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Abstract. We propose a method for global validation of gene cluster-
ings. The method selects a set of informative and non-redundant GO
terms through an exploration of the Gene Ontology structure guided
by mutual information. Our approach yields a global assessment of the
clustering quality, and a higher level interpretation for the clusters, as
it relates GO terms with specific clusters. We show that in two gene
expression data sets our method offers an improvement over previous
approaches.
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1 Introduction

With the advent of DNA microarrays there has been a great deal of work on clus-
tering methods for the analysis of data from large-scale gene expression experi-
ments. The main idea behind these approaches is to find clusters of co-expressed
genes, providing biologists with genes regulated in a similar manner [9]. While
most of these approaches yielded useful analysis of gene expression data, the
evaluation of the biological relevance of the clusters is still a difficult task. There
is little guidance available for choosing a clustering method [8]. There is also
no established framework for evaluation of gene clusterings resulting from these
methods exists.

The biological interpretation of clusters has been addressed, for instance, by
comparing the results with available functional genomics data, such as provided
by the Gene Ontology (GO) project [2] (see Section 2.1 for more details). One
common approach is to search for GO terms (functional annotations) that are
significantly enriched within a cluster of genes [3, 4]. Although this allows a bio-
logical interpretation of individual clusters of genes, it gives no global assessment
on the “quality” of a gene clustering (or a set of clusters) returned by a clustering
method.
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Recently, there have been proposals of global indices for the validation of
gene clusterings [6, 10]. However, in contrast to the approaches in [3, 4], these
validation methods provide no “biological” interpretation of their assessments.
Furthermore, they do not take several important features of GO into account.
For example, the GO structure (direct acyclic graph or DAG) presents a parent-
child relation, which implies that a term inherits all annotations of its immediate
descendent [1, 11]. This makes the annotations of a GO term highly redundant
with respect to terms “near” in the GO DAG. The use of redundant terms
possibly introduces a bias in the global index, since contributions of GO terms
that have many siblings will have a higher weight [10].

Motivated by the limitations presented above, we present a method that
provides a global validation measure of gene clusterings. The method works by
selecting a set of informative and non-redundant GO terms through an explo-
ration of the Gene Ontology structure with the mutual information measure [7].
By informative, we mean terms that help to discriminate between clusters in a
clustering. Additionally, by taking the parent-child relationship into account, our
method detects a list of non-redundant GO terms within the informative ones.
With this set of terms, we can calculate, as in [6, 10], a global fitness measure of
the clustering. Furthermore, our method relates a set of informative GO terms
to a particular cluster, which provides a biological interpretation of the results.

1.1 Related Work

One of the first applications that used GO for evaluating groups of genes was the
so called GO Term Enrichment (TE) analysis. By means of a statistical test, such
as the Fisher exact test, one can estimate a p-value indicating whether a signifi-
cant fraction of genes in a cluster is annotated with a specific GO term [3, 4]. This
approach has some limitations as it assumes independence between GO terms,
and it suffers from the multiple testing problem [?]. More recent methods [1,
11] take the dependencies of GO terms caused by the parent-child relations into
account. In particular, the Parent-Term Enrichment method (PE) [11] assumes
that whenever a particular term is enriched, so are its parents. Thus, it yields a
more refined selection of GO terms.

All these methods have been shown useful and have found widespread use in
the interpretation of individual clusters of genes. However, as previously men-
tioned, they do not produce a global assessment of how “biologically relevant”
a given gene clustering is.

A global index for evaluating gene clusterings with GO was presented in [10].
This index, based on an approximation of mutual information, is able to discrim-
inate between results of clustering methods from random cluster assignments.
In [6], an external index was proposed for a similar task. However, neither of
these two approaches account for any biological interpretation of the results. A
further extension of [10] was presented in [14], where an informative set of GO
terms is collected and the exact mutual information is computed. This method,
however, has a high computational cost. It is exponential in the number of se-
lected GO terms. Thus, in practice, only a small set of GO terms can be chosen.
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Putting our approach into perspective, it combines the characteristics of
“global indices”, such as [10], with the interpretability of the “local” approaches
such as [1, 3, 11]. Also, in contrast to [14], we constrain the selection of terms
within the GO structure, yielding a more efficient computational procedure. This
also makes the identification of redundant GO terms possible, which decreases
bias of the global index towards GO terms having many siblings.

