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Abstract. To identify modules of interacting molecules often gene expression is
analyzed with clustering methods. Constrained or semi-supervised clustering pro-
vides a framework to augment the primary, gene expression data with secondary
data, to arrive at biological meaningful clusters. Here, we present an approach us-
ing constrained clustering and present favorable results on a biological data set of
gene expression time-courses in Yeast together with predicted transcription factor
binding site information.

1 Introduction

Life on the biochemical level is driven by large molecules acting in concert
following complex patterns in response to internal and external signals. Un-
derstanding these mechanisms has been the core question of molecular biology
for the time since discovery of the DNA double helix. Ideally, one would like
to identify detailed pathways of interaction. Unfortunately, this is often im-
possible due to data quality and the superposition of many such pathways
in living cells. This dilemma led to the study of modules—sets of interact-
ing molecules in one pathway—as identifying such modules is comparatively
easy. In fact, clustering easily available mass data such as gene expression lev-
els, which can be measured with DNA microarrays simultaneously for many
genes is one approach for identifying at least parts of modules: for example
co-regulated genes which show similar expression levels under several exper-
imental conditions due to similarities in regulation.

The effectiveness of this approach is limited as we cluster based on observ-
able quantities, the gene expression levels, disregarding whether the observed
level can arise due to the same regulatory mechanism or not. Considering
this information during the clustering should yield biologically more helpful
clusters. Here we are dealing with primary data, the gene expression lev-
els, augmented with secondary data, for example transcription factor (TF)
binding information1 Unfortunately, such secondary data is often scarce, in
particular if we require high quality data.

1 Transcription factors are essential for inhibiting or enhancing the production of
proteins encoded in a gene.
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Constrained clustering constitutes a natural framework. It is one of the
methods exploring the gamut from unsupervised to supervised learning and
it uses the secondary data to essentially provide labels for a subset of the
primary data. Semi-supervised techniques have successfully been employed
in image recognition and text classification (Lange et al. (2005), Lu and Leen
(2005), Nigam et al. (2000)). Hard constraints for mixture models (Schliep
et al. (2004)) were, to the best of our knowledge, the first application of
constrained clustering in bioinformatics which showed the effectiveness of
highest quality must-link or positive constraints indicating pairs of genes
which should be grouped together. Here we use a soft version (Lange et al.
(2005)) which can cope with positive (must-link) and negative constraints
(must-not-link) which are weighted with weights from [0, 1].

Constrained learning is used to estimate a mixture model where compo-
nents are multi-variate Gaussians with diagonal covariance matrices repre-
senting gene expression time-courses. The secondary data consists of occur-
rences of transcription factor binding sites in upstream regions of yeast genes.
Its computation is based on methods proposed in Rahmann et al. (2003) and
Beer et al. (2004). The more transcription factor binding sites (TFBS) two
yeast genes have in common, the more likely it is that they are regulated in
a similar manner, which is reflected in a large positive constraint. Previously,
we showed that even modest noise in the data used for building constraints
actually will result in worse clustering solutions (Costa and Schliep (2006));
the main contribution here is the careful construction of the secondary data
set and the method for evaluating the effectiveness of using constraints.

2 Methods

A mixture model (McLachlan and Peel (2000)) is defined as

P[xi|Θ] =

K∑

k=1

αkP[xi|θk], (1)

where X = {xi}
N
i=1 is the set of (observed) data. The overall model param-

eters Θ = (α1, ..., αK , θ1, ..., θK) are divided into the probabilities αk, i =
1, ..., K which add to unity for the model components P[xi|θk] and the
θk, k = 1, ..., K, which describe the multi-variate Gaussians components of
the mixture. One now aims at maximizing (1) by choosing an optimal pa-
rameter set Θ. This problem is routinely solved by the EM algorithm, which
finds a local optimum for the above function by involving a set of hidden
labels Y = {yi}

