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Multiscale Morphological Segmentation of
Gray-Scale Images

Susanta Mukhopadhyay and Bhabatosh ChaReldlow, IEEE

Abstract—in this paper, the authors have proposed a method morphological instance of region based approach, apart from
of segmenting gray level images using multiscale morphology. The pheing computationally intensive, suffers from over or under-seg-
approach resembles watershed algorithm in the sense that the mentation due to improper choice of marker points.

dark (respectively bright) features which are basically canyons (re- S tati f | li . Il studied bl
spectively mountains) on the surface topography of the gray level _ >€9Mentation ot gray levelimages 1S a well studied probiem.

image are gradually filled (respectively clipped) using multiscale There exist several methods for segmenting gray-level images
morphological closing (respectively opening) by reconstruction [2], [3], [4]. Gray-level thresholding is one of the oldest
with isotropic structuring element. The algorithm detects valid techniques for image segmentation [3]. Threshold may be

segments at each scale using three criteria namely growing,chosen based dmistogram[6] or on gray-level co-occurrence

merging and saturation. Segments extracted at various scales are trix 15 b V7 int . d int .
integrated in the final result. The algorithm is composed of two Matrnx [5], or by analyzing intra-region and inter-region

passes preceded by a preprocessing step for simplifying smallhomogeneity [7]. Canny [8] has suggested a contour based
scale details of the image that might cause over-segmentation. Intechnique employing hysteresis thresholding. Anisotropic
the first pass feature images at various scales are extracted and diffusion and PDE-based regularization for segmentation has
kept in respective level of morphological towers. In the second been developed by Romeny [9], Weickert [10]. Segmentation

pass, potential features contributing to the formation of segments lgorith based i diffusion h b devised b
at various scales are detected. Finally the algorithm traces the algorithms based on nonfinear diifusion have been devised by

contours of all such contributing features at various scales. The Niessenet al. [11], Jackway [12]. A different approach based
scheme after its implementation is executed on a set of testimageson local monotonicity has been suggested by Acetnal.
(synthetic as well as real) and the results are compared with [13]. Another segmentation method proposed by FranAl.
those of few other standard methods. A quantitative measure of [14], uses combination of optimal and adaptive thresholding.
performance is also formulated for comparing the methods. ' - . . ;
An overview of border detection and edge linking methods in
Index Terms—Closing by reconstruction, gray-level image seg- connection to segmentation can be found in [15]. Region-based
mentation, morphological towers, multiscale morphology, 0pening  segmentation techniques, by and large, detect homogeneity in
by reconstruction, performance analysis. . ’ '
terms of parameters like gray-level, color, texture etc. A number
of region growing techniques for color image segmentation may
|. INTRODUCTION be found in [16], [17], [18]. A hierarchical merging method

EGMENTATION is a very commonly used and importanpaS l_aeen sug_gesteq by Goldbergal. [19]. The watershed
tep in image analysis and computer vision. The purpo@ orithm and its variants [20.]' [21], [22], are fo_und to produce
of image segmentation is to decompose an image domain imréagsonably good segmentation resuits. In a different approach

number of disjoint regions so that the features within each regiM‘F‘“k et "?1" [23] have suggested a grgph partitioning method for
fegmenting gray-level images. Manjunattal.[24] in another

have visual similarity, strong statistical correlation and reaso h h devised a techni for i ati
ably good homogeneity. Image segmentation techniques maﬁg@roac ave devised a technique for image segmentation

classified into a number of groups depending on the approaf%%sed on ec_jge_flow. An .UETUerViSﬁq muItiresoCIiubtioCVschemg
of the concerned algorithm. These inclddature thresholding, or segmenting images with low depth Is proposed by Wang an

contour based techniques, region based techniques, clusteriﬁg
template matchingl], etc. Each of these approaches hasij%
own merits and demerits in terms of applicability, suitability;™": . T . .
performance, computational cost etc. and no one can meet Gf'€W of b|o_med|cal 'mage sggmentanon techmque_s.

the demands. A gradient thresholding technique, for example, athematical morphology IS a we_II-_known technique use_d
suffers from the problem of yielding contours with nonuniformy! 'Mage processing and computer vision [31], [32], [41]. This

thickness as well as discontinuities due to difficulty in selectin%ﬂ theoretic, shape oriented approach treats the image as a set

optimum threshold. The well-known watershed algorithm— hd the kemel of operation, cqmmonly knownsslcturing .
elemeni(SE), as another set. Different standard morphological

operations hamelgilation, erosion, opening, closingtc. are
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times produces theth homothetic of the SE keeping its shapshape as well as size we incorporate a second attribute to the

intact. Morphological operations with such scalable SE’s majructuring element which is itscale A structuring element

be used in multiscale image processing. The work presentedilong with its higher order homothetics can process the image

this paper is an example of this approach. features based on shape as well as size. Such types of morpho-
Dealing with the objects of different size and shape in tHegical operations are termed awultiscale morphology32],

image is a very interesting aspect of machine vision. In most@?]. Multiscale opening and closing [43] are defined, respec-

the image processing operators, the concept of scale of the tely, as

jects is not incorporated explicitly. In general, an image com-

prises of objects or features of different scales. On the other (gonB)(r, ¢) =((g & nB) ®nB)(r, ¢ (3)
hand, most spatial domain image processing techniques use the
notion oflocal neighborhoodvhich does not take care of the (gonB)(r, c) =((9 ®nB) ©nB)(r, c) (4)

scale of the object contained in that neighborhood. As a result,
the operator processes objects of various scales with equal ¥fieren is an integer representing the scale factor of the struc-
phasis. The objects in an image should be processed as per g element3. Thenth homothetic of a convex SE is ob-
scales. Thus the need for processing the image based ont&ged by dilating recursivelyn — 1 times with itself as
size or scale has initiated sevenalltiscaleandmulti resolution
techniques. Multiscale and multi resolution techniques extract nB=B®B®B®---®B. (5)
scale specific information from the image and integrate them U
to produce desired output. The entire process may be linear or
nonlinear and accordingly it gives rise to a linear or nonline&onventionallynB = {(0, 0)} whenn = 0.
scale space representation of the image under study. A lot of lit-Thus, multiscale morphological operations decompose the
eratures [35], [37], [38], [39], [40] are available describing thgiven image into a set of filtered images. Now in doing so, the
properties and issues of scale space. system of such operations should satisfy the properties like i)
In this paper we have proposed a method for segmentiogusalityand ii) edge localizatiorj44], [45], [46]. By the term
gray-level images using multiscale morphology. The paper is dcausality” we mean no regional extrema and, consequently,
ganized in the following way. In Section Il we have discussed arge is introduced as the scale increases. The objective is to dis-
multiscale morphology, the definition @horphological tower tribute the given information and not to create new ones. The
and its properties in order to satisfy various requirements pfoperty “edge localization” demands no drift of edge from its
scale space representation. In Section Il we have presentgi@inal position. The system is also expected tesbale-cali-
the proposed method. The theoretical formulation of the prbrated i.e., the filtered image produced by an SE of a particular
posed method is discussed elaborately in Section IlI-A whieale should strictly contain the features of that scale only. Apart
the implementational details are given in Section IlI-B. The efrom these, the directional or rotational invariance of the asso-
perimental results are presented in Section IV. Finally, the cotiated operation can be achieved using an isotropic SE.

