
A Model Theory for Nonmonotonic Multiple
Value and Code Inheritance in Object-Oriented

Knowledge Bases

a dissertation presented

by

Guizhen Yang

to

The Graduate School

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

computer science

State University of New York

at Stony Brook

December 2002

Copyright c© 2002 by Guizhen Yang

State University of New York
at Stony Brook

The Graduate School

Guizhen Yang

We, the dissertation committee for the above candidate for
the degree of Doctor of Philosophy,

hereby recommend acceptance of this dissertation.

Professor Michael Kifer, Advisor
Department of Computer Science

Professor I.V. Ramakrishnan, Chairman of Defense
Department of Computer Science

Professor Yanhong Annie Liu
Department of Computer Science

Professor C.R. Ramakrishnan
Department of Computer Science

Dr. Bertram Ludäscher, Director
Knowledge-Based Information Systems Laboratory

San Diego Supercomputer Center

This dissertation is accepted by the Graduate School.

Dean of the Graduate School

ii

Abstract of the Dissertation

A Model Theory for Nonmonotonic Multiple Value and
Code Inheritance in Object-Oriented Knowledge Bases

by
Guizhen Yang

Doctor of Philosophy
in

Computer Science

State University of New York
at Stony Brook

2002

We have developed a comprehensive model theory for nonmonotonic multiple
value and code inheritance in object-oriented knowledge bases. Our new inheritance
semantics, called optimistic object model semantics, supports implicit inference by
inheritance as well as explicit deductive inference via rules. Inference by inheritance
supports a multitude of features, such as overriding, nonmonotonic multiple value and
code inheritance, meta programming, and dynamic class hierarchies — the important
features that are fundamental to advanced object-oriented knowledge management.

In the setting of three-valued models, we formally define the inheritance postu-
lates that capture the common intuition behind overriding and conflict resolution
in nonmonotonic multiple value and code inheritance. These postulates specify the
minimum requirements for object models.

We specify an extended alternating fixpoint procedure for computing object mod-
els. We define a unique object model, called optimistic object model, for any given
program that is written in our rule-based query language. We prove three differ-
ent characterizations of the optimistic object model semantics: an optimistic object
model is the least fixpoint of the extended alternating fixpoint computation, is the
least stable object model with respect to information ordering, and is a minimal
object model with respect to truth ordering.

Our new inheritance semantics yields intuitively satisfactory results in all known
benchmark cases, does not impose syntactic restrictions on programs, and has been
implemented in the Flora-2 system. To the best of our knowledge, the optimistic
object model semantics is currently the only model-theoretic semantics for nonmono-
tonic multiple value and code inheritance that applies to general, unrestricted object-
oriented knowledge bases.

iii

To my parents.

Contents

List of Figures viii

Acknowledgements ix

1 Introduction 1

2 Inheritance in a Nutshell 4

2.1 Methods and Class Hierarchies . 4

2.2 Overriding and Multiple Inheritance 5

2.3 Value and Code Inheritance . 6

2.4 Dynamic Class Hierarchies . 9

2.5 Inheritance and Deduction . 10

3 Related Work 13

3.1 Summary of Previous Research . 13

3.2 Related Work in the Literature . 14

3.3 Simulating Code Inheritance . 17

4 Preliminaries 20

4.1 Fixpoint Theory . 20

4.2 Well-Founded Semantics . 22

5 Three-Valued Semantics 27

5.1 Syntax . 27

5.2 Three-Valued Interpretations . 28

v

5.3 Truth Valuation Functions . 29

5.4 V-Rule Satisfaction . 32

6 Inheritance Postulates 34

6.1 Inheritance Candidates . 35

6.2 Core Inheritance Postulates . 37

6.3 C-Rule Satisfaction . 39

6.4 Object Models . 41

6.5 Optimistic Inheritance Postulates . 43

7 Computation 45

7.1 Extended Atom Sets . 45

7.2 Operators . 46

8 Stable Object Models 53

8.1 Stable Interpretations . 53

8.2 Properties . 55

8.3 Stable Object Models and Fixpoints 62

9 Optimistic Object Models 65

9.1 Definitions and Properties . 65

9.2 Information Ordering . 70

10 Minimal Object Models 72

10.1 Truth Ordering . 72

10.2 Minimality . 74

11 Implementation 80

11.1 Rewriting . 80

11.2 Isomorphism . 82

11.3 Data Complexity . 92

12 Conclusion and Future Work 93

vi

12.1 Contributions . 93

12.2 Future Work . 94

Bibliography 97

vii

List of Figures

1 Inheritance through Context . 10

2 Interaction between Derived and Inherited Facts 11

3 Interaction between Inheritance and Derived Intervening Superclass . 11

4 Derived Multiple Inheritance . 12

5 Inheritance Context, Overriding, and Inheritance Candidate 37

6 Unique Source Inheritance . 42

7 Unfounded Inference . 53

8 Constructive Fixpoints . 63

9 Nonconstructive Fixpoints . 64

10 Computation of Optimistic Object Models 71

11 Minimal Object Model . 73

12 Trailer Rules for Well-Founded Rewriting 81

13 Most-Specific-Definition-Based and Path-Based Overriding 95

viii

Acknowledgements

I would like to thank my advisor, Professor Michael Kifer, for his generous support.
During my study at Stony Brook, I have learned and benefited tremendously from his
rigorous, persistent research style and his insight into research problems. The quality
of my work reflects the many long yet enjoyable hours that we spent together, either
brainstorming, nailing down technical details, or challenging each other’s ideas.

My thanks also go to my co-advisor, Professor I.V. Ramakrishnan, for his being
so inspiring and so enthusiastic. He has a very acute sense about research as well
as humor, and always brings a lot of fun to work. It is really my privilege to have
worked with him on a number of projects and research papers.

I want to extend my thanks to the other members of my dissertation com-
mittee: Professor Yanhong Annie Liu, for her helpful discussions and suggestions;
Professor C.R. Ramakrishnan, who unfolded and introduced the new world of logic
programming to me; and Dr. Bertram Ludäscher at San Diego Supercomputer Cen-
ter, whose early work on the Flip project greatly influenced our design of the Flora-2
system.

I would not have gone this far and have accomplished this much without the
support from my great family: my parents, Xiangdong and Yingxia, my sister, Guili,
and my brother, Guihua. I am so fortunate to have grown up in such a loving and
caring family. My mom and dad sustained unimaginable hardships and made great
personal sacrifices to raise their three children. They lightened my spirit when I was
lost and soothed my soul when I was down. They are the pillars of my life and my
ultimate source of strength. Thank you, mom and dad!

I am very grateful to my uncle, Zhenye, and my aunt, Juan, for their hearty
support. My uncle taught me a lot of precious life lessons and never ceases encouraging
me to pursue my dreams. My aunt cooked very delicious Chinese dishes and made me
feel so at home every time I had a visit to her family and was away from my parents.
I also owe my thanks to my cousin, Guangming, for being such a great buddy who
shares my joys and sorrows.

My dissertation received a lot of support from the XSB research team at
Stony Brook: Professor David Warren, Dr. Terrance Swift, Dr. Baoqiu Cui, and
Lúıs Fernando Castro, who all took great patience in answering my questions about
the XSB system, on which the Flora-2 system was built.

Thanks are also due to my wonderful colleagues and co-authors, Hasan Davulcu
and Saikat Mukherjee, and to the hardworking system and support staff in
our department, in particular, Brian Tria, Anne Kilarjian, Betty Knittweis, and
Edwina Osmanski.

I am indebted to my high school mentor, Hongbing Zhang, for her invaluable
guidance in the early stage of my education and her constant encouragement in these
many years.

The past few years would have been short of joy without the many friends and
officemates at Stony Brook: Yifei Dong, Shiyong Lu, Xianfeng Yuan, Ying Zhang,
Haifeng Guo, Jing Hua, Gang Peng, Ningning Zhu, and many others. Their friend-
ship is very much appreciated.

Last but not the least, I would like to say my thanks especially to Lan Huang, for
all the delight she brings and her company and moral support.

Chapter 1

Introduction

Object-oriented knowledge bases combine the strengths of both object-oriented and
deductive programming paradigms. Recent years have witnessed a great deal of suc-
cess of such systems in projects ranging from data integration in neuroscience [23]
to processing semistructured and semantic information on the Web [40, 12, 22, 51]
to information mediation [20, 21, 24] to commercial and research prototypes of Web
information and ontology management systems [11, 16, 13, 53, 41, 54].

Inheritance is one of the most fundamental features of object-oriented systems.
Code inheritance, realized through instance methods definitions, is commonly used
in imperative languages like C++ and Java, while value inheritance, realized through
class and object method definitions, is commonly used in AI.

Nonmonotonic multiple inheritance is of great significance, due to its importance
in object-oriented modeling, its crucial role in the emerging field of ontology manage-
ment [15, 16, 53, 41], and its increasing use in the field of security policy management,
especially discretionary and role-based access control [52, 46, 50, 3, 25, 10]. Thus,
unifying inheritance and deduction opens up new, important application areas.

Most of the previous proposals in the literature fail to account for a clean, model-
theoretic semantics for nonmonotonic multiple inheritance in the presence of dynamic
class hierarchies, when inheritance and deduction closely interact. In addition, no
object-oriented knowledge base system provides a satisfactory solution to the problem
of incorporating value inheritance and code inheritance into one coherent system.

In this work, we have developed a natural model-theoretic semantics, called op-
timistic object model semantics, for value and code inheritance in object-oriented
knowledge bases, which supports implicit inference by inheritance as well as explicit
deductive inference via rules. Inference by inheritance supports a multitude of fea-
tures, such as overriding, nonmonotonic multiple inheritance, meta programming,
and dynamic inheritance hierarchies — the important features that are fundamental
to advanced object-oriented knowledge management.

1

Chapter 1. Introduction 2

We adopt the well-founded semantics [18, 17] and extend it with the ideas of local-
ity and context [26]. In the setting of three-valued models, we formalize the notions
of locality, context, and inheritance candidacy, and formally define the inheritance
postulates. These postulates capture the common intuition behind overriding and
conflict resolution in nonmonotonic multiple value and code inheritance, and spec-
ify the minimum requirements for an object model of a program. We also specify an
extended alternating fixpoint procedure to compute a unique object model, called op-
timistic object model, for any program. Moreover, we show the implementation of our
semantics by a rewriting algorithm which translates programs written in our query
language to general logic programs under the well-founded semantics, and formally
prove that this implementation is correct with respect to the new semantics.

Our new semantics satisfies all the requirements for object-oriented knowledge
base systems listed in Section 3.2, yields intuitively satisfactory results in all known
benchmark cases, does not impose syntactic restrictions on programs (beyond re-
quiring them to be rule-based), and has been implemented in the Flora-2 system [59].
This new semantics is robust in the sense that it has at least three different character-
izations: the optimistic object model is the least fixpoint of an extended alternating
fixpoint operator; it is the least three-valued stable object model with respect to in-
formation ordering; and it is a minimal object model with respect to truth ordering.

To the best of our knowledge, the optimistic object model semantics is currently
the only model-theoretic semantics for nonmonotonic multiple value and code inher-
itance that applies to general, unrestricted object-oriented knowledge bases.

The rest of this dissertation is organized as follows. In Chapter 2 we first in-
troduce the basic concepts of overriding, nonmonotonic multiple inheritance, value
inheritance, and code inheritance. In this chapter we will also illustrate the problems
that result from combining inheritance and deduction in object-oriented knowledge
bases.

Chapter 3 summarizes our previous research and surveys the literature on value
and code inheritance. Chapter 4 introduces the preliminaries including the basic
fixpoint theory and the well-founded semantics for general logic programs.

In Chapter 5 we introduce the syntax of a simplified query language and define
a three-valued semantics for F-logic programs written in this language. Chapter 6
formalizes the notion of an object model as well as the inheritance postulates that
an object model should satisfy. The operators that can be used to compute object
models are defined in Chapter 7.

In Chapter 8 we introduce stable object models which satisfy a certain computa-
tional property of the operators defined in Chapter 7. Chapter 9 introduces optimistic
object models, which are uniquely defined for F-logic programs, and shows that the
optimistic object model of an F-logic program is the least stable object model with
respect to information ordering. In Chapter 10 we introduce truth ordering among

Chapter 1. Introduction 3

the object models of an F-logic program and formally prove that optimistic object
models are minimal with respect to this truth ordering.

Chapter 11 presents a rewriting algorithm that translates a given F-logic pro-
gram into a certain general logic program, and proves the isomorphism between the
well-founded model of the rewritten program and the optimistic object model of the
original F-logic program. The data complexity of the optimistic object model seman-
tics is also discussed in this chapter. Finally, Chapter 12 discusses future work and
concludes this dissertation.

Chapter 2

Inheritance in a Nutshell

In this chapter we will illustrate through examples the basic concepts that play an
important role in object-oriented knowledge base systems: overriding, nonmonotonic
multiple inheritance, value inheritance, and code inheritance. At the end, we will
also discuss the issues of conflicts due to the close interaction between inheritance
and deduction.

2.1 Methods and Class Hierarchies

To make the exposition easier to follow, we will use a subset of the F-logic syn-
tax to present the examples in this chapter. The simplified language includes only
three kinds of atomic statements: those that represent class memberships, subclass
relationships, and (inheritable) multivalued method1 specifications.

An atom of the form o : c says that the object o is a member2 of the class c; s :: c
says that the class s is a subclass of the class c; and e[m→→ v] 3 specifies that e, either
an object or a class, has a multivalued method, m, whose return value is a set, and v
is one of the members in that set. The symbols o, c, s, e, m, and v in the above atomic
formulas are first-order terms. They represent the IDs of objects, classes, methods,
and values of methods.

1We use the words method and attribute interchangeably in this dissertation.
2We use the words member and instance interchangeably in this dissertation.
3To reduce clutter, we do not syntactically distinguish between inheritable and noninheritable

methods. Moreover, since single-valued methods are a special case of multivalued methods (with the
additional constraint that at most one return value is allowed), we usually use multivalued methods
to model single-valued methods.

4

Chapter 2. Inheritance in a Nutshell 5

2.2 Overriding and Multiple Inheritance

In object-oriented languages, overriding means that definitions from a more specific
class take precedence over definitions in a more general class. For instance, consider
the following classical example.

Example 2.2.1 (Royal Elephants) The program here states that the color of ele-
phants is gray and clyde is a royal elephant, which, of course, is an elephant.

elephant[color→→ gray].
royalElephant :: elephant.
clyde : royalElephant.

What is the color of clyde? Although its color is not given directly in the above
program, we can infer clyde[color→→ gray] by inheritance, since clyde is an elephant
and so it inherits the color, gray, of elephants.

Now suppose we learn that the color of royal elephants is white and the above
program is updated to reflect this new information:

elephant[color→→ gray].
royalElephant[color→→white].
royalElephant :: elephant.
clyde : royalElephant.

Although earlier we established that the color of clyde is gray, we must withdraw this
conclusion because of the newly added information. Since more specific definitions
override less specific ones, clyde should inherit the color, white, from the more specific
class royalElephant. 2

Clearly, overriding leads to nonmonotonic inheritance. In nonmonotonic inheri-
tance, new base facts do not necessarily lead to new inherited facts and might even
lead to withdrawal of previous conclusions made by inheritance. For instance, in
the above Example 2.2.1, the addition of the base fact royalElephant[color→→white]
invalidates the fact clyde[color→→ gray] that was drawn previously. But overriding is
not the only source of nonmonotonic inheritance. In cases where an object belongs to
multiple incomparable classes, inheritance conflicts can arise and so their “canceling”
effects can lead to nonmonotonic inheritance as well. This phenomenon is illustrated
by another classical example that follows.

Example 2.2.2 (Nixon Diamond) The program here says that quakers in general
are pacifists whereas republicans are usually hawks.

Chapter 2. Inheritance in a Nutshell 6

quaker[policy→→ pacifist].
republican[policy→→ hawk].
nixon : quaker.
nixon : republican.

Which policy should nixon inherit, from quaker or republican? There are three
possible approaches to the problem. First, in the monotonic approach, nixon inher-
its the policies from the two classes, quaker and republican. So we could derive both
nixon[policy→→ pacifist] and nixon[policy→→ hawk]. Second, in the nondeterministic
approach, we require that inheritance should take place from a unique source. So
we would randomly select one of the two classes for inheritance and derive either
nixon[policy→→ pacifist] or nixon[policy→→ hawk], but not both. Third, in the cautious
approach, we disallow inheritance for nixon from these two classes because they have
different values defined for the same method policy — a multiple inheritance conflict.
Thus we derive neither nixon[policy→→ pacifist] nor nixon[policy→→ hawk]. In this dis-
sertation, we pursue the cautious approach to resolving multiple inheritance conflicts.
2

2.3 Value and Code Inheritance

A traditional object-oriented database schema normally distinguishes between two
kinds of methods: instance methods and class methods. While instance method
definitions characterize all instances (members) of a class, class method definitions
characterize the class itself as an object [46]. When we specify an instance method
for a class, the code that defines the method is to be inherited by all instances of
this class and the method value is computed for each instance. On the other hand,
when we specify a class method for a class, the value of the method is computed
for this class object and the result is then inherited by all instances of this class.
Moreover, we might need to explicitly define methods for individual objects, which
act as local definitions and override the definition for the same method inherited from
a superclass. We will call these definitions object method definitions. They are similar
to class method definitions except that they are not intended for inheritance.

Example 2.3.1 (Value Inheritance) Suppose we want to compute bonuses for
employees in the software department. Our policy is to award bonus based on the
overall sales of the entire department. For example, every employee gets a bonus
of 1% of the total amount of sales. This idea can be encoded using the following
program.

Chapter 2. Inheritance in a Nutshell 7

softwareDept[bonus→→N] ← softwareDept[salesTotal→→ S], N = S ∗ 1%.
softwareDept[salesTotal→→ 1000].
john : softwareDept.
mary : softwareDept.

The first two clauses in the above program are class method definitions for the
methods, bonus and salesTotal, of the class softwareDept, respectively. The first
rule defines the method bonus, whose value depends on the method salesTotal,
which is specified as a fact. According to these two clause, we can infer
softwareDept[bonus→→ 10].

The last two clauses simply say that john and mary are members of the class
softwareDept. Although the program does not explicitly define the method bonus
for john, john will inherit the method bonus and its value (i.e., 10) from the class
softwareDept, since john has been known to be a member of it. Similarly, we can
derive mary[bonus→→ 10]. 2

Example 2.3.2 (Code Inheritance) Now we want to compute bonuses for all em-
ployees in the hardware department, but this time using a policy that rewards indi-
vidual performance. For example, every employee gets a bonus of 10% of the amount
of sales he/she has achieved. This idea can be illustrated using the following program.

code hardwareDept[bonus→→N] ← hardwareDept[sales→→ S], N = S ∗ 10%.
mike : hardwareDept.
lucy : hardwareDept.
mike[sales→→ 300].
lucy[sales→→ 200].

Note that the first rule is marked with a special keyword, code, which says that it
is an instance method definition. It defines the method bonus for all instances of the
class hardwareDept. Intuitively, the name hardwareDept in this rule can be considered
as a “placeholder” that stands for a member of the class hardwareDept. The rest of
the program states that mike and lucy are members of hardwareDept, and defines sales
figures for mike and lucy, respectively.

Let us see how the method bonus can be computed for mike. Since mike is a
member of hardwareDept and the first rule in the above program defines the method
bonus for all instances of hardwareDept, mike will inherit this rule to compute bonus
for himself. However, when inherited, this rule becomes instantiated for the object
mike as follows:

mike[bonus→→N] ← mike[sales→→ S], N = S ∗ 10%.

Chapter 2. Inheritance in a Nutshell 8

i.e., mike gets substituted for hardwareDept. This corresponds to the so called late
binding in traditional object-oriented languages like C++ and Java. It then follows
that mike[bonus→→ 30] must be true. Similarly, we can derive lucy[bonus→→ 20]. 2

Inheritance via instance method definitions, as illustrated in Example 2.3.2, is
called code inheritance, because it is the code that gets inherited as opposed to re-
sults of methods. Code inheritance is commonly used in imperative object-oriented
languages such as C++ and Java. In contrast, inheritance via class method defini-
tions, as illustrated in Example 2.3.1, is called value inheritance, because it is the
results (when established) of methods that get inherited. This kind of inheritance is
commonly used in AI [55, 36].

One of the fundamental differences between value inheritance and code inheritance
is that value inheritance is data-dependent whereas code inheritance is not. The
difference becomes apparent when class and object method definitions are specified
by rules. If a class method is defined using a rule, then the “inheritability” of this
definition hinges on the satisfiability of the rule body in the database. In other
words, the value specified by the rule head becomes inheritable only if its truth can
be established in the model for the program. Similarly, when an object method is
specified using a rule, whether the method is actually locally defined or not depends
on the satisfiability of the rule body.

In contrast, although instance method definitions are also specified using rules,
inheritability of these rules is independent of whether the rule body is satisfied or not.
After all, it is the code but not the value that is inherited. Therefore, code inheritance
can be resolved when the class hierarchy is fixed. This is not true, however, for value
inheritance, because the truth values of atoms depend on the current state of the
database.

By combining the ideas of value and code inheritance together, we can design
more interesting applications, as illustrated by the following example.

Example 2.3.3 In Example 2.3.2, the bonus plan in the hardware department was
such that every employee will get a bonus of 10% of the amount of sales he/she has
achieved. Suppose mike has a special deal and will get 15% if his sales exceeds 500;
otherwise, his bonus is determined using the general department-wide policy. The
program segment to accomplish this goal is as follows.

code hardwareDept[bonus→→N] ← hardwareDept[sales→→ S], N = S ∗ 10%.
mike : hardwareDept.
mike[bonus→→N] ← mike[sales→→ S], S > 500, N = S ∗ 15%.

The first rule here is an instance method definition for the class hardwareDept, while
the last rule is an object method definition for mike.

Chapter 2. Inheritance in a Nutshell 9

It is instructive to see how the method bonus can be evaluated on mike under two
different conditions. On one hand, if the database contains the fact mike[sales→→ 600],
then according to the last rule we can directly derive the fact mike[bonus→→ 90]. This
is a local property for mike which overrides the inheritance of the instance method
definition for bonus in the first rule. No code inheritance takes place in this case. On
the other hand, if the database contains the fact mike[sales→→ 300], then the body
of the last rule cannot be satisfied and a value of bonus is not locally defined for
mike. In this case, because mike belongs to hardwareDept, he can inherit the code
for computing the method bonus from the class hardwareDept. Therefore, we derive
mike[sales→→ 30]. 2

2.4 Dynamic Class Hierarchies

When class memberships and/or subclass relationships are defined using rules, the
class hierarchy is no longer fixed; it becomes data-dependent in the sense that class
memberships and subclass relationships depend on the particular set of facts that the
knowledge base contains. We call such class hierarchies dynamic because they can
only be decided at runtime but not at compile time.

For instance, consider the following rule:

c1 :: c2 ← c1[m→→ v].

This rule says that whether or not the class c1 is a subclass of the class c2 depends on
the satisfiability of the fact c1[m→→ v]. If the database implies c1[m→→ v] then c1 is
a subclass of c2; otherwise, it is not. Consequently, inheritance decisions concerning
the class c1 have to be delayed until runtime.

Because of dynamic class hierarchies, complex interactions between inheritance
and deduction can come into play, as illustrated by the following example.

Example 2.4.1 In program here, the class goods represents all products and the first
rule says how to compute their prices, i.e., price is cost plus profit margin. The class
luxuryGoods is a subclass of goods and represents those products whose cost exceeds
500. In commerce, normal goods and luxury goods use different profit margins. We
encode this information by assigning different values, 100% and 200%, to the class
method margin of goods and luxuryGoods, respectively.

Chapter 2. Inheritance in a Nutshell 10

code goods[price→→P] ←
goods[cost→→C], goods[margin→→M], P = C ∗ (1 + M).

luxuryGoods :: goods.
X : luxuryGoods ← X : goods, X[cost→→P], P > 500.
goods[margin→→ 100%].
luxuryGoods[margin→→ 200%].
steelWatch : goods.
diamondRing : goods.
steelWatch[cost→→ 100].
diamondRing[cost→→ 600].

Consider the price for the product steelWatch. Since its cost is 100, it is not a luxury
product. So its profit margin is 100%. Thus we derive steelWatch[price→→ 200].
On the other hand, the product diamondRing costs 600. So it is a luxury product.
Therefore, it inherits its profit margin from luxuryGoods instead of goods, i.e., 200%.
Thus we derive diamondRing[price→→ 1800]. 2

2.5 Inheritance and Deduction

The interactions between inheritance and deduction also bring up challenging prob-
lems in defining and computing inheritance semantics, especially in the presence of
dynamic class hierarchies. We now illustrate some of the main difficulties. Although
here we present the examples using value inheritance only, the same problems can
also arise in the context of code inheritance. These issues were first explored in [32]
but did not receive a satisfactory solution.

In the following examples, a solid arrow from a node c1 to another node c2 means
that c1 is either a subclass or a member of c2. All examples in this section are
discussed informally. The formal treatment will be given in Chapters 6 and 7.

c2[m->>a]

c1

c1 : c2.
c2[m→→ a].
c2[m→→ b]← c1[m→→ a].

Figure 1: Inheritance through Context

Example 2.5.1 Consider the program in Figure 1. Without inheritance semantics,
this program has a unique model, which consists of the first two facts. According
to the common intuition behind inheritance, c1 ought to inherit m→→ a from c2.
However, just adding the fact c1[m→→ a] will not make the resulting set a model,
since the last rule is no longer satisfied: The least model that contains the inherited

Chapter 2. Inheritance in a Nutshell 11

fact should also include c2[m→→ b]. However, this begs the question as to whether
c1 should inherit m→→ b from c2 as well. The intuition suggests that the intended
model should be “stable” with respect to not only deduction but inheritance as well.
Therefore, c1[m→→ b] also should be in that model. This problem was recognized in
[32], but the proposed solution was not stable in the above sense, because it was not
based on semantic principles but rather on an ad hoc definition of a plausible fixpoint
computation. 2

c2[m->>a]

c1

c1 : c2.
c2[m→→ a].
c1[m→→ b]← c1[m→→ a].

