is interesting to note that such a confusion between premises and consequences is common
only when it comes to class membership. Therefore, the user should be carefully check the validity
of placing class membership molecules in the rule heads.

30.3 Complex F-molecules in the Rule Heads

Another common mistake is the inappropriate use of complex F-molecules in the rule heads. When
using a complex molecule, such as a[b->c, d->e], one must always keep in mind that its meaning
is a[b->c] and a[d->e] whether the molecule occurs in the rule head or in its body. Therefore,
if a[b->c, d->e] occurs in the head of a rule like

a[b->c, d->e] :- body.

then the rule can be broken up in two using the usual logical tautology ((X ∧ Y) ← Z) ≡ (X ←
Z) ∧ (Y← Z):
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a[b->c] :- body.

a[d->e] :- body.

Forgetting this tautology sometimes causes logical mistakes. For instance, suppose flight is a
binary relation that represents direct flights between cities. Then a rule like this

flightobj[from->?F, to->?T] :- flight(?F,?T).

is likely to be a mistake if the user simply wanted to convert the relational representation into an
object-oriented one. Indeed, in the head, flight is a single object and therefore both from and to

will get multiple values and it will not be possible to find out (by querying that object) which cities
have direct flights between them. The easiest way to see this is through the use of the aforesaid
tautology:

flightobj[from->?F] :- flight(?F,?T).

flightobj[to->?T] :- flight(?F,?T).

Therefore, if the flight relation has the following facts

flight(newyork,boston).

flight(seattle,toronto).

then the following molecules will be derived (where the last two are unintended):

flightobj[from->newyork, to->boston].

flightobj[from->seattle, to->toronto].

flightobj[from->newyork, to->toronto].

flightobj[from->seattle, to->boston].

To rectify this problem one must realize that each tuple in the flight relation must correspond to
a separate object in the rule head. The error in the above program is in that all tuples in flight

correspond to the same object flightobj. There are two general ways to achieve our goal. Both
try to make sure that a new object is used in the head for each flight-tuple.

The first method is to use a new function symbol, say f, to construct the oids in the rule head:

f(?F,?T):flight[from->?F, to->?T] :- flight(?F,?T).

As an added bonus, we also created a class, flight, and made the flight objects into the members
of that class. While it solves the problem, this approach might not always be acceptable, since the
oid essentially explicitly encodes all the information in the tuple.

An alternative approach is to use the newoid{...} primitive from Section 10. Here we are using
the fact that each time flight(?F,?T) is satisfied, newoid{?X} generates a new value for ?X.

?O:flight[from->?F, to->?T] :- newoid{?O}, flight(?F,?T).

This approach is not as declarative as the first one, but it saves the user from the need to figure
out how exactly the oids in the rule head should be constructed.
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31 Miscellaneous Features

31.1 Suppression of Banners

When Flora-2 initializes itself, it produces a lot of chatter: the XSB banner, a great number
of messages about the various XSB and Flora-2 modules that are loaded, and the Flora-2
welcome message. However, the user might not want to see all these, and when the program runs
in a batch mode or interacts with other programs then all these messages are either not needed or
they can complicate this interaction. To suppress these messages, use the following switches when
invoking the system:

--nobanner: suppress the XSB banner and the Flora-2 welcome message
--quietload: when loading a module, do not print feedback to the terminal

Thus,

runflora --nobanner --quietload

will get you directly to the Flora-2 prompt without cluttering the terminal with chatter.

Sometimes even the prompt stands in the way. For instance, when Flora-2 interacts with other
programs (e.g., with a GUI) then sending the prompt to the other program just complicates things,
as the receiving program needs to remember to ignore the prompt. To avoid this complication, the
invocation flag --noprompt is provided. Thus,

runflora --nobanner --quietload --noprompt

will print nothing on startup and will be just waiting for user input. When the input occurs,
Flora-2 will evaluate the query and return the result. After this, it will return to wait for the
input without issuing any prompts.

31.2 Passing Compiler Options to XSB

Sometimes it is desirable to pass compiler options to the underlying Prolog compiler. To do this,
Flora-2 provides the directive flora compiler options/1. It takes one argument — a list of
options that is understood by the underlying Prolog compiler. For instance, the directive

:- flora_compiler_options([spec_repr]).

will cause the module that contains this directive to be compiled with the XSB specialization
optimization.

32 Bugs in Prolog and Flora-2 : How to Report

The Flora-2 system includes a compiler and runtime libraries, but for execution it relies on
Prolog. Thus, some bugs that you might encounter are the fault of Flora-2 , while others are
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Prolog bugs. For instance, a memory violation that occurs during the execution is in all likelihood
an internal Prolog bug. (Flora-2 is a stress test — all bugs come to the surface.)

An incorrect result during the execution can be equally blamed on Prolog or on Flora-2— it
requires a close look at the program. A compiler or a runtime error for a perfectly valid program
is probably a bug in the Flora-2 system.

Bugs that are the fault of the underlying Prolog engine are particularly hard to fix, because
Flora-2 programs are translated into mangled, unreadable to humans Prolog code. To make
things worse, this code might contain calls to Flora-2 system libraries.