n—1times

cluding remarks are given in Section V. The multiscale opening produces flat regions by removing
bright objects or its parts smaller than the SE. The properties:
Il. MULTISCALE MATHEMATICAL MORPHOLOGY goB < gandgoiB > gojBfori < jimply that no new

Math ical hol , ol | for deali bright feature (or, in other words, regional maxima) is generated
athematical Morphology Is a powerful tool for ealngathigherscales due to opening. In case of multiscale closing, no

W't_h valr\l/loushpiob_len?s In Image processing anc(ij_lco_mputﬁéw dark feature (or, in other words, regional minima) is gener-
vision. Morphological operations, namebrosion, dilation, 40 at higher scales. Secondly, the SE leaves the features larger

opening, closm.g,_ top—hat_tran;formatmetc. are used for than it unaffected. However, removal of parts of an object intro-
extracting, modifying, manipulating the features present in t ces new edges or causes drifts of the existing edges [Fig. 1].

image based on their shapes. The shape and the size Of1gE 15in disadvantage of conventional opening and closing is
play crucial role_zs in such type of processing and are thefef‘lF%t they do not allow a perfect preservation of the edge infor-
chos_en _accordlng to_the need and purpose of the assomwion [47]. Bangharet al. [46] suggested a scale-space op-
application. Thefunction- and set-processing-=SP) SyStem o 4ir called M- and N-sieves, which satisfies the properties
[42] is widely used in morphology. FSP dilation and erosion qfaioned above. This operator emphasizes only on the size of
a gray-level imagey(r, ¢) by a two dimensional point s& 4 teatyres, but ignores their shape completely. However, it is
are defined respectively as possible to design morphological filters by reconstruction that
satisfy these requirements and consider both shape and size of
(9 ® B)(r, ¢) = max{g(r —k, c =) | (k, )) € B} (1) he features. Morphological multiscale opening and closing by
(9 & B)(r, ¢) = min{g(r + k, c+1)| (k, 1) € B}. (2) reconstruction [34], [48], [49], are two such filters.
The elementary geodesic dilation, denotedsky(g, p), of
Opening (closing) is sequential combination of erosion (dil&ize one (i.e., the smallest size in discrete domain) of the image
tion) and dilation (erosion). Though the structuring elem@nt ¢ With respect to a reference images defined as the minimum
takes care of the shape of the features while processing Bgiweery dilated by an SEX of size one ang. Hence,
image, it cannot, however, treat objects of same shape but of dif-
ferent size equally. Thus, for processing objects based on their 6% (g, p) = min(g ® X, p). (6)
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(a) (b) (c)

Fig. 1. (a) Original image, (b) result of conventional opening of (a) using a disk SE, and (c) result of opening by reconstruction of (a) with same SE.

Similarly, the elementary geodesic erosion, denoted Ipyoperties. Fig. 1 illustrates the difference between the con-
e (g, p), of size one is defined as the maximum betwgen ventional opening and the opening with reconstruction with an

eroded byX of size one and a reference imageHence, example image.
L When these operators, i.e., open (close) by reconstruction,
¢x(9, p) = max(g © X, p). () are used with multiscale SEs, the output image should contain

Now geodesic dilation and erosion of arbitrary size are obtain88'Y features of that and higher scales. The difference between
through iteration as the images opened at two successive scales will then contain

features of a particular scale only. In essence, in the difference

5‘2;((97 p) = min (5(;—1)(97 p)®X, p) (8) image, the features, which, or, at least a part of which, contains
’ the SE at that scale are present completely and others are re-
i i—1 i
¢ (g, p) = max (6(\ )(97 p) o X, p) (9) moved. Thus, t_he system can be termecfhmde cal_lbrated‘l‘n )
the following discussion, unless otherwise mentioned, “open
fori = 1,2, 3,.... Conceptually this may continue indefi-refers to “open by reconstruction” and “close” refers to “close

nitely, but for all practical purposes iteration is terminated dty reconstruction,” and consequently’“stands for “c” and
an integem such thav’- (g, p) = 6&?_1)(;1, p) and, similarly, “e” stands for ‘.”
whenex (g, p) = eg?‘l)(!h p); because no change would occur A morphological toweris a stack of images containing

after that. This stable output is termedrasonstruction by di- morphologically filtered images obtained by using a family of

lation and is denoted b§(") (g, p), i.e., SEs comprising of a convex and compact SE and its higher
order homothetics. A morphological tower resembles an image
87 (g, p) = 6% (g, p)- pyramid in many aspects. An image pyramid consists of a stack

of images with decreasing resolution and size of the image.
e (g p). e A morpholpgical tower on the c_)ther hand stac_:ks the images
9> P)s 1€+ filtered at increasing scale leaving the resolution unchanged.
E(rec)(g? p) = €% (g, p). Fig. 2 illustrates the structures of an image pyramid and a mor-

phological tower. Thus, a morphological tower corresponding

Based on this operatiospening by reconstruction of opening to opening consists of a stack of images opened with a family
or simply,opening by reconstructiodenoted by s B, may be of SEs. Some applications of morphological tower may be

Similarly we have reconstruction by erosiordenoted by

defined as found in [50], [51], [52].
— _ «(rec)
goB =8""(goB, g). (10) ll. PROPOSEDMETHOD
Similarly, closing by reconstructiodenoted byys B may be A gray level image typically consists of both bright and dark
defined as object features which, in general, have a distribution with re-
g& B = (o) (ge B, g). (11) spect to size oscale The basic objective of a segmentation al-

gorithm is to isolate or sketch out the most optimal contours
Therefore, morphological opening by reconstruction in itf these bright and dark features. Though the proposed method
first step eliminates bright features that do not fit within thés basically region based, it produces contours enclosing pixels
SE applying simple opening. In its second stage, it dilaté3at have properties distinguishable from theirimmediate neigh-
iteratively to restore the contours of components that have dxstrhoods. In this section we first present the theoretical back-
been completely removed by opening and a reconstructiongi®und of the proposed method and then the implementational
accomplished by these iterative dilations using the origingdetails.

imageg as the reference, i.e., choosing= g. Similar analysis i )

holds for “closing by reconstruction” in case of dark featured" Theoretical Formulation