Figure 2: Interaction between Derived and Inherited Facts

Example 2.5.2 Now consider the program in Figure 2, which is the same as the
program in Figure 1 except for the head of the last rule. Again, the intuition sug-
gests that c1[m→→ a] ought to be derived via inheritance, and c1[m→→ b] be derived
to make the resulting set of facts into a model in the conventional sense. This, how-
ever, leads to the following observation. The method m of c1 now has one value, a,
which is inherited, and another value, b, which is derived via a rule. Although the
traditional frameworks for inheritance were developed without deduction in mind, it
is clear that derived facts like c1[m→→ b] are akin to “local” method definitions and
so should be treated similarly. In particular, local definitions always override inher-
itance. The conclusion is that although derivation is done “after” inheritance, its
existence undermines the original reason for inheritance. This is similar to the known
phenomenon where a reasoner rejects an assumption when it leads a contradiction.
Again, the framework presented in this dissertation, which is based on semantic prin-
ciples, differs from the ad hoc computation in [32] (which keeps both derived and
inherited facts). 2

c3[m->>b]

c1

c2[m->>a]
c1 : c2.
c3 :: c2.
c2[m→→ a].
c3[m→→ b].
c1 : c3← c1[m→→ a].

Figure 3: Interaction between Inheritance and Derived Intervening Superclass

Example 2.5.3 The program in Figure 3 shows a case where inheritance changes
the class hierarchy, which creates conditions that undermine the original reason for

Chapter 2. Inheritance in a Nutshell 12

inheritance. Initially, c3 is not known to be a superclass of c1. So, it seems that c1

can inherit m→→ a from c2. However, this makes the fact c1[m→→ a] true, which in
turn causes c1 : c3 to be derived by the last rule of the program. Since this makes c3 a
more specific superclass of c1 than c2, it appears that c1 ought to inherit m→→ b from
c3 rather than m→→ a from c2. However, this would make the fact c1 : c3 unsupported.
Either way, the deductive inference enabled by the original inheritance undermines
the support for the inheritance itself. Unlike [32], a logically correct solution in this
case would be to leave the truth values of both c1 : c3 and c1[m→→ a] undecided. The
dashed arrow from c1 to c3 indicates that c1 : c3 is neither true nor false. 2

c2[m->>a] c3[m->>b]

c1

c2[m→→ a].
c3[m→→ b].
c1 : c2.
c1 : c3← c1[m→→ a].

Figure 4: Derived Multiple Inheritance

Example 2.5.4 The last program, in Figure 4, illustrates a similar problem, but
this time it occurs in the context of multiple inheritance. Initially c3 is not known to
be a superclass of c1. So there is no multiple inheritance conflict and the intuition
suggests that c1 should inherit m→→ a from c2. But then c1 : c3 has to be added
in order to satisfy the last rule, which makes c3 a superclass of c1 and introduces
a multiple inheritance conflict. As in the previous example, although this conflict
became apparent only after inheritance took place, it undermines the original reason
for inheritance (which was based on the assumption that c2[m→→ a] is the only source
of inheritance for c1). Therefore, the truth values of c1[m→→ a] and c1 : c3 should be
neither true nor false. Again, this conclusion differs from [32]. 2

Chapter 3

Related Work

In this chapter, we first summarize our previous research and then survey the liter-
ature on value and code inheritance in object-oriented knowledge bases. Finally, we
discuss issues related to simulating code inheritance using value inheritance.

3.1 Summary of Previous Research

The FLORA system was our first object-oriented knowledge base research prototype.
The main ideas of this implementation could be traced back to the FLIP system [39].
Implemented using the efficient tabling inference engine of XSB [49, 9], the FLORA
system demonstrated good performance comparable to other similar systems such as
FLORID [40] that was implemented with C++. This early work proved the feasibility
of our implementation approach.

The original FLORA system played a central role in the first prototype of the
commercial Web information management system XRover [11]. This success led us to
embark on the more ambitious Flora-2 system [59], which incorporates F-logic [31, 32],
HiLog [8], and Transaction Logic [4, 5] into a single, coherent logic language along
the lines described in [30].

In [58], we studied some of the system design and optimization issues involving the
Flora-2 system, including its novel module system, path expressions in rule heads,
transactions in a tabling environment, and a specialization technique designed to
improve indexing.

In the early versions of the Flora-2 system, implementation of inheritance was
based on preliminary ideas, which led to the development of the formal semantics to
be described later in this dissertation. Interestingly, although the ideas underlying
this implementation “seemed” right, we later discovered that it was semantically in-
correct and our subsequent theoretical study helped us fix this problem. The incorrect

13

Chapter 3. Related Work 14

behavior did, in fact, surface in real programs that users of Flora-2 wrote.

As the motivating examples in Chapter 2 have already shown, the correct solution
for inheritance semantics is not at all obvious. Our first step towards tackling the
problem of inheritance semantics was to develop a model-theoretic semantics for non-
monotonic multiple value inheritance [60]. Our current, comprehensive model theory
for value and code inheritance is built on top of our previous work reported in [60],
which dealt with model-theoretic semantics for value inheritance only.

3.2 Related Work in the Literature

We now briefly survey the literature on value and code inheritance in object-oriented
knowledge bases. To make our comparison concrete, we first list the main features
that, in our opinion, an object-oriented knowledge base system with value and code
inheritance must possess:

(1) Implicit inference by inheritance, as well as explicit inference via rules.

(2) Dynamic class hierarchies, i.e., the ability to define both class memberships
and subclass relationships via rules. Although some proposals allow defining
class hierarchies using rules, they do not allow queries on either class or object
methods to appear in the bodies of these rules. So the class hierarchies can
be decided independently of class and object methods. In such a case, we
will still call these class hierarchies static.

(3) Data-dependent inheritance. This feature is closely related to value inheri-
tance. If inheritability and locality of a method definition rely on the facts
stored in the database, then we call such inheritance data-dependent; other-
wise, it is data-independent.

(4) Overriding by intermediate superclasses. Here we are also interested in
whether the semantics takes into account the interactions between value in-
heritance and code inheritance.

(5) Nonmonotonic inheritance from multiple superclasses that are incomparable
with respect to subclass relationships. Some proposals avoid the need for
resolving multiple inheritance conflicts by imposing syntactic restrictions on
programs. In such cases, we will say that these proposals do not support
nonmonotonic multiple inheritance.

(6) Meta-programming, by which variables can range over class and method
names.

(7) Late binding. This feature is commonly found in imperative object-oriented
languages such as C++ and Java that support code inheritance. Supporting

Chapter 3. Related Work 15

late binding requires resolving method names at runtime, when the class from
which the code is inherited is decided.

There is a large body of work based on Touretzky’s framework of Inheritance
Nets [55]. On one hand, the overriding mechanism in this framework is more so-
phisticated than what is typically considered in the knowledge base context. On the
other hand, this framework supports neither deductive inference via rules nor dy-
namic class hierarchies, which makes it too weak for many applications of knowledge
bases. [36] surveys several different approaches to computing inheritance semantics
based on Inheritance Nets. We will not discuss this framework any further here.

There is also a large body of work on extending traditional relational database
systems with object-oriented features. But most proposals do not support deduction
via inference rules, which, as we saw, prevents the main difficulty in defining inher-
itance semantics. Therefore we will not discuss such works. For a comprehensive
survey on these works we refer the readers to [33].

Ullman surveyed several deductive object-oriented database systems in [56]. How-
ever, his main concerns were object identity and dynamic typing, which are orthogonal
to our concerns.

Although F-logic [31, 32] resolved many semantic and proof-theoretic issues in
object-oriented knowledge bases, the original semantics for inheritance in F-logic was
defined through a nondeterministic inflationary fixpoint [32], which was not matched
by a corresponding model theory. The original F-logic fixpoint procedure was known
to produce questionable results (cf. Section 2.5) when inheritance and deduction
interact. Moreover, only value inheritance was considered in the original F-logic.

Ordered Logic [35, 34] includes certain abstractions of the object-oriented
paradigm. In this framework, both positive and negative literals are allowed in rule
heads, and inference rules are grouped into a set of modules that collectively form
a static class hierarchy. Although Ordered Logic supports overriding and propaga-
tion of rules among different modules, the idea of late binding is not built into the
logic. Since it is primarily committed to resolving inconsistency between positive and
negative literals, its semantics has a strong value-based value inheritance flavor.

Abiteboul et al. [1] propose a framework for implementing inheritance that is
based on program rewriting using Datalog with negation. In spirit this implementa-
tion is close to our implementation in Flora-2. However, [1] lacks strong theoretical
underpinnings, such as an independent model-theoretic formalization. On the prac-
tical side, this framework excludes nonmonotonic multiple inheritance and makes a
strong assumption that programs rewritten by the algorithm in [1] must have a to-
tal (two-valued) well-founded model. This latter assumption does not generally hold
without strong syntactic restrictions that force program stratification.

Chapter 3. Related Work 16

In [14], Dobbie and Topor develop a model-theoretic semantics for monotonic
code inheritance in the object-oriented database language Gulog. A special feature
of their language is that all variables in a program must be explicitly typed according
to a separate signature declaration. However, they do not support data-dependent
value inheritance and only consider positive programs with a static class hierarchy.
More importantly, nonmonotonic multiple inheritance is not built into their seman-
tics. Instead, syntactic restrictions are imposed on the programs to avoid multiple
inheritance conflicts.

Jamil and Lakshmanan [29] introduce the deductive object-oriented database lan-
guage ORLog, and propose a model theory for nonmonotonic multiple code inher-
itance. This work discusses the techniques for resolving inheritance conflicts. But
it does not support data-dependent value inheritance and only considers static class
hierarchies.

The work of Bugliesi and Jamil [7] attempts to develop a model theory that
accounts for both value and code inheritance, which bears close resemblance to two-
valued stable models [19]. However, their semantics applies only to programs without
negation in rule bodies (a severe limitation) and does not handle multiple inheritance
conflicts properly, making it monotonic instead. In addition, their framework does
not support data-dependent value inheritance, and more importantly, it does not
provide an algorithm to compute a canonical model under their semantics.

May et al. [43] propose to apply the alternating fixpoint procedure behind the
well-founded semantics to evaluate F-logic programs. However, inheritance is still
dealt with in the same way as in the original F-logic. Deduction and inheritance are
computed in two separate stages and so the computation process has an inflationary
fixpoint flavor. Apart from being ad hoc, this semantics is known to produce counter-
intuitive results when dynamic class hierarchies interact with overriding and multiple
inheritance (cf. Section 2.5).

Recently May and Kandzia [42] show that the original F-logic semantics can be
described using the inflationary extension of Reiter’s Default Logic [48]. In their
framework, inheritance semantics is encoded using defaults. As in [32], F-logic pro-
grams still have a two-valued semantics. However, instead of adopting the full-blown
semantics of Default Logic, which is not even semidecidable, they introduce the in-
flationary extension of it. Their inheritance strategy is inflationary in the sense that
once a fact is derived through inheritance it is never undone. Therefore, a later in-
ference might invalidate the original conditions (encoded as justifications of defaults)
for inheritance (cf. Section 2.5). Moreover, nonmonotonic multiple inheritance is
handled in such a way that when multiple incomparable inheritance sources exist,
one of them is randomly selected for inheritance instead of none (as in our work).
Finally, code inheritance is not considered in [42].

Chapter 3. Related Work 17

In [26], Jamil introduces the Datalog++ language which supports encapsulation
and both value and code inheritance. He proposes a series of techniques to tackle
the inheritance problem. Among these, the ideas of locality and context have influ-
enced our approach the most. However, this work does not support dynamic class
hierarchies or meta-programming. Data-dependent value inheritance is not supported
either. Moreover, the inheritance semantics in this work is ad hoc and is defined using
program rewriting (lack of theoretical underpinnings), although it does support late
binding through an elegant completion technique.

A more recent proposal of Jamil [28] adopts a proof-theoretic approach to defining
inheritance semantics. He extends the query language introduced in [26] and provides
new syntax to denote rules with different inheritance types and different inheritance
modes. However, only static class hierarchies are allowed in this framework and the
proof theory does not account for nonmonotonic multiple inheritance. Finally, data-
dependent value inheritance is not supported, since inheritability is defined basically
the same way as in [26].

A number of other works partially address inheritance issues in knowledge bases.
For instance, [38] defines signature-based inheritance, which does not provide an over-
riding mechanism. In [2], inheritance is defined using the framework for modularity
in logic programming developed in [6]. However, this approach does not support
multiple inheritance and dynamic class hierarchies.

3.3 Simulating Code Inheritance

The kind of inheritance considered in the original F-logic [32] as well as in the new
model theory developed by us [60] is value inheritance. Instance method definitions
are not supported at the language level and do not appear in the semantics. However,
it has been shown that value inheritance can simulate code inheritance using the
meta programming feature of F-logic [32], and so pure value inheritance systems are
considered to be more general than pure code inheritance systems.

Example 3.3.1 To see how the simulation works, suppose we want to achieve the
same effect of code inheritance as in the following program by using value inheritance
only.

code c1[m→→V] ← c1[f→→V].
code c2[m→→V] ← c2[g→→V].

c2 :: c1.
o : c1.
o : c2.

The first two rules above define the method m for all instances of the class c1 and

Chapter 3. Related Work 18

c2, respectively. Since c2 is a subclass of c1, its definition for m overrides that of
c1. Therefore, the object o inherits the definition for m from c2. Following the
general simulation techniques as described in [32], we can rewrite the above program
as follows.

c1[m name→→m c1].
X[m c1→→V] ← X : c1, X[f→→V].
c2[m name→→m c2].
X[m c2→→V] ← X : c2, X[g→→V].
c2 :: c1.
o : c1.
o : c2.
X[m→→V] ← X[m name→→M], X[M→→V].

In the above program, the new method name m c1 is introduced to implement the
method m for the class c1, and m c2 is introduced to implement the method m for
c2. Moreover, the new method name, m name, is needed, so that the same effect
of code inheritance for the method m can be achieved by having an object inherit
the appropriate method name through m name and then evaluate this method on
itself. This is shown by the last rule in the above program. Thus we can derive
o[m name→→m c2] by value inheritance. And any call to o[m→→V] will result in
a call to o[m c2→→V], and then to o[g→→V]. This exactly what the original code
inheritance would have achieved. 2

Although value inheritance is capable of simulating code inheritance, there are a
number of disadvantages in the simulation:

(1) Programmers bear the burden of introducing new method names that must be
unique in the knowledge base. This problem may be overcome by automatic
program translation, however.

(2) The size of the simulation program increases. In the worst case it can double.

(3) The declarativeness of code inheritance is degraded after simulation, because
it is hard to foresee all the consequences of rewriting.

(4) Redundant information is forced into the canonical model of the rewritten
program. For instance, for the simulation program in Example 3.3.1, its
model has to include atoms like o[m c1→→ x], which are “meaningless” to
users. Therefore, simulation is not friendly to bottom-up processors that
may decide to materialize the entire program.

A much bigger problem is that the general simulation techniques do not naturally
lend themselves to the integration of value and code inheritance. This problem is
illustrated by the following example.

Chapter 3. Related Work 19

Example 3.3.2 Let us apply the general simulation techniques to the following pro-
gram which is copied from the previous Example 2.3.3.

code hardwareDept[bonus→→N] ← hardwareDept[sales→→ S], N = S ∗ 10%.
mike : hardwareDept.
mike[bonus→→N] ← mike[sales→→ S], S > 500, N = S ∗ 15%.

We will get the following rewritten program, which contains class and object
method definitions only.

hardwareDept[bonus name→→ bonus hardwareDept].
X[bonus hardwareDept→→N] ← X : hardwareDept, X[sales→→ S], N = S ∗ 10%.
mike : hardwareDept.
X[bonus→→N] ← X[bonus name→→M], X[M→→N].
mike[bonus→→N] ← mike[sales→→ S], S > 500, N = S ∗ 15%.

However, the rewritten program does not function correctly in all cases. The
problem is that the intended overriding semantics between value and code inheritance
is lost after this rewriting. For example, suppose the knowledge base contains the fact
mike[sales→→ 600]. Then according to our model theory for value inheritance, we can
derive both mike[bonus→→ 90] and mike[bonus→→ 60], although only mike[bonus→→ 90]
is expected. 2

Chapter 4

Preliminaries

In this chapter we introduce the background knowledge that is essential to under-
standing the theoretical development in this dissertation. First we introduce the
basic fixpoint theory. Then we cover the well-founded semantics for general logic
programs. The materials in Section 4.1 are mostly borrowed from [37]. And most of
the materials in Section 4.2 are borrowed from [18] and [17].

4.1 Fixpoint Theory

Given a set S, a relation R on S is a subset of R × R. Normally we use the infix
notation xRy to represent (x, y) ∈ R. A relation R on a set S is a partial order if the
following conditions are satisfied:

(1) xRx for all x ∈ S.

(2) for all x, y ∈ S: if xRy and yRx, then x = y.

(3) for all x, y ∈ S: if xRy and yRz, then xRz.

For example, let S be a set and 2S be the set of all subsets of S. Then set inclusion,
⊆, is a partial order on 2S.

We adopt the standard notation and use ≤ to denote a partial order. Let S be a
set with a partial order ≤ and X be a subset of S. Then u ∈ S is an upper bound of
X if x ≤ u for all x ∈ X. Similarly, l ∈ S is a lower bound of X if l ≤ x for all x ∈ X.

Let S be a set with a partial order ≤ and X be a subset of S. Then a ∈ S is the
least upper bound of X, if a is an upper bound of X and a ≤ c for all upper bound c
of X. Similarly, b ∈ S is the greatest lower bound of X, if b is a lower bound of X and
d ≤ b for all lower bound d of X. Clearly, the least upper bound of X is unique if it
exists, and is denoted by lub(X). Similarly, the greatest lower bound of X is unique

20

Chapter 4. Preliminaries 21

if it exists, and is denoted by glb(X).

A partially ordered set L is a complete lattice if lub(X) and glb(X) exist for every
subset X of L. We use the symbol > to denote the top element lub(L) and ⊥ to
denote the bottom element glb(L).

For example, let S be a set and 2S be the set of all subsets of S. Then 2S under
⊆ is a complete lattice. In fact, the least upper bound of a collection of subsets of S
is their union and the greatest lower bound is their intersection. The top element is
S itself and the bottom element is ∅.

Let L be a complete lattice and T : L 7→ L be a mapping. We say T is monotonic
if T(x) ≤ T(y) whenever x ≤ y. Let a ∈ L. We say that a is the least fixpoint of T
if a is a fixpoint of T, i.e., T(a) = a, and a ≤ b for all fixpoint b of T. Similarly, we
can define the greatest fixpoint of T.

Proposition 4.1.1 Let L be a complete lattice and T : L 7→ L be a monotonic
mapping. Then T has a least fixpoint, denoted by lfp(T), and a greatest fixpoint,
denoted by gfp(T). Furthermore, lfp(T) = glb({x |T(x) = x}) = glb({x |T(x) ≤ x})
and gfp(T) = lub({x |T(x) = x}) = lub({x |x ≤ T(x)}).

Proof. See [37].
2

Proposition 4.1.2 Let L be a complete lattice and T : L 7→ L be a monotonic
mapping. Suppose a ∈ L and a ≤ T(a). Then a ≤ gfp(T). Similarly, if b ∈ L and
T(b) ≤ b, then lfp(T) ≤ b.

Proof. See [37].
2

Now we recall some elementary properties of ordinal numbers, which we will simply
refer to as ordinals. Intuitively, the ordinals are what we use to count with. The first
ordinal 0 is defined to be ∅. Then we define 1 = {∅} = {0}, 2 = {∅, {∅}} = {0, 1},
and so on. The first infinite ordinal is ω = {1, 2, . . .}. We can specify an ordering <
on the collection of all ordinals by defining α < β if α ∈ β. If α is an ordinal, the
successor of α is the ordinal α + 1 = α∪ {α}, which is the least ordinal greater than
α. We call α + 1 a successor ordinal. An ordinal is called a limit ordinal if it is not
the successor of any ordinal. The smallest limit ordinal (apart from 0) is ω. After ω
comes ω + 1 = ω ∪ {ω}, ω + 2 = (ω + 1) + 1, and so on. The next limit ordinal is
ω2, which is the set consisting of all n ∈ ω and all ω + m where m ∈ ω. Then come
ω2 + 1, ω2 + 2, . . ., ω3, ω3 + 1, ω3 + 2, . . ., and so on.

Chapter 4. Preliminaries 22

Let L be a complete lattice and T : L 7→ L be a monotonic mapping. We define
the ordinal powers of T as follows:

T↑0 = ⊥ for limit ordinal 0
T↑α = T(T↑α−1) for successor ordinal α
T↑α = lub({T↑β | β < α}) for limit ordinal α 6= 0
T↓0 = > for limit ordinal 0
T↓α = T(T↓α−1) for successor ordinal α
T↓α = glb({T↓β | β < α}) for limit ordinal α 6= 0

Proposition 4.1.3 Let L be a complete lattice with a partial order ≤ and T : L 7→ L
be a monotonic mapping. Suppose α and β are ordinals. Then:

(1) for all α: T↑α ≤ lfp(T).

(2) for all α, β: if α < β then T↑α ≤ T↑β.

(3) there exists α such that T↑β = lfp(T) whenever β ≥ α.

(4) for all α: gfp(T) ≤ T↓α.

(5) for all α, β: if α < β then T↓β ≤ T↓α.

(6) there exists α such that T↓β = gfp(T) whenever β ≥ α.

Finally, we outline the principle of transfinite induction, which is frequently used
in the proofs throughout this dissertation. Let P (α) be a property about ordinals.
Assume that for all ordinal β, if P (γ) holds for all γ < β, then P (β) holds. Then
P (α) holds for all ordinal α.

4.2 Well-Founded Semantics

A general logic program is a finite set of rules which may have both positive and
negative subgoals (also called literals) in their bodies. For instance, the following rule
has a positive subgoal, p(X), and a negative subgoal, ¬ r(X).

p(X)← q(X),¬ r(X)

p(X) is the head of the rule while the rest (i.e., q(X),¬ r(X)) is the body of the rule.

It is desirable to associate one Herbrand model with a general logic program and
think of that model as the “meaning” of the program, or its “declarative seman-
tics”. Ideally, queries directed to the program would be answered in accordance
with this model. The well-founded semantics for general logic programs was pro-
posed by Van Gelder et al. [18]. It assigns a unique, three-valued Herbrand model,
called well-founded model , to every general logic program. The alternating fixpoint

Chapter 4. Preliminaries 23

computation, which is widely used to compute well-founded models of general logic
programs, was introduced by Van Gelder [17]. Przymusinski also gave different char-
acterizations of the well-founded semantics [44] and later showed that the well-founded
semantics coincides with the three-valued stable semantics [45].

Given a general logic program P, its Herbrand universe, HUP, is the set of ground
(i.e., variable-free) terms that use the function symbols and constants that appear in
the program. The Herbrand base, HBP, of P is the set of atomic formulas formed by
predicate symbols in the program whose arguments are in the Herbrand universe.

The Herbrand instantiation, ground(P), of a general logic program P is the set of
rules obtained by substituting terms in the Herbrand universe for variables in every
possible way. A ground rule is one in the Herbrand instantiation. Although general
logic programs are assumed to be a finite set of rules, their Herbrand instantiations
may well be infinite. We shall be considering Herbrand instantiations while defining
the well-founded semantics.

A three-valued interpretation I of a general logic program P is a triple, 〈T; U; F 〉,
where T, U, and F are subsets of HBP and pairwise disjoint. Moreover, T∪U∪ F =
HBP. The atoms in T are true while the atoms in U are undefined and the atoms
in F are false. Intuitively, “undefined” means possibly true or possibly false. Clearly,
if any two of the three sets T, U, and F are known, then the remaining set can be
decided. Sometimes when we write down a three-valued interpretation, we will only
show a pair of sets and omit the other one.

Given an interpretation I = 〈T; U; F 〉 and a positive subgoal L, we say that L is
true in I if L ∈ T and L is false in I if L ∈ F. Similarly, for a negative subgoal ¬ L,
we say that ¬ L is true in I if L ∈ F and ¬ L is false in I if L ∈ T.

Well-founded models are three-valued interpretations. In the original well-founded
semantics [18], well-founded models are defined in terms of the set of atoms that are
true (T) and the set of atoms that are false (F). However, under the alternating
fixpoint semantics [17], well-founded models can be defined in terms of the set of
atoms that are true (T) and the set of atoms that are undefined (U).

First we will introduce the declarative semantics of well-founded models as defined
in [18]1 . A very important notion is concerned with the so-called unfounded sets.

Definition 4.2.1 (Unfounded Sets) Let P be a general logic program and I be a
three-valued interpretation. We say A ∈ HBP is an unfounded set with respect to I, if
each atom p ∈ A satisfies the following condition: for each ground rule R ∈ ground(P)
whose head is p, either

(1) Some (positive or negative) subgoal in the rule body of R is false in I; or

(2) Some positive subgoal in the rule body of R belongs to A.

1We slight depart from the syntax of three-valued interpretations in [18].

Chapter 4. Preliminaries 24

Intuitively, the interpretation I in the above definition can be considered as the
(partial) information that is known about the intended model of P. On one hand, rules
satisfying condition (1) are not usable for further derivations since their hypotheses
are already known to be false. On the other hand, condition (2) is the unfoundedness
condition: among all the rules that might still be usable to derive something in the set
A, each requires an atom in A be true — a deadlock situation. In other words, there
is no one atom in A which can be first established as true by the rules of P (starting
from ”knowing” I). Consequently, if we choose to infer that some or all atoms in
A are false, there is no way we could later infer that one in A is true. Essentially,
under the well-founded semantics, all atoms in an unfounded set are simultaneously
inferred to be false.

