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I. Introduction 
 
In this paper, we investigate a satisfiability-based approach to solving STRIPS planning 
problems. Traditionally, popular algorithms for STRIPS planning problems include a 
stable of total-order planners, such as Prodigy, and partial-order planners, such as 
UCPOP.  Blum and Furst introduced a novel way of constructing solutions for these 
problems called Graphplan, which significantly outperformed previous approaches [1].  
Arguing that SAT solvers are more robust and allow for more expressiveness than 
specialized planning algorithms, others have attempted to convert STRIPS planning 
problems into SAT problems, employing a variety of SAT algorithms, and gaining results 
competitive with those of Graphplan.  SATPLAN, one of the early attempts, converted 
STRIPS planning problems directly into CNF, sometimes even with hand-coded axioms 
to fine-tune performance. 
 
Combining the strength of Graphplan in defining search space and the strength of modern 
research into SAT solvers, Kautz and Selman introduced Blackbox. Blackbox first 
constructs a planning graph with methods similar to Graphplan and then converts the 
planning graph into a CNF formula to be fed to a SAT solver [3].  By converting from a 
planning graph, instead of from the STRIPS planning problems directly, they were able 
to show improvements over both Graphplan and SATPLAN, in addition to the benefits of 
automatic SAT encoding without the need of hand-coded axioms. 
 
For this project, we implemented the Blackbox planning algorithm, investigating its 
efficacy on a range of planning problems from the logistics, blocks world, and transport 
domains. We also investigated the impact of different constraint propagation methods, 
including mutex propagation in the planning graph and unit propagation and the failed 
literal rule in the SAT encoding of the problem. 
 
 
II. STRIPS Planning 
 
For the sake of completeness, we describe briefly STRIPS planning.  A STRIPS planning 
problem consists of the following: 
  

• A set of objects that persist throughout the span of the planning process.   Objects 
can neither be created nor destroyed during planning or the execution of a plan. 

• A set of operators that take objects as parameters.  Operators have preconditions, 
add-effects, and delete-effects.  The preconditions of an operator are the set of 
propositions that must be satisfied when the operation is carried out.  Add-effects 



are the set of propositions made true after an operation occurs, and delete-effects 
are the set of propositions that an operation makes false. 

• A set of initial conditions in the form of propositions true at time step 0. 
• A set of goals in the form of propositions that must be true at the end of the plan. 

 
Because STRIPS operates under the closed world assumption, any un-instantiated actions 
or propositions are asserted to be false, and an action is a fully-instantiated operator with 
specific objects as parameters. Additionally, STRIPS assumes discrete time steps. A valid 
plan needs to specify a set of actions and their execution times (levels in the plan) such 
that the initial conditions hold at time 0, actions are executable, and all goals are met at 
the last time step of the plan. 
 
 
III. Data Structures 
 
To represent the planning problems and the resulting planning graph, we used the 
following data structures: 
 
 
Class Members Description 
Object name The name of this object 
Proposition name The name of this proposition 
 precs List of actions of which this proposition is a precondition 
 adds List of actions that have this proposition as an add-effect 
Operator name The name of this operator 
 precs List of propositions that are preconditions of this action 
 adds List of this action’s add-effects 
 dels List of propositions that this action deletes 
Instantiated idx Index into the array of possible actions or propositions 
 args The objects that instantiate this action or proposition 

Figure 1: Data Structures 
 
We used the Instantiated class to represent both an instantiated proposition and an 
instantiated operator (i.e. action). To facilitate internal bookkeeping, we assign every 
object an index, every proposition an index, and every operator an index.  In addition, 
because of the relatively small number of propositions, we are able to assign every 
possible grounded proposition an index (grounded propositions are those with specific 
lists of objects as arguments—we will use grounded interchangeably with instantiated).  
This is very useful for our bit array implementation of the planning graph construction 
(see Section IV). 
 
For every level in our planning graph, we maintain the actions that are instantiated at that 
specific level, the propositions instantiated there, and the mutex relationships. We are 
able to maintain both proposition mutexes and action mutexes, supporting constant time 
queries as to whether propositions or actions are mutex with one another.  
 