As a result, problems like introduction of new edges and edgeA digital gray-tone image is may be viewed as an intensity
drift do not arise in case of opening by reconstruction arglirface defined over a spatial coordinate systemlL l&=
closing by reconstruction. Hence, multiscale system designgd 1, ..., L,,} be the set of intensity values anfl =

with these operators satisfy causality and edge localizatié(w, y): 2,y € Z,0<z < N, — 1,0 < y < N, — 1}



536 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 5, MAY 2003

resolution decreases with height

increases with height

scale

(b)

Fig. 2. (a) Image pyramid and (b) morphological tower corresponding to multiscale opening.
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be the spatial coordinates of the pixels of the image, the digitaherep andq are the number of maximally connected subsets

image represented as a functigis then defined as in I, andY; respectively. In addition, for any pair of distinct
subsets ofI; andY; we strictly have
g: S — L. (12)
Thusg(z, y) represents the intensity value of the pixel located I NIy =0 (22)

at(z, y) € S and the size of the image I§, x N..
The section of the image at a threshéld: L is a point set
X*(g) defined as

T NYY =0 (23)

X for u # v. The subseil} (T}) basically represents a bright
X*(9) ={(z, y): (z, y) € Sandg(x, y) > k, k € L}. (dark) feature or its part at scaleln other words, the binary

. o (13) images constructed using these point sets are found to contain a
A binary or black-and-white imagg,..: S — {0, 1} con-  nymber of isolated black blobs against a white background.

structed from this point seX™(g) as Let us consider two point sef§; andIT;,, corresponding to
1, if (z,y) € X*(g) two bright top-hat images at two successive scadsl(i + 1).
Gin(T, y) = { 0. otherwise For each subsdl¥ of II; there exists one and only one subset

o _ _ 17, of II;;1 such thall} C II},,. Let us call such subsets
In the proposed formulation we have used multiscale bright aggd corresponding subsetit is important to note that the total
dark top-hat transformation to extract scale specific bright aRgimber of subsets ifi; andIl;;; may not necessarily be the
dark features. A thorough analysis of these extracted featut@gne. The above statements hold good for point ¥etand

might be necessary for segmentation. The bright top-hat imaggrl also. At any given scale, the subsét$s of II; may en-
obtained by filtering by an SE of sizecontains all bright fea- ¢ounter one of the following three situations

tures smaller than as 1) Growing A subsell! is said to bgrowingifitis a proper

g:ol)(x_/ y) = g(x, y) — (g 0iB)(x, ). (14) subset of its corresponding subskt ,, i.e., 11} C 117, ;.
o ) In such cases, the black blob represented by the slifyset
Sw_mlarly a dark top-hat or bottom—hattra_nsformatlon at scale in the binary image constructed froff; represents the
i sieves out the dark features smaller thars support of a part of a potential feature or object. Fig. 3
g (z, y) = (g@iB)(z, y) — g(z, y). (15) illustrates the situation indicating a pair of corresponding

subsets at two successive scales. The sulieh the
Now, using (13), the section of the bright and dark top-hatim-  point setll; is a proper subset dff},, in I;41. The

ages at a thresholdare given by dotted contour iril},, the growth ofII} with the scale
! = X'[g!] = {(z, y) € S: g/ (x, y) > t,t € L} (16 parameter.
' o] = (e, v) 9" (@, y) 2 4 ) a8 2) Saturation A subsetIl! is said to besaturatedif it is
T =X"[g"" = {(z,y) € S: gl (x,y) > t, t € L}. (17) congruent with its corresponding subsgt, ,, i.e., 11 =

II7, ;. In such cases, the black blob represented by the
subsetlI} covers the support of a feature or object as a
whole. This case, as earlier, is illustrated in Fig. 3. The
subsetdI? andII?, , are congruent.

3) Merging If at least two subsetd} andll}” have the same
corresponding subsét?, ,, i.e., 1T} | JII}* C 117, the
constituent subsets} andlI}’ are said tanerge Two or
more merging subsets might enjoy a subsequent growth
or saturation with respect to the scale factor. In such a

Oy cly - CIl; CIjyq C--- C Iy (18) case, each of them individually represents a complete sub-

feature which is a distinct part of a large valid feature

TocTic--CYiCcYipp Coo-Chy - (19) or object at subsequent higher scale. This situation too,

whereN is an integer representing the largest scale of objects s clarified in Fig. 3. The dark blobs representedIiy

or features present in the image and it may be same as the size andII? are found to have the same corresponding subset

of the image itself. However, in practicd] is much less than IT}, . These two dark blobs merge into a single larger

the size of the image. blob represented bii?, ;.

Now, the surface topography of a gray-level image, in gefrhe abhove observations hold good 6y and Y, ; also. The
eral, consists of peaks, valleys and possibly plateaus of differgibposed algorithm treats the subsets of all three categories at
height, width, extent. Consequently, each of the pointiseind  yarious scales. Accordingly, it constructs the following four

T, is found to consist of a number of maximally connected SUBbint sets, corresponding to both bright and dark features
sets [3], so that, each of them can be expressed as

The point set$l? and Y basically contain the coordinates of the
supports of the features at scalthat are present in the bright
and dark top-hat images respectively. Now, if the value of the
intensity threshold is kept fixed through out the process, the
superscript may be dropped out from the notations of the point
sets. In such a case we may simply LikeandY;, respectively.

Since both the bright and dark top-hat transformatioresre
tensive[41], we necessarily have

I; =M} I uldy. . Ik (20)  Sati°’=[{II!}: if there existu andw, such that]T} = I1}",,]
T, =T;UuY7uUYdU.---UY! (21)  Sat?*'=[{Y}}: if there existu andw, such thatY} = T¥ ]
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GROWING COMPONENT

Tcl / \
i, , Tin
ni Tczi+1

SCALE-SATURATED COMRONENT

“TC‘: \Ttam
N

MERGING COMPONENTS

Thresholded feature image at scale i Thresholded feature image at scale i+1

1 1 . . A
T, C T ¢ The component TU; grows insize as the scale increases from i to i+1
2 2 . P . . .
T C TCZM ¢ The component TT; remains same in size as the scale increases from i to i+l
3
T

.U TC? C 1‘[3m ¢ The components TCsi and TC? merge into TE3i+1 as the scale increases from i to i+1

Fig. 3. Different types of similar components at two successive scabeli + 1.