We can define a union operator, ∪, an intersection operator, ∩, and a partial order,
�, on three-valued interpretations. Let I1 = 〈P1; Q1 〉 and I2 = 〈P2; Q2 〉 be two
three-valued interpretations (in two-set notation), where P1, P2 are sets of atoms that
are true and Q1, Q2 are sets of atoms that are false. Then I1∪I2 = 〈P1∪P2; Q1∪Q2 〉.
Similarly, I1 ∩ I2 = 〈P1 ∩ P2; Q1 ∩Q2 〉. Finally, I1 � I2 iff P1 ⊆ P2 and Q1 ⊆ Q2.

Clearly, given a general logic program P, the set of three-valued interpretations,
whose elements are atoms in HBP, constitutes a complete lattice with the partial
order �. For a set of three-valued interpretations, its least upper bound can be
computed using the ∪ operator while its greatest lower bound can be computed using
the ∩ operator.

Next we introduce the operators that are needed to define well-founded models.

Definition 4.2.2 The operators TP, UP, and WP are defined for a general logic
program P. Both TP and UP take a three-valued interpretation as input and generate
a set of atoms. The operator WP takes a three-value interpretation as input and
generates a new three-valued interpretation as follows:

WP(I) = 〈TP(I);UP(I) 〉, where

TP(I) =

{
p

∣∣∣∣
there is a ground rule R in ground(P) such that the head
of R is p, and each subgoal in the body of R is true in I

}

UP(I) = the greatest unfounded set of P with respect to I

Note that in the three-valued interpretation which is returned by WP(I), the set
TP(I) contains those atoms that are true, whereas UP(I) contains those atoms that
are false.

Lemma 4.2.1 TP, UP, and WP are monotonic when P is fixed.

It follows that there always exists a (unique) least fixpoint of WP by Proposi-
tion 4.1.1. Now we are ready to define well-founded models.

Chapter 4. Preliminaries 25

Definition 4.2.3 Let P be a general logic program. The well-founded model of P is
defined as the least fixpoint of WP.

Definition 4.2.4 Let P be a general logic program and α range over all countable
ordinals. The interpretations Iα and I∞, whose elements are atoms in HBP, are
defined as follows:

I0 = 〈 ∅; ∅ 〉 for limit ordinal 0

Iα = WP(Iα−1) for successor ordinal α

Iα =
⋃

β<α

Iβ for limit ordinal α 6= 0

I∞ =
⋃

α

Iα

Then it follows that WP = I∞, by Proposition 4.1.3. In other words, I∞ is
equivalent to the well-founded model.

Next we will present a different characterization of the well-founded semantics,
which is based on the alternating fixpoint computation introduced by Van Gelder [17].
Note that in contrast to the previous characterization which is defined in terms of the
set of atoms that are true and the set of atoms that are false, this characterization
is defined in terms of the set of atoms that are true and the set of atoms that are
undefined.

Definition 4.2.5 Let P be a general logic program and I be a subset of HBP. The
operator CP,I takes as input a set of atoms, J, and generates another set of atoms.

CP,I(J) =





H

∣∣∣∣∣∣∣

There is H← A1, . . . , Am,¬B1, . . . ,¬Bn ∈ ground(P),
m ≥ 0, n ≥ 0, Ai (1 ≤ i ≤ m) and Bj (1 ≤ j ≤ n) are pos-
itive literals, and Ai ∈ J for all 1 ≤ i ≤ m, Bj /∈ I for all
1 ≤ j ≤ n.





Lemma 4.2.2 CP,I is monotonic when P and I are fixed.

It follows that CP,I has a unique least fixpoint. Having defined CP,I we can
introduce two more operators.

Definition 4.2.6 Let P be a general logic program and I be a subset of HBP. The
operators SP and AP are defined as follows:

SP(I)
def
= lfp(CP,I)

AP(I)
def
= SP(SP(I))

Lemma 4.2.3 SP is antimonotonic and AP is monotonic when P is fixed.

Chapter 4. Preliminaries 26

It follows that AP has a unique least fixpoint, lfp(AP). The following proposition
gives a different characterization of the well-founded semantics.

Proposition 4.2.4 The well-founded model, 〈T; U 〉, of a general logic program P,
where T is the set of atoms that are true and U is the set of atoms that are false, can
be computed as follows:

T = lfp(AP)

U = SP(lfp(AP))− lfp(AP)

In the sequel, we will frequently refer to this characterization of the well-founded
semantics that is based on the alternating fixpoint computation.

Chapter 5

Three-Valued Semantics

In this chapter, we will first introduce the syntax of our simple, rule-based query
language, which is a subset of the original F-logic language but powerful enough to
specify class hierarchies and multivalued method definitions. Then we will develop a
three-valued semantics for F-logic programs written in this language.

5.1 Syntax

To develop our model theory for value and code inheritance, here we focus on a small
subset of F-logic, which includes only three kinds of atoms: those that represent class
memberships, those that represent subclass relationships, and those that represent
multivalued method specifications.

An atom of the form o : c says that o is a member of the class c, while s :: c says
that s is a subclass of c (so c is a superclass of s, but not necessarily an immediate
superclass of s), and s[m→→ v] specifies that s has a multivalued method, m, whose
return value is a set, and v is one of the members in that set. If s represents a class,
then s[m→→ v] represents an inheritable1 multivalued class method specification (i.e.,
the value of this method can be inherited by all members of this class). If s represents
an object, then s[m→→ v] represents a multivalued object method specification.

The symbols o, c, s, m, and v in the above atomic formulas are first-order terms
that represent object IDs. Moreover, the terms that represent these entities in a
program can contain variables and thus they can represent multiple objects, one per
variable instantiation. This design makes meta-programming in F-logic as natural as
querying.

1Note that we slightly depart from the syntax of F-logic and use →→ instead of ?→→ to represent
inheritable multivalued class methods.

27

Chapter 5. Three-Valued Semantics 28

Let A be any atom. A literal of the form A is called a positive literal while a literal
of the form ¬A is called a negative literal. An F-logic program is a finite set of rules
where all variables are universally quantified. There are two kinds of rules: V-rules
and C-rules. In general, V-rules represent definitions for class memberships, subclass
relationships, inheritable class methods, and object methods, while C-rules represent
instance method definitions only.

A V-rule has the following form:

∀(H← L1 ∧ . . . ∧ Ln)

where n ≥ 0, H is a positive literal, and Li (0 ≤ i ≤ n) is either a positive or a negative
literal. H is called the head of the rule and can be any positive F-logic literal. The
conjunction of Li’s is called the body of the rule. The symbol ∀ indicates that all
variables appearing in this rule are universally quantified. Following the standard
convention, we will omit universal quantifiers in the rules and simply write

H← L1, . . . , Ln

A C-rule represents a piece of code that specifies an instance method definition.
A C-rule has the following form:

code c[m→→ v]← L1, . . . , Ln

It is similar to a V-rule except that a C-rule is marked with the special keyword
code and its rule head must be a multivalued method specification. Given the above
C-rule, we will say that it specifies the instance method m for the class c.

We will use uppercase names to denote variables and lowercase names to denote
constants. A rule with an empty body is called a fact. So a V-rule with an empty
body is called a V-fact and a C-rule with an empty body is called a C-fact. When
writing down the facts, we will omit the implication symbol and simply show the
head.

5.2 Three-Valued Interpretations

As illustrated by the motivating examples in Section 2.5, inheritance candidacy can
be invalidated by a subsequent derivation, which suggests the use of the stable model
semantics [19] or the well-founded semantics [18]. In this dissertation we adopt the
latter. Since well-founded models are three-valued and the original F-logic models
were two-valued [32], we need to define a suitable three-valued semantics for F-logic
programs first.

Chapter 5. Three-Valued Semantics 29

The Herbrand universe of an F-logic program P, denoted HUP, consists of all
the ground (i.e., variable-free) terms constructed using the function symbols and
constants found in the program.

The Herbrand instantiation of an F-logic program P, denoted ground(P), is the set
of rules obtained by consistently substituting all the terms in HUP for all variables in
every rule of P. Although the program P is finite, its Herbrand instantiation may well
be infinite. For the semantics to be discussed in this dissertation, we only consider
the Herbrand instantiation of a program.

The Herbrand base of an F-logic program P, denotedHBP, consists of the following
sorts of atoms: o : c, s :: c, s[m→→ v] s

local, o[m→→ v] c
value, and o[m→→ v] c

code, where o, c,
s, m, and v are terms from HUP.

A three-valued interpretation I of an F-logic program P is a pair 〈T; U 〉, where
T and U are disjoint subsets of the Herbrand base HBP of P. The set T contains all
atoms that are true in I and U contains all atoms that are undefined in I. The set
F of all atoms that are false in I is defined as F = HBP − (T ∪ U). A three-valued
interpretation I = 〈T; U 〉 is called two-valued if U = ∅.

5.3 Truth Valuation Functions

Following [44, 45], we will define the truth valuation functions for atoms, literals, and
V-rules. The atoms in HBP can take one of the three values: t, f , and u. Note that
the truth value u means possibly true or possible false and so carries more “truth”
than the truth value f . Therefore, the ordering among truth values is defined as
follows: f < u < t.

Given an interpretation I = 〈T; U 〉 of an F-logic program P, for any atom A from
HBP we can define a truth valuation function I as follows:

I(A) =





t, if A ∈ T;
u, if A ∈ U;
f , otherwise.

Moreover, for any Ai ∈ HBP, 1 ≤ i ≤ n:

I(A1 ∧ . . . ∧ An) = min{I(Ai)|1 ≤ i ≤ n}

Next we will extend the truth valuation function I to all V-rules in the Herbrand
instantiation, ground(P), of P.

In an interpretation of an F-logic program, atoms of the form s[m→→ v] s
local capture

the idea that m→→ v is locally defined at s via a V-rule, while atoms of the forms

Chapter 5. Three-Valued Semantics 30

o[m→→ v] c
value and o[m→→ v] c

code, where o 6= c, capture the idea that o inherits m→→ v
from c by value and code inheritance, respectively.

Generally, the intuitive reading of a V-rule is as follows: the head of the rule
functions as a local definition while the body of the rule functions as a query. In
particular, if s[m→→ v] is in the head of a rule and the body of the rule is satisfied,
it means that m→→ v is locally defined for s. If s[m→→ v] appears in the body of a
rule, it is a query which tests whether s has a local definition of m→→ v, or s inherits
m→→ v from some superclass by either value or code inheritance.

Therefore, the truth valuation of a ground F-logic literal may be different depend-
ing on whether this literal appears in a rule head or in a rule body. The following
definitions make the above discussion precise.

Definition 5.3.1 Given an interpretation I of an F-logic program P, the truth val-
uation functions Vh

I and Vb

I (h stands for head and b for body) on ground F-logic
literals are defined as follows:

Vh

I (o : c) = I(o : c)

Vh

I (s :: c) = I(s :: c)

Vh

I (s[m→→ v]) = I(s[m→→ v] s
local)

Vb

I (o : c) = I(o : c)

Vb

I (s :: c) = I(s :: c)

Vb

I (o[m→→ v]) = max




I(o[m→→ v] o

local)
I(o[m→→ v] c

value)
I(o[m→→ v] c

code)

∣∣∣∣∣∣
c ∈ HUP





Let L and Li (1 ≤ i ≤ n) be variable-free literals. Then

Vb

I (¬ L) = ¬Vb

I (L)

Vb

I (L1 ∧ . . . ∧ Ln) = min{Vb

I (Li) | 1 ≤ i ≤ n}

where ¬ f = t, ¬u = u, and ¬ t = f .

We have the the following two lemmas regarding some properties of the truth
valuation function Vb

I .

Lemma 5.3.1 Let I = 〈T; U 〉 be an interpretation of an F-logic program P, L be a
ground literal in ground(P), J = 〈T; ∅ 〉, and K = 〈T ∪ U; ∅ 〉:

(1) If L is a positive literal, then Vb

I (L) = t iff Vb

J (L) = t.

(2) If L is a negative literal, then Vb

I (L) = t iff Vb

K(L) = t.

(3) If L is a positive literal, then Vb

I (L) ≥ u iff Vb

K(L) = t.

Chapter 5. Three-Valued Semantics 31

(4) If L is a negative literal, then Vb

I (L) ≥ u iff Vb

J (L) = t.

Proof.

(1) If L is a positive literal, then Vb

I (L) = t iff Vb

J (L) = t.

If L = o : c, then Vb

I (o : c) = t, iff I(o : c) = t, iff o : c ∈ T, iff J (o : c) = t, iff
Vb

J (o : c) = t.

If L = s :: c, then Vb

I (s :: c) = t, iff I(s :: c) = t, iff s :: c ∈ T, iff J (s :: c) = t,
iff Vb

J (s :: c) = t.

If L = o[m→→ v], then Vb

I (o[m→→ v]) = t, iff I(o[m→→ v] o
local) = t or

there exists c such that I(o[m→→ v] c
value) = t or I(o[m→→ v] c

code) = t,
iff o[m→→ v] o

local ∈ T or there exists c such that o[m→→ v] c
value ∈ T or

o[m→→ v] c
code ∈ T, iff Vb

J (o[m→→ v]) = t.

(2) If L is a negative literal, then Vb

I (L) = t iff Vb

K(L) = t.

If L = ¬ o : c, then Vb

I (¬ o : c) = t, iff Vb

I (o : c) = f , iff I(o : c) = f , iff
o : c /∈ T ∪ U, iff K(o : c) = f , iff Vb

K(o : c) = f , iff Vb

K(¬ o : c) = t.

If L = ¬ s :: c, then Vb

I (¬ s :: c) = t, iff Vb

I (s :: c) = f , iff I(s :: c) = f , iff
s :: c /∈ T ∪ U, iff K(s :: c) = f , iff Vb

K(s :: c) = f , iff Vb

K(¬ s :: c) = t.

If L = ¬ o[m→→ v], then Vb

I (¬ o[m→→ v]) = t, iff Vb

I (o[m→→ v]) = f , iff
I(o[m→→ v] o

local) = f and I(o[m→→ v] c
value) = f , I(o[m→→ v] c

code) = f for all c,
iff o[m→→ v] o

local /∈ T∪U and o[m→→ v] c
value /∈ T∪U, o[m→→ v] c

code /∈ T∪U for
all c, iffK(o[m→→ v] o

local) = f andK(o[m→→ v] c
value) = f , K(o[m→→ v] c

code) = f
for all c, iff Vb

K(o[m→→ v]) = f , iff Vb

K(¬ o[m→→ v]) = t.

(3) If L is a positive literal, then Vb

I (L) ≥ u iff Vb

K(L) = t.

If L = o : c, then Vb

I (o : c) ≥ u, iff I(o : c) ≥ u, iff o : c ∈ T∪U, iff K(o : c) = t,
iff Vb

K(o : c) = t.

If L = s :: c, then Vb

I (s :: c) ≥ u, iff I(s :: c) ≥ u, iff s :: c ∈ T ∪ U, iff
K(s :: c) = t, iff Vb

K(s :: c) = t.

If L = o[m→→ v], then Vb

I (o[m→→ v]) ≥ u, iff I(o[m→→ v] o
local) ≥ u or

there exists c such that I(o[m→→ v] c
value) ≥ u or I(o[m→→ v] c

code) ≥ u, iff
o[m→→ v] o

local ∈ T ∪ U or there exists c such that o[m→→ v] c
value ∈ T ∪ U or

o[m→→ v] c
code ∈ T ∪ U, iff Vb

K(s[m→→ v]) = t.

(4) If L is a negative literal, then Vb

I (L) ≥ u iff Vb

J (L) = t.

If L = ¬ o : c, then Vb

I (¬ o : c) ≥ u, iff Vb

I (o : c) = I(s : c) ≤ u, iff o : c /∈ T, iff
Vb

J (o : c) = J (o : c) = f , iff Vb

J (¬ o :: c) = t.

If L = ¬ s :: c, then Vb

I (¬ s :: c) ≥ u, iff Vb

I (s :: c) = I(s :: c) ≤ u, iff s :: c /∈ T,
iff Vb

J (s :: c) = J (s :: c) = f , iff Vb

J (¬ s :: c) = t.

Chapter 5. Three-Valued Semantics 32

If L = ¬ o[m→→ v], then Vb

I (¬ o[m→→ v]) ≥ u, iff Vb

I (o[m→→ v]) ≤ u, iff
I(o[m→→ v] o

local) ≤ u and I(o[m→→ v] c
value) ≤ u, I(o[m→→ v] c

code) ≤ u for all
c, iff o[m→→ v] o

local /∈ T and o[m→→ v] c
value /∈ T, o[m→→ v] c

code /∈ T for all c, iff
J (o[m→→ v] o

local) = f and J (o[m→→ v] c
value) = f , J (o[m→→ v] c

code) = f for all
c, iff Vb

J (o[m→→ v]) = f , iff Vb

J (¬ o[m→→ v]) = t.

2

Lemma 5.3.2 Let I = 〈A; ∅ 〉 and J = 〈B; ∅ 〉 be interpretations of an F-logic
program P, A ⊆ B, and L be a ground literal in ground(P):

(1) If L is a positive literal and Vb

I (L) = t, then Vb

J (L) = t.

(2) If L is a negative literal and Vb

J (L) = t, then Vb

I (L) = t.

Proof.

(1) If L is a positive literal and Vb

I (L) = t, then Vb

J (L) = t.

If L = o : c, then o : c ∈ A ⊆ B. So Vb

J (o : c) = t.

If L = s :: c, then s :: c ∈ A ⊆ B. So Vb

J (s :: c) = t.

If L = o[m→→ v], then I(o[m→→ v] o
local) = t or there exists c such that

I(o[m→→ v] c
value) = t or I(o[m→→ v] c

code) = t. Thus o[m→→ v] o
local ∈ A ⊆ B

or there exists c such that o[m→→ v] c
value ∈ A ⊆ B or o[m→→ v] c

code ∈ A ⊆ B.
It follows that Vb

J (o[m→→ v]) = t.

(2) If L is a negative literal and Vb

J (L) = t, then Vb

I (L) = t.

If L = ¬ o : c, then Vb

J (o : c) = f . Therefore, o : c /∈ B. So o : c /∈ A and
Vb

I (o : c) = f . It follows that Vb

I (¬ o : c) = t.

If L = ¬ s :: c, then Vb

J (s :: c) = f . So s :: c /∈ B and s :: c /∈ A. Thus
Vb

I (s :: c) = f . It follows that Vb

I (¬ s :: c) = t.

If L = ¬ o[m→→ v], then Vb

J (o[m→→ v]) = f . Thus J (o[m→→ v] o
local) = f

and J (o[m→→ v] c
value) = f , J (o[m→→ v] c

code) = f for all c. It follows that
o[m→→ v] o

local /∈ B and o[m→→ v] c
value /∈ B, o[m→→ v] c

code /∈ B for all c. There-
fore, o[m→→ v] o

local /∈ A and o[m→→ v] c
value /∈ A, o[m→→ v] c

code /∈ A for all c.
So Vb

I (o[m→→ v]) = f and Vb

I (¬ o[m→→ v]) = t.

2

5.4 V-Rule Satisfaction

With the definitions of Vh

I and Vb

I , we can define the truth valuation function I
on ground V-rules. We should note that although the truth valuation function I is

Chapter 5. Three-Valued Semantics 33

three-valued when applied to ground atoms, it becomes two-valued when applied to
ground V-rules. Intuitively, a ground V-rule is evaluated to be true if and only if the
truth value of rule head is greater than or equal to the truth value of the rule body.
Formally, we have the following definition.

Definition 5.4.1 Given an interpretation I of an F-logic program P, the truth val-
uation function I on a ground V-rule, H← B, in ground(P), is defined as follows:

I(H← B) =

{
t, if Vh

I (H) ≥ Vb

I (B);
f , otherwise.

And the truth valuation function I on a ground V-fact, H, in ground(P), is defined
as follows:

I(H) =

{
t, if Vh

I (H) = t;
f , otherwise.

We will say that a three-valued interpretation satisfies the V-rules of an F-logic
program, if it satisfies all the ground V-rules of this program.

Definition 5.4.2 (V-Rule Satisfaction) A three-valued interpretation I satisfies
the V-rules of an F-logic program P, if for every V-rule R in ground(P), I(R) = t.

Chapter 6

Inheritance Postulates

Even if an interpretation I satisfies all the V-rules of an F-logic program P, it does not
necessarily mean that I is an intended object model of P, because I must also include
facts that are derived by inheritance. F-logic programs specify only class hierarchies
and method definitions — what needs to be inherited is not explicitly stated. In
fact, as we saw in Section 2.5, defining exactly what should be inherited is a subtle
issue. In our framework, it is the job of the inheritance postulates, which embody the
common intuition behind nonmonotonic multiple inheritance. The purpose of this
chapter is to define these postulates and the associated notion of an object model.

Intuitively, c[m] is an inheritance context for o, if o is a member of the class c,
and m→→ v is locally defined at c for some value v (i.e., c[m→→ v] is defined as a fact
or derived via a V-rule) or there is a C-rule which specifies the instance method m
for the class c. Inheritance context is necessary for inheritance to take place, but is
not sufficient. Indeed, inheritance of the values of m from c might be overridden by
a more specific inheritance context that sits below c along the inheritance path. If
an inheritance context is not overridden by any other inheritance context, then we
call it an inheritance candidate. Inheritance candidates represent potential sources
for inheritance. But there must be exactly one inheritance candidate for inheritance
to take place — having more just leads to a multiple inheritance conflict.

The various concepts to be defined in this chapter come in with two flavors: strong
or weak. The “strong” flavor of a concept requires that all relevant facts be positively
established while the “weak” flavor allows some or all facts to be undefined.

34

Chapter 6. Inheritance Postulates 35

6.1 Inheritance Candidates

Definition 6.1.1 (Local Context) Given an interpretation I of an F-logic pro-
gram P, s[m] is a strong local context, if max{I(s[m→→ v] s

local)|v ∈ HUP} = t. Simi-
larly, s[m] is a weak local context if max{I(s[m→→ v] s

local)|v ∈ HUP} = u.

Definition 6.1.2 (Value Inheritance Context) Given an interpretation I of an
F-logic program P, c[m] is a strong value inheritance context for o, if c 6= o1 and
min{I(o : c),max{c[m→→ v] c

local|v ∈ HUP}} = t . (i.e., the object o is a proper mem-
ber of the class c and c[m] is a strong local context). Similarly, c[m] is a weak value in-
heritance context for o if c 6= o and min{I(o : c),max{c[m→→ v] c

local|v ∈ HUP}} = u .

Definition 6.1.3 (Code Inheritance Context) Given an interpretation I of an
F-logic program P, c[m] is a strong code inheritance context for o, if c 6= o, I(o : c) = t,
and there is a C-rule in P which specifies the instance method m for the class c.
Similarly, c[m] is a weak code inheritance context for o if c 6= o, I(o : c) = u, and
there is a C-rule in P which specifies the instance method m for the class c.

Note that local contexts can only be established via V-rules but not C-rules. The
difference between a value and a code inheritance context is that the former requires
at least one value be established for its class method via a V-rule, whereas the latter
only requires the presence of at least one C-rule which specifies its instance method.

Therefore, if inheritance takes place from a value inheritance context, it is the
values of this class method that will be directly inherited by its members. On the
contrary, when inheritance takes place from a code inheritance context, it is the defi-
nitions of this instance method that will be inherited. Furthermore, these definitions
will be evaluated in the context of individual members, which does not necessarily
entail that a value of this instance method be derived for a member of this class.

When the difference between value and code inheritance is not important, we
will generally use the term inheritance context to refer to either a value or a code
inheritance context. In the following definitions we will see that value and code
inheritance contexts are treated equally as far as overriding is concerned.

Definition 6.1.4 (Overriding) Given an interpretation I of an F-logic program P,
the class s strongly overrides c[m] for o, if s 6= c, I(s :: c) = t, and s[m] is either a
strong value inheritance context or a strong code inheritance context for o.

The class s weakly overrides c[m] for o if the above conditions are relaxed by
allowing s :: c to be undefined and/or allowing s[m] to be a weak inheritance context.
Formally this means that either

(1) I(s :: c) = t and s[m] is a weak inheritance context for o; or

1
c 6= o means that c and o are distinct terms.

Chapter 6. Inheritance Postulates 36

(2) I(s :: c) = u and s[m] is either a weak or a strong inheritance context for o.

Definition 6.1.5 (Value Inheritance Candidate) Given an interpretation I of
an F-logic program P, c[m] is a strong value inheritance candidate for o, denoted
c[m]

sv
;I o, if c[m] is a strong value inheritance context for o, and there is no s that

strongly or weakly overrides c[m] for o.

c[m] is a weak value inheritance candidate for o, denoted c[m]
wv
;I o, if the above

conditions are relaxed by allowing c[m] to be a weak value inheritance context and/or
allowing weak overriding. Formally, this means that there is no s that strongly over-
rides c[m] for o, and either

(1) c[m] is a weak value inheritance context for o; or

(2) c[m] is a strong value inheritance context for o and there is s that weakly
overrides c[m] for o.

Definition 6.1.6 (Code Inheritance Candidate) Given an interpretation I of
an F-logic program P, c[m] is a strong code inheritance candidate for o, denoted
c[m]

sc
;I o, if c[m] is a strong code inheritance context for o, and there is no s that

strongly or weakly overrides c[m] for o.

c[m] is a weak code inheritance candidate for o, denoted c[m]
wc
;I o, if the above

conditions are relaxed by allowing c[m] to be a weak code inheritance context and/or
allowing weak overriding. Formally, this means that there is no s that strongly over-
rides c[m] for o, and either

(1) c[m] is a weak code inheritance context for o; or

(2) c[m] is a strong code inheritance context for o and there is s that weakly
overrides c[m] for o.

Example 6.1.1 As an example, consider an interpretation I = 〈T; U 〉 of an F-logic
program P, where

T = {c1 : c2, c1 : c4, c1 : c5, c2 :: c4, c3 :: c5} ∪

{c2[m→→ a] c2

local, c3[m→→ b] c3

local, c4[m→→ c] c4

local}

U = {c1 : c3}

I and P are illustrated in Figure 5, where solid and dashed arrows represent true and
undefined values, respectively.