To simplify bug reporting, Flora-2 provides a utility that makes the compiled Prolog program
more readable. The dump/1 predicate can be used to strip the macros from the code, making it
much easier to understand. If you issue the following command

flora2 ?- _dump(foo).

the program foo.flr will be compiled without the macros and dump the result in the file foo dump.P.
This file is pretty-printed to make it easier to read. Similarly,

flora2 ?- _dump(foo,bar)

will compile foo.flr for module bar and will dump the result to the file foo dump.P.

Unfortunately, this more readable version of the translated Flora-2 program might still not
be executable on its own because it might contain calls to Flora-2 libraries or other modules.
The set of guidelines, below, can help cope with these problems.

Reporting Flora-2 -related Prolog bugs. If you find a Prolog bug triggered by a Flora-2
program, here is a set of guidelines that can simplify the job of the XSB developers and increase
the chances that the bug will be fixed promptly:

1. Reduce the size of your Flora-2 program as much as possible, while still being able to
reproduce the bug.

2. Eliminate all calls to the system modules that use the @ lib syntax. (Prolog modules that are
accessible through the @ prolog(modname) syntax are OK, but the more you can eliminate
the better.)

3. If the program has several user modules, try to put them into one file and use just one module.

4. Use dump/1 to strip Flora-2 macros from the output of the Flora-2 compiler.

5. See if the resulting program runs under plain XSB system (without the Flora-2 shell). If
it does not, it means that the program contains calls to Flora-2 runtime libraries. Try to
eliminate such calls.

One common library call is used to collect all query answers in a list and then print them
out. You can get rid of this library call by finding the predicate fllibprogramans/2 in
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the compiled .P program and removing it while preserving the subgoal (the first argument)
and renaming the variables (as indicated by the second argument). Make sure the resulting
program is still syntactically correct!

Other calls that are often no longer needed in the dumped code are those that load Flora-2
runtime libraries (which we are trying to eliminate!). These calls have the form

?- flora_load_library(...).

If there are other calls to Flora-2 runtime libraries, try to delete them, but make sure that
the bug is still reproducible.

6. If the program still does not run because of the hard-to-get-rid-of calls to Flora-2 runtime
libraries, then see if it runs after you execute the command

?- bootstrap flora.

in the Prolog shell. If the program runs after this (and reproduces the bug) — it is better
than nothing. If it does not, then something went wrong during the above process: start
anew.

7. Try to reduce the size of the resulting program as much as possible.

8. Tell the XSB developers how to reproduce the bug. Make sure you include all the steps
(including such gory details as whether it is necessary to call bootstrap flora/0).

Finally, remember to include the details of your OS and other relevant information. Some bugs
might be architecture-dependent.

Reporting Flora-2 bugs. If you believe that the bug is in the Flora-2 system rather than
in the underlying Prolog engine, the algorithm is much simpler:

1. Reduce the size of the program as much as possible by deleting unrelated program clauses
and squeezing a multi-module program into just one file.

2. Remove all the calls to system modules, unless such a call that is the essence of the bug.

3. Tell Flora-2 developers how to reproduce the bug.

The current version contains the following known bugs, which are due to the fact that certain
features are yet to be implemented:

1. Certain programs might cause the following XSB error message:

++Error[XSB]: [Compiler] ’ !’ after table dependent symbol
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This is due to certain limitations in the implementation of tabled predicates in the XSB
system. This problem will be eliminated in a future release of XSB. Meanwhile, as explained
in the Introduction, configuring XSB for SLG-WAM and local scheduling will avoid many of
such errors.

2. Error messages when Flora-2 update predicates contain arithmetic expressions in the query
part. This problem will be fixed in the future.

3. Inheritance of procedural methods is not supported: a[*%p(?X)].
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Appendices

A A BNF-style Grammar for Flora-2

%% To avoid confusion between some language elements and meta-syntax

%% (e.g., parentheses and brackets are part of BNF and also of the language

%% being described), we enclose some symbols in single quotes to make it

%% clear that they are part of the language syntax, not of the grammar.

%% However, in FLORA these symbols can be used with or without the quotes.

Rule := Head (’:-’ Body)? .

Query := ’?-’ Body.

Directive := ’:-’ ExportDirective | OperatorDirective | SetSemanticsDirective

| IgnoreDependencyCheckDirective | PrologDirective

Head := HeadLiteral

Head := Head (’,’ | ’and’) Head

HeadLiteral := BinaryRelationship | ObjectSpecification | Term

Body := BodyLiteral

Body := BodyConjunct | BodyDisjunct | BodyNegative | ControlFlowStatement

Body := Body ’@’ ModuleName

Body := BodyConstraint

ModuleName := atom | ’atom()’ | atom ’(’ atom ’)’ | thisModuleName

BodyConjuct := Body (’,’ | ’and’) Body

BodyDisjunct := Body (’;’ | ’or’) Body

BodyNegative := ((’not’ | ’

+’) Body) | ’false’ Body ’’

BodyConstraint := ’’ CLPR-style constraint ’’