Mrgf"”: [{II} UII}} : if there existu, v andw, such that, not employ the knowledge about gradient magnitude. In the

(¥ UTIY) C T, proposed algorithm emphasis has been given osdhkeof the
image features while finding the valid segments of the image.
Mrg?°" = [{Y¥ U YV} : if there existu, v andw, such that, The bright and dark features of identical scale are detected
(THUTY) C T:’f‘,—l] sequentially at the same pass of the algorithm. The image, in
general,consists of both the bright and dark features at varying
for1 <i< N — 1. scales. When a bright feature is adjacent to a dark feature,
Let:;fof’j""” and gt°t-¥in pe the binary images constructed?® problem of feature overlapping may occur. The SE has no
from the point set€’*” andC?t, respectively, where preferential knowledge about the locations of bright and dark
’ features and their scales. Therefore, if the SE is allowed to
CP = Sat'®? U Mrg'oP (24) open and close the image with no restriction regarding when

! ! ! and where to stop, it will cause an overlapping rautual

Cbot = Satbot U Mrgbet. (25) encroachmenin the point setdI; andY; for same or different

values ofi andj (Fig. 4 may be referred for an illustration). In
These binary images comprise of black blobs representing titeer words, the same spatial domain of the image would be
supports of potential bright and dark features presentin the inplaimed as a support of dark as well as bright features at same
image at scalé. These blobs, therefore, correspond to the segr different scales. In the foregoing discussion, no restriction
ments of the image. Suppog&”-°"* andg?*--"* denote the was put to the relationship betweéh and Y;. The binary
images containing the closed edges of the b|0bﬁ‘1ﬁ'bi" and images constructed usiid; and Y ; will therefore give rise to
gbet-bin respectively. Hence, the final contour-image,,; is overlapping or encroachment in the segmented contours. To

obtained by unifying the contour images at different scales @t rid of this encroachment problem the following constraint
described by should be enforced.

LN, =0. 27)
} (26)

To satisfy the above constraint or, in other words, to avoid

N N
Geont = {U g:op_cont} U {U gi)ot_cont
=1 =1
] . . encroachment, equations (14) and (15) may be modified, re-
Encroachment ProblemAny segmentation algorithm fol- sPectiver, as

lows its own predefined strategy. Quite often, the gray-level o
the pixel or its gradient plays important role in the construction top . e B o8
of the segments. The problem of employing gradient magnitude i@ y) =gima(w y) = (G0 if B)(w, y) - (28)
is its noise sensitivity. The proposed algorithm, however, does gz, y) = (§i_1 ®iB)(z, y) — Gi_1(z, Y) (29)
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Fig. 4. lllustration of encroachment.

PASS-1 PASS-2

Input Image A{ Segmented Imagej

Fig. 5. The stages of proposed multiscale image segmentation algorithm.

Multiscale Feature Extraction Searching Valid Segments

where 1) Preprocessing:A segmentation algorithm often needs a
~ —00, if (z,y) €Y1 preprocessing step like noise smoothing to reduce the effect of
9i(w, y) = Gioi(z, y), otherwise undesired perturbations which might cause over- and under-
and segmentation. For exampl&aussiarfiltering is employed in
0. if (z, y) € iy Marr—Hildreth [53] and Canny’sedge detector [8]. The very
gi(z, y) = { . th ., small scale details (i.e., the sudden discontinuity in gray-value
gi-1(z, y), otherwise over very small regions) are usually considered as noise. It is

fori > 1andgo(z, y) = g(x, y) andgo(x, y) = g(x, y). That 4 pecessity to estimate the scale (or size) of noise particles be-
means once a pixel is marked as a part of a dark feature itd3e removing them. Interested reader may refer to [52] for such

ensured to remain a part of the same dark feature at all highgh|ysis. However, the main concern, here, is the segmentation
scales by digging an well of infinite depth at that point. In @nq we have used a morphological method which smooths out
similar way, a pixel, once marked as a part of a bright featuggise by applying iterative filtering until the spatial variation of

at a given scale, is ensured to remain a part of the same brigiignsity becomes locally monotonic with respect to the SE. The
feature at all higher scales by raising a pillar of infinite alntudgteps of the preprocessing operations are:

at that point. As a result, the possibility of a pixel being detected

as a part of a dark as well as a bright feature simultaneously is1) Perform conventional morphological opening and closing

totally excluded and thus, the encroachment problem is avoided.  on the input image using an SE of small size. The size of
the SE is greater than that of noise particles.

2) Construct the output image by averaging the images re-
The proposed algorithm starts withpaeprocessingtep as sulting after opening and closing.

described below. The segmentation scheme is divided into two3) Compare the output image with the input image. If they

passes (see Fig. 5) namelyn)ltiscale region extractioand ii) are identical then halt. Otherwise consider the output

selection of valid regions that contribute to final segmentation image as the input image to the next iteration and go to

Following subsections present them elaborately. step 1).

B. Implementation
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Fig. 6. Schematic diagram for multiscale image segmentation using morphological towers.

Similar approach may be found in [13]. The main problem of 2) Pass-1: Multiscale Region Extractiorithe preprocessed
this approach is to determine the size of SE. Based on the dtnage works as the input to the first pass of our segmentation
main knowledge and sensor parameters (namely, resolution afgbrithm. In this pass the information about potential bright
magnification factor) minimum size of the features of interest iand dark regions at different scales are extracted by executing
the image can be determined in terms of pixels. Any feature afi alternate sequence of opening and closing (see Fig. 6). The
size smaller than that may be treated as noise. Size of isotrapiight top-hat image resulting due to opening at scals

SE to eliminate such noise can then simply be computed. thresholded at level 0. The resulting binary image contains
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all possible bright features in the image. However, all these 5) Select the next higher homothetic of the BEand if it is
features are not visually discernible. Only those features that not larger than that at the prescribed largest scale, go to
have sufficient contrast with respecttoitsimmediate background  step 1). Otherwise halt.
can readily be identified. Suppod#/ is a component in the  3) pass-2: Selection of Valid Regions That Contribute to
resultant binary image. Then local contrast is measured asina| Segments:After building the towers in the first pass

' ) the second pass selects the valid segments at various scales
LC(II}) = [max{g(z, y) | (z, y) € 11! }] that contribute to the final segmentation. By the term “valid

— [min{g(z, y) | (z, y) € [I/}]. (30) Se€gments”we mean either a self-contained complete object or a

well-defined part of an object. The former is indicated by satu-
ration, while the latter by merging. The closed contours of such
ions are traced out and combined together to obtain the final
ult. Thus, in the second pass the valid bright segments are
ﬁamhed using the binary images keptiight_feature_tower