In the interpretation I, c2[m] and c4[m] are strong value inheritance contexts for
c1. c5[m] is a strong code inheritance context for c1. On the other hand, c3[m] is a
weak value inheritance context for c1. The class c2 strongly overrides c4[m], while
c3 weakly overrides c5[m]. The context c2[m] is a strong value inheritance candidate
for c1, while c3[m] is a weak value inheritance candidate and c5[m] is a weak code

Chapter 6. Inheritance Postulates 37

inheritance candidate for c1. Finally, c4[m] is neither a strong nor a weak value
inheritance candidate for c1. 2

c1

c5

c3[m−>>b]

c4[m−>>c]

c2[m−>>a]

c1 : c2.
c1 : c5.
c2 :: c4.
c3 :: c5.
c2[m→→ a].
c3[m→→ b].
c4[m→→ c].

code c5[m→→ v] ← c5[f→→ x].

Figure 5: Inheritance Context, Overriding, and Inheritance Candidate

For convenience, we will simply write c[m] ;I o when it does not matter whether
c[m] is a strong or a weak value or code inheritance candidate. Now we are ready to
introduce our postulates for nonmonotonic multiple value and code inheritance.

6.2 Core Inheritance Postulates

Definition 6.2.1 (Positive ISA Transitivity) An interpretation I of an F-logic
program P satisfies the positive ISA transitivity constraint if the positive part of
the class hierarchy is transitively closed, formally, if the following two conditions
hold:

(1) for all s, c: if there is x such that I(s :: x) = t and I(x :: c) = t, then
I(s :: c) = t;

(2) for all o, c: if there is x such that I(o : x) = t and I(x :: c) = t, then
I(o : c) = t.

Definition 6.2.2 (Context Consistency) An interpretation I of an F-logic pro-
gram P satisfies the context consistency constraint, if the following conditions
hold:

(1) for all o, m, v: I(o[m→→ v] o
value) = f and I(o[m→→ v] o

code) = f ;

(2) for all c, m, v: if I(c[m→→ v] c
local) = f , then I(o[m→→ v] c

value) = f for all o;

(3) for all c, m: if there is no C-rule in ground(P) which specifies the instance
method m for the class c, then I(o[m→→ v] c

code) = f for all o, v;

(4) for all o, m: if o[m] is a strong local context, then I(o[m→→ v] c
value) = f and

I(o[m→→ v] c
code) = f for all v, c.

Chapter 6. Inheritance Postulates 38

The context consistency constraint captures the implications of locality and speci-
ficity. The first condition rules out self inheritance. The second condition states that
if m→→ v is not locally defined at c, then no class should inherit m→→ v from c by
value inheritance. The third condition states that if a class c does not specify an
instance method m, then no object should inherit any value of m from c by code
inheritance. The fourth condition states that if m→→ v is locally defined at o, then
this definition should prevent o from inheriting any value of m from other classes.

The following constraint captures the meaning of nonmonotonic multiple value
and code inheritance. Intuitively, we want our semantics for inheritance to have such
a property that if inheritance is allowed, then it should take place from a unique
source.

Definition 6.2.3 (Unique Source Inheritance) An interpretation I of an F-logic
program P satisfies the unique source inheritance constraint, if the following two
conditions hold:

(1) for all o, m, v, c: if I(o[m→→ v] c
value) = t or I(o[m→→ v] c

code) = t, then
I(o[m→→ z] x

value) = f and I(o[m→→ z] x
code) = f for all z, x such that x 6= c.

(2) for all c, m, o: if c[m]
sv
;I o or c[m]

sc
;I o, then I(o[m→→ v] x

value) = f and
I(o[m→→ v] x

code) = f for all v, x such that x 6= c.

(3) for all o, m, v, c: I(o[m→→ v] c
value) = t iff

(i) o[m] is neither a strong nor a weak local context; and

(ii) c[m]
sv
;I o; and

(iii) I(c[m→→ v] c
local) = t; and

(iv) there is no x such that x 6= c and x[m] ;I o.

The first condition above states that if a positive value or code inheritance takes
place from a class, then no value and code inheritance can take place from other
classes.

The second condition states that if a strong value or code inheritance candidate,
c[m], exists, then inheritance of the method m cannot take place from any other source
(because this would be a multiple inheritance conflict). However, inheritance of the
method m can take place from c, if there are no other inheritance candidates and no
local contexts.

The third condition specifies when “positive” value inheritance takes place. An
object o must inherit m→→ v from a class c by value inheritance if and only if: (i) no
value is locally defined for the method m at o; (ii) c[m] is a strong value inheritance
candidate for o; (iii) m→→ v is locally defined at c and is positive; and (iv) there are
no other inheritance candidates — weak or strong — from which o could inherit the
method m.

Chapter 6. Inheritance Postulates 39

6.3 C-Rule Satisfaction

Intuitively, a model of an F-logic program should satisfy all the rules in this program.
In Section 5.4 we have defined the truth valuation function on ground V-rules and
the associated notion of V-rule satisfaction. Now we will extend the truth valuation
function to ground C-rules.

Satisfaction of C-rules, however, is different from that of V-rules, because C-rules
specify instance method definitions for classes. Only when these definitions are in-
herited by individual members of a class should they be satisfied.

When code inheritance takes place, an object inherits the instance method def-
initions from the class to which it belongs. Once inherited, these instance method
definitions are evaluated in the context of individual objects. This corresponds to the
idea of late binding in imperative object-oriented languages like C++ and Java.

In a ground C-rule which specifies an instance method m for a class c, the name c
can be considered as a placeholder that stands for any member of the class c. When
this C-rule is inherited, the name c will be substituted by the oids of individual objects
that belong to this class.

Definition 6.3.1 (Binding) Let R ≡ (code c[m→→ v]← B) be a ground C-rule
which specifies the instance method m for the class c. The binding of R with respect
to o, denoted R||o, is obtained from R by substituting o for every occurrence of c in
R. We will use X c\o to represent the term that is obtained from X by substituting o
for every occurrence of c in X.

Therefore, the truth valuation function will be defined on bindings of ground
C-rules instead of on C-rules directly. Intuitively, when an object inherits the C-rules
from a class, the bindings of these C-rules would act like local definitions for this
object and so should be satisfied similarly to V-rules. However, because only those
C-rules which are inherited need to be satisfied, satisfaction of C-rules depends on
how they are inherited: strongly or weakly.

Definition 6.3.2 (Strong Code Inheritance) Let I be an interpretation of an
F-logic program P and let R ≡ (code c[m→→ v]← B) be a C-rule in ground(P). An
object o strongly inherits R, if the following conditions hold:

(1) c[m]
sc
;I o;

(2) o[m] is neither a strong nor a weak local context;

(3) there is no x 6= c such that x[m] ;I o.

Given a ground C-rule which specifies the instance method m for the class c, we
say that an object o strongly inherits R, if: (i) c[m] is a strong code inheritance

Chapter 6. Inheritance Postulates 40

candidate for o, i.e., c[m] is not overridden by any intermediate classes; (ii) o[m] is
neither a strong nor a weak local context, i.e., o has no locally defined values for the
method m; and (iii) there are no other strong or weak inheritance candidates, i.e.,
there is no multiple inheritance conflict at all.

Definition 6.3.3 (Weak Code Inheritance) Let I be an interpretation of an
F-logic program P and R ≡ code c[m→→ v]← B be a C-rule in ground(P). An
object o weakly inherits R, if the following conditions hold:

(1) c[m]
sc
;I o or c[m]

wc
;I o;

(2) o[m] is not a strong local context;

(3) there is no x 6= c such that x[m]
sv
;I o or x[m]

sc
;I o;

(4) o does not strongly inherit R.

Given a ground C-rule which specifies the instance method m for the class c, we
say that an object o weakly inherits R, if: (i) c[m] is either a strong or a weak code
inheritance candidate for o, i.e., there is no strong evidence that c[m] is overridden by
an intermediate class; (ii) o[m] is not a strong local context, i.e., there is no strong
evidence that o has locally defined values for the method m; (iii) there are no other
strong value or code inheritance candidates, i.e., there is no strong evidence for a
multiple inheritance conflict; and (iv) o does not strongly inherit R.

Given an interpretation I of an F-logic program P, let R be a C-rule in ground(P)
and R||o be the binding of R with respect to o. We can define a function, imodeI , on
bindings of ground C-rules, which returns the “inheritance mode” of a binding:

imodeI(R||o) =





t, if o strongly inherits R;
u, if o weakly inherits R;
f , otherwise.

When imodeI(R||o) = t, we will say that R||o is in strong code inheritance mode.
Similarly, we will say R||o is in weak code inheritance mode if imodeI(R||o) = u.

Note that in an interpretation atoms of the form o[m→→ v] c
code represent those

facts that we can derive after binding a C-rule, which specifies the instance method
m for the class c, with the object o via code inheritance. The truth valuation function
can be extended to ground C-rules as follows.

Definition 6.3.4 Let I be an interpretation, R ≡ (code c[m→→ v]← B) be a
ground C-rule, and F ≡ (code c[m→→ v]) be a ground C-fact. The truth valuation
function I on R||o and F||o (the bindings of R and F with respect to o, respectively)

Chapter 6. Inheritance Postulates 41

is defined as follows:

I(R||o) =





t, if imodeI(R||o) ≥ u and
I(o[m→→ v] c

code) ≥ min{Vb

I (B c\o), imodeI(R||o)};
t, if imodeI(R||o) = f and I(o[m→→ v] c

code) = f ;
f , otherwise.

I(F||o) =





t, if imodeI(R||o) ≥ u and I(o[m→→ v] c
code) ≥ imodeI(R||o);

t, if imodeI(R||o) = f and I(o[m→→ v] c
code) = f ;

f , otherwise.

Note that when imodeI(R||o) = f , i.e., o neither strongly nor weakly inherits R, it
is required that I(o[m→→ v] c

code) = f to satisfy R||o. The intuition behind this is that
if an object cannot inherit a C-rule at all, then the effect of code inheritance should
not be seen in the model. Therefore, strong or weak code inheritance mode should
be a necessary condition for code inheritance to take place.

There is an interesting observation. In the case of strong code inheritance, the
truth valuation function on C-rules will be defined essentially the same way as on
V-rules. Clearly, imodeI(R||o) = t under strong code inheritance. It follows that:
(i) I(o[m→→ v] c

code) ≥ min{Vb

I (B c\o), imodeI(R||o)} iff I(o[m→→ v] c
code) ≥ V

b

I (B c\o);
and (ii) I(o[m→→ v] c

code) ≥ imodeI(R||o) iff I(o[m→→ v] c
code) = t.

The idea of C-rule satisfaction can be simply stated as follows.

Definition 6.3.5 (C-Rule Satisfaction) A three-valued interpretation I satisfies
the C-rules of an F-logic program P, if I(R||o) = t for all C-rule R ∈ ground(P) and
all o ∈ HUP.

6.4 Object Models

We are now ready to state formally what it means to be an object model of an F-logic
program.

Definition 6.4.1 (Object Model) An interpretation I of an F-logic program P is
called an object model of P, if I satisfies both the V-rules and the C-rules in P, plus
the following three postulates: the positive ISA transitivity constraint, the context
consistency constraint, and the unique source inheritance constraint.

Example 6.4.1 Consider the two programs in Figures 6(b) and 6(c) which share the
same class hierarchy as shown in Figure 6(a). Let

C = {c1 : c2, c1 : c3, c2 :: c4, c3 :: c4}

Chapter 6. Inheritance Postulates 42

and I1 = 〈T1; U1 〉 be an interpretation for the program in Figure 6(b), where

T1 = C ∪ {c4[m→→ a] c4

local, c1[m→→ a] c4

value}

U1 = ∅

One can verify that I1 is an object model for the program in Figure 6(b). From I1 we
can see that c4[m] is the unique strong value inheritance candidate for c1 and m→→ a
is locally defined at c4. Therefore, c1 can inherit m→→ a from c4.

Let C be the same set of ISA atoms as before and consider the interpretation
I2 = 〈T2; U2 〉 for the program in Figure 6(c), where

T2 = C ∪ {c2[m→→ b] c2

local, c3[m→→ b] c3

local, c1[m→→ b] c2

value, c1[m→→ b] c3

value}

U2 = ∅

Clearly, I2 satisfies the program in Figure 6(c). But it is not an object model —
the presence of each one of c1[m→→ b] c2

value and c1[m→→ b] c3

value in I2 violates the first
condition of the unique source inheritance constraint.

Finally, consider I3 = 〈T3; U3 〉 for the program in Figure 6(c), where

T3 = C ∪ {c2[m→→ b] c2

local, c3[m→→ b] c3

local, c1[m→→ b] c2

value}

U3 = ∅

However, I3 is not an object model either — the presence of c1[m→→ b] c2

value in I3

violates both the second and the third condition of the unique source inheritance
constraint, because both c2[m] and c3[m] are strong value inheritance candidates for
c1 and c2 6= c3. 2

c3

c4

c1

c2

c1 : c2.
c1 : c3.
c2 :: c4.
c3 :: c4.
c4[m→→ a].

c1 : c2.
c1 : c3.
c2 :: c4.
c3 :: c4.
c2[m→→ b].
c3[m→→ b].

(a) (b) (c)

Figure 6: Unique Source Inheritance

It is worth pointing out the difference between source-based and value-based ap-
proaches to nonmonotonic multiple inheritance. Suppose c2[m] and c3[m] are both
strong inheritance candidates for c1, where c2 6= c3. In the source-based approach c1

has a multiple inheritance conflict on the method m regardless of the return values

Chapter 6. Inheritance Postulates 43

of the method m in c1 and c2. On the contrary, in the value-based approach, no
conflict would occur if m returns the same set of values in both classes c2 and c3.
For instance, the above interpretation I2 for the program in Figure 6(c) would be an
object model under the value-based approach, since m returns the same set of values,
{b}, in c2 and c3. However, value-based nonmonotonic multiple inheritance requires
higher-order reasoning and is expensive to compute. In this dissertation we consider
only source-based inheritance.

6.5 Optimistic Inheritance Postulates

The constraints introduced so far capture the intuition behind the “definite” part
of an object model, i.e., the true and the false components. We view them as core
postulates that any reasonable object model must obey. However, we still need to
assign a meaning to the undefined part of an object model. Since “undefined” means
either possibly true or possibly false, intuitively we want the conclusions drawn from
undefined facts to remain undefined. In other words, the semantics should be “closed”
with regard to undefined facts. As a consequence, although it might seem tempting
to “jump” to negative conclusions from undefined facts in some cases (e.g., if there
are multiple weak inheritance candidates), our semantics is biased towards undefined
conclusions, which is why we call it “optimistic”.

Definition 6.5.1 (Optimistic ISA Transitivity) An interpretation I of an
F-logic program P satisfies the optimistic ISA transitivity constraint if the unde-
fined part of the class hierarchy is transitively closed, formally, if the following two
conditions hold:

(1) for all s, c: if there is x such that I(s :: x ∧ x :: c) = u and I(s :: c) 6= t, then
I(s :: c) = u;

(2) for all o, c: if there is x such that I(o : x ∧ x :: c) = u and I(o : c) 6= t, then
I(o : c) = u.

Definition 6.5.2 (Optimistic Inheritance) An interpretation I of an F-logic
program P satisfies the optimistic inheritance constraint, if for all o, m, v, c:
I(o[m→→ v] c

value) = u iff

(i) o[m] is not a strong local context; and

(ii) c[m]
sv
;I o or c[m]

wv
;I o; and

(iii) I(c[m→→ v] c
local) ≥ u; and

(iv) there is no x 6= c such that x[m]
sv
;I o or x[m]

sc
;I o; and

(v) I(o[m→→ v] c
value) 6= t.

Chapter 6. Inheritance Postulates 44

The optimistic inheritance constraint captures the intuition behind multiple in-
heritance based on undefined knowledge. The first condition above states when opti-
mistic value inheritance takes place while the second condition states when optimistic
code inheritance takes place.

An object o optimistically inherits m→→ v from a class c by value inheritance if and
only if: (i) there is no strong evidence that the method m has a locally defined value at
o; (ii) c[m] is either a strong or a weak value inheritance candidate for o; (iii) m→→ v
is locally defined at c; (iv) there are no other strong inheritance candidates that
can invalidate value inheritance from c (by the unique source inheritance constraint);
and (v) o cannot positively inherit m→→ v from c by value inheritance.

Chapter 7

Computation

In this chapter we will define a series of operators. These operators form the basis
of a bottom-up computation procedure which will be used to compute object models
for F-logic programs.

7.1 Extended Atom Sets

First we need to extend the definition of an interpretation in Section 5.2 to include
book-keeping information used by the computation. The book-keeping information
will be projected out when the final object model is produced.

The extended Herbrand base of an F-logic program P, denoted ĤBP, consists of
atoms from HBP and auxiliary atoms of the forms c[m]

v
; o and c[m]

c
; o, where

c, m, and o are terms from HUP. During the computation, we will use auxiliary
atoms of the forms c[m]

v
; o and c[m]

c
; o to approximate value and code inheritance

candidates, respectively.

An extended atom set is a subset of ĤBP. In the sequel, we will use symbols with
a hat (e.g., Î) to denote extended atom sets. The projection of an extended atom set

Î , denoted π(Î), is Î with the auxiliary atoms removed.

Lemma 7.1.1 Let Î and Ĵ be extended atom sets:

(1) If Î ⊆ Ĵ , then π(Î) ⊆ π(Ĵ).

(2) π(Î ∪ Ĵ) = π(Î) ∪ π(Ĵ)

(3) π(Î − Ĵ) = π(Î)− π(Ĵ)

Frequently we will need to compare a normal atom set with the projection of an
extended atom set to test for set inclusion. Without complicating the presentation

45

Chapter 7. Computation 46

we will usually omit the project function and just write the extended atom set, when
its intended usage is clear from the context.

It is straightforward to extend the definitions of the truth valuation functions in
Section 5.3 to extended atom sets, since the auxiliary atoms do not occur in F-logic
programs. Formally, given an extended atom set Î , let I = 〈π(Î); ∅ 〉. We define:

valh
Î
(H)

def
= Vh

I (H), for a ground rule head

valb
Î
(B)

def
= Vb

I (B), for a ground rule body

val
Î
(R)

def
= I(R), for a ground V-rule

val
Î
(R||o)

def
= I(R||o), for a binding of a ground C-rule

7.2 Operators

The computation to be defined in this section extends the alternating fixpoint com-
putation in [17]. The new element here is the book-keeping mechanism for recording
inheritance information.

Definition 7.2.1 Given a ground literal L of an F-logic program P and an atom
A ∈ HBP, we say that L matches A, if one of the following conditions is true:

(1) L = o : c and A = o : c

(2) L = s :: c and A = s :: c

(3) L = s[m→→ v] and A = s[m→→ v] s
local

Definition 7.2.2 (V-Rule Consequence Operator VC
P, Î) The V-rule conse-

quence operator, VC
P, Î , is defined for an F-logic program P and an extended atom

set Î . It takes as input an extended atom set, Ĵ , and generates a new extended atom
set as follows:

VC
P, Î (Ĵ) =





A

∣∣∣∣∣∣∣∣∣∣

There is a V-rule, H← L1, . . . , Ln, in ground(P), such that
H matches A and for every literal Li (1 ≤ i ≤ n):

(i) if Li is positive, then valb
Ĵ
(Li) = t; and

(ii) if Li is negative, then valb
Î
(Li) = t.





The V-rule consequence operator is adopted from the usual alternating fixpoint
computation. It derives new facts, including class memberships, subclass relation-
ships, and local method definitions for classes and objects, from the V-rules in an
F-logic program.

Chapter 7. Computation 47

Definition 7.2.3 (Inheritance Blocking Operator IBP) The inheritance block-
ing operator, IBP, is defined for an F-logic program P. It takes as input an extended
atom set, Î , and generates the following set of atoms:

IBP(Î) =
{

lc(o, m) | ∃ v, such that o[m→→ v] o
local ∈ Î

}
∪

{
mc(c, m, o)

∣∣∣ ∃ x 6= c such that x[m]
v
; o ∈ Î or x[m]

c
; o ∈ Î

}
∪





ov(c, m, o)

∣∣∣∣∣∣∣∣

∃ x such that: (i) x 6= c, x 6= o, x :: c ∈ Î , o : x ∈ Î ;

and (ii) ∃ v such that x[m→→ v] x
local ∈ Î or there is

a C-rule in ground(P) which specifies the instance
method m for the class x.





The inheritance blocking operator is an auxiliary operator used in defining the
C-rule consequence operator and the inheritance consequence operator below. It
returns the book-keeping information that is needed in deciding what can be inherited
and which ones are the inheritance candidates.

Intuitively, lc(o, m) means that the method m is locally defined at o; mc(c, m, o)
means that inheritance of the method m from c to o is not possible due to a multiple
inheritance conflict (as manifested by the existence of either a value or a code inher-
itance candidate that is different from c); ov(c, m, o) means that inheritance of the
method m from c to o would be overridden by another class that stands between o
and c in the class hierarchy. From the definition we can see that a class must have a
locally defined value for a method or have an instance method definition to be able
to override inheritance from its superclasses.

Lemma 7.2.1 Given an interpretation I = 〈T; U 〉 of an F-logic program P:

(1) for all c, m, o: there is x such that x strongly overrides c[m] for o iff
ov(c, m, o) ∈ IBP(T).

(2) for all c, m, o: there is x such that x strongly or weakly overrides c[m] for o
iff ov(c, m, o) ∈ IBP(T ∪ U).

Proof.

By Definition 6.1.4 and Definition 7.2.3.
2

Lemma 7.2.2 Given an interpretation I = 〈T; U 〉 of an F-logic program P:

(1) for all c, m, o: c[m]
sv
;I o iff (i) c 6= o, o : c ∈ T; (ii) c[m→→ v] c

local ∈ T for
some value v; and (iii) ov(c, m, o) /∈ IBP(T ∪ U).

(2) for all c, m, o: c[m]
sc
;I o iff (i) c 6= o, o : c ∈ T; (ii) there is a

C-rule in ground(P) which specifies the instance method m for the class c;
and (iii) ov(c, m, o) /∈ IBP(T ∪ U).

Chapter 7. Computation 48

(3) for all c, m, o: c[m]
sv
;I o or c[m]

wv
;I o iff (i) c 6= o, o : c ∈ T ∪ U;

(ii) c[m→→ v] c
local ∈ T ∪ U for some value v; and (iii) ov(c, m, o) /∈ IBP(T).

(4) for all c, m, o: c[m]
sc
;I o or c[m]

wc
;I o iff (i) c 6= o, o : c ∈ T ∪ U; (ii) there

is a C-rule in ground(P) which specifies the instance method m for the class
c; and (iii) ov(c, m, o) /∈ IBP(T).

(5) for all c, m, o: c[m] ;I o iff (i) c 6= o, o : c ∈ T∪U; (ii) c[m→→ v] c
local ∈ T∪U

for some value v or there is a C-rule in ground(P) which specifies the instance
method m for the class c; and (iii) ov(c, m, o) /∈ IBP(T).

Proof.

By Definitions 6.1.5 and 6.1.6 and Lemma 7.2.1.
2

Definition 7.2.4 (C-Rule Consequence Operator CC
P, Î) The C-rule conse-

quence operator, CC
P, Î , is defined for an F-logic program P and an extended atom

set Î . It takes as input an extended atom set, Ĵ , and generates a new extended atom
set as follows:

CC
P, Î (Ĵ) =





o[m→→ v] c
code

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c[m]
c
; o ∈ Ĵ , lc(o, m) /∈ IBP(Î),

mc(c, m, o) /∈ IBP(Î), and there is a
C-rule, code H← B, in ground(P)
such that H ≡ c[m→→ v] and for every
literal L ∈ B c\o:

(i) if L is positive, then
valb

Ĵ
(L) = t; and

(ii) if L is negative, then
valb

Î
(L) = t.





The C-rule consequence operator is used to derive new facts as a result of code
inheritance. It is similar to the V-rule consequence operator except that the V-rule
consequence operator is applied to all V-rules whereas the C-rule consequence opera-
tor is applied to only those selected C-rules that could be inherited according to our
inheritance semantics.

Given an object o and a C-rule, code c[m→→ v]← B, which specifies the instance
method m for the class c, in ground(P), we first need to decide whether o can inherit
this instance method definition from c. If so, then we will bind this instance method
definition with respect to o and evaluate it (note that L c\o is obtained from L by
substituting o for every occurrence of c in L). If the rule body is satisfied in the context
of o, we will derive o[m→→ v] c

code to represent the fact that m→→ v is established for
o by inheritance of an instance method definition from c.

Chapter 7. Computation 49

We can decide whether o can inherit code from c by looking up the two sets Ĵ and
IBP(Î). The object o can inherit the instance method definition of m from the class
c only if the following conditions are true: (i) c[m] is a code inheritance candidate for

o (c[m]
c
; o ∈ Ĵ); (ii) the method m is not locally defined at o (lc(o, m) /∈ IBP(Î));

and (iii) there is no multiple inheritance conflict (mc(c, m, o) /∈ IBP(Î)).

Definition 7.2.5 (Inheritance Consequence Operator IC
P, Î) The inheritance

consequence operator, IC
P, Î , where P is an F-logic program and Î is an extended

atom set, takes as input an extended atom set, Ĵ , and generates a new extended
atom set as follows:

IC
P, Î (Ĵ)

def
= ICt(Ĵ) ∪ ICc

P, Î
(Ĵ) ∪ ICi

P, Î
(Ĵ)

ICt(Ĵ) =
{

o : c
∣∣∣ ∃ x, such that o : x ∈ Ĵ , x :: c ∈ Ĵ

}
∪

{
s :: c

∣∣∣ ∃ x, such that s :: x ∈ Ĵ , x :: c ∈ Ĵ
}

ICc

P, Î
(Ĵ) =

{
c[m]

v
; o

∣∣∣∣
o : c ∈ Ĵ , c 6= o, c[m→→ v] c

local ∈ Ĵ ,

and ov(c, m, o) /∈ IBP(Î)

}
∪



c[m]

c
; o

∣∣∣∣∣∣

o : c ∈ Ĵ , c 6= o, there is a C-rule in ground(P)
which specifies the instance method m for the
class c, and ov(c, m, o) /∈ IBP(Î)





ICi

P, Î
(Ĵ) =

{
o[m→→ v] c

value

∣∣∣∣
c[m]

v
; o ∈ Ĵ , c[m→→ v] c

local ∈ Ĵ ,

lc(o, m) /∈ IBP(Î), and mc(c, m, o) /∈ IBP(Î)

}

The inheritance consequence operator, IC
P, Î , is the union of three operators:

ICt , ICc

P, Î
, and ICi

P, Î
. The operator ICt is used to perform transitive closure of

the class hierarchy, including class memberships and subclass relationships. Value
and code inheritance candidates are computed by the operator ICc

P, Î
, which relies on

the overriding information provided by IBP(Î). Finally, the operator ICi

P, Î
derives

new facts by value inheritance. This operator also relies on information provided by
IBP(Î) to make inheritance decisions.