ControlFlowStatement := IfThenElse | UnlessDo

| WhileDo | WhileLoop

| DoUntil | LoopUntil

IfThenElse := ’if’ Body ’then’ Body (’else’ Body)? | Body ’<-’ Body

UnlessDo := ’unless’ Body ’do’ Body

WhileDo := ’while’ Body ’do’ Body

WhileLoop := ’while’ Body ’loop’ Body

DoUntil := ’do’ Body ’until’ Body

LoopUntil := ’loop’ Body ’until’ Body
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BodyLiteral := BinaryRelationship | ObjectSpecification | Term

| DBUpdate | Refresh | NewoidOp | Builtin | Loading

| CatchExpr | ThrowExpr | TruthTest

Builtin := ArithmeticComparison, Unification, MetaUnification, etc.

Loading := ’[’ LoadingCommand (’,’ LoadingCommand)* ’]’

LoadingCommand := filename (’>>’ atom)

BinaryRelationship := PathExpression ’:’ PathExpression

BinaryRelationship := PathExpression ’::’ PathExpression

ObjectSpecification := PathExpression ’[’ SpecBody ’]’

SpecBody := ’not’ MethodSpecification

SpecBody := SpecBody ’,’ SpecBody

SpecBody := SpecBody ’;’ SpecBody

MethodSpecification := (’%’ | ’*’)? Term

MethodSpecification := PathExpression ValueReferenceConnective PathExpression

ValueReferenceConnective := ’->’ | ’*->’ | ’=>’ | ’*=>’

’+>>’ | ’*+>>’ | ’->->’ | ’*->->’

PathExpression := atom | number | string | variable | specialOidToken

PathExpression := Term | List | ReifiedFormula

PathExpression := PathExpression PathExpressionConnective PathExpression

PathExpression := BinaryRelationship

PathExpression := ObjectSpecification

PathExpression := Aggregate

PathExpressionConnective := ’.’ | ’!’

specialOidToken := anonymousOid | numberedOid | thisModuleName

ReifiedFormula := $ (Body | ’(’ Rule ’)’)+

%% No quotes are allowed in the following special tokens!

%% No space allowed between _# and integer

%% anonymousOid & numberedOid can occur only in rule head

%% or in reified formulas

anonymousOid := ’_#’

%% No space between _# and integer

numberedOid := ’_#’integer
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thisModuleName := ’_@’

List := ’[’ PathExpression (’,’ PathExpression)* (’|’ PathExpression)? ’]’

Term := Functor ’(’ Arguments ’)’

Term := ’%’ Functor ’(’ Arguments ’)’

Functor := PathExpression

Arguments := PathExpression (’,’ PathExpression)*

Aggregate := AggregateOperator ’’ TargetVariable (GroupingVariables)? ’|’ Body ’’

AggregateOperator := ’max’ | ’min’ | ’avg’ | ’sum’ | ’collectset’ | ’collectbag’

%% Note: only one TargetVariable is permitted.

%% It must be a variable, not a term. If you need to aggregate over terms,

%% as for example, in collectset/collectbag, use the following idiom:

%% S = collectset V | ... , V=Term

TargetVariable := variable

GroupingVariables := ’[’ variable, (’,’ variable)* ’]’

DBUpdate := DBOp ’’ UpdateList (’|’ Body)? ’’

DBOp := ’insert’ | ’insertall’ | ’delete’ | ’deleteall’ | ’erase’ | ’eraseall’

UpdateList := HeadLiteral (’@’ atom)?

UpdateList := UpdateList (’,’ | ’and’) UpdateList

Refresh := ’refresh’ UpdateList ’’

RuleUpdate := RuleOp ’’ RuleList ’’

RuleOp := ’insertrule’ | ’insertrule_a’ | ’insertrule_z’ |

’deleterule’ | ’deleterule_a’ | ’deleterule_z’

RuleList := Rule | ’(’ Rule ’)’ ( (’,’ | ’and’) ’(’ Rule ’)’ )*

NewoidOp := ’newoid’ Variable ’’

CatchExpr := ’catch’ Body, Term, Body ’’

ThrowExpr := ’throw’ Term ’’

TruthTest := ’true’ Body ’’ | ’unknown’ Body ’’ | ’false’ Body ’’

B The Flora-2 Debugger

Flora-2 debugger is implemented as a presentation layer on top of the Prolog debugger, so
familiarity with the latter is highly recommended (XSB Manual, Part I). Here we sketch only a few
basics.
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The debugger has two facilities: tracing and spying. Tracing allows the user to watch the
program being executed step by step, and spying allows one to tell Flora-2 that it must pose
when execution reaches certain predicates or object methods. The user can trace the execution
from then on. At present, only the tracing facility has been implemented.

Tracing. To start tracing, you must issue the command trace at the Flora-2 prompt. It is
also possible to put the subgoal trace in the middle of the program. In tat case, tracing will start
after this subgoal gets executed. This is useful when you know where exactly you want to start
tracing the program. To stop tracing, type notrace.