If the contrast is less than some specified threshottie corre-
sponding component is discarded. Finally, the resultant biné@g
image is kept in theth level of thebright_feature_towerlt res
is then used as a mask for spatial locations of the input im
where pillars of infinite altitude require to be erected according. _ :
to equation (28). Then closing with an SE of sciakeperformed |ght_feature_towgrsetz = 1 andgyright_cont t0 NUll image
on modified input image. Proceeding in the similar way as d-el_-hen the steps are:

scribed in case of opening, another binary image is obtainedl) Consider theith and (i + 1)th binary images in the
which is kept in theith level of thedark_feature_towerThis bright_feature_tower Label the components of the
binary image is used to dig wells of infinite depth according  images [3]. i
to equation (29). However, in practice, the height of pillars and 2) Modify g;””="*" by deleting all components except those
depth of wells are chosen as 255 and O respectively for 8-bit ~Which i) are identical in botlg;**-*" o

e start with the image pair at the lower-most levels in the

andg, 7" and ii)
. . . . . . _bin
image. The erection of pillars and excavation of wells are per-  merge into a single componentgxﬁfjrp1 o

formed using 3) Trace the contours of the objects in binary ima{f&-""".
Let ;""" be the corresponding contour image.
MAXVAL, if (z,y) eI, andLC(IT}) > k 4) Take the cumul?tive stet—theoretic union of the images
0(1 '(/) - th i 9bright _cont andgiop_con .
9(z, ), otherwise 5) Increase. If (i+1) is greater than the height of the tower,

and halt. Else go to step 1).

9z, y) = {MINVAL’ if (z, y? € YiandLCO(Y7) > k The imageguignt_cont CONtains the closed contours of all
g(z, y), otherwise prominent bright segments in the input image.

We perform similar set of operations [i.e., steps 1)-5)] with
whereMINVAL = 0andMAXVAL = 255 andk is athreshold all successive pairs of binary images in tek_feature_tower
value. and construct a contour imagg.,x_cont- Finally, the image

At a glance, the steps in the multiscale region extraction ajg,,,. is obtained by combiningy,.ignt_cont 8Ndgaark_cont- The
as given below. The following steps are performed starting witmagey....+, therefore, contains the closed contours of all bright
the preprocessed image as input. and dark segments present in the image and is the result of the

1) The image is opened with a disk $E The bright top-hat Proposed scheme.
image obtained by subtracting the opened image from the
input image is then thresholded at the level 0. Compo-
nents that do not have sufficient local contrast are then
discarded. The resulting binary imagfé”-""" consists of ~ The proposed algorithm has been executed on a set of
black blobs corresponding to visually discernible brightnages. Figs. 7(a)-10(a) show some of the test images used in
features. Itis then stored in thih level in thebright_fea- the experiment. The images in Figs. 7(a) and 8(a) are synthetic
ture_tower ‘ images depicting dark and bright spheres of different radii.

2) The binary imagey/°’-""" is then used as a mask forThe image in Fig. 8(a) is generated by corrupting the image
erecting pillars in the input image to prevent encroachn Fig. 7(a) with random noise. Figs. 9(a) and 10(a) represent
ment. The gray value of each pixel in the input imageeal images of blood cells and skin lesions respectively. The
masked by this binary image is changed to 255. results produced by the proposed multiscale morphological

3) The modified input image is closed with the sameI$E segmentation algorithm are shown in Figs. 7(b)-10(b). The
The dark top-hat image is subjected to the same operasults have been compared with those of two other well known
tions as in case of bright top-hat image in step 1). As berethods. The results of watershed segmentation algorithm are
fore, the resulting binary imagg®!-*" is saved in théth  shown in Figs. 7(c)-10(c) in the identical order. The gradient
level in thedark_feature_tower images used in the watershed algorithms are obtained using

4) The binary imageg?°‘-*"" is then used as a mask for dig-morphological operations—more specifically it is the differ-
ging wells in the input image to prevent encroachmentnce between the dilated and eroded versions of the image.
The gray value of each pixel in the input image maskethe markers are the local minima of the gradient image which
by this binary image is changed to 0. are obtained by comparing the original image and its eroded

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
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Fig. 7. Results of segmentation (a) (synthetic input) image of bright and dark balls of varying radii (b)—(d) output images, (b) multiscale rcatpholog
segmentation, (c) watershed segmentation, and (d) Canny’s edge-based technique.

version. Figs. 7(d)-10(d) show the respective results of Cannysesholdk specifies how distinct the segment could be relative
edge based segmentation technique. Contours obtained duetds immediate background. It is important to observe the
different methods are superposed on the respective originadults in a greater detail to compare the performance. For
images for visual evaluation of the methods. Table | shows teabjective evaluation of performance of the said methods we
values of different parameters used in the experiment in ordermncentrate on the following qualities of the segmentation
produce visually optimum results in each case. The minimurasults and judge them visually.

and the maximum value of the diameter of the SE is determineda) Continuity: The contours in case of all the images re-

be the range of the size of the objects we are interested in. In  sulting due to the proposed method are closed and con-
all cases we have taken 7 as minimum diameter of SE. Contrast  tinuous [see Figs. 7(b)—-10(b)]. The contours produced by
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Fig. 8. Results of segmentation (a) (input image) noise-corrupted version of the image in Fig. 7(a) (b)—(d) output images, (b) multiscale carphologi
segmentation, (c) watershed segmentation, and (d) Canny’s edge-based technique.

the watershed algorithm are not always continuous and  proposed method. Mutual exclusion in regions are also
closed as can be seen in Figs. 8(c)-10(c). The contours observed in the results of watershed algorithm. However,
produced by Canny’s edge based technique in all the re-  no such comments made in case of Canny’s method due
sulting images are mostly discontinuous. Canny’s edge to presence of open contours.

also suffers from localization problem. ¢) Over- and under-segmentatioffhe results of the pro-

b) Mutual exclusion:The significant regions are success- posed algorithm suffer from over-segmentation problem
fully separated by contours produced by the proposed relatively less as compared to that of the watershed al-
method. There is no encroachment among different ad-  gorithm. Second, the problem of over-segmentation may
jacent segments in the output images produced by the further be reduced by increasing the size of the SE. The
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Fig. 9. Results of segmentation (a) (input) image of myelin, (b)—(d) output images, (b) multiscale morphological segmentation, (c) watersttetisegme
(d) Canny’s edge-based technique.

problem of over-segmentation is grossly present in case  criterion into account. The concentric multiple contours
of watershed algorithm [see Figs. 8(c)-10(c)]. Canny’s appear if a feature continues to grow after attaining sat-
method, has however, produced under-segmented and im-  uration criterion for some scale (see Fig. 3 and relevant

properly segmented output images. text). The small sub-regions within relatively larger re-
d) Emphasis on sub-feature§he proposed method has the gions can be contoured separately. This cannot be done

option to emphasize on different sub-features of relatively by other methods.

large features. This is achieved duentergingandsat- e) Emphasis on shape and scaleEmphasis on both shape

uration criteria. We, however, have the option for sup- and scale has been given in case of the proposed method.