 
IV. Planning Graph Construction 
 



Graphplan uses a polynomial time algorithm to construct a graph representing all possible 
paths through the planning problem. Below is a short description of planning graph 
construction.  
 

 
function ConstructPlanningGraph(Ops, Objs, InitState, Goals) 
 
   Initialize G with proposition level 1 using InitState 
 
  for i = 1 incrementing by 1 do 

if (proposition level i contains all Goals 
    and no two goals are mutually exclusive at level i) then 
 
  return G 
 
endif 
 
Augment G with action level i 
Augment G with proposition level i+1 

endfor 
 

end ConstructPlanningGraph 
 

Figure 2: Pseudo-code for planning graph construction 
 
The run time requirement of planning graph construction is polynomial in n, m, p, l, and 
t, where  
 n number of objects 
 m number of operators 
 p number of propositions 
 l length of the longest add-list of any of the operators 
 t t-level planning graph 
 k largest number of formal parameters in any operator [3]. 
We will be noting the running time requirement of individual parts of the planning graph 
construction process below. 
 
 
Proposition Levels 
 
We used bit arrays to represent propositions that could be instantiated at each proposition 
level of our graph. Because we index every possible grounded proposition, each 
proposition level can be a bit array whose indices are 1 if the corresponding proposition 
is (or might be) instantiated, 0 otherwise. For example, for the proposition ON in the 
blocks world domain could be grounded with objects A, B, and C: grounded propositions 
for the ON proposition would include the relations ON(A,B), ON(A,C), ON(B,A), 
ON(B,C), ON(C,A), and ON(C,B). 
 
Assuming we have p propositions and n objects in our problem and that the largest 
number of arguments for any proposition in the problem is q, the total number of possible 
grounded propositions at any level is g = pnq.  Utilizing bit arrays and allocate one bit 
array of size g for each proposition level, we can very quickly tell which propositions are 



instantiated at any level. 
 
Naturally, the first proposition level in the graph has exactly the grounded propositions 
specified in the initial state of the problem, and the last level has as a subset the goal 
propositions. Because of the bit array implementation of our proposition levels, we can 
very quickly detect goal states and more easily instantiate action levels, since calculating 
intersections and subset relations is fast. 
 
 
Propositions to Actions 
 
As shown in the ConstructPlanningGraph pseudo-code, the planning graph construction 
process repeatedly alternates between constructing action level t from proposition level t 
and constructing proposition level t+1 from action level t.  Proposition level t is 
represented by a set of grounded propositions possible at level t, while action level t 
contains the set of actions that we can instantiate, based on their preconditions, at level t. 
 
Initially, we have only the initial state propositions at proposition level 0. To go from 
proposition level t to action level t, we must find all actions whose preconditions appear 
in proposition level t.  This is an easy concept to define but a rather time-consuming 
process calculation (though it is in the worst case polynomial, which is still far faster than 
searching for a valid plan).  In the most naïve implementation, we consider each operator, 
instantiating each with all possible permutations of the objects, then checking each 
operator’s preconditions against proposition level t.  Assuming that the largest size of 
precondition list is c, the naïve implementation takes O(gcmnk), where m is the number of 
operators, n the number of objects, and k the maximum number of arguments to any 
operator. 
 
Bit arrays help speed up this check.  While we still must loop through all operators and 
instantiate each operator with possible permutations of the objects, we need not checking 
each precondition in each of the possible instantiated actions against proposition level t. 
We maintain a few static bit arrays of size g for quick calculations, and for each action a, 
we set a’s grounded preconditions to be on bits in the array bpre.  This allows us to 
quickly check we can find if the precondition bit array bpre is a subset of the proposition 
level t bit array bprop by checking if bpre = bprop ∩ bpre.  This operation is a very fast O(g); 
while we do not lower our big-O running time, the constant factors are easy to deal with. 
One possible speedup for this procedure is to have propositions keep track of those 
actions that have them as preconditions; then we could iterate over the propositions that 
had been instantiated at a level t, constructing as we went a list of those actions whose 
preconditions had been instantiated. The efficiency gain here, given the speed of the 
construction regardless and the NP-Completeness of the SAT procedure underlying the 
planner (to be described later), was thought to be insignificant. 
 
Having calculated all possible instantiations for the actions at the next level, we can 
populate the action level from our propositions. Unlike our proposition levels, our action 
levels contain a list only of instantiated actions at each level instead of a bit array with 
indices corresponding to a list of all possible instantiated actions.  The structure of the 
problems dictated this approach—while propositions had at maximum 2 arguments, 



actions could have many more, and thus the ordering became undesirable. 
 