During tracing, the user is normally prompted at the four ports of subgoal execution: Call

(when a subgoal is first called), Exit (when the call exits), Redo (when the subgoal is tried with
a different binding on backtracking), and Fail (when a subgoal fails). At each of the prompts,
the user can issue a number of commands. The most common ones are listed below. See the XSB
manual for more.

• carriage return (creep): to go to the next step

• s (skip): execute this subgoal non-interactively; prompt again when the call exits (or fails)

• S (verbose skip): like s, but also show the trace generated by this execution

• l (leap): stop tracing and execute the remainder of the program

The behavior of the debugger is controlled by the predicate debug ctl. For instance, executing
debug ctl(profile, on) at the Flora-2 prompt tells XSB to measure the CPU time it takes to
execute each call. This is useful for tuning your program for performance. Other useful controls
are: debug ctl(prompt, off), which causes the trace to be generated without user intervention;
and debug ctl(redirect, foobar), which redirects debugger output to the file named foobar.
The latter feature is usually useful only in conjunction with the aforesaid prompt-off mode. See
the XSB manual for additional information on debugger control.

Flora-2 provides a convenient shortcut that capture some of the most common uses of the
aforesaid debug ctl interface. Executing

flora2 ?- trace(filename).

will switch Flora-2 to non-interactive trace mode and the entire trace will be dumped to file
filename. Note that you have to execute notrace or exit Prolog in order for the entire file to be
flushed on disk.

Low-level tracing. Flora-2 debugger also supports low-level tracing via the shell command
tracelow. With normal tracing, the debugger converts low-level subgoals to subgoals that are
found in the user program and are thus meaningful to the programmer. With low-level tracing, the
debugger displays the actual Prolog subgoals (of the compiled .P program) that are being executed.
This facility is useful for debugging Flora-2 runtime libraries.
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As with trace, Flora-2 provides a convenient shortcut that allows the entire execution trace
to be dumped into a file:

flora2 ?- tracelow(filename).
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C Emacs Support

Editing and debugging Flora-2 programs can be greatly simplified with the help of flora-mode,
a special Emacs editing mode designed specifically for Flora-2 programs. Flora-mode provides
support for syntactic highlighting, automatic indentation, and the ability to run Flora-2 programs
right out of the Emacs buffer.

C.1 Installation

To install flora-mode, you must perform the following steps. Put the file

.../flora2/emacs/flora.el

found in your Flora-2 distribution on the load path of Emacs or XEmacs (whichever you are
using). The best way to work with Emacs is to make a separate directory for Emacs libraries (if
you do not have one), and put flora.el there. Such a directory can be added to emacs search
path by putting the following command in the file ~/.emacs (or ~/.xemacs, if you are running one
of the newer versions of XEmacs):

(setq load-path (cons "your-directory" load-path))

It is also a good idea to compile emacs libraries. To compile flora.el, use this:

emacs -batch -f batch-byte-compile flora.el

This will produce the file flora.elc — a compiled byte code. If you are using XEmacs, use
xemacs instead of emacs above — the two emacsen use incompatible byte code, and you cannot
use flora.elc compiled under one system for editing files under another.

Finally, you must tell X/Emacs how to recognize Flora-2 program files, so Emacs will be able
to invoke the Flora major mode automatically when you are editing such files:

(setq auto-mode-alist (cons ’("\\.flr$" . flora-mode) auto-mode-alist))

(autoload ’flora-mode "flora" "Major mode for editing Flora programs." t)

To enable syntactic highlighting of Emacs buffers (not just for Flora-2 programs), you can
do the following:

• In Emacs: select Help.Options.Global Font Lock on the menubar. To enable highlighting
permanently, put

(global-font-lock-mode t)

in ~/.emacs.

• In XEmacs: select Options.Syntax Highlighting.Automatic in the menubar. To enable
this permanently, put
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(add-hook ’find-file-hooks ’turn-on-font-lock)

in ~/.emacs or ~/.xemacs (whichever is used by your XEmacs).

C.2 Functionality

Menubar menu. Once Flora-2 editing mode is installed, it provides a number of functions.
First, whenever you edit a Flora-2 program, you will see the “Flora” menu in the menubar. This
menu provides commands for controlling the Flora process (i.e., the Flora-2 shell). You can start
and stop this process, type queries to it, and you can tell it to consult regions of the buffer you are
editing, the entire buffer, or some other file.

Because Emacs provides automatic file completion and allows you to edit what you typed, per-
forming these functions right out of the buffer takes much less effort than typing the corresponding
commands to the Flora-2 shell.

Keyboard functions. In addition to the menu, flora-mode lets you execute most of the menu
commands using the keyboard. Once you get the hang of it, keyboard commands are much faster
to invoke:

Load file: Ctl-c Ctl-f

Load file dynamically: Ctl-u Ctl-c Ctl-f

Load buffer: Ctl-c Ctl-b

Load buffer dynamically: Ctl-u Ctl-c Ctl-b

Load region: Ctl-c Ctl-r

Load region dynamically: Ctl-u Ctl-c Ctl-r

When you invoke any of the above commands, a Flora-2 process is started, unless it is already
running. However, if you want to invoke this process explicitly, type

ESC x run-flora

You can control the Flora-2 process using the following commands:

Interrupt Flora Process: Ctl-c Ctl-c

Quit Flora Process: Ctl-c Ctl-d

Restart Flora Process: Ctl-c Ctl-s

Interrupting Flora-2 is equivalent to typing Ctl-c at the Flora-2 prompt. Quitting the process
stops the Prolog engine, and restarting the process shuts down the old Prolog process and starts a
new one with Flora-2 shell running.