pressing the sub-features if we do not take the merging  Emphasis on scale only is given in the case of Canny’s
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Fig. 10. Results of segmentation (a) (input) image of skin lesions (b)—(d) output images, (b) multiscale morphological segmentation, (c)segteesttatdon,

and (d) Canny’s edge-based technique.

edge based technique. No emphasis on shape and scale is by the multiscale opening and closing by reconstruction.

given in the watershed algorithm.

f) Other overheadsThe proposed algorithm makes use
of two control parametersiz. the graylevel threshold
applied on the residual image and diameter of SE. The
second parameter incorporates domain knowledge in
terms of size of objects of interest. However, the results
are not very sensitive to value of the threshadlyl. (The
space-time complexity is very high and is mainly caused

In each scale these operations involve computations of
the order ofm N2, for an image of sizeV x N, andm

is a multiplier that depends on the scale factor. The time
complexity may be improved significantly by distributing
the operations at different scales on parallel processors.
In case of watershed algorithm the selection of initial
marker points is a crucial overhead on which the result
depends heavily. The time complexity is also high. In
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TABLE |
VALUES OF THE PARAMETERS USED IN THE EXPERIMENT

Serial | Fig. Description MMS CEST
No. No. of Image Contrast maximum | sigma | hysteresis
threshold (k) | diameter of SE
1 7(a) | bright and dark balls 5 43 0.742 35
of different radii
2 8(a) noisy 7(a) 5 51 0.750 30
3 9(a) myelin 10 39 1.200 32
4 10(a) skin lesions 11 59 1.000 40

Fig. 11. (a) The input image and (b) the ideal contour.

case of Canny’s edge based technique two parametdmsght and dark segments in the same pass without allowing any
namely the scale and the hysteresis, have strong influemeatual encroachment. The contours are generated from infor-
on the output. The space complexity is not as high as thattion extracted at different scales subject to three prescribed
of other two methods. criteria, namely growing, saturation and merging. So the seg-
Here, we would like to mention the basic difference betweeanents extracted are scale-calibrated and shape preserving.
the proposed method and the watershed algorithm as they ar€he initialization, implementation of watershed algorithm is
conceptually most similar. Both the algorithms adopt regiomelatively more complicated as compared to those of the pro-
based approach. However, they perform the task in two differggdsed method. Secondly, Watershed algorithm might give rise
ways. The major differences are mentioned below. to broken waterlines and, hence, broken contours in some cases
The surface topography of a gray-scale image consists of hals it works on gradient image. The proposed algorithm is guar-
and pits of various base sizes and heights or depths. In watamteed to give closed contours. It may also mark and extract well
shed algorithm the surface of the gradient image is submergisfined sub-regions. However, the space-time complexity of the
in an infinite source of water. Water enters through fictitiouproposed method is relatively higher on sequential machines. So
holes at different local minima of the gradient image and fills may be recommended for parallel machines.
the catchment with a constant vertical upward speed. The water-
line separating two ormore such filled gatchment l_:Jgsins con%i_— Performance Analysis
tute the segmentation contours of the image. Defining gradient
image (by means of differentiation in discrete domain) and local For quantitative analysis of the performance of the seg-
minima of the catchment basins are two major sources of prdBentation algorithms used in this work, we propose a simple
lems that results in over- and under-segmentation. measure based on similarity between the contours generated
The proposed algorithm fills the troughs and truncates thy the respective algorithms with the ideal ones. The synthetic
peaks with a structuring element (SE) whose scale increase#nage shown in Fig. 7(a) consisting of bright and dark spheres
a constant rates. So, there is no need of searching for the Io@faflifferent radii is chosen as a reference image for perfor-
minima or maxima. The starting scale of the SE automaticaligance analysis [and it is redisplayed in Fig. 11(a)]. The ideal
takes care of this. It is not necessary to fill the troughs or trunentours segmentation are shown in Fig. 11(b). The contours
cate the peaks at constant speed or rate. It avoids to workmoduced by a segmentation algorithm must be very close or
the gradient image. The proposed algorithm takes care of bethilar to the ideal ones.
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TABLE I
RELATIVE PERFORMANCE OF THESEGMENTATION ALGORITHMS

Correct Segmentation Factor CSF
MMS —1|WSD |CEST | MMS — 11
1.6957 1.4645 | 2.6019 0.1280

MMS-I: Multiscale Morphological Segmentation, WSD: Watershed algorithm, CEST: Canny’s Edge based

Segmentation Technique, MMS-II: Multiscale Morphological Segmentation with no emphasis on sub-features.

& 0y .5
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Fig. 12. Segmentation contours traced by (a) multiscale morphologicei. 13. Images generated by pixel-wise exclusive-OR operation between

segmentation, (b) watershed segmentation, (c) Canny's edge-bagesl ideally segmented image and the image generated (a) multiscale

segmentation and (d) multiscale morphological segmentation with meorphological segmentation, (b) watershed segmentation, (c) Canny’s

emphasis on sub-features. edge-based segmentation and (d) multiscale morphological segmentation with
no emphasis on sub-features.

Let I;4 and I,, be the binary images which consist ofCanny’s edge based technique. The results of pixel-esistu-
ideal and extracted contours respectively. The pixel-wisg/e-ORoperation are shown in Fig. 13(a)—(c).
exclusive-ORoperation (31) between them gives an idea of The high value of CSF in case of the proposed method

mismatch is mainly contributed by the contours of sub-features. How-
~ ever, without using the merging criteria and adjusting the
Lopla]ly] = Lialx][y] & Lsg[][y] (31) scale-parameter, we can avoid extracting the sub-features [see
_ Fig. 12(d)]. As a result there is a significant reduction(8F
where® denotes the exclusive-OR operation. as shown in Table II. In watershed algorithm a pixel equidistant

If Niq and No, be total number of black pixels in the im-from two adjacent catchment basins require an arbitration
agesl;q and/,, respectively, we define theorrect segmenta- a5 it may simultaneously be claimed by both of them. The

tion factor CSF' as arbitration may cause a drift in waterlines. As a result@”
N increases. Canny’s algorithm employs convolution of image
CSF = 2. (32) with Gaussian function. As a result the contours are drifted
id from the ideal position which along with discontinuity results

For an ideal segmentation the value @8F should be zero. i high value of CSF.
However, smaller value of’'SF' indicates better performance.
Table Il shows the values @f'SF for three algorithms executed
on the image of Fig. 11(a). Fig. 12(a)—(c) show the contoursin this paper, we have proposed a scheme for segmenting
produced by the proposed method, Watershed algorithm agrdy-level images of cluttered objects of different shape and