 
Actions to Propositions 
 
The construction of the proposition levels from action levels is a much more 
straightforward exercise. In order to construct the set of activated propositions at level 
t+1, we examine the set of instantiated actions at level t and add all of the add-effects of 
all of the instantiated actions.  This process that can be performed in time O(p + mlnk). 
 
 
Mutexes 
 
Mutex relationships define pairs of actions or propositions that cannot be true at the same 
time in any plan. Calculating, and propagating, mutex relations can save much search and 
significantly speed up planning procedures. There are three different types of mutex 
relationships, two for actions and one for propositions. Actions have interference, which 
is when one action a1 has as an add-effect what another action a2 has as a delete or when 
an a1 has as a precondition what a2 has as a delete. Actions also have competing needs, 
which occurs when action a1 has a precondition that is mutex with the precondition of 
action a2. For propositions to be mutex, the criteria is slightly more difficult to meet: a 
proposition p1 is mutex with a proposition p2 if every action (including no-operation 
actions) that instantiates p1 is mutex with every action instantiating p2. Mutexes can be 
shown to be monotonically decreasing in the sense that once a mutex relation exists, if it 
ceases to exist at a level t, it can never hold at a level greater than t. 
 
The ordering we imposed on the propositions and our ability to represent a set of 
propositions as a bit array facilitated significantly the calculation of mutex relationships. 
To calculate whether an action a1 was mutex with an action a2 because of interference, 
we simply constructed the bit arrays corresponding to their add, delete, and precondition 
effects, took the appropriate intersections, and if any intersection was non-empty, a1 and 
a2 were determined to be mutex. We then maintain, for each action level, a set of bit 
arrays, each as long as the number of instantiated actions and corresponding to the 
mutexes an action has with other instantiated actions. This set allows O(1) mutex 
checking once it has been created. 
 
Propagating mutex constraints is somewhat more challenging than simple interfering 
actions. For each proposition pt at level t, we maintained a vector of the actions at level t-
1 that had pt as an add effect. We then iterate over all pairs of propositions, checking if 
any of the actions that instantiate them are not mutex. While the complexity of this check 
is O(g2A2), where A is the number of actions that have been instantiated (which can grow 
as large as mnk), in practice we quickly find non-mutex actions and note that pairs of 
propositions are not mutex. As with the actions, we maintain a set of bit arrays indicating 
mutex propositions. 
 
Checking whether actions are mutex based on competing needs is less tricky. To decide if 
a1 and a2 are mutex because of competing needs, we iterate over all pairs of their 
preconditions, whose mutex relations we can check in constant time, and if one pair has 



propositions that are mutex, a1 and a2 are mutex. 
 
In spite of all the data and information we keep around, maintaining bit arrays at every 
level for all mutex relations, all propositions, and a few other indexing pieces of data, the 
size of our planning graphs are relatively small, growing only to 2 MB or so in the largest 
cases. 
 
Visualization of Mutexes 
 
We attempted to visualize the action and proposition mutexes. Seeing the mutexes gives 
us three pieces of information that are difficult to find when Blackbox is running. First, 
the visualization shows us how dense or sparse the instantiated actions and grounded 
propositions are in the total space of possible actions and grounded propositions.  Second, 
we see how dense the mutex relations are in the space of instantiated actions and 
grounded propositions. Third, we see how the number of instantiated actions, grounded 
propositions, and mutexes evolves at each step of the planning graph construction. 
 
Below, we show the visualization of action mutexes and grounded proposition mutexes 
for the FERRY3 problem.  Each cell in the diagram represents an action or a grounded 
proposition pair.  Gray cells indicate that the proposition or action at that index has not 
been instantiated, white means there is no conflict between the instantiations to which the 
cell has indexes, and red shows there are mutex relations.  The length of each axis in the 
action mutex diagram is |actions| * |objects|4.  The lengths of the axes in the proposition 
mutex diagrams are |propositions| * |objects|2.  
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Action Mutexes at levels 0, 1, and 2 for FERRY3 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Proposition Mutexes at levels 1 and 2 for FERRY3 

 
 

 
 

 
 

 
 

 
 



 
The above diagrams show that actions and proposition instantiations are not extremely 
dense.  In addition, some action mutexes persist because of interference, whereas 
proposition mutexes might persist or go away, but once propositions do not conflict, they 
never will. 
 