Indentation. Flora editing mode understands some aspects of the Flora-2 syntax, which en-
ables it to provide correct indentation of program lines (in many cases). In the future, flora-mode
will know more about the syntax, which will let it provide even better support for indentation.
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The most common use of Flora-2 indentation facility is by typing the TAB-key. If flora-mode
manages to understand where the cursor is, it will indent the line accordingly. Another way is to
put the following in your emacs startup file (~/.emacs or ~/.xemacs):

(setq flora-electric t)

In this case, whenever you type the return key, the next line will be indented automatically.
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D Inside Flora-2

D.1 How Flora-2 Works

As an F-logic-to-Prolog compiler, Flora-2 first parses its source file, compiles it into Prolog syntax
and then outputs the resulting code. For instance the command

flora2 ?- _notrace(myprog).

compiles the program found in the file myprog.flr and generates the following files: myprog.P,
myprog main.xwam, and myprog.fdb (if myprog.flr contains facts in addition to rules). By default,
load(myprog) loads the program into the default user module named main. If myprog.flr contains
F-logic facts, all these facts will be compiled separately into the file myprog.fdb that is dynamically
loaded at runtime. Next, the file myprog.P is generated — take a look at “myprog main.P” to see
what has become of your Flora-2 program! — and passed to the Prolog compiler, yielding Prolog
byte code myprog.xwam, which is then renamed to myprog main.xwam. This file is then loaded and
executed. If myprog.flr contains queries, they are immediately executed by Prolog (provided there
are no errors).

In the module system of Flora-2 , the same program can be loaded into any user module. The
same program can even be loaded into two different modules at the same time, in which case there
will be two distinct copies of the same program running at the same time. For each user module,
a different byte code is generated (this is why myprog.xwam was renamed into an object file that
contains the module name as part of the file name).

The main purpose of the Flora-2 shell is to allow the evaluation of ad-hoc F-logic queries.
For example, after consulting and loading the the file default.flr from the demo directory by
launching the command ?- demo(default)., pose the following query and see what happens.

flora2 ?- ?X..kids[ // Whose kids

self -> ?K, // ... (list them by name)

hobbies -> // ... have hobbies

?H:dangerous_hobby // ... that are dangerous?

].

Flora-2 compilation. The basic idea behind the implementation of F-logic by translating it
into predicate calculus is described in [8]. It consists of two parts: translation of F-molecules into
various kinds of Prolog predicates, and addition of appropriate “closure rules” that implement the
object-oriented semantics of the logic.

Consider, for instance, the following complex F-molecule, which represents some facts about
the object Mary:

Mary:employee[age->29, kids->{Tim,Leo}, salary(1998)->100000].

As described in [8], any complex F-molecule can be decomposed into a conjunction of simpler
F-logic atomic formulas. These latter atoms can be directly represented using Prolog syntax. For
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different kinds of F-logic atoms we use different Prolog predicates. For instance, the result of
translating the above F-molecule might be:

isa(Mary,employee). // Mary:employee.

fd(Mary,age,29). // Mary[age->29].

mvd(Mary,kids,Tim). // Mary[kids->{Tim}].

mvd(Mary,kids,Leo). // Mary[kids->{Leo}].

fd(Mary,salary(1998),100000). // Mary[salary(1998)->100000].

The mvd predicate is used to encode methods that return values (as opposed to Boolean meth-
ods). The predicates isa ans sub encode the IS-A and subclass relationships, respectively. We call
these predicates wrapper predicates. Of course, Flora-2 has much more: signatures, inheritable
and non-inheritable methods, directives, and all kinds of auxiliary predicates needed to improve
efficiency.

Flora-2 facts, such as above, are then stored in a special data structure, called trie, and are
retrieved using “patch rules”, which have the form

fd(Obj,Meth,Val) :- storage_find_fact(TrieName, fd(Obj,Meth,Val)).

where storage find fact/2is an XSB predicate that retrieves facts from tries. TrieName is the
storage trie that is specifically dedicated to storing facts. There is one such trie per module.
Since programs are loaded into modules dynamically, the name of the storage trie is determined at
program load time. Also, as we shall discuss later, fd, mvd, etc., are not the actual names of the
predicates used in the encoding. The actual names have the module name prepended to them and
thus are different for different modules. Moreover, since module names are determined at program
load time, the names of the wrapper predicates are also generated at that time from predefined
templates.

The way Flora-2 rules are encoded is more complex. Consider the following rule:

Mary[parent->?X] :- Mary[father->?X].

This is translated as follows:

derived_fd(Mary,parent,?X) :- d_fd(Mary,father,?X).