V. CONCLUSION
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size. The proposed multiscale morphological method is exfi6] J. Gauch and C. W. Hsia, “A comparison of three color image seg-
pected to work satisfactorily on gray-level images containing
bright and dark features of various scales. The scheme starts,
with simplifying the image in the preprocessing step. In the
first pass the algorithm extracts potential regions at variou§l8]
scales by multiscale top- and bottom-hat transformation and
store them in different towers. In the second pass the algorithg)
compares pair of feature images corresponding to two succes-
sive scales and identifies the potential regions that contributﬁo]
to final segmentation based on three criteria, nangebwing,
merging and saturation Finally the contours of all such
potential regions are integrated. The results of the proposed
scheme have been compared with those of two other weﬁﬂ]
known methods, namely watershed algorithm and Canny’s
edge-based algorithm. It is evident that the results produce@d?]

by Canny’s method are far behind than those of the proposv(jg
scheme and watershed algorithm for the class of images we

consider. The watershed algorithm produce over-segmentatigz]
in some cases. The proposed method, by and large, produce
overall better results compared to two other methods. Thf’zS]
positive features of the proposed scheme is thatshape-and
edge-preservingcale-calibratedand satisfy a set of goodness
criteria. However, the CPU time and memory space require-
ment of the scheme are relatively higher. The proposed SChen[IZG‘G]
being inherently parallel might improve this shortcoming after

suitable parallel implementation.

(1]
(2]

[3] A.Rosenfeld and A. C. Kalfigital Picture Processing2nd ed. New

(4]
(5]
(6]

(7]

(8]

El
(20]

(11]

[12]

(13]

[14]

(15]

(27]

[28]
REFERENCES

A. K. Jain, Fundamentals of Digital Image ProcessingEnglewood
Cliffs, NJ: Prentice-Hall, 1989.

K. S. Fu, “A survey on image segmentatioi®dttern Recognitvol. 13,
pp. 3-16, 1981.

[29]

(30]
York: AP, 1982, vol. 1/2.

B. Chanda and D. Dutta Majumdddjgital Image Processing and Anal-

ysis New Delhi: Prentice-Hall of India, 2000.

——, “A note on use of gray-level co-occurrence matrix in threshold [31]
selection,"Signal Processvol. 15, no. 2, pp. 149-167, 1988.

B. Chanda, B. B. Chaudhuri, and D. Dutta Majumder, “A modified 132]
scheme for segmenting noisy imagedBEE Trans. Syst.,, Man,
Cybern, vol. 18, no. 3, pp. 458-467, 1988. [33]
J. S. Weszka and A. Rosenfeld, “Threshold evaluation techniques,’
IEEE Trans. Syst., Man, Cyberwol. SMC-8, pp. 622629, 1978.

J. F. Canny, “A computational approach to edge detectionReadings

in Computer Vision: Issues, Problems, Principles and Paradjdvma\.
Fischler and O. Firschein, Eds. San Mateo, CA: Morgan Kaufmann
1986, pp. 184-203.

B. M. ter Haar Romeny, EdGeometry-Driven Diffusion in Computer
Vision Dordrecht, The Netherlands: Kluwer, 1994.

J. Weickert, Anisotropic Diffusion in Image Processingser.
ECMI. Stuttgart, Germany: Teubner-Verlag, 1998.

W. J. Niessen, K. L. Vincken, J. Weickert, and M. A. Viergever, “Non- [37]
linear multiscale representations for image segmentat@orfiput. Vis.
Image Understandvol. 66, pp. 233-245, 1997.

P. T. Jackway, “Gradient watershed in morphological scale-spHseE
Trans. Image Processingol. 5, pp. 913-921, 1996.

J. H. Bosworth and S. T. Acton, “Morphological image segmentation
by local monotonicity,” inProc. Asilomar Conf. Signals, Systems, and
Computersvol. 1, Pacific Grove, CA, Oct. 24-27, 1999, pp. 53-57.  [39]
R. J. Frank, T. J. Grabowski, and H. Damasio, “Voxelvise percentage
tissue segmentation of human brain magnetic resonance images
(abstract),” inAbstracts, 25th Annual Meeting, Society for Neuro-Sci- [40]
ence Washington, DC: Society for Neuro-science, 1995, p. 694.

V. D. Heijden, “Edge and line feature extraction based on covariance
models,”|EEE Trans. Pattern Anal. Machine Intellol. 17, pp. 69-77,

1995.

[34]

135]

(36]

(38]

mentation algorithms in four color space®foc. SPIE vol. 1818, pp.
1168-1181, 1992.

R. Schettini, “A segmentation algorithm for color image®attern
Recognit. Lett.vol. 14, pp. 499-506, 1993.

T. Vlachos and A. G. Constantinides, “Graph-theoretical approach to
color picture segmentation and contour classificatiétigc. Inst. Elect.
Eng, vol. 140, pp. 36—45, 1993.

M. Goldberg and J. Zhang, “Hierarchical segmentation using a com-
posite criterion for remotely sensed imageriphiotogrammetriavol.

42, pp. 87-96, 1987.

H. Digabel and C. Lantuejoul, “Iterative algorithms,” Rroceedings

of the 2nd European Symposium Quantitative Analysis of Microstruc-
tures in Material Science, Biology and MedicineStuttgart, Germany:
Riederer Verlag, 1977, 1978, pp. 85-99.

S. Beucher, “Watersheds of functions and picture segmentation,” in
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal ProcesBiaigs,
France, 1982, pp. 1928-1931.

F. Meyer and S. Beucher, “Morphological segmentatiod,” Vis.
Commun. Image Representol. 1, pp. 21-46, 1990.

3] J. Shi and J. Malik, “Normalized cuts and image segmentati®EE

Trans. Pattern Anal. Machine Intellvol. 22, pp. 888-905, Aug. 2000.

W. Y. Ma and B. S. Manjunath, “EdgeFlow: A technique for boundary
detection and segmentationZEE Trans. Image Processingol. 9, pp.
1975-1988, Aug. 2000.

J. Z. Wang, J. Li, R. M. Gray, and G. Wiederhold, “Unsupervised
multiresolution segmentation for images with low depth of field,”
IEEE Trans. Pattern Anal. Machine Intellvol. 23, no. 1, pp. 85-90,
2001.

H. Atmaca, M. Bulut, and D. Demir, “Histogram based fuzzy Kohonen
clustering network for image segmentation,”Rroc. Int. Conf. Image
Processing1996, p. 18A6.

J. K. Udupa and S. Samarasekera, “Fuzzy connectedness and object def-
inition: Theory, algorithms, and applications in image segmentation,”
Graph. Mod. Image Processiol. 58, pp. 246—261, 1996.

D. N. Chun and H. S. Yang, “Robust image segmentation using ge-
netic algorithm with a fuzzy measurePattern Recognit.vol. 29, pp.
1195-1211, 1996.