N
i=1, where yi ∈ {1, ..., K} is the component, which generates

data point xi. For details of the EM algorithm see Bilmes (1998).
In addition to the data xi one is now given a set of positive respectively

negative constraints w+

ij resp. w−

ij ∈ [0, 1], which reflect the degree of linking
of a pair of data points xi, xj , 1 ≤ i < j ≤ N . The task is to integrate
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these constraints meaningfully and consistently into the EM routine. We will
explain the essence of the solution proposed in Lange et al. (2005) and applied
in Lu and Leen (2005) and Costa and Schliep (2006). Computation of the
Q-function in each step of the EM-algorithm requires the computation of
the posterior distribution P [Y |X, Θ] over the hidden labels yi, where Θ is an
actual guess for the parameters. By Bayes’ rule we have

P[Y |X, Θ] =
1

Z
·P[X |Y, Θ] ·P[Y |Θ], (2)

where Z is a normalizing constant. The constraints are now incorporated
by, loosely speaking, choosing as prior distribution P[Y |Θ] the one, which is
“most random” without that the constraints and that the prior probabilities
αk in Θ get violated. In other words, we choose the distribution, which obeys
the maximum entropy principle and is called the Gibbs distribution (see Lange
et al. (2005) for a theoretical setting and Lu and Leen (2005) for formulas
and further details):

P[Y |Θ] =
1

Z

∏

i

αyi

∏

i,j

exp(−λ+w+

ij(1 − δyiyj
) − λ−w−

ijδyiyj
), (3)

where Z is a normalizing constant. The Lagrange parameters λ+ and λ−

define the penalty weights of positive and negative constraints violations.
This means that increasing λ+, λ− leads to an estimation, which is more
restrictive with respect to the constraints. Note that computing (2) is usually
infeasible and thus requires a mean field approximation (see again Lange et
al. (2005) and Lu and Leen (2005) for details). Note, finally, that when there
is no overlap in the annotations—more exactly, w+

ij ∈ {0, 1}, w−

ij ∈ {0, 1},

w+

ijw
−

ij = 0, and λ+ = λ− ∼ ∞—we obtain hard constraints as the ones used
in Schliep et al. (2005), or as implicitly performed in Pan (2006).

2.1 The Gene-TFBS-Matrix (GT-Matrix)

The computational basis for the constraints is a binary valued incidence ma-
trix, where the rows correspond to genes and the columns correspond to
transcription factor binding sites (TFBS). A one indicates that, very likely,
the TFBS in question occurs in the upstream region of the respective gene.

In a first step TFBS profiles were retrieved from the databases SCPD
and TRANSFAC. In addition to consensus sequences for reported profiles we
computed conserved elements in the upstream regions of the yeast’s genes by
means of the pattern hunter tool AlignACE. In a second step we removed
redundant patterns resulting in 666 putative TFBS sequence patterns. We
then computed positional weight matrices (PWM) from these patterns by
using G-C-rich background frequencies to contrast the patterns, following
Rahmann et al. (2003).
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With the PWMs we computed p-values for the occurrence of a TFBS
in the upstream region of a gene by means of the following Monte Carlo
approach. First, we generated 1000 G-C-rich sequences of the length of the
upstream sequences (800bp). We then computed a score for each of the 1000
random sequences and each of the 666 PWMs by sliding a window of the
length of the PWM in question over the sequence and adding up the values
given by the PWM. We thus obtained, for each of the PWMs, a distribution
of scores in sequences of length 800. We finally set a one in the GT-matrix if
the score of an upstream sequence of a gene (obtained by the same procedure
as for the random sequences) was below a p-value of 0.001 compared to the
distribution given through the random sequences. We note that we chose a
very restrictive p-value as TFBS analysis usually is very easily corrupted by
false positive hits (Rahmann et al. (2003), Claverie and Audic (1996)) and
false positives negate the benefits of constrained clustering.

