RASTREAMENTO SEM MARCADORES

Veronica Teichrieb – vt@cin.ufpe.br Rafael Roberto – rar3@cin.ufpe.br

Melhor sem Marcador

Classificação de Rastreamento

Classificação de Rastreamento

Rastreamento de Textura Baseado em Padrão

- Ausência de modelos simples
 - Planar

Rastreamento de Textura Baseado em Padrão

- Ausência de modelos simples
 - Planar
- Boa precisão

Rastreamento de Textura Baseado em Padrão

- Ausência de modelos simples
 - Planar
- Boa precisão
- Minimização da relação cruzada

- Mede similaridade de sinais

- Mede similaridade de sinais
- Produto interno deslizante

Imagem 1					
23	19	31	40	21	
37	33	25	77	52	
04	01	26	41	39	
29	28	07	02	27	
14	11	44	13	24	

Imagem 2

61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Imagem 1					
23	19	31	40	21	
37	33	25	77	52	
04	01	26	41	39	
29	28	07	02	27	
14	11	44	13	24	

Imagem 2

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the

Imagem 1					
23	19	31	40	21	
37	33	25	77	52	
04	01	26	41	39	
29	28	07	02	27	
14	11	44	13	24	

Imagem 2

Imagem 1					
23	19	31	40	21	
37	33	25	77	52	
04	01	26	41	39	
29	28	07	02	27	
14	11	44	13	24	

Imagem 2

Imagem 1					
23	19	31	40	21	
37	33	25	77	52	
04	01	26	41	39	
29	28	07	02	27	
14	11	44	13	24	

Imagem 2

22		

Imagem 1					
23	19	31	40	21	
37	33	25	77	52	
04	01	26	41	39	
29	28	07	02	27	
14	11	44	13	24	

Imagem 2

22	47	

Imagem 1					
23	19	31	40	21	
37	33	25	77	52	
04	01	26	41	39	
29	28	07	02	27	
14	11	44	13	24	

Imagem 2				
61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

22	47	40	

	Imagem 1			
23	19	31	40	21
37	33	25	77	52
04	01	26	41	39
29	28	07	02	27
14	11	44	13	24

	Imagem 2			
61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

22	47	40	

Imagem 1				
23	19	31	40	21
37	33	25	77	52
04	01	26	41	39
29	28	07	02	27
14	11	44	13	24

	Imagem 2				
61	20	31	40	58	
38	09	25	46	35	
 04	01	26	42	55	
29	28	07	02	92	
15	11	44	20	24	

16				
	22	47	40	

- SSD: Somatório do Quadrado das Diferênças
 - Zero é correlação total

 $SSD = \sum I_1((i,j) - I_2(i,j))^2$ $[i,j] \in W$

- SSD: Somatório do Quadrado das Diferênças
 - Zero é correlação total
- NCC: Relação Cruzada Normalizada
 - Um é correlação total
 - Menos um é nenhuma correlação

$$NCC = \frac{(I_{1}(i,j) - \overline{I}_{1}(i,j)) \cdot (I_{2}(i,j) - \overline{I}_{2}(i,j))}{\sqrt{\sum_{[i,j] \in W} (I_{1}(i,j) - \overline{I}_{1}(i,j))^{2} \cdot \sum_{[i,j] \in W} (I_{2}(i,j) - \overline{I}_{2}(i,j))^{2}}}$$

Casamento de Padrões

Casamento de Padrões

Casamento de Padrões

- Encontrar os parâmetros p onde $W(x, p)^{-1} = T(x)$

- Encontrar os parâmetros p onde $W(x, p)^{-1} = T(x)$
- Tarefa difícil
 - Partir de um chute inicial

- Encontrar os parâmetros p onde $W(x, p)^{-1} = T(x)$
- Tarefa difícil
 - Partir de um chute inicial

$$p \leftarrow \hat{p} + \Delta p$$

- Encontrar os parâmetros p onde $W(x, p)^{-1} = T(x)$ ____
- Tarefa difícil
 - Partir de um chute inicial

$$\sum_{x} \left[I(W(x, p + \Delta p)) - T(x) \right]^2$$

Resolução do Sistema

– Minimizar o sistema

Resolução do Sistema

- Minimizar o sistema
- Utiliza o método de Gauss-Newton

$$\min_{p} \sum_{x} \left[I(W(x, p + \Delta p)) - T(x) \right]^2$$

Método de Gauss-Newton

- Ultilizado para calcular o mínimo de funções
 - Apenas para soma quadrática

Método de Gauss-Newton

- Ultilizado para calcular o mínimo de funções
 - Apenas para soma quadrática
- Não necessita da derivada de segunda ordem

Método de Gauss-Newton

- Ultilizado para calcular o mínimo de funções
 - Apenas para soma quadrática
- Não necessita da derivada de segunda ordem
- Processo iterativo

$$I(W(x, p + \Delta p)) \approx I(W(x, p)) + \nabla I \frac{\partial W}{\partial p} \Delta p$$

$$\sum_{x} \left[I(W(x,p)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right]^2$$

$$\sum_{x} \left[I(W(x,p)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right]^{2}$$

$$W(x,p) = (W_x(x,p), W_y(x,p))^T$$

$$\sum_{x} \left[I(W(x,p)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right]^{2}$$
$$W(x,p) = (W_{x}(x,p), W_{y}(x,p))^{T}$$
$$\frac{\partial W}{\partial p} = \begin{pmatrix} \frac{\partial W_{x}}{\partial p_{1}} & \frac{\partial W_{x}}{\partial p_{2}} & \dots & \frac{\partial W_{x}}{\partial p_{n}} \\ \frac{\partial W_{y}}{\partial p_{1}} & \frac{\partial W_{y}}{\partial p_{2}} & \dots & \frac{\partial W_{y}}{\partial p_{n}} \end{pmatrix}$$

- Minimização é um problema de mínimos quadrados

- Minimização é um problema de mínimos quadrados
 - Bem resolvido atualmente

- Minimização é um problema de mínimos quadrados
 - Bem resolvido atualmente

$$\min_{p} \sum_{x} \left[I(W(x,p)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right]^{2}$$

- Minimização é um problema de mínimos quadrados
 - Bem resolvido atualmente

$$2\sum_{x} \left[\nabla I \frac{\partial W}{\partial p}\right]^{T} \left[I(W(x,p)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x)\right]$$

- Minimização é um problema de mínimos quadrados
 - Bem resolvido atualmente

$$\Delta p = H^{-1} \sum_{x} \left[\nabla I \frac{\partial W}{\partial p} \right]^{T} \left[T(x) - I(W(x, p)) \right]$$

- Minimização é um problema de mínimos quadrados
 - Bem resolvido atualmente

$$\Delta p = H^{-1} \sum_{x} \left[\nabla I \frac{\partial W}{\partial p} \right]^{T} \left[T(x) - I(W(x, p)) \right]$$

$$H = \sum_{x} \left[\nabla I \frac{\partial W}{\partial p} \right]^{T} \left[\nabla I \frac{\partial W}{\partial p} \right]$$

- Parte do princípio que os frames mudam pouco
 - Quase constante
- Utiliza a informação de pixels próximos

Rastreamento sem Marcadores