A. Betti, M. Barni, and A. Mecocci, “Using a wavelet-based fractal fea-
ture to improve texture discrimination on SAR images, Piroc. 1997

Int. Conf. Image Processing (ICIP '97yol. 1, Washington, DC, Oct.
26-29, 1997.

R. Acharya and R. P. Menon, “A review of biomedical image segmenta-
tion techniques,” irDeformable Models in Medical Image Analysts
Singh, D. Goldgof, and D. Terzopoulos, Eds. Los Alamitos, CA: IEEE
Computer Soc., 1998, pp. 140-161.

G. M. MatheronRandom Sets and Integral in Geometry\New York:
Wiley, 1975.

J. SerraJmage Analysis Using Mathematical MorphologyLondon,
U.K.: Academic, 1982.

P. Salembier and J. Serra, “Morphological multiscale image segmenta-
tion,” in Proc. Visual Communication and Image ProcessiBgston,
MA, 1992, pp. 620-631.

P. Salembier, “Morphological multiscale segmentation for image
coding,” Signal Processvol. 38, pp. 359-386, 1994.

P. T. Jackway, “Multiscale image processing: A review and some re-
cent developments,J. Elect. Electron. Eng. Australjavol. 13, no. 2,

pp. 88-98, 1993.

A. Rosenfeld and A. C. KalDigital Picture Processing2nd ed. New
York: Academic, 1982, vol. 1/2.

R. V. D. Boomgaard and L. Dorst, “The morphological equivalent of
Gaussian scale-space,"@aussian Scale-Space ThealySporring, M.
Nielsen, L. Florack, and P. Johansen, Eds. Amsterdam, The Nether-
lands: Kluwer, 1997, vol. 8.

A. P. Witkin, “Scale-space filtering: A new approach to multiscale
description,” inlmage UnderstandingS. Ulliman and W. Richards,
Eds. Norwood, NJ: Ablex, 1984, pp. 79-95.

P. T. Jackway and M. Deriche, “Scale-space properties of multiscale di-
lation-erosion,”IEEE Trans. Pattern Anal. Machine Intelkol. 18, pp.
38-51, 1996.

P. T. Jackway, “Morphological scale-space,”Rnoc. 11th IAPR Int.
Conf. Pattern RecognitignThe Hague, The Netherlands, September
1992, pp. 252-255. P. Salembier, “Morphological multiscale seg-
mentation for image coding,3ignal Process.vol. 38, pp. 359-386,
1994.



MUKHOPADHYAY AND CHANDA: MULTISCALE MORPHOLOGICAL SEGMENTATION OF GRAY-SCALE IMAGES 549

[41] R. M. Haralick and L. G. ShapiroComputer and Robot Vi-
sion Reading, MA: Addison-Wesley, 1992, vol. 1.

[42] P. Maragos, “Pattern spectrum and multiscale shape representatic
|EEE Trans. Pattern Anal. Machine Intellzol. 11, pp. 701-716, 1989.

[43] A. Toet, “A hierarchical morphological image decompositioRdttern
Recognit. Lett.vol. 11, no. 4, pp. 267-274, Apr. 1990.

[44] L. M. Lifshitz and S. M. Pizer, “Multi-resolution hierarchical approach
to image segmentation based on intensity extrehEE Trans. Pattern
Anal. Machine Intell.vol. 12, pp. 529-540, June 1990. ical morphology.

[45] P. Perona and J. Malik, “Scale-space and edge detection us He has been working as a Research Associate at
anisotropic diffusion,T"EEE Trans. Pattern Anal. Machine Intel\ol. the Burnham Institute, La Jolla, CA, since 2001.

12, pp. 629-639, July 1990.

[46] J. A.Bangham, R. Harvey, P. D. Ling, and R. V. Aldridge, “Morpholog-
ical scale-space preserving transforms in many dimensidng|&ctron.
Imag, vol. 5, no. 3, pp. 283-299, July 1996.

[47] P. Salembier and M. Pardas, “Hierarchical morphological segmentati
for image sequence codindEEE Trans. Image Processingol. 3, pp.
639-651, Sept. 1994.

[48] C. Lantuejoul and F. Maisonneuve, “Geodesics methods in image al
ysis,” Pattern Recognitvol. 17, pp. 117-187, 1984. . . e

[49] P.Salembier and J. Serra, “Flat zones filtering, connected operators sity of Washington, Seattle, WA, as a Visiting Fac-
filters by reconstruction,’EEE Trans. Image Processingol. 4, no. 8, ! ulty from .1995 to 1996. _He has publ!shed more than
pp. 1153-1160, 1995. N AN 70 technical articles. His research interest includes

[50] S. Mukhopadhyay and B. Chanda, “Fusion of 2D gray-scale imag Image processing, pattern recognition, computer vi-

using multiscale morphology,Pattern Recognit.vol. 34, no. 10, pp. _ sion, and mathematical morpholgy. He is currently a
1939-1949, Oct. 2001. Professor at the Indian Statistical Institute, Calcutta.

o ; ; _ Dr. Chanda received the “Young Scientist Medal” of the Indian National Sci-
[51] ment',"gig#elltliiﬁfe?;\;grcgg?g; ! ggSpicgg%h ;%(I)O;. a contrastenhanc%nce Academy in 1989, the “Computer Engineering Division Medal” of the
[52] ——, “An edge preserving noise smoothing technique using muItisca'IBSt'tua'on of Englneers (India) in 1998, _and the “\ﬁkl_’am Sarabhai Resear(;h
morphology,”Signal Processvol. 82, no. 4, pp. 527-544, 2002. Award” of the Physical Research Lab. He is also recepient of a U.N. Fellowship,
[53] D.C.Marr and E. Hildreth, “Theory of edge detection, Rroc. R. Soc. UNESCO-INRIA FeIIowshlp, and Dlamond Jubilee Fellpwshlp of the Natlona_l
Lond, vol. B, 1962, pp. 187-217. Acaderrllydqf Sciences, India. He is a fellow of the National Academy of Sci-
ences, India.

Susanta Mukhopadhyayreceived his B.Sc.(Hons)

in physics from Presidency College, Calcutta, India,
in 1988, and the B.Tech. and M.Tech. degrees in ra-
diophysics and electronics from University of Cal-
cutta in 1992 and 1994, respectively. He received the
Ph.D. degree in 2003 from Indian Statistical Institute,
Calcutta. His Ph.D. work was related to multiscale
image processing under the framework of mathemat-

Bhabatosh Chanda(S’82—M'85—-F’03) was born in
1957. He received the B.E. degree in electronics and
telecommunication engineering and the Ph.D. degree
in electrical engineering from the University of Cal-
cutta, India, in 1979 and 1988, respectively.

He was with the Intelligent System Lab, Univer-



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