2 Method

2.1 Gene Ontology

The Gene Ontology (GO) project is a collaborative effort to address the need for
consistent descriptions of gene products in different databases [2]. Three struc-
tured controlled vocabularies (ontologies) describe gene products in terms of
their associated biological processes, cellular components and molecular func-
tions in a species-independent manner—cellular component describes compo-
nents in which genes are active (e.g., rough endoplasmic reticulum); molecular
function contains concepts related to gene function (e.g., catalytic activity); and
biological process describes the processes that a gene can take part of (e.g.,
cellular physiological process).

More formally, a given Gene Ontology (GO) is represented by a directed
acyclic graph (DAG), in which each node ti in a set T = {t1, ..., tN} represents a
biological term (controlled vocabulary or GO term) and the edges stand for a set
of relationships R among these terms. A relationship R(ti, tj) ∈ R means that
term ti is a parent of term tj . Such a relation is interpreted as tj is a subclass
of ti—i.e., ti is a more general concept than tj . For instance, the biological term
“cell cycle” is related to the more specific terms “mitotic cell cycle” and “meiotic
cell cycle”.

A set of genes G = {g1, ..., gM} is related to a given GO by an annotation
set A, where A(ti, gm) ∈ A indicates that gene gm is annotated with term ti.
Genes often have multiple biological roles, so they are usually annotated with
several GO terms. Furthermore, the parent-child relation of GO implies that
genes annotated to a term are also annotated to all parents of this term. That
is, for all R(ti, tj) ∈ R, given a gene gm, A(tj , gm)→ A(ti, gm).

2.2 Selecting Informative GO Terms by Mutual Information Gain

In order to select a set of non-redundant and informative GO terms, we explore
the DAG structure of GO and the parent-child relation. By informative terms
we refer to terms that help to discriminate a cluster from others in a clustering.
This can be measured with the mutual information, which is a general measure
of dependence between two random variables [7]. In our case, the mutual infor-
mation provides a systematic quantitative measure of the relationship between
cluster membership and GO term membership of a set of genes. We call redun-
dant terms the ones that annotate a similar set of genes. Recall the parent-child
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relation R(ti, tj), as ti also annotates all terms tj annotates, we expect that ti
is informative whenever tj is.

Our selection procedure—called MutSel—works bottom-up as follows. For a
given GO, a set of genes G and its respective annotation set A, we start with a
candidate collection of terms S with unitary sets, each one containing a leaf node
(a node of the DAG without descendants). Such a collection corresponds to the
most specific annotations present in GO for genes in G. From these we calculate
the gain in mutual information, with respect to the cluster membership, when
joining each set si ∈ S either with other adjacent (or neighboring) set or with
parent terms not included in the candidate sets S.

The set of adjacency relations, D, is defined by the parent-child relation,
where sets sp and sq are adjacent, D(sp, sq), if and only if there exists terms
ti ∈ sp and tj ∈ sq, such that R(ti, tj) ∈ R or R(tj , ti) ∈ R. At each step,
we select the pair of adjacent sets that yields the higher non-negative mutual
information gain, joining them in a new set of terms. This step is equivalent to
looking for more general terms in the GO DAG, which are more informative to
the clustering results. We repeat this step until no mutual information gain is
possible.

More formally, let Xp be a discrete random variable with alphabet X = {0, 1}
representing the annotation of sp, where an observation x takes the value 1 if a
term in sp annotates it, or zero otherwise. Respectively, the random variable Y
with alphabet Y = {1, ...,K} represents the cluster assignment, where a obser-
vation y takes value k if it belongs to cluster k. The mutual information gain,
MIG(Xp, Xq|Y ), of joining two adjacent sets sp and sq in the context of cluster
membership Y is defined as

MIG(Xp, Xq|Y ) = MI(Xp ∨Xq, Y )−MI(Xp, Y )−MI(Xq, Y ), (1)

where MI denotes the mutual information, and Xp ∨Xq the variable resulting
in the union of sets sp and sq. The mutual information, MI, is defined as,