This is done for a number of reasons. The prefix derived is used to separate the head predicates
from the body. It is necessary in order to be able to implement inheritance rules correctly, using the
XSB well-founded semantics for negation (not, see Section 13). The prefix used in the body of a rule,
d , is introduced in order to be able to capture undefined methods, i.e., methods those definition was
not supplied by the user (see Section 26.1). All these predicates are connected through an elaborate
set of rules, which appear in closure/*.flh files and also in genincludes/flrpreddef.flh (these
flh-files are generated from the corresponding fli-files at Flora-2 configuration time). The
following diagram shows the main predicates involved in the plumbing system that connects the
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derived and d ; the arrow <---indicates the immediate dependency relationship, i.e., that the
predicate on the right appears in the body of a rule that defines the predicate on the left.

In program rules:

derived_mvd <--- d_mvd

In auxiliary runtime libraries:

d_mvd <--- mvd

d_imvd <--- imvd

mvd <--- inferred_mvd

mvd <--- not inferred_mvd <--- derived_mvd

mvd <--- not conflict_obj_imvd <--- imvddef <--- mvd

mvd <--- imvd

mvd <--- immediate_isa

imvd <--- immediate_sub

imvd <--- inferred_imvd <--- derived_imvd

imvd <--- not inferred_imvd

imvd <--- not conflict_imvd <--- imvddef

imvddef <--- imvd

derived_mvd <--- storage_find_fact(...trie_name..., mvd(...))

Here we listed only the predicates that are used to model value-returning inheritable (imvd) and
non-inheritable (mvd) methods. A similar diagram exists for method signatures. There is additional
machinery for IS-A and subclass relationships, and for equality maintenance.

The closure axioms tie all these predicates together to implement the semantics of F-logic. In
particular, they take care of the following features:

• Computing the transitive closure of “ :: ” (the subclass relationship). A runtime check warns
about cycles in the subclass hierarchy.

• Computing the closure of “ : ” with respect to “ :: ”, i.e., if X : C, C ::D then X : D.

• Performing monotonic and non-monotonic inheritance. The predicates conflict obj imvd,
conflict imvd, immediate sub, immediate isa, are used for this purpose.

• Making sure that when the equality maintenance mode changes as a result of the executable
instruction :- equality {basic|flogic|none}, program clauses are not overwritten by the
rules specified in Flora-2 runtime libraries. This is the reason for having the wrappers
derived mvd and inferred mvd. The former appear only in the rule heads of the clauses
generated by the compiler from the clauses in the user’s program, while the latter appear
only in the rule heads in runtime libraries.
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• Providing the infrastructure for capturing undefined methods. The purpose of the d mvd/mvd
dichotomy is to provide a gap into which we inject rules (which are enabled only if runtime
debugging is turned on using Method[% mustDefine(on)]) that can capture calls to undefined
methods at run time.

Files that implement these axioms reside in the subdirectory closure/ and have the suffix .fli.
These files are used as components from which Flora-2 trailers are created. Trailers are called
so because they are typically included at the end of the compiled program. The template for all
trailers is found in includes/flrtrailer.flh. Several kinds of trailers can be generated from this
file: the no-equality trailer (whose main component is closure/flrnoeqltrailer.fli), which
maintains no equality, and the basic trailer (closure/flreqltrailer.fli), which maintains only
the standard equality axioms. There are variations of these trailers that also support F-logic
inheritance (flreqltrailer inh.fli and flrnoeqltrailer inh.fli).

When a Flora-2 program is compiled, the compiler includes the trailers into the .P file.
However, there also is a need to be able to load the trailers dynamically. First, this is needed in the
system shell, because the shell is not represented by any particular user program and so there is no
place where we can include the trailer. Second, the user might enter the executable instruction

?- setsemantics{equality(...)}

at the shell prompt and user programs can contain these instructions as part of their code. When
an equality maintenance instruction is executed for a particular module, the trailer for that module
must be compiled and loaded dynamically. (The need for this compilation will become clear after
we explain the implementation of the module system.) These trailers are stored in the user home
directory in the subdirectory .xsb/flora/. As mentioned earlier, Flora-2 uses different names
for the wrapper predicates that appear in the rule heads in user programs and those that appear
in the rule heads in trailers. This makes it possible to load the trailers (by executing the equality

instruction) at any time without overriding the user program.

The above is a much simplified picture of the inner-workings of Flora-2 . The actual translation
into Prolog and the form of the closure rules is very complex. Some of this complexity exists to
ensure good performance. Other complications come from the need to provide a module system
and integrate it with the underlying Prolog engine. The module system serves two purposes.
First, it promotes modular design for Flora-2 programs, making it possible to split the code into
separate files and import objects defined in other modules. Second, it allows Flora-2 programs
to communicate with Prolog by using the predicates defined in Prolog programs and letting Prolog
programs use Flora-2 objects. Some of these implementation issues are described in [11].

