Rastreamento sem Marcadores

Veronica Teichrieb - vt@cin.ufpe.br Rafael Roberto - rar3@cin.ufpe.br

Melhor sem Marcador

Classificação de Rastreamento

Classificação de Rastreamento

Rastreamento de Textura Baseado em Padrão

- Ausência de modelos simples
- Planar

Rastreamento de Textura Baseado em Padrão

- Ausência de modelos simples
- Planar
- Boa precisão

Rastreamento de Textura Baseado em Padrão

- Ausência de modelos simples
- Planar
- Boa precisão
- Minimização da relação cruzada

Relação Cruzada

- Mede similaridade de sinais

Relação Cruzada

- Mede similaridade de sinais
- Produto interno deslizante

Relação Cruzada

Imagem 1				
23	19	31	40	21
37	33	25	77	52
04	01	26	41	39
29	28	07	02	27
14	11	44	13	24

Imagem 2				
61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Relação Cruzada

Imagem 1				
23 19 31 40 21 37 33 25 77 52 04 01 26 41 39 29 28 07 02 27 14 11 44 13 24				

Imagem 2

61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Relação Cruzada

Imagem 1				
23 19 31 40 21 37 33 25 77 52 04 01 26 41 39 29 28 07 02 27 14 11 44 13 24				

Imagem 2

61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Relação Cruzada

Imagem 1				
23 19 31 40 21 37 33 25 77 52 04 01 26 41 39 29 28 07 02 27 14 11 44 13 24				

Imagem 2

61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Relação Cruzada

Imagem 1				
23 19 31 40 21 37 33 25 77 52 04 01 26 41 39 29 28 07 02 27 14 11 44 13 24				

Imagem 2

61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Relação Cruzada

Imagem 1				
23 19 31 40 21 37 33 25 77 52 04 01 26 41 39 29 28 07 02 27 14 11 44 13 24				

Imagem 2

61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Relação Cruzada

Imagem 1				
23 19 31 40 21 37 33 25 77 52 04 01 26 41 39 29 28 07 02 27 14 11 44 13 24				

Imagem 2

61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Relação Cruzada

	23	19	31	40	21
37	33	25	77	52	
04	01	26	41	39	
29	28	07	02	27	
14	11	44	13	24	

61	20	31	40	58
38	09	25	46	35
04	01	26	42	55
29	28	07	02	92
15	11	44	20	24

Relação Cruzada

	Imagem 1			
23	19	31	40	21
37	33	25	77	52
04	01	26	41	39
29	28	07	02	27
14	11	44	13	24

	Imagem 2				
61	20	31	40	58	
38	09	25	46	35	
04	01	26	42	55	
29	28	07	02	92	
15	11	44	20	24	

16				
	22	47	40	

Relação Cruzada

- SSD: Somatório do Quadrado das Diferênças
- Zero é correlação total

$$
S S D=\sum_{[i, j] \in W} I_{1}\left((i, j)-I_{2}(i, j)\right)^{2}
$$

Relação Cruzada

- SSD: Somatório do Quadrado das Diferênças
- Zero é correlação total
- NCC: Relação Cruzada Normalizada
- Um é correlação total
- Menos um é nenhuma correlação

$$
N C C=\frac{\left(I_{1}(i, j)-\bar{I}_{1}(i, j)\right) \cdot\left(I_{2}(i, j)-\bar{I}_{2}(i, j)\right)}{\sqrt{\sum_{[i, j] \in W}\left(I_{1}(i, j)-\bar{I}_{1}(i, j)\right)^{2} \cdot \sum_{[i, j] \in W}\left(I_{2}(i, j)-\bar{I}_{2}(i, j)\right)^{2}}}
$$

Casamento de Padrões

Casamento de Padrões

Casamento de Padrões

Rastreamento Baseado em Padrão

Rastreamento Baseado em Padrão

Rastreamento Baseado em Padrão

Rastreamento Baseado em Padrão

- Encontrar os parâmetros p onde $W(x, p)^{-1}=T(x)$

Rastreamento Baseado em Padrão

- Encontrar os parâmetros p onde $W(x, p)^{-1}=T(x)$
- Tarefa difícil
- Partir de um chute inicial