V. Conjunctive Normal Form Conversion 
 
Conjunctive Normal Form (CNF) is an encoding of a wff made of conjunctions of 
clauses, where each clause is the disjunction of some number of literals. Converting a 
planning graph to CNF is a key step in the Blackbox procedure; we must add clauses that 
capture all the information the planning graph encapsulates. This representation is rich 
enough that we can describe all mutex relationships, even implying some that are not 
captured in the planning graph. Each level defines a set of variables that are included in 
the CNF representation, their truth-values to be computed; every true variable implies 
that its corresponding proposition or action, at a specific level, must have been true.  
 
For each initial state proposition and each goal state proposition, we add a singleton 
clause to ensure that the propositions are true. For each proposition p, we must add 
clauses describing the actions that might have added p, which in effect gives us the 
formula (p -> a1 v a2 v a3 v … v an). To encode this in CNF, we translate to the formula 
(~p v a1 v a2 v a3 v … v an). For each action a at each level, too, we must add clauses 
describing the preconditions of a. Thus, each action implies the conjunction of its 
preconditions: (a -> p1 ^ p2 ^ … ^ pn).  Using distribution of disjunction over conjunction, 
this can be encoded in clauses of form: (~a v pi) for each pi in a’s preconditions. A mutex 
relationship simply means that both its arguments cannot be true at once, so we encode 
mutex actions a1 and a2 in clauses of form (~a1 v ~a2). Mutex propositions are 
symmetric. Of these two types of mutexes, we need only include action mutexes, since 
they imply proposition mutexes. Nevertheless, past research has suggested that including 
proposition mutexes can significantly speed search. 
 
Because of the nature of mutex relations and the possibility that they grow quadratically 
with the number of actions and propositions instantiated at each level, mutex propagation 
can make CNF encodings of a planning graph grow very large. For example, in some 
blocks world problems, when propagating mutexes, we encountered CNF representations 
with as many as two million clauses. This blow-up is not insurmountable, but it does 
make problems more difficult. 
 
VI. WalkSAT 
 
The backbone of the planning procedure we will describe sparsely; for a better 
explanation, see Connor and Duchi’s 2005 treatment of satisfiability algorithms [2]. Once 
given a CNF representation of a problem, WalkSAT will give a random truth assignment 
to all the variables, then will pick a random unsatisfied clause. With probability p, 
WalkSAT will pick a random variable from this clause, with probability 1-p, WalkSAT 
will pick a variable greedily and attempt to minimize the number of unsatisfied clauses. 
WalkSAT then flips the truth assignment of this variable, checking to see whether the 
CNF is then satisfied. 



 
WalkSAT requires that a certain number of attempts to solve a CNF be given (usually 
referred to as the number of tries) and that a certain number of different variable 
assignments be allowed (the number of flips). For our experiments, as suggested by 
previous results on WalkSAT, we set the number of flips to be 2num_var2, the number of 
tries to be twenty. We used the same implementation of WalkSAT, with a few 
modifications for reading in instances of a graph from the graph planner, as we did in [2]. 
 
VII. Augmenting Search with General Limited Inferences 
 
Unit Propagation 
 
Unit propagation finds unsatisfied clauses with one unassigned variable and assigns a 
truth value to that variable to satisfy the clause.  When it assigns the truth value, unit 
propagation detects whether the assignment made any other unsatisfied clauses have one 
unassigned variable and adds such clauses to a queue of clauses to be unit-propagated. 
Given that once a variable has been propagated, its assignment is set; WalkSAT should 
not change it. We modified WalkSAT so that it would not change unit-propagated literals 
(or those that were chosen by the failed literal rule). Unit propagation has proved to be 
very effective for limiting the search in CNF problems generated from planning; given 
the unit clauses that define the goals and initial state, it seems intuitive that unit 
propagation would have at least some limited strengths. In fact, unit propagation often 
allows us to break out of search at a particular level in the planning graph early if there 
are obviously no solutions because we can propagate in polynomial time to a 
contradiction. 
 
Failed Literal 
 
In checking for failed literals, we assign each variable to true (and again to false to re-run 
the test) and then unit propagate this assignment to check for a contradiction.  If a 
contradiction is implied, then we know that the truth assignment we made is impossible, 
and we force the opposite truth value on the variable in question. If we get contradictions 
from both propagations, we know the formula cannot be satisfied. In effect, this rule adds 
some marginal completeness to WalkSAT, at least for obviously unsolvable instances of 
a SAT problem. 
 