The module system. The module system is implemented by providing separate namespaces for
the various predicates used to encode F-logic formulas. First, all predicates have a “weird” prefix to
make clashes with other Prolog programs unlikely. The prefix is defined in includes/header.flh

and currently is $ $ flora. The user, of course, does not need to worry about it, unless she runs
Flora-2 programs in a very unfriendly Prolog environment in which other programs also use this
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prefix. In this case, the prefix can be made even harder to match.13

Apart from the general prefix, each predicate name’s prefix contains the module name where
this predicate is defined. Since the same F-logic program can be loaded into different modules,
the Flora-2 compiler does not actually know the real names of the predicates it is producing.
Instead, it dumps code where each predicate is wrapped with a preprocessor macro. For instance,
the predicate mvd would be dumped as

FLORA THIS WORKSPACE(FLORA USER WORKSPACE,mvd)

where FLORA THIS WORKSPACE and FLORA USER WORKSPACE are preprocessor macros. When a pro-
gram, myprog.P, which is compiled by the Flora-2 compiler, needs to be loaded into a user
module, say main, the preprocessor, gpp, is called with the macro FLORA USER WORKSPACE set to
main. Gpp replaces all macros with the actual values. For instance, the above macro expression
will be replaced with something like

_$_$_flora’usermod’main’mvd

Gpp then includes all the necessary files, and then pipes the result to the Prolog compiler. The
latter produces the object myprog.xwam file where all the predicate names are wrapped with the
user module name, as described above. This object file is renamed to myprog main.xwam. If later
we need to compile myprog.P for another user module, foo, gpp is called again, but this time it
sets FLORA USER WORKSPACE to foo. When Prolog finally compiles the program into the object file,
the file is renames to myprog foo.xwam.

It is important to keep in mind that only the predicate names are wrapped with the FLORA PREFIX

macro and a module name. Predicate arguments are not wrapped and thus, the space of object
Ids is shared among modules. However, this is not a problem and, actually, is very convenient: we
can easily refer to objects defined in other modules and yet the same object can have completely
different sets of properties in each separate module. This does not preclude the possibility of en-
capsulating objects, because only the methods need to be encapsulated — oids do not carry any
meaning by themselves.

To provide encapsulation for HiLog predicates, they are also prepended with the module name.
In particular, this implies that HiLog atomic formulas have different representation than HiLog
terms: a formula p(a,f(b)) would be encoded as

FLORA THIS WORKSPACE(FLORA USER WORKSPACE,apply)(p,a,FLORA PREFIX’apply(f,b))

The same term would be encoded differently if it occurs as an argument of a predicate of another
functor:

FLORA PREFIX’apply(p,a,FLORA PREFIX’apply(f,b))

Thus, Flora-2 implements a 2-sorted version of HiLog [3].

13 It is necessary to ensure that the resulting predicate names are symbol strings acceptable to the Prolog compiler.
Look at the macros FLORA THIS WORKSPACE and FLORA THIS FDB STORAGE in includes/flrheader.flh to see what is
involved.
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The updatable part of the database. All objects and facts that are explicitly inserted by the
program are kept in the special storage trie associated with the user module where the program is
loaded. A tries is a special data structure, which is well-suited for indexing tree-structured objects,
like Prolog terms. This workhorse does much of the grudge work in the Prolog engine. To manipu-
late the storage tries, Flora-2 uses the XSB package called storage.P, which is described in the
XSB manual. This package was originally created to support Flora-2 , but it has independent
uses as well.

All primitives in this package take a Prolog symbol, called a triehandle, a Prolog term, and
some also return status in the third argument. Here are some of the most relevant predicates:

storage insert fact(Triehandle,Term,Status)

storage delete fact(Triehandle,Term,Status)

storage insert fact bt(Triehandle,Term,Status)

storage delete fact bt(Triehandle,Term,Status)

The first two methods insert and delete in a non-transactional manner, while the last two are
transactional.

Flora-2 associates a separate triehandle (and, thus, a separate trie) with each module. The
mechanism is similar to that used for predicate names:

FLORA THIS FDB STORAGE(FLORA USER WORKSPACE)

As explained earlier, when Prolog compiles the file generated by the Flora-2 compiler, the macro
FLORA USER WORKSPACE gets replaced with the module name and out comes a unique, hard to
replicate triehandle.

Unfortunately, putting something in a trie does not mean that Prolog will find it there automat-
ically. That is, if you insert p(a) in a trie, it does not mean that the query ?- p(a) will evaluate
to true, and this is another major source of complexity that the Flora-2 compiler has to deal
with. To find out if a term exists in a trie, we must use the primitive

storage find fact(Triehandle,Term)

If the term exists in the trie identified by its triehandle, then the predicate succeeds; if the term
does not exist, then it fails. The above primitive can be used to query tries in a more general way,
with the second variable unbound. In this case, we can backtrack through all the terms that exist
in the trie.

Suppose we insert a fact, a[m->v], represented by the formula mvd(a,m,v). Since this formula
is inserted in the trie and Prolog knows nothing about it, we need to connect the trie to Prolog
through a rule like this:

mvd(O,M,V) :- storage find fact(triehandle,f(O,M,V)).