Rastreamento Baseado em Padrão

- Encontrar os parâmetros p onde $W(x, p)^{-1}=T(x)$
- Tarefa difícil
- Partir de um chute inicial

$$
p \leftarrow \hat{p}+\Delta p
$$

Rastreamento Baseado em Padrão

- Encontrar os parâmetros p onde $W(x, p)^{-1}=T(x)$
- Tarefa difícil
- Partir de um chute inicial

$$
\sum_{x}[I(W(x, p+\Delta p))-T(x)]^{2}
$$

Resolução do Sistema

- Minimizar o sistema

Resolução do Sistema

- Minimizar o sistema
- Utiliza o método de Gauss-Newton

$$
\min _{p} \sum_{x}[I(W(x, p+\Delta p))-T(x)]^{2}
$$

Método de Gauss-Newton

- Ultilizado para calcular o mínimo de funções
- Apenas para soma quadrática

Método de Gauss-Newton

- Ultilizado para calcular o mínimo de funções
- Apenas para soma quadrática
- Não necessita da derivada de segunda ordem

Método de Gauss-Newton

- Ultilizado para calcular o mínimo de funções
- Apenas para soma quadrática
- Não necessita da derivada de segunda ordem
- Processo iterativo

Minimização do Sistema

- Aproxima por uma série de Taylor de primeira ordem

Minimização do Sistema

- Aproxima por uma série de Taylor de primeira ordem

$$
I(W(x, p+\Delta p)) \approx I(W(x, p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

Minimização do Sistema

- Aproxima por uma série de Taylor de primeira ordem

$$
\sum_{x}\left[I(W(x, p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)\right]^{2}
$$

Minimização do Sistema

- Aproxima por uma série de Taylor de primeira ordem

$$
\begin{gathered}
\sum_{x}\left[I(W(x, p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)\right]^{2} \\
W(x, p)=\left(W_{x}(x, p), W_{y}(x, p)\right)^{T}
\end{gathered}
$$

Minimização do Sistema

- Aproxima por uma série de Taylor de primeira ordem

$$
\begin{gathered}
\sum_{x}\left[I(W(x, p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)\right]^{2} \\
W(x, p)=\left(W_{x}(x, p), W_{y}(x, p)\right)^{T} \\
\frac{\partial W}{\partial p}=\left(\begin{array}{cccc}
\frac{\partial W_{x}}{\partial p_{1}} & \frac{\partial W_{x}}{\partial p_{2}} & \cdots & \frac{\partial W_{x}}{\partial p_{n}} \\
\frac{\partial W_{y}}{\partial p_{1}} & \frac{\partial W_{y}}{\partial p_{2}} & \cdots & \frac{\partial W_{y}}{\partial p_{n}}
\end{array}\right)
\end{gathered}
$$

Minimização do Sistema

- Minimização é um problema de mínimos quadrados

Minimização do Sistema

- Minimização é um problema de mínimos quadrados
- Bem resolvido atualmente

Minimização do Sistema

- Minimização é um problema de mínimos quadrados
- Bem resolvido atualmente

$$
\min _{p} \sum_{x}\left[I(W(x, p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)\right]^{2}
$$

Minimização do Sistema

- Minimização é um problema de mínimos quadrados
- Bem resolvido atualmente

$$
2 \sum_{x}\left[\nabla I \frac{\partial W}{\partial p}\right]^{T}\left[I(W(x, p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)\right]
$$

Minimização do Sistema

- Minimização é um problema de mínimos quadrados
- Bem resolvido atualmente

$$
\Delta p=H^{-1} \sum_{x}\left[\nabla I \frac{\partial W}{\partial p}\right]^{T}[T(x)-I(W(x, p))]
$$

Minimização do Sistema

- Minimização é um problema de mínimos quadrados
- Bem resolvido atualmente

$$
\begin{gathered}
\Delta p=H^{-1} \sum_{x}\left[\nabla I \frac{\partial W}{\partial p}\right]^{T}[T(x)-I(W(x, p))] \\
H=\sum_{x}\left[\nabla I \frac{\partial W}{\partial p}\right]^{T}\left[\nabla I \frac{\partial W}{\partial p}\right]
\end{gathered}
$$

Algoritmo de Lucas-Kanade

- Parte do princípio que os frames mudam pouco
- Quase constante
- Utiliza a informação de pixels próximos

Algoritmo de Lucas-Kanade

The image canno to displayed. Your computer
nay not have enough memory to open the imag
The mage mav have been or the image mavan have been cor topted the imatar
vour computer, and then open the file again. If

Algoritmo de Lucas-Kanade

The image cannot be displayed. Your camputer
nay not have enough memory to open the itag
ch the image may ane bee

Algoritmo de Lucas-Kanade

The image cannot be displayed. Your computer
may not have enouh memer to open the imag
or the image may have been or the image may have been corutuped. Reestart
your computer, and then open the file again. 1 the

Algoritmo de Lucas-Kanade

Cálculo de Pose

Cálculo de Pose

Rastreamento sem Marcadores