Definition 7.2.6 (Program Completion Operator T
P, Î) The program comple-

tion operator, T
P, Î , where P is an F-logic program and Î an extended atom set,

takes as input an extended atom set, Ĵ , and generates a new extended atom set as
follows:

T
P, Î (Ĵ)

def
= VC

P, Î (Ĵ) ∪CC
P, Î (Ĵ) ∪ IC

P, Î (Ĵ)

The program completion operator is simply the union of the V-rule consequence
operator, the C-rule consequence operator, and the inheritance consequence operator.

Chapter 7. Computation 50

It derives new “local” method definitions (via V-rules in the program), new “contex-
tual” method definitions as a result of binding instance method specifications with
class members (via C-rules in the program), new inherited facts (by value and code
inheritance), plus inheritance candidacy information that is used to decide which facts
to inherit in the future.

We have the following lemma regarding the monotonicity property of the operators
that we have defined so far.

Lemma 7.2.3

(1) VC
P, Î is monotonic when P and Î are fixed.

(2) IBP is monotonic when P is fixed.

(3) CC
P, Î is monotonic when P and Î are fixed.

(4) ICt is monotonic. ICc

P, Î
and ICi

P, Î
are monotonic when P and Î are fixed.

(5) IC
P, Î is monotonic when P and Î are fixed.

(6) T
P, Î is monotonic when P and Î are fixed.

Given an F-logic program P, the set of all subsets of the extended Herbrand
base ĤBP constitutes a complete lattice where the partial ordering is defined by set
inclusion. Therefore, any monotonic operator, Φ, defined on this lattice has a unique
least fixpoint lfp(Φ) [37].

Definition 7.2.7 (Alternating Fixpoint Operator ΨP) The alternating fixpoint

operator, ΨP, for an F-logic program P takes as input an extended atom set, Î , and
generates a new extended atom set as follows:

ΨP(Î)
def
= lfp(T

P, Î)

Definition 7.2.8 (F-logic Fixpoint Operator FP) The F-logic fixpoint operator,

FP, where P is an F-logic program, takes as input an extended atom set, Î , and
generates a new extended atom set as follows:

FP(Î)
def
= ΨP(ΨP(Î))

Lemma 7.2.4 Let Î be an extended atom set of an F-logic program P, Ĵ = ΨP(Î).
Then:

(1) for all c, m, o: if c[m]
v
; o ∈ Ĵ then c 6= o.

(2) for all c, m, o: if c[m]
c
; o ∈ Ĵ then c 6= o.

(3) for all o, m, v, c: o[m→→ v] c
value ∈ Ĵ iff o[m→→ v] c

value ∈ ICi

P, Î
(Ĵ).

Chapter 7. Computation 51

(4) for all o, m, v, c: o[m→→ v] c
code ∈ Ĵ iff o[m→→ v] c

code ∈ CC
P, Î (Ĵ).

(5) for all o, m, v, c: if o[m→→ v] c
value ∈ Ĵ then c 6= o.

(6) for all o, m, v, c: if o[m→→ v] c
code ∈ Ĵ then c 6= o.

Proof.

By Definitions 7.2.7, 7.2.6, 7.2.5, and 7.2.4.
2

Lemma 7.2.5 ΨP is antimonotonic when P is fixed.

Proof.

We want to show that for any extended atom sets Î and Ĵ : if Î ⊇ Ĵ , then
ΨP(Î) ⊆ ΨP(Ĵ). Let α range over all countable ordinals, define:

X̂ 0 = ∅ Ŷ 0 = ∅ for limit ordinal 0

X̂ α = T
P, Î (X̂ α−1) Ŷ α = T

P, Ĵ (Ŷ α−1) for successor ordinal α

X̂ α =
⋃

β<α

X̂ β Ŷ α =
⋃

β<α

Ŷ β for limit ordinal α 6= 0

By Definition 7.2.7 ΨP(Î) = lfp(T
P, Î) and ΨP(Ĵ) = lfp(T

P, Ĵ). So, by Proposi-

tion 4.1.2, to show that ΨP(Î) ⊆ ΨP(Ĵ) it suffices to show that X̂ α ⊆ Ŷ α for any
ordinal α.

The case is trivial for a limit ordinal α. Now suppose α is a successor ordinal.
Then X̂ α = T

P, Î (X̂ α−1) = VC
P, Î (X̂ α−1)∪CC

P, Î (X̂ α−1)∪IC
P, Î (X̂ α−1) and Ŷ α =

T
P, Ĵ (Ŷ α−1) = VC

P, Ĵ (Ŷ α−1) ∪CC
P, Ĵ (Ŷ α−1) ∪ IC

P, Ĵ (Ŷ α−1), by Definition 7.2.6.

Therefore, to show that X̂ α ⊆ Ŷ α, it suffices to show that VC
P, Î (X̂ α−1) ⊆

VC
P, Ĵ (Ŷ α−1), CC

P, Î (X̂ α−1) ⊆ CC
P, Ĵ (Ŷ α−1), and IC

P, Î (X̂ α−1) ⊆ IC
P, Ĵ (Ŷ α−1).

Let Î = 〈 Î ; ∅ 〉, X̂ α−1 = 〈 X̂ α−1; ∅ 〉, Ĵ = 〈 Ĵ ; ∅ 〉, Ŷ α−1 = 〈 Ŷ α−1; ∅ 〉.

First we will show that VC
P, Î (X̂ α−1) ⊆ VC

P, Ĵ (Ŷ α−1). Let A be any atom

such that A ∈ VC
P, Î (X̂ α−1). Then by Definition 7.2.2, there must exit a V-rule,

H← L1, . . . , Ln, in ground(P), such that H matches A and for all Li, 1 ≤ i ≤ n: (i) if
Li is a positive literal then Vb

X̂ α−1

(Li) = t; and (ii) if Li is a negative literal then

Vb

Î
(Li) = t. Note that X̂ α−1 ⊆ Ŷ α−1 by the induction hypothesis and Î ⊇ Ĵ . So,

by Lemma 5.3.2, for all Li, 1 ≤ i ≤ n: (i) if Li is a positive literal then Vb

Ŷ α−1

(Li) = t;

and (ii) if Li is a negative literal then Vb

Ĵ
(Li) = t. It follows that A ∈ VC

P, Ĵ (Ŷ α−1).

Next we will show that CC
P, Î (X̂ α−1) ⊆ CC

P, Ĵ (Ŷ α−1). Let o[m→→ v] c
code be

any atom in CC
P, Î (X̂ α−1). Then by Definition 7.2.4, c[m]

c
; o ∈ X̂ α−1, lc(o, m) /∈

Chapter 7. Computation 52

IBP(Î), mc(c, m, o) /∈ IBP(Î), and there must exit a C-rule, code c[m→→ v]← B,
in ground(P), such that for all literal L ∈ B: (i) if L is positive then Vb

X̂ α−1

(L c\o) = t;

and (ii) if L is negative then Vb

Î
(L c\o) = t. Note that X̂ α−1 ⊆ Ŷ α−1 by the induction

hypothesis and IBP(Î) ⊇ IBP(Ĵ) by the monotonicity of IBP. So c[m]
c
; o ∈ Ŷ α−1,

lc(o, m) /∈ IBP(Ĵ), mc(c, m, o) /∈ IBP(Ĵ), and by Lemma 5.3.2, for all literal L ∈ B:
(i) if L is positive then Vb

Ŷ α−1

(L) = t; and (ii) if L is negative then Vb

Ĵ
(Li) = t. It

follows that o[m→→ v] c
code ∈ CC

P, Ĵ (Ŷ α−1).

Finally we will show that IC
P, Î (X̂ α−1) ⊆ IC

P, Ĵ (Ŷ α−1). Note that X̂ α−1 ⊆

Ŷ α−1 by the induction hypothesis and IBP(Î) ⊇ IBP(Ĵ) by the monotonicity of

IBP. Clearly, for any atom A, if A ∈ IC
P, Î (X̂ α−1) then A ∈ IC

P, Î (Ŷ α−1), by
Definition 7.2.5.
2

Lemma 7.2.6 FP is monotonic when P is fixed.

Proof.

By Definition 7.2.8 and Lemma 7.2.5.
2

Chapter 8

Stable Object Models

In this chapter we will introduce a special type of object model, called stable object
model, which does not exhibit some of the anomalies in inference. We will formally
prove that a stable object model indeed satisfies all the requirements of an object
model. At the end of this chapter, we will illustrate the relationship between stable
object models and fxipoints through some interesting examples.

8.1 Stable Interpretations

Although V-rule satisfaction, the inheritance postulates, and C-rule satisfaction have
ruled out a large number of unintended interpretations of an F-logic program which
do not satisfy the necessary requirements of an object model, they still do not re-
strict object models tightly enough. In fact, for an F-logic program there may exist
unfounded object models that do not match the common intuition behind inference.
This problem is illustrated by the following example.

c3[m->>b]

c1

c2[m->>a]
c1 : c2.
c3 :: c2.
c2[m→→ a].
c3[m→→ b].
c1 : c3← c1[m→→ b].

Figure 7: Unfounded Inference

Example 8.1.1 Consider the program in Figure 7 and the two-valued object model
I = 〈P; Q 〉, where

P = {c1 : c2, c3 :: c2, c1 : c3, c2[m→→ a] c2

local, c3[m→→ b] c3

local, c1[m→→ b] c3

value},

53

Chapter 8. Stable Object Models 54

Q = ∅.

Clearly, I satisfies the V-rules of the program in Figure 7 and all the inheritance pos-
tulates introduced in Chapter 6, including the optimistic ISA transitivity constraint
and the optimistic inheritance constraint. However, we should note that in I the
truths of c1 : c3 and c1[m→→ b] c3

value are not well-founded in that they mutually rely on
the truth of each other as the necessary inference premise. Indeed, the truth of c1 : c3

depends on the literal c1[m→→ b] being satisfied in the body of the last rule. Since
c1[m→→ b] does not appear in the head of any rule, there is no way for m→→ b to be
locally defined for c1. So the satisfaction of the body literal c1[m→→ b] depends on c1

inheriting m→→ b from c3, the only class that has locally defined m→→ b. However,
c1 can inherit m→→ b from c3 only if the truth of c1 : c3 can be established. We can
see that the inference of c1 : c3 and the inference of c1[m→→ b] c3

value are at a deadlock.
Therefore, we should not automatically conclude that both c1 : c3 and c1[m→→ b] c3

value

are true as implied by the program and our semantics for inheritance. 2

Now we will introduce a special class of object models, namely the stable object
models, which do not exhibit the aforementioned anomaly.

Definition 8.1.1 Given an interpretation I = 〈T; U 〉 of an F-logic program P, let

T̂I be the extended atom set constructed by the union of T and the set of auxiliary
atoms corresponding to the strong inheritance candidates in I, and ÛI be the ex-
tended atom set constructed by the union of T, U, and the set of auxiliary atoms
corresponding to the strong and weak inheritance candidates in I, i.e.,

T̂I
def
= T ∪

{c[m]
v
; o | c[m]

sv
;I o} ∪

{c[m]
c
; o | c[m]

sc
;I o}

ÛI
def
= T ∪ U ∪

{c[m]
v
; o | c[m]

sv
;I o or c[m]

wv
;I o} ∪

{c[m]
c
; o | c[m]

sc
;I o or c[m]

wc
;I o}

Definition 8.1.2 (Stable Interpretation) Let I = 〈T; U 〉 be an interpretation of

an F-logic program P. I is called a stable interpretation of P, if T̂I = ΨP(ÛI) and

ÛI = ΨP(T̂I).

Our definition of stable interpretation is closely related to that of stable model
introduced in [19, 45]. The idea is that given an interpretation I of an F-logic program
P, we first resolve all the negative premises both in P and in our semantics for
inheritance using the information in I. The result is a residual positive program
without negation. Then I is called stable if and only if I can reproduce itself by

Chapter 8. Stable Object Models 55

resolving the positive premises both in the residual program and in our inheritance
semantics via least fixpoint computation. This is how stable interpretations can
prevent the kind of unfounded inference illustrated in Example 8.1.1.

We should note that in Definition 8.1.2 it is only required that a stable interpre-
tation I = 〈T; U 〉 satisfy a certain computational property with respect to ΨP, i.e.,

T̂I = ΨP(ÛI) and ÛI = ΨP(T̂I). In fact, it turns out that a stable interpretation of
an F-logic program P satisfies all the V-rules and C-rules in P as well as all the core
and optimistic inheritance postulates. We will present the formal proofs in the next
section.

8.2 Properties

Lemma 8.2.1 Let P be an F-logic program and I = 〈T; U 〉 be a stable interpreta-
tion of P:

T̂I = VC
P,ÛI

(T̂I) ∪VC
P,ÛI

(T̂I) ∪ ICt(T̂I) ∪ ICc

P,ÛI

(T̂I) ∪ ICi

P,ÛI

(T̂I)

ÛI = VC
P,T̂I

(ÛI) ∪CC
P,T̂I

(ÛI) ∪ ICt(ÛI) ∪ ICc

P,T̂I

(ÛI) ∪ ICi

P,T̂I

(ÛI)

Proof.

By Definitions 8.1.2, 7.2.7, 7.2.6, and 7.2.5.
2

Proposition 8.2.2 Let I = 〈T; U 〉 be a stable interpretation of an F-logic program
P. Then I satisfies the V-rules of P.

Proof. By contradiction.

Suppose on the contrary I does not satisfy the V-rules of P. Then by Defi-
nitions 5.4.2 and 5.4.1, there is a ground V-rule, H← L1, . . . , Ln, in ground(P),
such that Vh

I (H) < Vb

I (L1 ∧ . . . ∧ Ln). It follows that Vb

I (L1 ∧ . . . ∧ Ln) = t and
Vh

I (H) 6= t, or Vb

I (L1 ∧ . . . ∧ Ln) = u and Vh

I (H) = f .

(1) Vb

I (L1 ∧ . . . ∧ Ln) = t and Vh

I (H) 6= t

It follows that Vb

I (Li) = t for all Li, 1 ≤ i ≤ n, by Definition 5.3.1. So by
Lemma 5.3.1: (i) if Li is a positive literal then valb

T̂I

(Li) = t; and (ii) if

Li is a negative literal then valb
ÛI

(Li) = t. Therefore, for the atom A ∈

HBP such that H matches A, it follows that A ∈ VC
P,ÛI

(T̂I) ⊆ T̂I , by

Definition 7.2.2 and Lemma 8.2.1. Thus I(A) = t, and so Vh

I (H) = I(A) = t
by Definitions 7.2.1 and 5.3.1, a contradiction.

Chapter 8. Stable Object Models 56

(2) Vb

I (L1 ∧ . . . ∧ Ln) = u and Vh

I (H) = f

It follows that Vb

I (Li) ≥ u for all Li, 1 ≤ i ≤ n, by Definition 5.3.1. So by
Lemma 5.3.1: (i) if Li is a positive literal then valb

ÛI

(Li) = t; and (2) if

Li is a negative literal then valb
T̂I

(Li) = t. Therefore, for the atom A ∈

HBP such that H matches A, it follows that A ∈ VC
P,T̂I

(ÛI) ⊆ ÛI , by

Definition 7.2.2 and Lemma 8.2.1. Thus I(A) ≥ u, and so Vh

I (H) = I(A) ≥ u
by Definitions 7.2.1 and 5.3.1, a contradiction.

2

Proposition 8.2.3 Let I = 〈T; U 〉 be a stable interpretation of an F-logic program
P. Then I satisfies the positive ISA transitivity constraint.

Proof.

By Definition 6.2.1, we need to show that the following conditions hold:

(1) for all s, c: if there is x such that I(s :: x) = t and I(x :: c) = t, then
I(s :: c) = t;

(2) for all o, c: if there is x such that I(o : x) = t and I(x :: c) = t, then
I(o : c) = t.

Note that for all s, c: I(s :: c) = t iff s :: c ∈ T ⊆ T̂I and for all o, c: I(o : c) = t

iff o : c ∈ T ⊆ T̂I . Suppose s :: x ∈ T ⊆ T̂I and x :: c ∈ T ⊆ T̂I . Then s :: c ∈ ICt(T̂I)

by Definition 7.2.5. It follows that s :: c ∈ ICt(T̂I) ⊆ T̂I , by Lemma 8.2.1. Similarly,

if o : x ∈ T̂I and x :: c ∈ T̂I , then o : c ∈ ICt(T̂I) ⊆ T̂I .
2

Proposition 8.2.4 Let I = 〈T; U 〉 be a stable interpretation of an F-logic program
P. Then I satisfies the context consistency constraint.

Proof.

By Definition 6.2.2, we need to show that the following conditions hold:

(1) for all o, m, v: I(o[m→→ v] o
value) = f and I(o[m→→ v] o

code) = f .

Note that I(o[m→→ v] o
value) = f iff o[m→→ v] o

value /∈ T ∪ U iff o[m→→ v] o
value /∈

ÛI by Definition 8.1.1. Similarly, I(o[m→→ v] o
code) = f iff o[m→→ v] o

code /∈ ÛI .

Since I is a stable interpretation of P and so ÛI = ΨP(T̂I) by Definition 8.1.2,

it follows that o[m→→ v] o
value /∈ ÛI and o[m→→ v] o

code /∈ ÛI for all o, m, v, by
Lemma 7.2.4.

(2) for all c, m, v: if I(c[m→→ v] c
local) = f , then I(o[m→→ v] c

value) = f for all o.

Chapter 8. Stable Object Models 57

Let I(c[m→→ v] c
local) = f . Then c[m→→ v] c

local /∈ ÛI . We need to show that

o[m→→ v] c
value /∈ ÛI for all o. Suppose on the contrary there exists o such that

o[m→→ v] c
value ∈ ÛI . Because I is a stable interpretation of P, ÛI = ΨP(T̂I).

It follows that o[m→→ v] c
value ∈ ICi

P,T̂I

(ÛI) by Lemma 7.2.4. Thus c[m]
v
; o ∈

ÛI by Definition 7.2.5. So c[m]
v
; o ∈ ICc

P,T̂I

(ÛI) by Lemma 8.2.1. It follows

that c[m→→ v] c
local ∈ ÛI by Definition 7.2.5, which contradicts the premise.

(3) for all c, m: if there is no C-rule in ground(P) which specifies the instance
method m for the class c, then I(o[m→→ v] c

code) = f for all o, v.

Suppose on the contrary there exist o, v such that I(o[m→→ v] c
code) 6= f . Then

o[m→→ v] c
code ∈ T ∪ U ⊆ ÛI . It follows that o[m→→ v] c

code ∈ ICi

P,T̂I

(ÛI) by

Lemma 7.2.4. Thus c[m]
c
; o ∈ ÛI by Definition 7.2.5 and so c[m]

c
; o ∈

ICc

P,T̂I

(ÛI) by Lemma 8.2.1. So by Definition 7.2.5 there must exist a C-rule

in ground(P) which specifies the instance method m for the class c, a contra-
diction.

(4) for all o, m: if o[m] is a strong local context, then I(o[m→→ v] c
value) = f and

I(o[m→→ v] c
code) = f for all v, c.

Let o[m] be a strong local context. Then there must exist v such that

o[m→→ v] o
local ∈ T ⊆ T̂I by Definition 6.1.1, and so lc(o, m) ∈ IBP(T̂I)

by Definition 7.2.3. Suppose on the contrary there exist v, c such that
I(o[m→→ v] c

value) 6= f . Then o[m→→ v] c
value ∈ T ∪ U ⊆ ÛI . It fol-

lows that o[m→→ v] c
value ∈ ICi

P,T̂I

(ÛI) by Lemma 7.2.4. Thus lc(o, m) /∈

IBP(T̂I) by Definition 7.2.5, a contradiction. Similarly, we can show that
I(o[m→→ v] c

code) = f for all v, c.

2

Proposition 8.2.5 Let I = 〈T; U 〉 be a stable interpretation of an F-logic program
P. Then I satisfies the unique source inheritance constraint.

Proof.

By Definition 6.2.3, we need to show that the following conditions hold:

(1) for all o, m, v, c: if I(o[m→→ v] c
value) = t or I(o[m→→ v] c

code) = t, then
I(o[m→→ z] x

value) = f and I(o[m→→ z] x
code) = f for all z, x such that x 6= c.

Because I is a stable interpretation of P, T̂I = ΨP(ÛI) and ÛI = ΨP(T̂I)
by Definition 8.1.2. If I(o[m→→ v] c

value) = t, then o[m→→ v] c
value ∈ T ⊆

T̂I by Definition 8.1.1. So o[m→→ v] c
value ∈ ICi

P,ÛI

(T̂I) by Lemma 7.2.4.

It follows that c[m]
v
; o ∈ T̂I by Definition 7.2.5. On the other hand, if

Chapter 8. Stable Object Models 58

I(o[m→→ v] c
code) = t, then o[m→→ v] c

code ∈ T ⊆ T̂I by Definition 8.1.1. So

o[m→→ v] c
code ∈ CC

P,ÛI
(T̂I) by Lemma 7.2.4. It follows that c[m]

c
; o ∈ T̂I

by Definition 7.2.5. Therefore, I(o[m→→ v] c
value) = t or I(o[m→→ v] c

code) = t

implies c[m]
v
; o ∈ T̂I or c[m]

c
; o ∈ T̂I .

Suppose on the contrary there are z, x such that x 6= c and I(o[m→→ z] x
value) ≥

u. Then o[m→→ z] x
value ∈ T∪U ⊆ ÛI by Definition 8.1.1. So o[m→→ v] x

value ∈

ICi

P,T̂I

(ÛI) by Lemma 7.2.4. Therefore, mc(x, m, o) /∈ IBP(T̂I) by Defini-

tion 7.2.5. Since x 6= c, it follows that c[m]
v
; o /∈ T̂I by Definition 7.2.3,

which is a contradiction. Therefore, I(o[m→→ z] x
value) = f for all z, x such

that x 6= c. Similarly, we can also show that I(o[m→→ z] x
code) = f for all z, x

such that x 6= c.

(2) for all c, m, o: if c[m]
sv
;I o or c[m]

sc
;I o, then I(o[m→→ v] x

value) = f and
I(o[m→→ v] x

code) = f for all v, x such that x 6= c.

Let c[m]
sv
;I o or c[m]

sc
;I o. Suppose on the contrary there exist v, x such

that x 6= c and o[m→→ v] x
value 6= f . Then o[m→→ v] x

value ∈ T ∪ U ⊆ ÛI by

Definition 8.1.1. Because I is a stable interpretation of P, ÛI = ΨP(T̂I)

by Definition 8.1.2. So o[m→→ v] x
value ∈ ICi

P,T̂I

(ÛI) by Lemma 7.2.4. It fol-

lows that mc(x, m, o) /∈ IBP(T̂I) by Definition 7.2.5. However, c[m]
v
; o ∈

T̂I or c[m]
c
; o ∈ T̂I by Definition 8.1.1. Since x 6= c, it follows that

mc(x, m, o) ∈ IBP(T̂I) by Definition 7.2.3, which is a contradiction. There-
fore, I(o[m→→ v] x

value) = f for all v, x such that x 6= c. Similarly, we can also
show that I(o[m→→ v] x

code) = f for all v, x such that x 6= c.

(3) for all o, m, v, c: I(o[m→→ v] c
value) = t iff

(i) o[m] is neither a strong nor a weak local context; and

(ii) c[m]
sv
;I o; and

(iii) I(c[m→→ v] c
local) = t; and

(iv) there is no x such that x 6= c and x[m] ;I o.

“⇒ ”. Because I is a stable interpretation of P, T̂I = ΨP(ÛI) by Def-

inition 8.1.2. Because I(o[m→→ v] c
value) = t, o[m→→ v] c

value ∈ T ⊆ T̂I

by Definition 8.1.1. Thus o[m→→ v] c
value ∈ ICi

P,ÛI

(T̂I) by Lemma 7.2.4,

and so c[m]
v
; o ∈ T̂I , c[m→→ v] c

local ∈ T̂I , lc(o, m) /∈ IBP(ÛI), and

mc(c, m, o) /∈ IBP(ÛI), by Definition 7.2.5. Because lc(o, m) /∈ IBP(ÛI),

it follows that o[m→→ x] o
local /∈ ÛI for all x, by Definition 7.2.3. Thus

I(o[m→→ x] o
local) = f for all x and so o[m] is neither a strong nor a weak local

context, by Definition 6.1.1. Because c[m]
v
; o ∈ T̂I , it follows that c[m]

sv
;I o

Chapter 8. Stable Object Models 59

by Definition 8.1.1. c[m→→ v] c
local ∈ T̂I implies I(c[m→→ v] c

local) = t. Be-

cause mc(c, m, o) /∈ IBP(ÛI), it follows that there is no x 6= c such that

x[m]
v
; o ∈ ÛI or x[m]

c
; o ∈ ÛI , by Definition 7.2.3. So there is no x such

that x 6= c and x[m] ;I o, by Definition 8.1.1.

“⇐ ”. Because o[m] is neither a strong nor a weak local context,
I(o[m→→ x] o

local) = f for all x, by Definition 6.1.1. It follows that

o[m→→ x] o
local /∈ T∪U for all x, and so lc(o, m) /∈ IBP(ÛI), by Definitions 8.1.1

and 7.2.3. Because c[m]
sv
;I o, therefore c[m]

v
; o ∈ T̂I by Definition 8.1.1.