Of course, the name of the triehandle and the predicate names must be generated using the
macros, as described above, so that they could be used for any module. In Flora-2 such rules are
called patch rules.
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Since F-logic uses only about the predicates that represent F-molecules, we can create such
rules statically and let gpp wrap them with the appropriate prefixes on the fly. The problem arises
with predicates, since although they are represented using HiLog encoding using a single predicate,
this predicate can have any arity. At present we statically create patch rules for such predicates up
to a certain large arity. The static patch rules are located in genincludes/flrpatch.fli (from
which flrpatch.flh is generated by the Flora-2 installation script).

For compiled programs, the patch rules are included into the compiled code by the Flora-2
compiler. For the Flora-2 shell, however, these rules are loaded when the corresponding shell
module is created (either the default “main” module or any module that was created by the
newmodule command. This patch file is loaded exactly once per shell module and is kept in the file
.xsb/flora/patch.P, in the user’s home directory.

D.2 System Architecture

The overall architecture of Flora-2 is depicted in Figure 2. The program is first tokenized
and then the composer combines the disparate tokens into terms. Since, due to the existence
of operators, not everything looks like a term in the source program, the composer consults the
operator definitions in the file flroperator.P to get the directives on how to turn the operator
expressions into terms. Next, the parser checks the syntax of the rules and of the various other
primitives (e.g., the aggregates, updates, module specifications, etc.). The output of the parser is a
canonic term list, which represents the entire parsed program. The canonic term is taken up by the
intermediate code generator, which generates abstract code. This code is represented in a form that
is convenient for manipulation and is not yet Prolog code. The compiler might add additional rules
(such as patch rules) and Prolog instructions. The compiled program is converted into (almost)
Prolog syntax by the coder. As mentioned previously, the code produced by the compiler is full of
preprocessor macros, so before passing it to Prolog it must be preprocessed by GPP. GPP pipes
the result to Prolog, which finally produces the byte code program that can run under the control
of the Prolog emulator.

The following is a list of the key files of the system.

• flrshell.P: The top level module that implements the Flora-2 shell — a subsystem for
accepting user commands and queries and passing them to the compiler. See Section 2 for a
full description of shell commands.

• flrlexer.P: The Flora-2 tokenizer.

• flrcomposer.P: The Flora-2 composer, which parses tokens according to the operator
grammar and does other magic.

• flrparser.P: The Flora-2 parser.

• flrcompiler.P: The generator of the intermediate code.

• flrcoder.P: The Flora-2 coder, which generates Prolog code.
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Figure 2: The architecture of the Flora-2 system.

• flrutils.P: Miscellaneous utility predicates for loading programs, checking if files exist,
whether they need to be recompiled, etc.

Additional system libraries are located in the syslib/ subdirectory. These include the various
printing utilities, implementation for aggregates, update primitives, and some others. The compiler
determines which of these libraries are needed while parsing the program. When a library is needed,
the compiler generates an #include statement to include an appropriate file in the syslibinc

directory. For instance, to include support for the avg aggregate function, the compiler copies the
file syslibinc/flraggavg inc.flh to the output .P file. Since syslibinc/flraggavg inc.flh

contains the code to load the library syslib/flraggavg.P, this library will be loaded together with
that output file. The association between the libraries and the files that need to be included to
provide the appropriate functionality is implemented in the file flrlibman.P, which also implements
the utility used to load the libraries.

While syslib/ directory contains the libraries implemented in Prolog, the lib/ directory con-
tains libraries implemented in Flora-2 itself. Apart from that, the two types of libraries differ in
functionality. The libraries in syslib/ implement the primitives that are part of the syntax of the
Flora-2 language itself. In contrast, the libraries in lib/ are utilities that are part of the system,
but not part of the syntax. An example is the pretty-printing library. Methods and predicates
defined in the libraries in lib/ are accessible through the @ libname system module and (unlike
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user modules) they are loaded automatically at startup.

There are several subdirectories that hold the various files that contain definitions included at
compile time. These will be described in a technical document.

A number of other important directories contain the various included files (many of which
include other files). The directory flrincludes/ contains the all-important flora terms.flh file,
which defines all the names used in the system. These names are defined as preprocessor macros, so
that it would be easy to change them, if necessary. The directory genincludes/ currently contains
the already mentioned patch rules. The file flrpatch.fli is a template, and flrpatch.flh, which
contains the actual patch rules, is generated from flrpatch.fli during the installation.

The directory includes/ contains (among others) the header file, which defines the a number of
important macros (e.g., FLORA THIS WORKSPACE) that wrap all the names with prefixes to separate
the different modules of the user program. The directory headerinc/ is another place where the
template files are located. Each of these files contains just a few #include statements, mostly for the
files in the closure/ directory (which, if you recall, contains pieces of the trailer). All meaningful
combinations of these pieces of the trailer are represented in the file includes/flrtrailer.flh.
(Recall that trailers implement the closure axioms.)

The directory p2h contains (the only!) C program in the system. It implements conversion of
Prolog terms to HiLog and back. Finally, the pkgs/ directory is empty. Some day it will contain
add-on programs, such as Internet access, etc.
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