2.2 Constraints

From the GT-Matrix we compute positive and negative constraints. We re-
mind the reader that, by means of the GT-Matrix we have, for each of the
genes, a binary valued vector of length 666. One is now tempted to, say, define
the positive constraint between two genes to be proportional to the number
of positions where the binary vectors of the two genes have a one in common
(thus indicating that there is a transcription factor acting on both of the
genes) and, likewise, to set the negative constraint to be proportional to the
number of positions where exactly one of the genes has a one (thus indicating
that there is a transcription factor which acts on one but not on both of the
genes). Yet, although we expect seeing a one in only one of 1000 genes in
each of the columns of the matrix according to the p-value of 0.001, there are
PWMs, which occur frequently (up to 90 percent) in the genes’ upstream se-
quences. This indicates that there are heterogeneities in the upstream regions
in general. It may also be due to the computation of the TFBSs as conserved
elements of the upstream sequences themselves.

To address this we computed for each TFBS z the frequency of occur-
rence pz within the genes and defined the positive (w+

ij) and negative (w−

ij)
constraints for two genes i and j as follows. Let Miz denote the GT-Matrix

entry for gene i and TFBS z and set

w+

ij := γ+ · #{x : p2
z ≤ 0.01, Miz = Mjz = 1}.

That is, w+

ij is up to a scaling factor γ+, the number of TFBSs, which occur
with a p-value of 0.01 or less in both genes i and j. Similarly, we define

w−

ij := γ− · (#{z : pz(1 − pz) ≤ 0.01, Miz = 1, Mjz = 0}

+ #{z : pz(1 − pz) ≤ 0.01, Miz = 0, Mjz = 1}).
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2.3 Relevant constraints

Constrained clustering profits from information of two datasets—the orig-
inal, primary dataset and the secondary one, from which constraints are
computed. When the influence of the secondary dataset is increased, clus-
ter results change. To identify which constraints cause changes we computed
the pairs of genes in one cluster, which were in the same cluster in the un-
constrained clustering and in distinct clusters in the constrained case or vice
versa. Lists of positive and negative constraints for pairs of genes identified
ranked by constraint weight serve as the basis for further analysis. This way
we identified the TFBSs which had the largest contribution to changes in the
clustering.

3 Results

As in Costa and Schliep (2006) we used 384 yeast cell cycle gene expression
profiles (YC5) for analysis. YC5 is one of the rare examples of a dataset where
high quality labels are available for each gene as each of them is assigned to
one of the five mitotic cell cycle phases. Because of the synchronicity of the
profiles within one group (corresponding to one of the five phases), we opted
for multivariate Gaussians with diagonal covariance matrices as components
in the mixture model. We initialized the mixture estimation procedures by
means of an initial model collection algorithm presented in Schliep et al.
(2005). The clustering solution was obtained from the mixture by assigning
each data point to the component of highest posterior probability.

3.1 Clustering statistics

We estimated mixtures for varying values of the Lagrangian parameters
λ+, λ−. Let TP resp. TN denote the amounts of pairs of genes correctly
assigned to one resp. two clusters out of P resp. N many according to the
true labels. Then, we computed Sens = TP

P
and Spec = TN

N
, and the cor-

rected Rand, which can be perceived as a significance level for the clustering
of being distinct from a random distribution of the genes over the clusters,
to monitor the effects of an increasing influence of the constraints (Fig. 1).

While the positive constraints improve sensitivity, the negative constraints
slightly improve specificity. One also sees a considerable improvement of the
corrected Rand for the addition of positive constraints and a slight improve-
ment for the negative constraints. Taking into account both positive and
negative constraints one sees improvements in all of the three statistics. How-
ever, there does not seem to be a synergy of the positive effects of the two
kinds of constraints. This may be an indication for contradictions within the
constraints and suggests some “contradiction purging” as a future area of
research.
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Fig. 1. We depict the CR, Spec and Sens with only positive (left), only negative
(middle) and both positive and negative (right) constraints for increasing values of
the Lagrangian parameters λ+, λ−.