MI(Xi, Y ) =
∑
x∈X

∑
y∈Y

P[Xi = x, Y = y] log
(

P[Xi = x, Y = y]
P[Xi = x]P[Y = y]

)
, (2)

MI(Xi, Y ) ≥ 0, with equality only if both variables Xi and Y are independent.
For a given set of genes G, we have a set of observations {xi

1, ..., x
i
M}, where

xi
m = 1 if ti annotates gene m, 0 otherwise. Respectively, we have a set of

observations {y1, ..., yM}, where ym = k denotes that gene m belongs to cluster
k. From these observations, we can obtain the following estimates for computing
MI(Xi, Y ),

P[Xi = j, Y = k|G] =
1
M

M∑
m=1

1{xi
m = j}1{ym = k}, (3)

P[Y = k|G] =
1
M

M∑
m=1

1{ym = k} (4)
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where 1 is a indicator function, j ∈ X and k ∈ Y.
Figure 1 illustrates our method. On the left (Figure 1 (a)), we depict a simple

example of a DAG with 7 terms. In Figure 1(b), we display a table, where the
rows corresponds to the random variables Xi and the columns the genes from
set G. An one in position (i, j) indicates that gene j is annotated with term i.
The last line, Y , indicates the assignment of genes to one of the two the clusters
considered. At each node of the DAG in Figure 1(a), we display the cluster counts
and the mutual information of the respective term. For example, in Term7, “1/3”
means that this term annotates one gene from cluster 1 and three genes from
cluster 2. The value 0.258 corresponds to the mutual information. Terms with
good discriminative power in relation to Y display a higher MI (e.g., Term2 and
Term7) than non-discriminative terms (e.g Term1 and Term4).
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Fig. 1. We depict on the left (a) an example of a simple DAG, on the top right (b) a
table describing the terms annotations to a set of 11 genes and on the bottom right (c)
a list of candidate join operations and the respective MIG.

Starting with a collection S = {s1, ..., sP } such that sp = {tl} where tl is a
leaf from GO DAG, and D is the adjacency list, the algorithm works as follows:

1. while maxD(si,sj)∈DMIG(Xi, Xj |Y ) ≥ 0 do
2. D(sp, sq) = arg maxD(si,sj)∈DMIG(Xi, Xj |Y )
3. join(sp, sq)
4. update(D)
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The algorithm returns a collection S of groups of GO terms. Given that we
join only parent terms, each of these groups constitutes a sub-DAG from GO.
From these, we can select the most general terms, or the terms without any
parent node within a group sp as the representative term(s) of sp. All other
terms in the group can be considered as redundant, since they will carry the
same or less information than the representative terms. Furthermore, we can
also relate a given group of terms sp with a cluster in k′

k′ = arg max
k∈Y

MI(Xp, Y = k). (5)

Figure 1(c) illustrates a simple example of the method. There, we display
the MIG from joining candidate sets of terms. The selection method starts with
the leaf nodes Term5 and Term7. It then looks for neighboring terms, whose
unions with the leaves has non-negative MIG. For example, Term5 has Term3
and Term4 as parents. While joining Term4 and Term 5 (X4 ∨ X5) yields a
negative MIG, merging Term3 and Term5 (X3 ∨X5) produces a positive MIG.
Thus, the latter are chosen. In the end, the method returns two groups of terms
{Term2,Term3,Term4,Term5} and {Term6,Term7}: the former is related to clus-
ter 1 and the latter to cluster 2. From these groups, the method selects Term2
and Term6 as representative terms, since they constitute the most general terms
within these groups; and the other terms in the sets {Term3,Term4,Term5} and
{Term7} are regarded as uninformative, since their annotations are also present
in the informative terms Term2 and Term6.