Since I(c[m→→ v] c
local) = t, it follows that c[m→→ v] c

local ∈ T ⊆ T̂I . Be-

cause I is a stable interpretation of P, therefore T̂I = ΨP(ÛI), by Defi-

nition 8.1.2. So if we can show that mc(c, m, o) /∈ IBP(ÛI), then it follows

that o[m→→ v] c
value ∈ ICi

P,ÛI

(T̂I) ⊆ T̂I , by Definition 7.2.5 and Lemma 8.2.1.

Suppose on the contrary mc(c, m, o) ∈ IBP(ÛI). Then by Definition 7.2.3,

there is x 6= c such that x[m]
v
; o ∈ ÛI or x[m]

c
; o ∈ ÛI . It follows that

x[m] ;I o by Definition 8.1.1, which contradicts the premise. Therefore,

mc(c, m, o) /∈ IBP(ÛI), and so o[m→→ v] c
value ∈ T̂I , I(o[m→→ v] c

value) = t.

2

Proposition 8.2.6 Let I = 〈T; U 〉 be a stable interpretation of an F-logic program
P. Then I satisfies the C-rules of P.

Proof. By contradiction.

Because I is a stable interpretation of P, T̂I = ΨP(ÛI) and ÛI = ΨP(T̂I) by Def-
inition 8.1.2. Suppose on the contrary I does not satisfy the C-rules of P. Then by
Definition 6.3.5, there are an object o ∈ HUP and a C-rule, R ≡ code c[m→→ v]← B
or R ≡ code c[m→→ v], in ground(P), such that I(R||o) = f . Let us assume that
R ≡ code c[m→→ v]← B (the case of R ≡ code c[m→→ v] is similar). By Defini-
tion 6.3.4, we have the following cases to consider:

(1) imodeI(R||o) = t and I(o[m→→ v] c
code) < Vb

I (B c\o)

Because imodeI(R||o) = t, therefore by Definition 6.3.2: (i) c[m]
sc
;I o and

so c[m]
c
; o ∈ T̂I by Definition 8.1.1; (ii) lc(o, m) is neither a strong nor a

weak local context and so lc(o, m) /∈ IBP(ÛI) by Definitions 7.2.3 and 6.1.1;
and (iii) there is no x 6= c such that x[m] ;I o. It follows that there is no

x 6= c such that x[m]
v
; o /∈ ÛI or x[m]

c
; o /∈ ÛI by Definition 8.1.1. Thus

mc(c, m, o) /∈ IBP(ÛI). Since T̂I ⊆ ÛI , it also follows that c[m]
c
; o ∈ ÛI ,

lc(o, m) /∈ IBP(T̂I), and mc(c, m, o) /∈ IBP(T̂I), by the monotonicity of IBP.

First let us assume that Vb

I (B c\o) = t. Then I(o[m→→ v] c
code) 6= t.

Since Vb

I (B c\o) = t, it follows that Vb

I (L) = t for all L ∈ B c\o, by Def-
inition 5.3.1. So by Lemma 5.3.1: (i) if L is a positive literal then

Chapter 8. Stable Object Models 60

valb
T̂I

(L) = t; and (ii) if L is a negative literal then valb
ÛI

(L) = t. Therefore,

o[m→→ v] c
code ∈ CC

P,ÛI
(T̂I) ⊆ T̂I , by Definition 7.2.4 and Lemma 8.2.1.

Thus I(o[m→→ v] c
code) = t, a contradiction.

On the other hand, if Vb

I (B c\o) = u, then I(o[m→→ v] c
code) = f . Since

Vb

I (B c\o) = u, it follows that Vb

I (L) ≥ u for all L ∈ B c\o, by Defi-
nition 5.3.1. So by Lemma 5.3.1: (i) if L is a positive literal then
valb

ÛI

(L) = t; and (2) if L is a negative literal then valb
T̂I

(L) = t. Therefore,

o[m→→ v] c
code ∈ CC

P,T̂I
(ÛI) ⊆ ÛI , by Definition 7.2.2 and Lemma 8.2.1.

Thus I(o[m→→ v] c
code) ≥ u, a contradiction.

(2) imodeI(R||o) = u, I(o[m→→ v] c
code) = f , and Vb

I (B c\o) ≥ u

Because imodeI(R||o) = u, therefore by Definition 6.3.3: (i) c[m]
sc
;I o or

c[m]
wc
;I o, and so c[m]

c
; o ∈ ÛI by Definition 8.1.1; (ii) lc(o, m) is not a

strong local context and so lc(o, m) /∈ IBP(T̂I) by Definitions 7.2.3 and 6.1.1;
and (iii) there is no x 6= c such that x[m]

sv
;I o or x[m]

sc
;I o. It follows that

there is no x 6= c such that x[m]
v
; o /∈ T̂I or x[m]

c
; o /∈ T̂I by Defini-

tion 8.1.1. Thus mc(c, m, o) /∈ IBP(T̂I).

Since Vb

I (B c\o) ≥ u, it follows that Vb

I (L) ≥ u for all L ∈ B c\o, by Def-
inition 5.3.1. So by Lemma 5.3.1: (i) if L is a positive literal then
valb

ÛI

(L) = t; and (2) if L is a negative literal then valb
T̂I

(L) = t. Therefore,

o[m→→ v] c
code ∈ CC

P,T̂I
(ÛI) ⊆ ÛI , by Definition 7.2.2 and Lemma 8.2.1.

Thus I(o[m→→ v] c
code) ≥ u, a contradiction.

(3) imodeI(R||o) = f and I(o[m→→ v] c
code) ≥ u

Because I(o[m→→ v] c
code) ≥ u, therefore o[m→→ v] c

code ∈ U ⊆ ÛI . Thus

o[m→→ v] c
code ∈ CC

P,T̂I
(ÛI) by Lemma 7.2.4. So by Definition 7.2.4,

c[m]
c
; o ∈ ÛI , lc(o, m) /∈ IBP(T̂I), and mc(c, m, o) /∈ IBP(T̂I). Be-

cause c[m]
c
; o ∈ ÛI , so c[m]

sc
;I o or c[m]

wc
;I o, by Definition 8.1.1. Since

lc(o, m) /∈ IBP(T̂I), therefore lc(o, m) is not a strong local context, by Defi-

nitions 7.2.3 and 6.1.1. Because mc(c, m, o) /∈ IBP(T̂I), so there is no x 6= c

such that x[m]
v
; o ∈ T̂I or x[m]

v
; o ∈ T̂I . It follows that there is no

x 6= c such that x[m]
sv
;I o or x[m]

sc
;I o, by Definition 8.1.1. Thus o must

either weakly or strongly inherit R, by Definitions 6.3.3 and 6.3.2. Therefore,
imodeI(R||o) ≥ u, a contradiction.

2

Proposition 8.2.7 Let I = 〈T; U 〉 be a stable interpretation of an F-logic program
P. Then I satisfies the optimistic ISA transitivity constraint.

Proof.

Chapter 8. Stable Object Models 61

By Definition 6.5.1, we need to show that the following conditions hold:

(1) for all s, c: if there is x such that I(s :: x ∧ x :: c) = u and I(s :: c) 6= t, then
I(s :: c) = u;

(2) for all o, c: if there is x such that I(o : x ∧ x :: c) = u and I(o : c) 6= t, then
I(o : c) = u.

Suppose I(s :: x∧ x :: c) = u. Then s :: x ∈ T∪U and x :: c ∈ T∪U. It follows that

s :: x ∈ ÛI and x :: c ∈ ÛI , by Definition 8.1.1. So s :: c ∈ ICt(ÛI) by Definition 7.2.5.

Since ÛI = ΨP(T̂I) by Definition 8.1.2, it follows that s :: c ∈ ICt(ÛI) ⊆ ÛI , by
Lemma 8.2.1. Thus I(s :: c) ≥ u. But I(s :: c) 6= t. It follows that I(s :: c) = u.
Similarly, if I(o : x ∧ x :: c) = u and I(o : c) 6= t, then I(o : c) = u.
2

Proposition 8.2.8 Let I = 〈T; U 〉 be a stable interpretation of an F-logic program
P. Then I satisfies the optimistic inheritance constraint.

Proof.

By Definition 6.5.2, we need to show that for all o, m, v, c: I(o[m→→ v] c
value) = u

iff the following conditions hold:

(i) o[m] is not a strong local context;

(ii) c[m]
sv
;I o or c[m]

wv
;I o;

(iii) I(c[m→→ v] c
local) ≥ u;

(iv) there is no x 6= such that x[m]
sv
;I o or x[m]

sc
;I o;

(v) I(o[m→→ v] c
value) 6= t.

“⇒ ”. Because I is a stable interpretation of P, ÛI = ΨP(T̂I), by Defini-

tion 8.1.2. Because o[m→→ v] c
value = u, therefore o[m→→ v] c

value ∈ T∪U ⊆ ÛI , by Def-

inition 8.1.1. Thus o[m→→ v] c
value ∈ ICi

P,T̂I

(ÛI), by Lemma 7.2.4. So c[m]
v
; o ∈ ÛI ,

c[m→→ v] c
local ∈ ÛI , lc(o, m) /∈ IBP(T̂I), and mc(c, m, o) /∈ IBP(T̂I), by Defini-

tion 7.2.5. Because lc(o, m) /∈ IBP(T̂I), it follows that o[m→→ x] o
local /∈ T̂I for all

x, by Definition 7.2.3. So I(o[m→→ v] o
local) 6= t for all x. Thus o[m] is not a strong

local context by Definition 6.1.1. Because c[m]
v
; o ∈ ÛI , it follows that c[m]

sv
;I o or

c[m]
wv
;I o, by Definition 8.1.1. c[m→→ v] c

local ∈ ÛI implies I(c[m→→ v] c
local) ≥ u. Be-

cause mc(c, m, o) /∈ IBP(T̂I), it follows that there is no x 6= c such that c[m]
v
; o ∈ T̂I

or c[m]
c
; o ∈ T̂I . So there is no x 6= c such that c[m]

sv
;I o or c[m]

sc
;I o, by Defini-

tion 8.1.1.

“⇐ ”. Because o[m] is not a strong local context, I(o[m→→ x] o
local) 6= t for

all x, by Definition 6.1.1. It follows that o[m→→ x] o
local /∈ T for all x, and so

Chapter 8. Stable Object Models 62

lc(o, m) /∈ IBP(T̂I), by Definitions 8.1.1 and 7.2.3. Because c[m]
sv
;I o or c[m]

wv
;I o,

therefore c[m]
v
; o ∈ ÛI by Definition 8.1.1. Since I(c[m→→ v] c

local) ≥ u, it follows

that c[m→→ v] c
local ∈ T∪U ⊆ ÛI . Because I is a stable interpretation of P, therefore

ÛI = ΨP(T̂I), by Definition 8.1.2. So if we can show that mc(c, m, o) /∈ IBP(T̂I),

then it follows that o[m→→ v] c
value ∈ ICi

P,T̂I

(ÛI) ⊆ ÛI , by Definition 7.2.5 and

Lemma 8.2.1. Suppose on the contrary mc(c, m, o) ∈ IBP(T̂I). Then by Defini-

tion 7.2.3, there is x 6= c such that x[m]
v
; o ∈ T̂I or x[m]

c
; o ∈ T̂I . It follows that

x[m]
sv
;I o or x[m]

sc
;I o, by Definition 8.1.1, which contradicts the premise. There-

fore, mc(c, m, o) /∈ IBP(T̂I), and so o[m→→ v] c
value ∈ ÛI , I(o[m→→ v] c

value) ≥ u. But
I(o[m→→ v] c

value) 6= t. So I(o[m→→ v] c
value) = u.

2

Theorem 8.2.9 Let I = 〈T; U 〉 be a stable interpretation of an F-logic program P.
Then I is an object model of P. Moreover, I satisfies the optimistic ISA transitivity
constraint and the optimistic inheritance constraint.

Proof.

By Definition 6.4.1, Propositions 8.2.2, 8.2.3, 8.2.4, 8.2.5, 8.2.6, 8.2.7, and 8.2.8.

2

Clearly, by Theorem 8.2.9, a stable interpretation indeed satisfies all the require-
ments of an object model. Therefore, from now on a stable interpretation is also
called a stable object model.

8.3 Stable Object Models and Fixpoints

There is an interesting correspondence between stable object models and fixpoints of
FP. On one hand, stable object models are essentially fixpoints of FP. Let I = 〈T; U 〉

be a stable object model of an F-logic program P. Then T̂I = ΨP(ÛI) and ÛI =

ΨP(T̂I), by Definition 8.1.2. It follows that T̂I = ΨP(ÛI) = ΨP(ΨP(T̂I)) = FP(T̂I)

and so T̂I is a fixpoint of FP. Similarly, ÛI is also a fixpoint of FP. Moreover,
T̂I ⊆ ÛI by Definition 8.1.1.

The following proposition shows that stable object models can be constructed
using certain fixpoints of FP.

Proposition 8.3.1 Given an F-logic program P, let Ĵ be a fixpoint of FP, K̂ =
ΨP(Ĵ), and Ĵ ⊆ K̂ . Then I = 〈π(Ĵ); π(K̂) − π(Ĵ) 〉, where π is the projection
function defined in Section 7.1, is a stable object model of P.

Chapter 8. Stable Object Models 63

Proof.

Let T = π(Ĵ) and U = π(K̂)−π(Ĵ). Thus I = 〈T; U 〉. Since Ĵ ⊆ K̂ , it follows

that π(Ĵ) ⊆ π(K̂) by Lemma 7.1.1. So T ∪ U = π(K̂).

To show that I is a stable object model of P, we need to show that T̂I = ΨP(ÛI)

and ÛI = ΨP(T̂I). Since Ĵ is a fixpoint of FP and K̂ = ΨP(Ĵ), it follows that

Ĵ =ΨP(K̂), by Definition 7.2.8. Therefore, if we can show that T̂I = Ĵ and ÛI = K̂ ,
then it follows that I is a stable object model of P.

Since Ĵ = ΨP(K̂) = lfp(T
P, K̂) and K̂ = ΨP(Ĵ) = lfp(T

P, Ĵ), by Definitions 7.2.6
and 7.2.5 it follows that

Ĵ = VC
P, K̂ (Ĵ) ∪CC

P, K̂ (Ĵ) ∪ ICt(Ĵ) ∪ ICc

P, K̂
(Ĵ) ∪ ICi

P, K̂
(Ĵ)

K̂ = VC
P, Ĵ (K̂) ∪CC

P, Ĵ (K̂) ∪ ICt(K̂) ∪ ICc

P, Ĵ
(K̂) ∪ ICi

P, Ĵ
(K̂)

First we will show that for all c, m, o: c[m]
v
; o ∈ Ĵ iff c[m]

sv
;I o. Indeed,

c[m]
v
; o ∈ Ĵ , iff c[m]

v
; o ∈ ICc

P, K̂
(Ĵ), iff c 6= o, o : c ∈ Ĵ , c[m→→ v] c

local ∈ Ĵ

for some v, and ov(c, m, o) /∈ IBP(K̂), by Definition 7.2.5, iff c 6= o, o : c ∈ π(Ĵ),

c[m→→ v] c
local ∈ π(Ĵ) for some v, and ov(c, m, o) /∈ IBP(π(K̂)), iff c 6= o, o : c ∈ T,

c[m→→ v] c
local ∈ T for some v, and ov(c, m, o) /∈ IBP(T ∪ U), iff c[m]

sv
;I o, by

Lemma 7.2.2.

Similarly, we can also show that (i) for all c, m, o: c[m]
c
; o ∈ Ĵ iff c[m]

sc
;I o;

and (ii) for all c, m, o: c[m]
v
; o ∈ K̂ or c[m]

c
; o ∈ K̂ iff c[m] ;I o. Therefore, it

follows that T̂I = Ĵ and ÛI = K̂ by Definition 8.1.1 and so completes the proof.
2

It is worth pointing out that the condition Ĵ ⊆ K̂ in the above Proposition 8.3.1
is not necessary to construct a stable object model out of the extended sets Ĵ and K̂ .
In fact, as illustrated by the following example, we can have an F-logic program P such
that Ĵ is a fixpoint of FP, K̂ = ΨP(Ĵ), and Ĵ * K̂ , but I = 〈π(Ĵ); π(K̂)−π(Ĵ) 〉
is a stable object model of P.

c2[m->>a]

c1

c3[m->>b]
c1 : c2.
c2[m→→ a].
c2 :: c3← c3[m→→ b].
c3[m→→ b]← ¬ c2 :: c3.
c2 :: c3← c1[m→→ a].
c3[m→→ b]← c1[m→→ a].

Figure 8: Constructive Fixpoints

Chapter 8. Stable Object Models 64

Example 8.3.1 Consider the F-logic program P in Figure 8 and the following two
extended sets Ĵ and K̂ :

Ĵ = {c1 : c2, c2[m→→ a] c2

local, c1[m→→ a] c2

value, c2 :: c3, c3[m→→ b] c3

local} ∪

{c2[m]
v
; c1, c3[m]

v
; c1}

K̂ = {c1 : c2, c2[m→→ a] c2

local} ∪ {c2[m]
v
; c1}

We can verify that Ĵ = ΨP(K̂), K̂ = ΨP(Ĵ), and so Ĵ is a fixpoint of ΨP. Moreover,

π(Ĵ) = {c1 : c2, c2[m→→ a] c2

local, c1[m→→ a] c2

value, c2 :: c3, c3[m→→ b] c3

local}

π(K̂)− π(Ĵ) = ∅

We can also verify that the interpretation I = 〈π(Ĵ); π(K̂)−π(Ĵ) 〉 is a stable object

model of P. But clearly Ĵ − K̂ 6= ∅. Thus Ĵ * K̂ . 2

Another interesting question is whether we can always construct stable object
models of an F-logic program P out of fixpoints of ΨP. The answer turns out to be
no. As illustrated by the following example, we may not even be able to construct an
object model out of some fixpoints of ΨP.

c1 c3

c4c2

c1 : c2.
c3 : c4.
c2[m→→ a]← ¬ c1[m→→ a].
c4[m→→ b]← ¬ c3[m→→ b].
c4[m→→ c]← c1[m→→ a], c3[m→→ b].

Figure 9: Nonconstructive Fixpoints

Example 8.3.2 Consider the F-logic program P in Figure 9 and the following two
extended sets Ĵ and K̂ :

Ĵ = {c1 : c2, c3 : c4, c2[m→→ a] c2

local, c1[m→→ a] c2

value} ∪ {c2[m]
v
; c1}

K̂ = {c1 : c2, c3 : c4, c4[m→→ b] c4

local, c3[m→→ b] c4

value} ∪ {c4[m]
v
; c3}

We can verify that Ĵ = ΨP(K̂), K̂ = ΨP(Ĵ), and so Ĵ is a fixpoint of ΨP. However,

π(Ĵ) = {c1 : c2, c3 : c4, c2[m→→ a] c2

local, c1[m→→ a] c2

value}

π(K̂)− π(Ĵ) = {c4[m→→ b] c4

local, c3[m→→ b] c4

value}

It is easy to check that the interpretation I = 〈π(Ĵ); π(K̂)− π(Ĵ) 〉 is not even an
object model of P, because I does not satisfy the program in Figure 9, namely, the
last rule of the program in Figure 9. But if we eliminate the last from the program in
Figure 9 and get a new program, then I would be an object model, but not a stable
object model, of this new program. 2

Chapter 9

Optimistic Object Models

In this chapter we will introduce a particular object model, called optimistic object
model, which exists for any F-logic program. We will show that the optimistic object
model is a stable object model and thus satisfies all the V-rules and C-rules of an
F-logic program plus the core and optimistic inheritance constraints. Finally, we will
introduce a partial order, called information ordering, among object models. We will
show that the optimistic object model is the least stable object model with respect
to information ordering.

9.1 Definitions and Properties

Definition 9.1.1 (Optimistic Object Model) The optimistic object model, M,
of an F-logic program P is defined as follows:

M
def
= 〈T; U 〉

T = π(lfp(FP))

U = π(ΨP(lfp(FP)))− π(lfp(FP))

where π is the projection operator defined earlier. It removes the auxiliary atoms
of the forms c[m]

v
; o and c[m]

c
; o, which are used for book-keeping inheritance

candidacy information during computation.

Definition 9.1.1 gives a procedural definition as well as characterization of opti-
mistic object models. Note that lfp(FP) is unique and always exists given an F-logic
program P . Therefore, the optimistic object model is uniquely defined for any F-logic
program.

To show the properties of optimistic object models, we need to introduce the
intermediate results of fixpoint computation.

65

Chapter 9. Optimistic Object Models 66

Definition 9.1.2 Let α range over all countable ordinals. The sets T̂α, Ûα, T̂∞, and
Û∞, which are extended atom sets of an F-logic program P, are defined as follows:

T̂0 = ∅ Û0 = ΨP(T̂0) for limit ordinal 0

T̂α = ΨP(Ûα−1) Ûα = ΨP(T̂α) for successor ordinal α

T̂α =
⋃

β<α

T̂β Ûα = ΨP(T̂α) for limit ordinal α 6= 0

T̂∞ =
⋃

α

T̂α Û∞ = ΨP(T̂∞)

Given an F-logic program P, the power set of its extended Herbrand base ĤBP

constitutes a complete lattice where the partial order is defined by set inclusion.
Therefore, Propositions 4.1.2 and 4.1.3 apply to any monotonic operator defined on
the power set of ĤBP.

Lemma 9.1.1 Let α and β range over all countable ordinals:

(1) for all α, β: if α < β then T̂α ⊆ T̂β

(2) T̂∞ = lfp(FP)

(3) for all α: T̂α ⊆ T̂∞

(4) Û∞ = gfp(FP)

(5) for all α: Ûα ⊇ Û∞

(6) for all α, β: if α < β then Ûα ⊇ Ûβ

(7) for all α: T̂α ⊆ Ûα

(8) for all α, β: T̂α ⊆ Ûβ

Proof.

(1) for all α, β: if α < β then T̂α ⊆ T̂β

By Definition 9.1.2, for a successor ordinal α:

T̂α = ΨP(Ûα−1) = ΨP(ΨP(T̂α−1)) = FP(T̂α−1)

Since FP is monotonic by Lemma 7.2.6, the result directly follows by Propo-
sition 4.1.3.

(2) T̂∞ = lfp(FP)

By Proposition 4.1.3.

Chapter 9. Optimistic Object Models 67

(3) for all α: T̂α ⊆ T̂∞

By Proposition 4.1.3.

(4) Û∞ = gfp(FP)

FP(Û∞) = ΨP(ΨP(ΨP(T̂∞))) = ΨP(FP(T̂∞)) = ΨP(T̂∞) = Û∞. It follows

that Û∞ is a fixpoint of FP. Similarly, ΨP(gfp(FP)) is also a fixpoint of FP.

Thus ΨP(gfp(FP)) ⊇ T̂∞, and so ΨP(ΨP(gfp(FP))) ⊆ ΨP(T̂∞), gfp(FP) ⊆

Û∞, by the antimonotonicity of ΨP. Therefore, Û∞ is the greatest fixpoint
of FP.

(5) for all α: Ûα ⊇ Û∞

By Definition 9.1.2, (3), and the antimonotonicity of ΨP.

(6) for all α, β: if α < β then Ûα ⊇ Ûβ

By Definition 9.1.2, (1), and the antimonotonicity of ΨP.

(7) for all α: T̂α ⊆ Ûα

By (3), T̂∞ ⊇ T̂α. So ΨP(T̂∞) ⊆ ΨP(T̂α) by the antimonotonicity of ΨP.

Thus T̂α ⊆ T̂∞ ⊆ Û∞ = ΨP(T̂∞) ⊆ ΨP(T̂α) = Ûα.

(8) for all α, β: T̂α ⊆ Ûβ

If α = β, then T̂α ⊆ Ûβ by (7). If α < β, then T̂α ⊆ T̂β ⊆ Ûβ, by (1) and

(7). If α > β, then T̂α ⊆ Ûα ⊆ Ûβ, by (6) and (7).

2

Therefore, by Definition 9.1.1, Lemma 9.1.1, and the definition of the projection
function π in Section 7.1, we can reformulate the optimistic object model in the
following lemma.

Lemma 9.1.2 The optimistic object model, M, of an F-logic program P is defined
as follows:

M = 〈π(T̂∞); π(Û∞)− π(T̂∞) 〉 = 〈π(T̂∞); π(Û∞ − T̂∞) 〉

Lemma 9.1.3 Let α range over all successor ordinals and β range over all countable
ordinals:

T̂α = VC
P,Ûα−1

(T̂α) ∪CC
P,Ûα−1

(T̂α) ∪ ICt(T̂α) ∪ ICc

P,Ûα−1

(T̂α) ∪ ICi

P,Ûα−1

(T̂α)

Ûβ = VC
P,T̂β

(Ûβ) ∪CC
P,T̂β

(Ûβ) ∪ ICt(Ûβ) ∪ ICc

P,T̂β
(Ûβ) ∪ ICi

P,T̂β
(Ûβ)

T̂∞ = VC
P,Û∞

(T̂∞) ∪CC
P,Û∞

(T̂∞) ∪ ICt(T̂∞) ∪ ICc

P,Û∞

(T̂∞) ∪ ICi

P,Û∞

(T̂∞)

Û∞ = VC
P,T̂∞

(Û∞) ∪CC
P,T̂∞

(Û∞) ∪ ICt(Û∞) ∪ ICc

P,T̂∞

(Û∞) ∪ ICi

P,T̂∞

(Û∞)

Chapter 9. Optimistic Object Models 68

Proof.