3.2 Gene Ontology (GO) statistics

To validate the clustering quality from a biological point of view we compare
the p-values from enrichment of Gene Ontology terms in a procedure similar
to the one performed in Ernst et al. (2005). More specifically, we computed
GO term enrichment using GOStat (Beissbarth and Speed (2004)) for an
unconstrained and a constrained (λ+ = λ− = 1.35) mixture estimation as
described above. We selected all GO terms with a p-value lower then 0.05 in
both clusterings and plotted the − log(p-values) of these terms in Fig. 2.
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Fig. 2. Scatter plot comparing the GO Term enrichment of the unconstrained (x-
axis) and constrained (y-axis) results. Points above the diagonal line indicate higher
enrichment in the constrained case, while values below indicate higher enrichment
in the unconstrained case.

We found smaller p-values for the constrained clustering and compile a
list of GO Terms, which display high log-ratios in Table 1. The constrained
case had 16 of such GO terms, 10 out of these are directly related to biological
functions or cell compartments related to cell cycle (big dots in Fig 2 and
GO terms in italic in Table 1). On the other hand, only five GO terms had a
higher enrichment in the unconstrained case, all with a significant lower log
ratio then in the constrained case. From those, the first four are related to
chromatin structure and nucleosome, which is related to the S phase of cell
cycle.
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Table 1. List of GO Terms for which the log ratio of the p-values is higher then
4.0 (or | log((p-values Const.)/(p-values Unconst.))| > 4.0). Positive ratios indicate
a higher relevance of the term in a cluster from the constrained case, while negative
ratios indicates higher relevance in a cluster from the unconstrained case

GO Term ID GO Term p-value log ratio

GO:0005694 chromosome 99.6581
GO:0009719 response to endogenous stimulus 44.9090
GO:0000278 mitotic cell cycle 27.6137
GO:0003677 DNA binding 11.7053
GO:0044427 chromosomal part 9.7880
GO:0007010 cytoskeleton organization and biogenesis 9.7352
GO:0000228 nuclear chromosome 8.9036
GO:0043232 intracellular non-membrane-bound organelle 8.6498
GO:0043228 non-membrane-bound organelle 8.6498
GO:0044454 nuclear chromosome part 7.5673
GO:0007049 cell cycle 7.4107
GO:0006259 DNA metabolism 6.9792
GO:0044450 microtubule organizing center part 5.6984
GO:0006281 DNA repair 4.9234
GO:0007017 microtubule-based process 4.7946
GO:0006974 response to DNA damage stimulus 4.0385

GO:0000786 nucleosome -8.3653
GO:0000788 nuclear nucleosome -8.3653
GO:0000790 nuclear chromatin -5.1417
GO:0000785 chromatin -5.1333
GO:0016043 cell organization and biogenesis -4.8856

As described in subsection 2.3 we computed the constraints which had a
relevant impact on the clustering statistics. We found (not shown) that the
TFBS data particularly helped correctly classifying genes, which belong to
cell cycle phases late G1 and S which is consistent with the gene expression
time-course data set used. Further manual analysis of the relevant constraints
and investigation of the TFBSs involved will likely provide insights in mech-
anisms which are not discoverable from gene expression alone.

4 Conclusion

Constrained clustering is a very useful tool for analyzing heterogeneous data
in molecular biology, as there is often an abundant primary data source avail-
able (e.g., gene expression, sequence data) which can be made much more
useful by integration of high-quality secondary data. However, as the results
by Costa and Schliep (2006) show, constrained clustering cannot be applied
straight-forwardly even to secondary data sources which are routinely used
for biological validation of clustering solutions. Point in case: the predicted
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TFBS information used here improves results whereas the experimental chip-
on-chip data used by Costa and Schliep (2006) does not. This is likely due
to higher error rates in the experimental data and a lack of quality measure
for each individual experiment, which precludes filtering on quality. Noise re-
duction in constraints, resolution of conflicts between positive and negatives
constraints and measure of constraint relevance are open questions which
need to be addressed.
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