2.3 Validation Index

We use the index proposed in [10] to obtain a global measure of fitness by
comparing a clustering (partition) with the set of terms selected with MutSel.
Again, we have a random variable Y defining the clustering results, and the
random variables {X1, ..., Xp, ..., XP } corresponding to the annotation vectors
of group of terms selected above. The measure in based on the approximation
of the joint mutual information MIapp(X,Y ) as proposed in [10],

MIapp(X,Y ) =
P∑

p=1

MI(Xp, Y ). (6)

As discussed in [14], this approximation assumes independence between vari-
ables from X, which does not hold for most selections of GO terms, given the
high dependency between GO term annotations. An alternative to improve the
approximation of Eq. 6 is to select a set of terms with low annotation redun-
dancy. To tackle this problem, [10] introduces a parameter U , also based in
the mutual information, which excludes redundant terms from the computation.
The smaller the value of U is, the less redundancy will be allowed in the set
of terms X used for computing Eq. 6. Note that MutSel joins terms displaying
dependencies caused by the parent-child property of GO annotations in a prin-
cipled fashion, automatically excluding redundant terms and requiring no extra
parameter.
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To quantify deviation from randomness, we compute a z-score by repeating
the MutSel procedure with random cluster assignments as performed in [10].
The random clusterings are draw with the same cluster size distribution as the
evaluated clustering. More formally, from a given real clustering Y , its selection
of GO terms X, a random clustering Y r, its selection of GO terms Xr, then we
have,

zMIapp

=
MIapp(X,Y )− µr

σr
. (7)

where µr = Mean(MIapp(Xr, Y r)) is the mutual information mean for L random
clusterings and σr = Var(MIapp(Xr, Y r))1/2 is the standard deviation of the
mutual information from L random clusterings. Hereafter, we refer to zMI as
the index proposed [10], and zMutSel as the index from Eq. 7 after selection of
GO terms by MutSel.

3 Experiments

We evaluate our method on two typical scenarios of gene expression data analy-
sis. First, we inspect the selection of GO terms in a differential gene expression
analysis, where a group of induced and a group of repressed genes after treat-
ment of yeast were identified [12]. This data, where two clusters of genes are
given beforehand and no clustering analysis is needed, allow us to evaluate the
“biological relevance” of the selection of GO terms, since the biological processes
behind these two clusters are well characterized. In the second experiment, we
perform a small scale comparison of clustering methods on a yeast cell cycle
data set. This data set has been manually labeled [5], allowing us to compare
our index and the prior approach [10] to the expert manual annotation.

3.1 Yeast Treatment (YT)

Gene expression of yeast was measured at particular time points after the treat-
ment with sulfometuron methyl (SM) [12]. We use a group of 241 induced genes
and a group of 121 repressed genes 4h after treatment with 5µg/ml of SM. This
clustering gives a simple scenario to evaluate our method, since the biological
processes behind theses two clusters are well characterized [12].

3.2 Yeast Cell Cycle (YCC5)

This dataset represents the expression levels of over 6,000 genes during two
cell cycles from Yeast measured in 17 time points [5]. We used a subset YCC5,
of 384 genes visually identified to peak at five distinct time points [5], each
representing a distinct phase of cell cycle (Early G1, Late G1, S, G2 and M).
Hereafter, this subset will be referred to as YCC5. The expression values of each
gene were standardized, which can enhance the performance of model-based
clustering methods, when the original data consists of intensity levels.
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In relation to the clustering methods, we performed analysis with hierarchical
clustering (Hier) [9], k-means [?], mixture of multivariate Gaussians with diag-
onal covariance matrix (MixGaus) [?] and mixtures of Hidden Markov models
(MixHMM) [13]. We set the number of clusters to be equal to 5 in all methods (as
this is the number of classes in the manual annotation). For k-means, MixGauss
and MixHMM, we initialize models randomly, perform clustering 15 times, and se-
lected the solution with minimal error criteria (see [13] for details). For k-means
and hierarchical clustering, we used Pearson correlation as a similarity measure.

4 Results

4.1 GO Term Selection

In order to evaluate our method with respect to the selection of “biologically
relevant” GO terms, we use the set of repressed and induced genes from the
study on response of yeast to a inhibitor of amino acid synthesis [12] introduced
in Section 3.1. Table 1 depicts the top five informative GO terms, from the
Biological Process GO, for the induced genes (first five rows), as well as for the
repressed ones (last five rows). The columns represent the GO term id, the GO
term name, the counts of induced genes, the counts of repressed genes, and the
mutual information.

