Universidade Federal de Pernambuco (UFPE) Centro de Informática (CIn) - Lista de Informática Teórica (Gramáticas e Autômatos de Pilha)

- 1. (exercício 6.1.1) Suponha que o PDA p = $(\{q, p\}, \{0, 1\}, \{Z_0, X\}, \sigma, q, Z_0, \{p\})$ tenha a seguinte função de transição:
 - $\sigma(q, 0, Z_0) = \{(q, XZ_0)\}$
 - $\bullet \ \ \sigma(q,0,X) \ = \ \{(q,XX)\}$
 - $\bullet \ \sigma(q,1,X) = \{(q,X)\}$
 - $\bullet \ \sigma(q,\varepsilon,X) = \{(p,\varepsilon)\}\$
 - $\bullet \ \sigma(p,\varepsilon,X) = \{(p,\varepsilon)\}\$
 - $\bullet \ \sigma(p,1,X) = \{(p,XX)\}\$
 - $\bullet \ \sigma(q,1,Z_0) = \{(p,\varepsilon)\}\$

A partir da ID inicial (q, w, Z_0) , mostre todas as ID's acessíveis quando a entrada w é:

- 2. (ex. 6.2.6) Considere o PDA da questão anterior.
 - Converta P em outro PDA P₁ que aceite por pilha vazia a mesma linguagem que P aceita pelo estado final;
 - Encontre um PDA P_2 tal que $L(P_2) = N(P)$; isto é, P_2 aceita pelo estado final o que P aceita por pilha vazia.
- 3. (exercício 6.2.1 e 6.2.2) Projete um PDA para aceitar cada uma das linguagens a seguir. Você pode aceitar pelo estado final ou por pilha vazia, o que for mais conveniente.
 - (a) $\{0^n 1^n \mid n \ge 1\}$
 - (b) O conjunto de todos os strings de 0's e 1's com um número igual de 0's e 1's.
 - (c) O conjunto de todos os strings em que a quantidade de 0's é duas vezes a quantidade de 1's.
- 4. Converta a gramática:

•
$$S \rightarrow 0S1 \mid A$$

• A
$$\rightarrow$$
 1A0 | S | ε

Em um PDA que aceite a mesma linguagem por pilha vazia.

5. Converta a seguinte gramática para a forma normal de Chomsky.

• A
$$\rightarrow$$
 BAB | B | ε

• B
$$\rightarrow$$
 00 | ε