Unit propagation and checking for failed literals speed up search because they find 
simple implications that would otherwise waste the time of the SAT solver.  This is 
especially significant for a randomized SAT solver like WalkSAT. The structure of CNF 
formulae produced from a planning graph lends itself to unit propagation and checking 
for failed literals.  There are many unit clauses (e.g. initial and goal states) and binary 
clauses (e.g. mutexes and actions implying their preconditions) that are sensitive to small 
truth assignment modifications.  If all clauses contained many variables, we would have 
trouble finding any initial unit clauses to bootstrap unit propagation and clauses’ 
evaluations would be less sensitive to assigning truth assignments when we checked for 
failed literals. There are, however, small clauses off of which we can bootstrap. 
 
 



VIII. Results 
Combining the SAT solving with Graphplan, we implemented Blackbox[3], which 
proved to be a relatively effective planning tool. We ran tests on a suite of planning 
problems from traditional planning domains. These problems ranged from blocks world 
planning problems and single robot arm domains to logistical planning and toy problems 
without any objects. Each domain presented some specific challenges, some more 
difficult than others. 
 
Timing Data 
 
The run times for our different problems varied widely, which is understandable, given 
the differences between each of the problems. On average, blocks world problems were 
more difficult than problems of similar length, though all problems whose solutions were 
longer than twelve steps provided significant difficulty for us. 
 

Problem Time Length 
att-bw2 25.15 4 
att-log 1.58 10 

att-log1a 0.26 6 
big-bw1 4.01 7 

d1s1-8 0.09 8 
d1s1-10 0.21 10 
d1s1-4 0 4 
ferry3 0.03 3 
ferry7 0.25 7 

med-bw 31.3 5 
Figure 3: Average run times, in seconds, for consistently solved problems 

 
The most efficient solving method, by far, was using a Graphplan that propagated mutex 
relations and, when translating to CNF, used unit propagation and the failed literal rule 
(flit) to pre-process and simplify the CNF. Though this method did not solve problems 
whose solutions were longer than eleven steps, it solved all of the problems it could 
consistently solve very quickly. 
 
On problem instances that all our variations of Blackbox solved, the mean and median 
times of Blackbox using mutex propagation, unit propagation, and flit were less than 10% 
those of a Blackbox planner not employing those strategies (see Figures 3 and 4). Not 
simplifying our CNF with unit propagation seemed to be the biggest culprit in the blow-
up from not using all the available heuristics and simplifications; running with flit and 
unit propagation but without mutex propagation, the fully optimized Blackbox ran only 
20 to 50% faster. When propagating mutexes, Blackbox ran, on average, in 20% of the 
time of a planner not propagating mutexes, but the median running time was actually 1% 
of the non-simplifying planner. As such, it seems that flit and unit propagation are very 
important for the Blackbox planner. 
 
 



 Nothing 
Only 

Simplify Only Mutex 
Average 0.094454769 0.556619996 0.213274101 
Median 0.015437921 0.807692308 0.010044643 

Figure 4: Blackbox’s running time as a percent of handicapped planners 
 
The reason for this is probably best explained in view of the structure of the CNF 
generated by mutex relations. As stated above, every mutex adds a clause of the form  
(~a v ~b). These can grow as the square of the number of propositions and actions; this 
explosion is very difficult for WalkSAT to handle, though the failed literal rule and unit 
propagation are very well suited for this sort of elimination. This is why combining the 
two—unit propagation and failed literal rule with mutex calculations—proves effective. 
 
Running times on blocks world problems, as stated above, were much higher than the 
other problems in the test set, at least when all optimizations for Blackbox were running. 
 

 All Optimize Nothing 
Only 

Simplify Only Mutex 
Blocks 
World 25.15 65.52 26.6 29.86 

Logistics 1.58 162.71 83.69 280.21 
Figure 4: Comparing Blocks World with Logistics 

 
In Figure 4, one can see a strange phenomena: when all optimizations are running, 
logistics planning (moving a truck full of packages, for example) is significantly faster 
than blocks world, but without mutex propagation or unit-propagation and flit, blocks 
world planning is faster. The blocks world solution is four steps long, while the logistics 
solution is 10 steps, but that a ten step solution is quicker than a four step is interesting in 
its own right. Our first thought was that when mutexes are propagated through the graph, 
the logistics problem must have many mutex relations that are difficult to solve. This was 
not borne out, however, because the blocks world problem in question had 90% of its 
variables assigned by unit propagation and the failed literal rule, while the logistics 
problem had only 50%. This is an area for further consideration, but it does bring us to 
the next topic of this paper: the effects of unit propagation and the failed literal rule. 
 