As highlighted in [12], induced genes were mainly related to molecule trans-
port, amino acid biosynthesis and nitrogen metabolism. Indeed, all terms from
Table 1, with exception of “vitamin biosynthetic process”, are directly related
to these processes. Among the repressed genes, the study detected genes related
to carbohydrate and lipid biosynthesis, translation, cell cycle and ribosome. All
terms listed in Table 1 bottom are either directly related or more general terms
describing these processes.

Table 1. Top five informative GO terms, from the Biological Process GO, for induced
(top) and repressed (bottom) genes

Term ID Term Name #I #R MI

GO:0006807 nitrogen compound metabolic process 68 14 0.022
GO:0009110 vitamin biosynthetic process 14 0 0.022
GO:0006519 amino acid and derivative metabolic process 60 13 0.018
GO:0016769 transferase activity, transferring nitrogenous groups 11 0 0.017

GO:0009059 macromolecule biosynthetic process 16 36 0.051
GO:0051301 cell division 3 10 0.019
GO:0008610 lipid biosynthetic process 4 11 0.018
GO:0022613 ribonucleoprotein complex biogenesis and assembly 2 7 0.014
GO:0044265 cellular macromolecule catabolic process 9 14 0.013

We also compare, in the context of YT, the GO terms selected with MutSel
with the ones obtained with well-known methods, such as the Term Enrichment
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(TE) [3] and the Parent-Term enrichment (PE) [11]. Table 2 summarizes this
comparison. Its rows correspond to, respectively, the set of induced and repressed
genes in the dataset YT. The columns of the first part correspond to, respectively,
the number of terms selected with PE (p-value lower then 0.05), the number
of terms selected with MutSel, and the intersection of both sets. Likewise, in
following columns, we present the number of terms selected with TE (p-value
lower then 0.05), the number of all terms (informative and redundant) selected
with MutSel (we refer to this set as MutSelAll), and the intersection of both
sets.

Analyzing the results presented in Table 2, the informative terms selected by
our method are mainly a smaller subset of genes enriched in PE; 85% of terms
related to the cluster of induced genes and 81% of terms related to the cluster of
repressed genes detected by MutSel are also selected in PE. Likewise, the result
obtained with TE, which does not filter redundant terms, is comparable to the set
of all terms (informative and redundant) selected by MutSel. Again, the terms
indicated by the MutSelAll was a small subset of PE; 84% for the cluster of
induced genes and 100% for the cluster of repressed genes.

To further investigate the distinction between these methods, we measure
the redundancy of annotation of GO terms. For two GO terms, redundancy
can be measure by computing their mutual information (MI): redundant terms
have higher mutual information values. More precisely, we compute the mutual
information between all pairs of GO terms from a given set, select the maximum
MI for each term and average the values. For the cluster of induced genes, terms
obtained with MutSel, MutSelAll, PE, and TE had a MI mean of, respectively,
0.154, 0.219, 0.271, and 0.275. For the set of repressed genes, these values were,
respectively, 0.097, 0.168, 0.198, and 0.185. In both cases, the methodologies
taking the parent-child property into account displayed lower MI than their
counterparts. In general, MutSel presented lower MI values, which demonstrates
its ability to select a set of non-redundant terms.

Table 2. Comparison of the number of GO terms selected with MutSel, MutSelAll,
TE and PE in the analysis of dataset YT.

PE MutSel ∩ TE MutSelAll ∩
Induced 41 13 11 79 39 33
Repressed 79 22 18 159 80 80

4.2 Comparison of Clustering Methods

We display in Table 3, for dataset YCC5, the rankings of the results from the
four clustering methods, according to the different indices. More precisely, we
list the rank of the methods according to zMI for five choices of U and zMutSel.
After each method name we display the mean values for 10 replications of the
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z score. The last line corresponds to the corrected Rand (CR) [?] of comparing
the clustering assignment with the manual labeling. We used the original imple-
mentation to obtain values from zMI (available at http://llama.med.harvard.
edu/cgi/ClusterJudge/cluster_judge.pl).

Table 3. We list the rank of the methods given by the indices zMI for several choices
of U , zMutSel, and CR comparing the clustering assignment with the manual labeling.