By Definitions 9.1.2, 7.2.7, 7.2.6, and 7.2.5.
2

Let α be a countable ordinal. Given a pair of extended atom sets T̂α and Ûα, we
know that T̂α ⊆ Ûα and so π(T̂α) ⊆ π(Ûα) by Lemma 9.1.1. We can construct an

interpretation Iα as follows: Iα = 〈π(T̂α); π(Ûα) − π(T̂α) 〉. Then the set of atoms

c[m]
v
; o (c[m]

c
; o) in T̂α constitutes a subset of the set of strong value (code) inheri-

tance candidates in Iα, whereas the set of atoms c[m]
v
; o (c[m]

c
; o) in Ûα constitutes

a superset of the set of strong and weak value (code) inheritance candidates in Iα. In

other words, T̂α underestimates inheritance information whereas Ûα overestimates in-
heritance information. The following lemma illustrates this book-keeping mechanism
of the alternating fixpoint computation.

Lemma 9.1.4 Let Iα = 〈π(T̂α); π(Ûα)− π(T̂α) 〉 where α ranges over all countable
ordinals:

(1) for all c, m, o: if c[m]
v
; o ∈ T̂α then c[m]

sv
;Iα

o

(2) for all c, m, o: if c[m]
c
; o ∈ T̂α then c[m]

sc
;Iα

o

(3) for all c, m, o: if c[m]
sv
;Iα

o or c[m]
wv
;Iα

o then c[m]
v
; o ∈ Ûα

(4) for all c, m, o: if c[m]
sc
;Iα

o or c[m]
wc
;Iα

o then c[m]
c
; o ∈ Ûα

Proof.

(1) for all c, m, o: if c[m]
v
; o ∈ T̂α then c[m]

sv
;Iα

o

Proof by transfinite induction.

The case of α = 0 is trivial. Now suppose α is a successor ordinal. Since
c[m]

v
; o ∈ T̂α, so c[m]

v
; o ∈ ICc

P,Ûα−1

(T̂α) by Lemma 9.1.3. Thus o 6= c,

o : c ∈ T̂α, c[m→→ v] c
local ∈ T̂α, ov(c, m, o) /∈ IBP(Ûα−1), by Definition 7.2.5.

But IBP(Ûα−1) ⊇ IBP(Ûα) by Lemma 9.1.1 and the monotonicity of IBP.

Thus ov(c, m, o) /∈ IBP(Ûα) and so c[m]
sv
;Iα

o by Lemma 7.2.2.

If α is a limit ordinal and c[m]
v
; o ∈ T̂α =

⋃
β<α T̂β, then there exists

γ < α such that c[m]
v
; o ∈ T̂γ. Therefore c[m]

sv
;Iγ

o by the induction

hypothesis. So o 6= c, o : c ∈ T̂γ ⊆ T̂α, c[m→→ v] c
local ∈ T̂γ ⊆ T̂α, ov(c, m, o) /∈

IBP(Ûγ) by Lemma 7.2.2. But IBP(Ûγ) ⊇ IBP(Ûα) by Lemma 9.1.1 and

the monotonicity of IBP. Thus ov(c, m, o) /∈ IBP(Ûα) and so c[m]
sv
;Iα

o by
Lemma 7.2.2.

(2) for all c, m, o: if c[m]
c
; o ∈ T̂α then c[m]

sc
;Iα

o

Similarly to (1).

Chapter 9. Optimistic Object Models 69

(3) for all c, m, o: if c[m]
sv
;Iα

o or c[m]
wv
;Iα

o then c[m]
v
; o ∈ Ûα

Since c[m]
sv
;Iα

o or c[m]
wv
;Iα

o, it follows that o 6= c, o : c ∈ Ûα,

c[m→→ v] c
local ∈ Ûα, ov(c, m, o) /∈ IBP(T̂α), by Lemma 7.2.2. It follows that

c[m]
v
; o ∈ ICc

P,T̂α
(Ûα) ⊆ Ûα, by Definition 7.2.5 and Lemma 9.1.3.

(4) for all c, m, o: if c[m]
sc
;Iα

o or c[m]
wc
;Iα

o then c[m]
c
; o ∈ Ûα

Similarly to (3).

2

Lemma 9.1.5 LetM be the optimistic object model of an F-logic program P. Then
the following statements are true:

(1) for all c, m, o: c[m]
sv
;M o iff c[m]

v
; o ∈ T̂∞

(2) for all c, m, o: c[m]
sc
;M o iff c[m]

c
; o ∈ T̂∞

(3) for all c, m, o: c[m]
sv
;M o or c[m]

wv
;M o iff c[m]

v
; o ∈ Û∞

(4) for all c, m, o: c[m]
sc
;M o or c[m]

wc
;M o iff c[m]

c
; o ∈ Û∞

Proof.

Recall thatM =〈π(T̂∞); π(Û∞)− π(T̂∞) 〉 by Lemma 9.1.2.

(1) for all c, m, o: c[m]
sv
;M o iff c[m]

v
; o ∈ T̂∞

By Lemma 9.1.3 and Definition 7.2.5, c[m]
v
; o ∈ T̂∞, iff c[m]

v
; o ∈

ICc

P,Û∞

(T̂∞), iff o 6= c, o : c ∈ T̂∞, c[m→→ v] c
local ∈ T̂∞, and ov(c, m, o) /∈

IBP(Û∞), thus iff c[m]
sv
;M o, by Lemma 7.2.2.

(2) for all c, m, o: c[m]
sc
;M o iff c[m]

c
; o ∈ T̂∞

Similarly to (1).

(3) for all c, m, o: c[m]
sv
;M o or c[m]

wv
;M o iff c[m]

v
; o ∈ Û∞

By Lemma 9.1.3 and Definition 7.2.5, c[m]
v
; o ∈ Û∞, iff c[m]

v
; o ∈

ICc

P,T̂∞

(Û∞), iff o 6= c, o : c ∈ Û∞, c[m→→ v] c
local ∈ Û∞, and ov(c, m, o) /∈

IBP(T̂∞), thus iff c[m]
sv
;M o or c[m→→ v]

wv
;M s, by Lemma 7.2.2.

(4) for all c, m, o: c[m]
sc
;M o or c[m]

wc
;M o iff c[m]

c
; o ∈ Û∞

Similarly to (3).

2

The lemma above says that T̂∞ includes exactly all strong inheritance candidates
while Û∞ includes exactly all strong and weak inheritance candidates in the object

Chapter 9. Optimistic Object Models 70

model. This essentially implies that the optimistic object model is indeed a stable
object model.

Proposition 9.1.6 The optimistic object model M of an F-logic program P is a
stable object model of P.

Proof.

Let M = 〈T; U 〉 be the optimistic object model of P. Then T = π(T̂∞) and

U = π(Û∞) − π(T̂∞). So by Definition 8.1.1 and Lemma 9.1.5, T̂M = T̂∞ and

ÛM = Û∞. Moreover, Û∞ = ΨP(T̂∞) and T̂∞ = ΨP(Û∞) by Definition 9.1.2 and

Lemma 9.1.1. It follows that T̂M = ΨP(ÛM) and ÛM = ΨP(T̂M). Therefore, M is
a stable interpretation and thus a stable object model of P.
2

Corollary 9.1.7 The optimistic object model M of an F-logic program P is an
object model of P. Moreover, M satisfies the optimistic ISA transitivity constraint
and the optimistic inheritance constraint.

Proof.

By Proposition 9.1.6 and Theorem 8.2.9.
2

9.2 Information Ordering

By comparing the amount of “definite” information, i.e., truth and falsehood, that
is contained in different stable object models of an F-logic program P, we can define
a partial order, called information ordering, among stable object models.

Definition 9.2.1 (Information Ordering) Given two stable object models, I1 =
〈P1; Q1 〉 and I2 = 〈P2; Q2 〉, of an F-logic program P, let R1 = HBP − (P1 ∪ Q1)
and R2 = HBP − (P2 ∪ Q2). Then I1 � I2 iff P1 ⊆ P2 and R1 ⊆ R2.

Intuitively, a stable object model is “smaller” in the information ordering, if it
carries less amount of truth and less amount of falsehood. Therefore, the least stable
object model contains the smallest set of true atoms and the smallest set of false
atoms among all stable object models.

Definition 9.2.2 (Least Stable Object Model) Let I be a stable object model
of an F-logic program P. I is the least stable object model of P, if I � J for any
stable object model J of P.

Chapter 9. Optimistic Object Models 71

Theorem 9.2.1 The optimistic object modelM of an F-logic program P is the least
stable object model of P.

Proof.

Let I = 〈T; U 〉 be any stable object model of P. We need to show that M� I.
Clearly, given two stable object models, I1 = 〈P1; Q1 〉 and I2 = 〈P2; Q2 〉, of an
F-logic program P, I1 � I2 iff P1 ⊆ P2 and P1 ∪ Q1 ⊇ P2 ∪ Q2. Recall that
M = 〈π(T̂∞); π(Û∞)− π(T̂∞) 〉. Therefore, to show thatM� I, it suffices to show

that π(T̂∞) ⊆ T and π(Û∞) ⊇ T ∪ U.

Since I is a stable object model of P, it follows that T̂I = ΨP(ÛI) and ÛI =

ΨP(T̂I). Therefore, T̂I = ΨP(ÛI) = ΨP(ΨP(T̂I)) = FP(T̂I) and so T̂I is a fixpoint

of FP. Similarly, ÛI is also a fixpoint of FP. But T̂∞ = lfp(FP) and Û∞ = gfp(FP),

by Lemma 9.1.1. It follows that T̂∞ ⊆ T̂I and Û∞ ⊇ ÛI . Thus π(T̂∞) ⊆ π(T̂I) and

π(Û∞) ⊇ π(ÛI), by Lemma 7.1.1. Moreover, π(T̂I) = T and π(ÛI) = T ∪ U, by

Definition 8.1.1. So π(T̂∞) ⊆ T and π(Û∞) ⊇ T ∪ U.
2

c2[m−>>a]

c3

c1[f−>>x]

c1 : c2.
c3 :: c2.
c1 : c3 ← c1[m→→ a].
c1[f→→ x].
c2[m→→ a].

code c3[m→→ b] ← c3[f→→ x].

Figure 10: Computation of Optimistic Object Models

Example 9.2.1 We illustrate the computation of optimistic object models using the
F-logic program P in Figure 10. First let T and U denote the following sets of atoms:

T = {c1 : c2, c3 :: c2, c1[f→→ x] c1

local, c2[m→→ a] c2

local}

U = {c1 : c3, c1[m→→ a] c2

value, c1[m→→ b] c3

code}

Then the computation process of ΨP is as follows:

T̂0 = ∅

T̂1 = ΨP(T̂0) = T ∪ U ∪ {c2[m]
v
; c1, c3[m]

c
; c1}

T̂2 = ΨP(T̂1) = T

T̂3 = ΨP(T̂2) = T̂1

T̂4 = ΨP(T̂3) = T̂2

Therefore, lfp(FP) = T̂2 and ΨP(lfp(FP)) = T̂1, and so the optimistic object model
of the program in Figure 10 is 〈T; U 〉. 2

Chapter 10

Minimal Object Models

So far we have shown two different characterizations of the optimistic object model
semantics: (i) the optimistic object model is the least fixpoint of an extended alter-
nating fixpoint computation; and (ii) it is the least three-valued stable object model
with respect to information ordering. In this chapter we will introduce a different
partial order, called truth ordering, for all object models of an F-logic program. We
will then present a new characterization of optimistic object models: optimistic ob-
ject models are minimal object models that satisfy the optimistic ISA transitivity
constraint and the optimistic inheritance constraint.

10.1 Truth Ordering

Since the introduction of the Closed World Assumption [47], comparing different
models of a program based on the amount of “truth” contained in those models has
become a common technique. Typically, the true component of a model is minimized
and the false component is maximized. However, in F-logic we also deal with inheri-
tance, which complicates the matters somewhat, because the truth value of a fact may
depend on inheritance. This can create object models that look similar but actually
are incomparable. This issue is illustrated by an example that follows the definition
of minimality below. The solution is to minimize not only the set of true atoms of
an object model, but also the amount of positive inheritance information implied by
the object model.

Definition 10.1.1 (Truth Ordering) Let I1 = 〈P1; Q1 〉 and I2 = 〈P2; Q2 〉 be
two object models of an F-logic program P. We write I1 ≤ I2 iff

(i) P1 ⊆ P2; and

(ii) P1 ∪ Q1 ⊆ P2 ∪ Q2; and

72

Chapter 10. Minimal Object Models 73

(iii) for all c, m, o: c[m]
sv
;I1

o implies c[m]
sv
;I2

o; and

(iv) for all c, m, o: c[m]
sc
;I1

o implies c[m]
sc
;I2

o.

Definition 10.1.2 (Minimal Object Model) An object model I is minimal iff
there exists no object model J such that J ≤ I and J 6= I.

The above definitions minimize the number of strong inheritance candidates im-
plied by an object model in addition to the usual minimization of truth and maximiza-
tion of falsehood. This is needed because increasing the number of false facts might
inflate the number of strong inheritance candidates, which in turn might unjustifiably
inflate the number of facts that are derived by inheritance.

c1

c3

c2[m->>a] c4[m->>b]
c1 : c2.
c1 : c3.
c3 :: c4.
c2[m→→ a].
c4[m→→ b].
c3[m→→ c]← c1[m→→ a].

Figure 11: Minimal Object Model

Example 10.1.1 Consider the program in Figure 11 and the following two object
models of the program: I1 = 〈P1; Q1 〉, where

P1 = {c1 : c2, c1 : c3, c3 :: c4, c2[m→→ a] c2

local, c4[m→→ b] c4

local}

Q1 = ∅

and I2 = 〈P2; Q2 〉, where

P2 = P1

Q2 = {c1[m→→ a] c2

value, c3[m→→ c] c3

local}

I1 and I2 both agree on the atoms that are true. But in I1 both c1[m→→ a] c2

value

and c3[m→→ c] c3

local are false, whereas in I2 they are both undefined. Clearly, I1

carries more false atoms than I2 and so with the usual notion of minimality we would
say I1 ≤ I2. However, I1 is not as “tight” as it appears, because the additional false
atoms in I1 are not automatically implied by the program under our optimistic object
model semantics. Indeed, although c4[m] is a strong value inheritance candidate for
c1 in I1, it is only a weak value inheritance candidate in I2. We can see that it is
due to this extra positive information about inheritance candidates that I1 is able
to increase the number of false atoms while keeping the true atoms intact. This
anomaly is eliminated by the inheritance minimization built into Definition 10.1.1,
which renders the two models incomparable, i.e., I1 6≤ I2. 2

Chapter 10. Minimal Object Models 74

10.2 Minimality

Now we will present the main theorem of this chapter. In the proof of this theorem we
will often need to compare a normal atom set with the projection of an extended atom
set to test for set inclusion. Without complicating the presentation we will usually
omit the project function and just write the extended atom set, when its intended
usage is clear from the context.

Theorem 10.2.1 The optimistic object modelM of an F-logic program P is minimal
among those object models of P that satisfy the optimistic ISA transitivity constraint
and the optimistic inheritance constraint.

Proof. By contradiction.

Recall thatM =〈π(T̂∞); π(Û∞)−π(T̂∞) 〉. Let I = 〈T; U 〉 be any object model
of P that satisfies the optimistic ISA transitivity constraint and the optimistic inher-
itance constraint. We want to show that if I ≤M then T = T̂∞ and T ∪ U = Û∞.

Let us assume that I ≤ M. So by Definition 10.1.1 it follows that: (i) T ⊆ T̂∞;

(ii) T ∪ U ⊆ Û∞; (iii) for all c, m, o: c[m]
sv
;I o implies c[m]

sv
;M o; and (iv) for all

c, m, o: c[m]
sc
;I o implies c[m]

sc
;M o.

Let J = 〈T; ∅ 〉 and K = 〈T ∪ U; ∅ 〉.

Suppose on the contrary T ⊂ T̂∞. Since T̂∞ =
⋃

γ T̂γ by Definition 9.1.2 and

{T̂γ} is an increasing sequence by Lemma 9.1.1, let α be the first ordinal such that

T ⊂ T̂α and T ⊇ T̂γ for all γ < α. Clearly, α must be a successor ordinal. Thus

T̂α = lfp(T
P,Ûα−1

), by Definitions 9.1.2 and 7.2.7. Since T
P,Ûα−1

is monotonic by
Lemma 7.2.3, it follows that the ordinal powers of T

P,Ûα−1
is an increasing sequence

by Proposition 4.1.3. Denote Ĵ γ = Tγ

P,Ûα−1

for all ordinal γ. Let β be the first ordinal

such that T ⊂ Ĵ β and T ⊇ Ĵ γ for all γ < β. Clearly, β must be a successor ordinal.

Let A be any atom in HBP such that A /∈ T and A ∈ Ĵ β. By Definitions 7.2.6
and 7.2.5,

Ĵβ = VC
P,Ûα−1

(Ĵβ−1) ∪CC
P,Ûα−1

(Ĵβ−1) ∪

ICt(Ĵβ−1) ∪ ICc

P,Ûα−1

(Ĵβ−1) ∪ ICi

P,Ûα−1

(Ĵβ−1)

There are four cases to consider:

(1) A ∈ VC
P,Ûα−1

(Ĵβ−1)

By Definition 7.2.2, there must exist a V-rule, H← L1, . . . , Ln, in ground(P),
such that H matches A, and for all Li, 1 ≤ i ≤ n: (i) if Li is a positive literal,
then valb

Ĵβ−1

(Li) = t; and (ii) if Li is a negative literal, then valb
Ûα−1

(Li) = t.

Chapter 10. Minimal Object Models 75

We will show that for all Li, 1 ≤ i ≤ n, Vb

I (Li) = t. If Li is a positive literal,

since Ĵβ−1 ⊆ T and valb
Ĵβ−1

(Li) = t, then it follows that Vb

J (Li) = t, by

Lemma 5.3.2. Thus Vb

I (Li) = t by Lemma 5.3.1. Note that Û∞ ⊆ Ûα−1

by Lemma 9.1.1. It follows that T ∪ U ⊆ Û∞ ⊆ Ûα−1. Therefore, if Li is
a negative literal, since valb

Ûα−1

(Li) = t, then it follows that Vb

K(Li) = t, by

Lemma 5.3.2. Thus Vb

I (Li) = t by Lemma 5.3.1.

Because I satisfies P, it follows that I(A) = Vh

I (H) = t. Thus A ∈ T, a
contradiction.

(2) A ∈ CC
P,Ûα−1

(Ĵβ−1)

Then A = o[m→→ v] c
code. Thus by Definition 7.2.4, c[m]

c
; o ∈ Ĵβ−1 ,

lc(o, m) /∈ IBP(Ûα−1), mc(c, m, o) /∈ IBP(Ûα−1), and there is a C-rule,
R ≡ code c[m→→ v]← B, in ground(P) such that for every literal L ∈ B c\o:

(i) if L is a positive literal then valb
Ĵβ−1

(L) = t; and (ii) if L is a negative

literal then valb
Ûα−1

(L) = t.

Because c[m]
c
; o ∈ Ĵβ−1 , there must exist a successor ordinal ρ ≤ β−1 < β,

such that c[m]
c
; o ∈ Ĵρ . It follows that c[m]

c
; o ∈ ICc

P,Ûα−1

(Ĵρ−1). There-

fore, c 6= o, o : c ∈ Ĵρ−1 , and ov(c, m, o) /∈ IBP(Ûα−1), by Definition 7.2.5.

Since Ĵρ−1 ⊆ T and T ∪ U ⊆ Û∞ ⊆ Ûα−1, it follows that o : c ∈ T
and ov(c, m, o) /∈ IBP(T ∪ U). Thus c[m]

sc
;I o by Lemma 7.2.2. Because

lc(o, m) /∈ IBP(Ûα−1), so lc(o, m) /∈ IBP(T ∪ U) by the monotonicity of IBP.
It follows that o[m] is neither a strong nor a weak local context in I, by
Definitions 7.2.3 and 6.1.1.

Next we will show that there is no x such that x 6= c and x[m] ;I o. Suppose
on the contrary there is x 6= c such that x[m] ;I o. Then x 6= o, o : x ∈ T∪U,
x[m→→ y] x

local ∈ T∪U for some value y or there is a C-rule in ground(P) which
specifies the instance method m for the class c, and ov(x, m, o) /∈ IBP(T),

by Lemma 7.2.2. Since T ∪ U ⊆ Û∞ ⊆ Ûα−1 and T ⊇ T̂α−1, it fol-
lows that o : x ∈ Ûα−1, x[m→→ y] x

local ∈ Ûα−1 for some value y or there is
a C-rule in ground(P) which specifies the instance method m for the class c,

and ov(x, m, o) /∈ IBP(T̂α−1). Thus x[m]
v
; o ∈ ICc

P,T̂α−1

(Ûα−1) ⊆ Ûα−1 or

x[m]
c
; o ∈ ICc

P,T̂α−1

(Ûα−1) ⊆ Ûα−1, by Definition 7.2.5 and Lemma 9.1.3.

Therefore, mc(c, m, o) ∈ IBP(Ûα−1), by Definition 7.2.3, which contradicts

the fact that mc(c, m, o) /∈ IBP(Ûα−1).

So far we have shown that o[m] is neither a strong nor a weak local context
in I, c[m]

sc
;I o, and there is no x such that x 6= c and x[m] ;I o. Therefore,

o strongly inherits R in I, by Definition 6.3.2. So imodeI(R||o) = t.

Chapter 10. Minimal Object Models 76

We already know that for every literal L ∈ B c\o: (i) if L is positive then

valb
Ĵβ−1

(L) = t; and (ii) if L is negative then valb
Ûα−1

(L) = t. Now we will

show that for all L ∈ B c\o, V
b

I (L) = t. If L is a positive literal, since Ĵβ−1 ⊆ T

and valb
Ĵβ−1

(L) = t, then it follows that Vb

J (L) = t, by Lemma 5.3.2. Thus

Vb

I (L) = t by Lemma 5.3.1. Note that Û∞ ⊆ Ûα−1 by Lemma 9.1.1. It

follows that T ∪ U ⊆ Û∞ ⊆ Ûα−1. Therefore, if L is a negative literal,
since valb

Ûα−1

(L) = t, then it follows that Vb

K(L) = t, by Lemma 5.3.2. Thus

Vb

I (L) = t by Lemma 5.3.1.

Therefore, Vb

I (L) = t for every literal L ∈ B c\o. It follows that Vb

I (B c\o) = t.
Moreover, imodeI(R||o) = t. Because I is an object model of P, so I should
satisfy R||o. It follows that I(o[m→→ v] c

code) = t by Definition 6.3.4. Thus
o[m→→ v] c

code ∈ T, a contradiction.

(3) A ∈ ICt(Ĵβ−1)

If A = o : c, then there exists x, such that o : x ∈ Ĵβ−1 and x :: c ∈ Ĵ β−1, by

Definition 7.2.5. Since Ĵβ−1 ⊆ T, it follows that o : x ∈ T and x :: c ∈ T.
So I(o : x) = t and I(x :: c) = t. Because I is an object model of P and
so satisfies the positive ISA transitivity constraint, therefore I(o : c) = t
by Definition 6.2.1. It follows that o : c ∈ T, a contradiction. Similarly, if
A = s :: c, then we can also show that s :: c ∈ T, which is a contradiction.

(4) A ∈ ICi

P,Ûα−1

(Ĵβ−1)

Then A = o[m→→ v] c
value. Thus c[m]

v
; o ∈ Ĵβ−1 , c[m→→ v] c

local ∈ Ĵβ−1 ,

lc(o, m) /∈ IBP(Ûα−1), and mc(c, m, o) /∈ IBP(Ûα−1), by Definition 7.2.5. Be-

cause c[m]
v
; o ∈ Ĵβ−1 , there must exist a successor ordinal ρ ≤ β − 1 < β,

such that c[m]
v
; o ∈ Ĵρ . It follows that c[m]

v
; o ∈ ICc

P,Ûα−1

(Ĵρ−1).

Therefore, c 6= o, o : c ∈ Ĵρ−1 , c[m→→ z] c
local ∈ Ĵρ−1 for some value z, and

ov(c, m, o) /∈ IBP(Ûα−1), by Definition 7.2.5. Since Ĵρ−1 ⊆ Ĵβ−1 ⊆ T

and T ∪ U ⊆ Û∞ ⊆ Ûα−1, it follows that o : c ∈ T, c[m→→ v] c
local ∈ T,

and ov(c, m, o) /∈ IBP(T ∪ U). Thus c[m]
sv
;I o by Lemma 7.2.2. Because

lc(o, m) /∈ IBP(Ûα−1), so lc(o, m) /∈ IBP(T ∪ U) by the monotonicity of IBP.
It follows that o[m] is neither a strong nor a weak local context in I, by
Definitions 7.2.3 and 6.1.1.

Next we will show that there is no x such that x 6= c and x[m] ;I o. Suppose
on the contrary there is x 6= c such that x[m] ;I o. Then x 6= o, o : x ∈ T∪U,
x[m→→ y] x

local ∈ T∪U for some value y or there is a C-rule in ground(P) which
specifies the instance method m for the class c, and ov(x, m, o) /∈ IBP(T),

by Lemma 7.2.2. Since T ∪ U ⊆ Û∞ ⊆ Ûα−1 and T ⊇ T̂α−1, it fol-
lows that o : x ∈ Ûα−1, x[m→→ y] x

local ∈ Ûα−1 for some value y or there is

Chapter 10. Minimal Object Models 77

a C-rule in ground(P) which specifies the instance method m for the class c,

and ov(x, m, o) /∈ IBP(T̂α−1). Thus x[m]
v
; o ∈ ICc

P,T̂α−1

(Ûα−1) ⊆ Ûα−1 or

x[m]
c
; o ∈ ICc

P,T̂α−1

(Ûα−1) ⊆ Ûα−1, by Definition 7.2.5 and Lemma 9.1.3.

Therefore, mc(c, m, o) ∈ IBP(Ûα−1), by Definition 7.2.3, which contradicts

the fact that mc(c, m, o) /∈ IBP(Ûα−1).

So far we have shown that o[m] is neither a strong nor a weak local context
in I, c[m]

sv
;I o, I(c[m→→ v] c

local) = t, and there is no x such that x 6= c
and x[m] ;I o. Because I is an object model of P and so satisfies the unique
source inheritance constraint, therefore o[m→→ v] c

value ∈ T by Definition 6.2.3,
a contradiction.