Impact of simplification 
 
With unit propagation, the failed literal rule, and mutex propagation running, the 
problems we consistently solved had an average of 77% of their variables set through unit 
propagation and the failed literal rule. When mutex relations are not propagated through 
propositions as well as actions, the failed literal rule and unit propagation assign, on 
average, 64% of the variables. This interaction suggests that propagating mutex relations 
is a valuable technique in Blackbox planning; while mutex relations do add significantly 
to the number of clauses (sometimes giving upwards of 2 million clauses), they also 
improve the efficacy of unit propagation and the failed literal rule. 
 
The interactions between the formula simplifications and the time to solve problems are 



not completely clear. In Figure 5, we compare the times to solve different problems with 
and without mutex propagation in relation to the percentage of variables that unit 
propagation and the failed literal rule assign. There is some correlation—the problem big-
bw1 (a blocks world problem) without mutexes was not much affected by unit 
propagation or the failed literals rule, and it is slow, as is att-log, a logistics problem. But 
mutex propagation affects other blocks world problems (att-bw2, for example) little, and 
Blackbox is actually slower to solve the logistic problem att-log1a when it assigns more 
variables through unit propagation and flit. 
 

 With Mutex Propagation No Mutex Propagation 
 % Assigned Time (s) % Assigned Time (s) 
att-bw2 0.917142857 25.15 0.91 26.6 
att-log 0.502849003 1.58 0.156695157 83.69 
att-log1a 0.601265823 0.26 0.389240506 0.19 
big-bw1 0.948051948 4.01 0.073688913 333.15 
d1s1-8 0.95 0.09 0.822222222 0.11 
d1s1-10 0.96 0.21 0.854545455 0.26 
d1s1-4 0.9 0 0.68 0.02 
ferry3 0.838235294 0.03 0.838235294 0.03 
ferry7 0.665289256 0.25 0.115107914 6.43 

Figure 5: Comparing Unit Propagation and Failed Literals Efficacy with Timing. 
 
 
In the end, though, using the failed literal rule and unit propagation, along with mutex 
propagation, seems to provide the most effective method for solving planning problems.  
 
IX. Discussion and Future Directions 
 
In this report, we have investigated Blackbox, a planning approach that unifies Graphplan 
and SATPLAN algorithms to more effectively plan in a wide variety of domains. We 
have demonstrated that using a combination of mutex propagation, unit propagation in 
SAT problems, the failed literal rule, and WalkSAT provide a good framework for many 
planning problems. 
 
The planning graph, when converted into a CNF form, has a structure that other SAT 
solvers, such as satz [6], a Davis-Putnam based procedure relying on unit-propagation 
heuristics, might take advantage of. This would provide the advantage of completeness as 
well as quicker solving. Another possibility is suggested by Kautz and Selman: we could 
compressing the CNF representation by having actions imply their effects as well as 
preconditions, rather than instantiating mutex clauses, since these would be entailed by 
any interfering effects. This would shrink our quadratically growing set of clauses, and 
Horn-clause theorem proving is a well-established area of computing. 
 
Time management is another area that could be interesting to look at. Given that we work 
with an inherently incomplete algorithm (WalkSAT), deciding the time at which to break 
off search and try instantiating a new level is a little nebulous. The approaches we took, 
to statically allocate time blocks, giving more as we moved down the tree, did not seem 



very effective. Early in the search, WalkSAT exits before its time is up because it finishes 
all its flips, but later in the search, WalkSAT may run out of time. Even complete solvers 
may want time limits, because levels later in the planning graph may have more obvious 
solutions and be easier to find than optimal ones. 
 
A last area for further exploration is making the planning graph more efficient. 
Realistically, the only information we need about propositions and actions are the first 
levels at which they become instantiated and the last levels they are mutex with other 
actions or propositions. This, however, would entail a significant amount of overhead and 
complexity to shrink a graph that is polynomial anyway, so we do not see too many 
payoffs from this approach. 
 
Blackbox provides a good way to merge two evolving algorithm classes—graph based 
planning and SAT solving—into an algorithm that can achieve impressive results on 
many planning problems. 
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