Indices Rank 1 Rank 2 Rank 3 Rank 4

zMI U = 0.8 k-means (3.26) MixHMM (2.87) Hier. (2.86) MixGaus (2.32)
zMI U = 0.4 k-means (3.74) Hier. (2.91) MixHMM (2.87) MixGaus (2.26)
zMI U = 0.2 k-means (1.41) MixHMM (0.27) MixGaus (0.06) Hier. (-0.17)
zMI U = 0.1 k-means (0.86) MixGaus (0.37) MixHMM (0.36) Hier. (-0.1)
zMI U = 0.01 k-means (1.4) MixGaus (0.83) Hier. (0.64) MixHMM (-0.1)

zMutSel k-means (1115.3) MixGaus (1034.0) MixHMM (791.9) Hier. (616.3)
CR k-means (0.5) Hier. (0.46) MixGaus (0.43) MixHMM (0.39)

In general, k-means was ranked as the first one by all indices. In contrast, all
others ranking positions differed from index to index. One important result that
can be observed in this table is the impact of parameter U , the uncertainty index,
in the values obtained by zMI [10] and on the resulting rankings. For instance, for
higher U values, where some redundancy in annotation is allowed, hierarchical
clustering was ranked second; for more stringent values of U (i.e., 0.1 and 0.2), the
result of this algorithm presented a negative zMI score, which indicates results
obtained by chance. These results contradict the claims in [10], where the authors
state that the parameter U had small influence on the rankings of methods. In
comparison to zMI , zMutSel yielded higher z-scores. This is explained by the fact
that for random clusterings, MutSel makes very few merging operations. In this
situation, the resulting selection of terms is mainly composed of leaf terms with
few annotated genes. These terms have also very low information regarding Y . In
other words, MutSel can easily discriminate clusterings from random generated
ones.

No index was able to recover the ranking given by CR. Although we cannot
take the annotation used to calculate the CR as the actual and only “ground
truth” for dataset YCC5, since it was made via visualization of profiles, such an
annotation still provides a basis for comparing the clusterings. With regard to
zMutSel, the difference was mainly in the ranking of the hierarchical clustering.
An inspection of the contingency table, cluster against annotation labels, shows
that hierarchical clustering placed genes that correspond to two different classes
of the manual annotation (phases S and G2) into a single cluster, and had a
small cluster with 10 genes from all distinct classes. On the other hand, the
other clustering solutions had no such small cluster. This indicates that zMutSel

penalize this merge of groups S and G2 more strongly than CR. On the other
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hand, zMI did not yield a definitive solution, while its rankings vary from values
of U . Furthermore, for lower Us, the value of the index for the hierarchical
clustering are negative, which indicates that its results are comparable with
a random solution. This strongly contradicts the CR values derived from the
manual annotation. As manual annotation is usually not provided in the majority
of gene expression data sets, zMutSel represents a better alternative to zMI , since
it requires no extra parameters, while it selects the set of most informative and
non-redundant terms.

5 Conclusion

In this paper, we present the MutSel method for computing a global validity
measure of a clustering of genes. The main advantage of this method is a selec-
tion of relevant and non-redundant terms in relation to the evaluated clustering.
In order to do so, we use of a characteristic intrinsic to Gene Ontology (GO),
the parent-child relation, which makes annotations of GO terms highly redun-
dant. The set of informative and non-redundant GO terms resulted from the
application of MutSel yields not only a global index of “biological validity” of
the clustering, but it also relates GO terms to clusters yielding a “biological
interpretation” of individual clusters .

A comparison of MutSel to established methods for providing interpretation
of a cluster of genes, such as Term Enrichment analysis and Parent-Term En-
richment analysis, showed that MutSel mainly selects a set of GO terms also
found to be relevant by these methods. Furthermore, the set of selected terms
has a lower degree of annotation redundancy.

In relation to a global evaluation index for clusterings, we show that the
selection of terms from MutSel improves the mutual information-based measure
proposed in [10]. Our experimental results show that the choice of parameters of
the original index [10] has a great impact on the resulting rankings of clustering
methods. Thus, MutSel represents an improvement to the original proposal, as
it requires no parameter settings, while its results are consistent with manual
annotation of genes in a benchmark data set. As an extension of this work, we
plan to accomplish a large scale evaluation, including more clustering methods
and gene expression data sets.
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