Therefore, if T ⊂ T̂∞, then we can derive a contradiction in all three possible
cases. So T = T̂∞.

It remains to show that T∪U = Û∞. We know that T∪U ⊆ Û∞, because I ≤M.
Therefore if we can show that T ∪ U ⊇ Û∞, then T ∪ U = Û∞. By Definitions 9.1.2
and 7.2.7, Û∞ = lfp(T

P,T̂∞
). Since T

P,T̂∞
is monotonic, the ordinal powers of T

P,T̂∞

is an increasing sequence by Proposition 4.1.3. Denote K̂γ = Tγ

P,T̂∞

for all ordinal

γ. We will prove by transfinite induction that T ∪ U ⊇ K̂α for all ordinal α, thus
complete the proof.

The case for a limit ordinal α is trivial. If α = 0, then K̂0 = ∅ ⊆ T∪U. If α 6= 0,
then K̂α =

⋃
β<α K̂β . By the induction hypothesis we know that T ∪ U ⊇ K̂β for

all β < α. So T ∪ U ⊇ K̂α .

Let α be a successor ordinal and A be any atom in HBP such that A ∈ K̂α . We
will show that A ∈ T ∪ U. By Definitions 7.2.6 and 7.2.5,

K̂α = VC
P,T̂∞

(K̂α−1) ∪CC
P,T̂∞

(K̂α−1) ∪

ICt(K̂α−1) ∪ ICc

P,T̂∞

(K̂α−1) ∪ ICi

P,T̂∞

(K̂α−1)

There are four cases to consider:

(1) A ∈ VC
P,T̂∞

(K̂α−1)

By Definition 7.2.2, there must exist a V-rule, H← L1, . . . , Ln, in ground(P),
such that H matches A, and for all Li, 1 ≤ i ≤ n: (i) if Li is a positive literal,
then valb

K̂α−1

(Li) = t; and (ii) if Li is a negative literal, then valb
T̂∞

(Li) = t.

We will show that for all Li, 1 ≤ i ≤ n,Vb

I (Li) ≥ u. If Li is a positive literal,

since K̂α−1 ⊆ T∪U by the induction hypothesis and valb
K̂α−1

(Li) = t, then it

follows that Vb

K(Li) = t, by Lemma 5.3.2. Thus Vb

I (Li) ≥ u by Lemma 5.3.1.

We have proved that T = T̂∞. Therefore, if Li is a negative literal, then
Vb

J (Li) = Vb

T̂∞

(Li) = t. Thus Vb

I (Li) ≥ u by Lemma 5.3.1.

Chapter 10. Minimal Object Models 78

Because I satisfies P, it follows that I(A) = Vh

I (H) ≥ u. Thus A ∈ T ∪ U.

(2) A ∈ CC
P,T̂∞

(K̂α−1)

Then A = o[m→→ v] c
code. Thus by Definition 7.2.4, c[m]

c
; o ∈ K̂α−1 ,

lc(o, m) /∈ IBP(T̂∞), mc(c, m, o) /∈ IBP(T̂∞), and there is a C-rule,
R ≡ code c[m→→ v]← B, in ground(P) such that for every literal L ∈ B c\o:

(i) if L is a positive literal then valb
K̂α−1

(L) = t; and (ii) if L is a negative

literal then valb
T̂∞

(L) = t.

Because c[m]
v
; o ∈ K̂α−1 , there must exist a successor ordinal ρ ≤ α−1 < α,

such that c[m]
v
; o ∈ K̂ρ . It follows that c[m]

v
; o ∈ ICc

P,T̂∞

(K̂ρ−1). There-

fore, c 6= o, o : c ∈ K̂ρ−1 , and ov(c, m, o) /∈ IBP(T̂∞), by Definition 7.2.5.

Since K̂ρ−1 ⊆ T ∪ U by the induction hypothesis and we have proved that

T = T̂∞, it follows that o : c ∈ T ∪ U and ov(c, m, o) /∈ IBP(T). Therefore

c[m]
sc
;I o or c[m]

wc
;I o, by Lemma 7.2.2. Because lc(o, m) /∈ IBP(T̂∞), it

follows that lc(o, m) /∈ IBP(T), and so o[m] is not a strong local context, by

Definitions 7.2.3 and 6.1.1. Because c[m→→ v] c
local ∈ K̂α−1 ⊆ T∪U, it follows

that I(c[m→→ v] c
local) ≥ u.

Next we will show that there is no x 6= c such that x[m]
sv
;I o or x[m]

sc
;I o.

Suppose on the contrary there exists x 6= c such that x[m]
sv
;I o or x[m]

sc
;I o.

Then x[m]
sv
;M o or x[m]

sc
;M o, because I ≤ M. It follows that x[m]

v
; o ∈

T̂∞ or x[m]
c
; o ∈ T̂∞, by Lemma 9.1.5. Therefore, mc(c, m, o) ∈ IBP(T̂∞),

by Definition 7.2.3, which contradicts the fact that mc(c, m, o) /∈ IBP(T̂∞).

So far we have shown that c[m]
sc
;I o or c[m]

wc
;I o, o[m] is not a strong local

context, and there is no x 6= c such that x[m]
sv
;I o or x[m]

sc
;I o. Therefore, o

must either strongly or weakly inherit R in I, by Definitions 6.3.2 and 6.3.2.
So imodeI(R||o) ≥ u.

We already know that for every literal L ∈ B c\o: (i) if L is a positive literal

then valb
K̂α−1

(L) = t; and (ii) if L is a negative literal then valb
T̂∞

(L) = t.

We will show that for all Li, 1 ≤ i ≤ n,Vb

I (Li) ≥ u. If Li is a positive literal,

since K̂α−1 ⊆ T∪U by the induction hypothesis and valb
K̂α−1

(Li) = t, then it

follows that Vb

K(Li) = t, by Lemma 5.3.2. Thus Vb

I (Li) ≥ u by Lemma 5.3.1.

We have proved that T = T̂∞. Therefore, if Li is a negative literal, then
Vb

J (Li) = Vb

T̂∞

(Li) = t. Thus Vb

I (Li) ≥ u by Lemma 5.3.1.

Therefore, Vb

I (L) ≥ u for every literal L ∈ B c\o. It follows that Vb

I (B c\o) ≥ u.
Moreover, imodeI(R||o) ≥ u. Because I is an object model of P, so I should
satisfy R||o. It follows that I(o[m→→ v] c

code) ≥ u by Definition 6.3.4. Thus
o[m→→ v] c

code ∈ T ∪ U.

Chapter 10. Minimal Object Models 79

(3) A ∈ ICt(K̂α−1)

If A = o : c, then there exists x such that o : x ∈ K̂α−1 and x :: c ∈ K̂α−1 , by
Definition 7.2.5. Since K̂α−1 ⊆ T∪U by the induction hypothesis, it follows
that o : x ∈ T∪U and x :: c ∈ T∪U. So I(o : x) ≥ u and I(x :: c) ≥ u. Because
I satisfies the optimistic ISA transitivity constraint, therefore I(o : c) ≥ u
by Definitions 6.5.1 and 6.2.1. It follows that o : c ∈ T ∪ U. Similarly, if
A = s :: c, then we can also show that s :: c ∈ T ∪ U.

(4) A ∈ ICi

P,T̂∞

(K̂α−1)

Then A = o[m→→ v] c
value. Thus c[m]

v
; o ∈ K̂α−1 , c[m→→ v] c

local ∈ K̂α−1 ,

lc(o, m) /∈ IBP(T̂∞), and mc(c, m, o) /∈ IBP(T̂∞), by Definition 7.2.5. Be-

cause c[m]
v
; o ∈ K̂α−1 , there must exist a successor ordinal ρ ≤ α− 1 < α,

such that c[m]
v
; o ∈ K̂ρ . It follows that c[m]

v
; o ∈ ICc

P,T̂∞

(K̂ρ−1). There-

fore, c 6= o, o : c ∈ K̂ρ−1 , c[m→→ z] c
local ∈ K̂ρ−1 for some value z, and

ov(c, m, o) /∈ IBP(T̂∞), by Definition 7.2.5. Since K̂ρ−1 ⊆ K̂α−1 ⊆ T ∪ U

by the induction hypothesis and T = T̂∞, it follows that o : c ∈ T ∪ U,
c[m→→ v] c

local ∈ T ∪ U, and ov(c, m, o) /∈ IBP(T). Thus c[m]
sv
;I o or

c[m]
wv
;I o by Lemma 7.2.2. Because lc(o, m) /∈ IBP(T̂∞), it follows that

lc(o, m) /∈ IBP(T), and so o[m] is not a strong local context, by Defi-
nitions 7.2.3 and 6.1.1. Because c[m→→ v] c

local ∈ T ∪ U, it follows that
I(c[m→→ v] c

local) ≥ u.

Next we will show that there is no x 6= c such that x[m]
sv
;I o or x[m]

sc
;I o.

Suppose on the contrary there exists x 6= c such that x[m]
sv
;I o or x[m]

sc
;I o.

Then x[m]
sv
;M o or x[m]

sc
;M o, because I ≤ M. It follows that x[m]

v
; o ∈

T̂∞ or x[m]
c
; o ∈ T̂∞, by Lemma 9.1.5. Therefore, mc(c, m, o) ∈ IBP(T̂∞),

by Definition 7.2.3, which contradicts the fact that mc(c, m, o) /∈ IBP(T̂∞).

So far we have shown that o[m] is not a strong local context, c[m]
sv
;I o or

c[m]
wv
;I o, I(c[m→→ v] c

local) ≥ u, and there is no x 6= c such that x[m]
sv
;I o or

x[m]
sc
;I o. Because I satisfies the optimistic inheritance constraint, therefore

I(o[m→→ v] c
value) ≥ u, by Definition 6.5.2. So o[m→→ v] c

value ∈ T ∪ U.

2

Chapter 11

Implementation

It turns out that the optimistic object model of an F-logic program P can be computed
as the well-founded model of a certain general logic program with negation which is
obtained from P by rewriting.

Given an F-logic program P, we first rewrite P into a general logic program Pwf .
Then we show that the well-founded model of Pwf is isomorphic to the optimistic
object model of P.

11.1 Rewriting

First we will show how to rewrite the V-rules and C-rules of an F-logic program
P. We can define a rewriting function that applies to all V-rules and C-rules. Note
that because literals in rule heads and rule bodies have different meanings, they are
rewritten differently. Moreover, literals in the heads of V-rules and in the heads of
C-rules are also rewritten differently.

Definition 11.1.1 Given an F-logic program P, let L be a literal in P. The functions
ρh and ρb for rewriting head and body literals in P, respectively, are defined as follows:

ρh(L) =





isa(o, c), if L = o : c
sub(s, c), if L = s :: c
locmvd(s, m, v), if L = s[m→→ v]

ρb(L) =





isa(o, c), if L = o : c
sub(s, c), if L = s :: c
mvd(o, m, v), if L = o[m→→ v]
¬ (ρb(G)), if L = ¬G

The rewriting function ρ on V-rules in P is defined as follows:

ρ(H← L1, . . . , Ln) = ρh(H)← ρb(L1), . . . , ρ
b(Ln)

80

Chapter 11. Implementation 81

And the rewriting function ρ on C-rules in P is defined as follows:

ρ(code c[m→→ v]← L1, . . . , Ln) = codmvd(O, m, v, c)← ρb(B1), . . . , ρ
b(Bn)

where O is a new variable that does not appear in the C-rule and Bi = (Li) c\O for
all 1 ≤ i ≤ n, i.e., Bi is obtained from Li by substituting the new variable O for all
occurrences of c.

mvd(O, M, V) ← locmvd(O, M, V).

mvd(O, M, V) ← valinhmvd(O, M, V, C).

mvd(O, M, V) ← codinhmvd(O, M, V, C).

sub(S, C) ← sub(S, X), sub(X, C).

isa(O, C) ← isa(O, S), sub(S, C).

valinhmvd(O, M, V, C) ← valcandidate(C, M, O), locmvd(C, M, V),
¬ local(O, M), ¬multiple(C, M, O).

codinhmvd(O, M, V, C) ← codcandidate(C, M, O), codmvd(O, M, V, C),
¬ local(O, M), ¬multiple(C, M, O).

valcandidate(C, M, O) ← isa(O, C), locmvd(C, M, V),
C 6= O, ¬ override(C, M, O).

codcandidate(C, M, O) ← isa(O, C), coddef(C, M),
C 6= O, ¬ override(C, M, O).

local(O, M) ← locmvd(O, M, V).

multiple(C, M, O) ← valcandidate(X, M, O), X 6= C.

multiple(C, M, O) ← codcandidate(X, M, O), X 6= C.

override(C, M, O) ← sub(X, C), isa(O, X), locmvd(X, M, V),
X 6= C, X 6= O.

override(C, M, O) ← sub(X, C), isa(O, X), coddef(X, M),
X 6= C, X 6= O.

Figure 12: Trailer Rules for Well-Founded Rewriting

Definition 11.1.2 (Well-Founded Rewriting) The well-founded rewriting of an
F-logic program P, denoted Pwf , is a general logic program constructed by the fol-
lowing steps:

Chapter 11. Implementation 82

(1) For every V-rule R in P, add its rewriting ρ(R) into Pwf .

(2) For every C-rule R in P, which specifies an instance method m for a class c,
add its rewriting ρ(R) into Pwf . Moreover, add a fact coddef(c, m) into Pwf .

(3) Include the trailer shown in Figure 12 to Pwf (note that uppercase letters
denote variables in these trailer rules).

While rewriting an F-logic program into a general logic program, we need to
output facts of the form coddef(c, m) to remember that there is a C-rule specifying
the instance method m for the class c. Such atoms are used to derive overriding and
code inheritance candidacy information. Clearly, given an F-logic program P, the
amount of time needed to generate Pwf is linear in the size of P. Note that the trailer
rules are fixed for an given F-logic program. Therefore, the size of Pwf is also linear
in the size of the original F-logic program P.

11.2 Isomorphism

Given the well-founded rewriting, Pwf , of an F-logic program P, the Her-
brand base of Pwf , denoted HBPwf , consists of atoms of the following forms:
isa/2, sub/2, locmvd/3, valinhmvd/4, codmvd/4, coddef/2, codinhmvd/4, mvd/3,
valcandidate/3, codcandidate/3, local/2, multiple/3, and override/3.

Definition 11.2.1 (Isomorphism) Let Pwf be the well-founded rewriting of an

F-logic program P, HBPwf be the Herbrand base of Pwf , ĤBP be the extended Her-
brand base of P, Iwf be a subset of HBPwf , and Î be a subset of ĤBP, we say that
Iwf is isomorphic to Î , if all of the following conditions are true:

(1) for all o, c: isa(o, c) ∈ Iwf iff o : c ∈ I

(2) for all s, c: sub(s, c) ∈ Iwf iff s :: c ∈ I

(3) for all s, m, v: locmvd(s, m, v) ∈ Iwf iff s[m→→ v] s
local ∈ I

(4) for all o, m, v, c: valinhmvd(o, m, v, c) ∈ Iwf iff o[m→→ v] c
value ∈ I

(5) for all o, m, v, c: codinhmvd(o, m, v, c) ∈ Iwf iff o[m→→ v] c
code ∈ I

(6) for all c, m, o: valcandidate(c, m, o) ∈ Iwf iff c[m]
v
; o ∈ Î

(7) for all c, m, o: codcandidate(c, m, o) ∈ Iwf iff c[m]
c
; o ∈ Î

(8) for all o, m: local(o, m) ∈ Iwf iff lc(o, m) ∈ IBP(Î)

(9) for all c, m, o: multiple(c, m, o) ∈ Iwf iff mc(c, m, o) ∈ IBP(Î)

(10) for all c, m, o: override(c, m, o) ∈ Iwf iff ov(c, m, o) ∈ IBP(Î)

Chapter 11. Implementation 83

Let Mwf = 〈Twf ; Uwf 〉 be the well-founded model of Pwf , and M =

〈π(T̂∞); π(Û∞ − T̂∞) 〉 be the optimistic object model of P. We say that Mwf is

isomorphic toM, if Twf and Uwf are isomorphic to T̂∞ and Û∞ − T̂∞, respectively.

Note that the definition of isomorphism above includes atoms which do not finally
appear in an interpretation of an F-logic program P. However, once we can show
that the well-founded model of Pwf is isomorphic to the the optimistic object model
M of P, we can establish an one-to-one mapping between isa(o, c) ∈ Mwf and
o : c ∈ M, between sub(s, c) ∈ Mwf and s :: c ∈ M, between locmvd(s, m, v) ∈ Mwf

and s[m→→ v] s
local ∈ M, between codinhmvd(o, m, v, c) ∈ Mwf and o[m→→ v] c

code ∈
M, and between valinhmvd(o, m, v, c) ∈ Mwf and o[m→→ v] c

value ∈ M, taking into
account the truth values of atoms. Thus the optimistic object model of P can be
effectively computed by the well-founded model of Pwf .

Definition 11.2.2 Let Pwf be the well-founded rewriting of an F-logic program
P and Iwf be a subset of HBPwf . We say that Iwf is in normal form, if for
all o, m, v: mvd(o, m, v) ∈ Iwf iff locmvd(o, m, v) ∈ Iwf , or there is c such that
valinhmvd(o, m, v, c) ∈ Iwf or codinhmvd(o, m, v, c) ∈ Iwf .

Lemma 11.2.1 Let Pwf be the well-founded rewriting of an F-logic program P and
Iwf be a subset of HBPwf . Then lfp(CPwf ,Iwf) is in normal form.

Proof.

By Definitions 11.2.2, 11.1.2, 4.2.6, and 4.2.5.
2

Lemma 11.2.2 Let Pwf be the well-founded rewriting of an F-logic program P, Î be
a subset of ĤBP, Iwf be a subset of HBPwf which is isomorphic to Î and is in normal
form, and G be a ground positive literal. Then valb

Î
(¬G) = t iff ρb(G) /∈ Iwf .

Proof.

There are three cases to consider:

(1) G = o : c

Then ρb(G) = isa(o, c). It follows that valb
Î
(¬ s : c) = t, iff s : c /∈ Î , by

Definition 5.3.1, iff isa(o, c) /∈ Iwf , because Iwf is isomorphic to Î .

(2) G = s :: c

Then ρb(G) = sub(s, c). It follows that valb
Î
(¬ s :: c) = t, iff s :: c /∈ Î , by

Definition 5.3.1, iff sub(s, c) /∈ Iwf , because Iwf is isomorphic to Î .

(3) G = o[m→→ v]

Chapter 11. Implementation 84

Then ρb(G) = mvd(o, m, v). It follows that valb
Î
(¬ o[m→→ v]) = t, iff

valb
Î
(o[m→→ v]) = f , iff o[m→→ v] o

local /∈ Î , o[m→→ v] c
value /∈ Î and

o[m→→ v] c
code /∈ Î for all c, iff locmvd(o, m, v) /∈ Iwf , valinhmvd(o, m, v, c) /∈

Iwf and codinhmvd(o, m, v, c) /∈ Iwf for all c, because Iwf is isomorphic to Î ,
thus iff mvd(o, m, v) /∈ Iwf , since Iwf is in normal form.

2

Proposition 11.2.3 Let Pwf be the well-founded rewriting of an F-logic program P,
Iwf be a subset of HBPwf which is in normal form, and Î be a subset of ĤBP. If Iwf

is isomorphic to Î , then lfp(CPwf ,Iwf) is isomorphic to lfp(T
P, Î).

Proof.

Let Jwf = lfp(CPwf ,Iwf) and Ĵ = lfp(T
P, Î). First we will show that all of the

following conditions are true:

(1) for all o, c: isa(o, c) ∈ Jwf iff o : c ∈ Ĵ

(2) for all s, c: sub(s, c) ∈ Jwf iff s :: c ∈ Ĵ

(3) for all s, m, v: locmvd(s, m, v) ∈ Jwf iff s[m→→ v] s
local ∈ Ĵ

(4) for all o, m, v, c: valinhmvd(o, m, v, c) ∈ Jwf iff o[m→→ v] c
value ∈ Ĵ

(5) for all o, m, v, c: codinhmvd(o, m, v, c) ∈ Jwf iff o[m→→ v] c
code ∈ Ĵ

(6) for all c, m, o: valcandidate(c, m, o) ∈ Jwf iff c[m]
v
; o ∈ Ĵ

(7) for all c, m, o: codcandidate(c, m, o) ∈ Jwf iff c[m]
c
; o ∈ Ĵ

I. ⇒
First let us define:

Swf
0 = ∅ Ŝ0 = ∅ for limit ordinal 0

Swf
α = CPwf ,Iwf (Swf

α−1) Ŝα = T
P, Î (Ŝα−1) for successor ordinal α

Swf
α =

⋃

β<α

Swf
β Ŝα =

⋃

β<α

Ŝβ for limit ordinal α 6= 0

Swf
∞ =

⋃

α

Swf
α Ŝ∞ =

⋃

α

Ŝα

Then Swf
∞ = lfp(CPwf ,Iwf) and Ŝ∞ = lfp(T

P, Î). We will prove by transfinite induction
that for any ordinal α and for all o, s, c, m, v, the following conditions are true:

(1) if isa(o, c) ∈ Swf
α then o : c ∈ Ŝα

(2) if sub(s, c) ∈ Swf
α then s :: c ∈ Ŝα

Chapter 11. Implementation 85

(3) if locmvd(s, m, v) ∈ Swf
α then s[m→→ v] s

local ∈ Ŝα

(4) if valinhmvd(o, m, v, c) ∈ Swf
α then o[m→→ v] c

value ∈ Ŝα

(5) if codinhmvd(o, m, v, c) ∈ Swf
α then o[m→→ v] c

code ∈ Ŝα

(6) if valcandidate(c, m, o) ∈ Swf
α then c[m]

v
; o ∈ Ŝα

(7) if codcandidate(c, m, o) ∈ Swf
α then c[m]

c
; o ∈ Ŝα

The case for a limit ordinal α is trivial. Now let α be a successor ordinal. So
Swf

α = CPwf ,Iwf (Swf
α−1).

First we show that for any ground positive literal L, if ρb(L) ∈ Swf
α−1, then

valb
Ŝα−1

(L) = t: (i) If L = o : c, then ρb(L) = isa(o, c). It follows that o : c ∈ Ŝα−1

by the induction hypothesis. Thus valb
Ŝα−1

(o : c) = t; (ii) Similarly, we can show

that if ρb(L) = sub(s, c) ∈ Swf
α−1, then valb

Ŝα−1

(s :: c) = t; (iii) If L = o[m→→ v],

then ρb(L) = mvd(o, m, v). Because Swf
γ ⊆ Swf

α−1 for all γ ≤ α − 1 by Proposi-
tion 4.1.3, there must exist a successor ordinal ρ ≤ α − 1 such that mvd(s, m, v) ∈
Swf

ρ = CPwf ,Iwf (Swf
ρ−1). It follows that locmvd(o, m, v) ∈ Swf

ρ−1, or there is c such

that valinhmvd(o, m, v, c) ∈ Swf
ρ−1 or codinhmvd(o, m, v, c) ∈ Swf

ρ−1, according to the

trailer rules in Definition 11.1.2. Thus o[m→→ v] o
local ∈ Ŝρ−1 , or there is c such that

o[m→→ v] c
value ∈ Ŝρ−1 or o[m→→ v] c

code ∈ Ŝρ−1 , by the induction hypothesis. More-

over, Ŝρ−1 ⊆ Ŝα−1 by Proposition 4.1.3. It follows that valb
Ŝα−1

(o[m→→ v]) = t.

Now consider the following cases:

(1) isa(o, c) ∈ Swf
α and isa(o, c) is derived via a rule Rwf ∈ ground(Pwf) which is

rewritten from a V-rule R ∈ ground(P).

Then Rwf ≡ isa(o, c)← ρb(C1), . . . , ρ
b(Cm),¬ ρb(G1), . . . ,¬ ρb(Gn), such

that Rwf is the rewriting of R ≡ o : c← C1, . . . , Cm,¬G1, . . . ,¬Gn, where
Ci (1 ≤ i ≤ m) and Gj (1 ≤ j ≤ n) are positive literals. By Definition 4.2.5,

ρb(Ci) ∈ Swf
α−1 for all 1 ≤ i ≤ m, and ρb(Gj) /∈ Iwf for all 1 ≤ j ≤ n. Following

the above claim, valb
Ŝα−1

(Ci) = t for all 1 ≤ i ≤ m. Moreover, Iwf is isomor-

phic to Î and is in normal form, therefore valb
Î
(¬Gj) = t for all 1 ≤ j ≤ n,

by Lemma 11.2.2. So o : c ∈ VC
P, Î (Ŝα−1) ⊆ T

P, Î (Ŝα−1) = Ŝα , by Defini-
tions 7.2.2 and 7.2.6.

(2) isa(o, c) ∈ Swf
α and isa(o, c) is derived via a trailer rule Rwf in ground(Pwf).

Then there exists s such that Rwf = isa(o, c)← isa(o, s), sub(s, c). It follows

that isa(o, s) ∈ Swf
α−1 and sub(s, c) ∈ Swf

α−1. Thus o : s ∈ Ŝα−1 and s :: c ∈ Ŝα−1

by the induction hypothesis. So o : c ∈ ICt(Ŝα−1) ⊆ T
P, Î (Ŝα−1) = Ŝα , by

Definitions 7.2.5 and 7.2.6.

Chapter 11. Implementation 86

(3) sub(s, c) ∈ Swf
α and sub(s, c) is derived via a rule Rwf ∈ ground(Pwf) which is

rewritten from a V-rule R ∈ ground(P).

Similarly to (1), we can show that s :: c ∈ Ŝα .

(4) sub(s, c) ∈ Swf
α and sub(s, c) is derived via a trailer rule Rwf in ground(Pwf).

Similarly to (2), we can show that s :: c ∈ Ŝα .

(5) locmvd(s, m, v) ∈ Swf
α

Then locmvd(s, m, v) must be derived via a rule Rwf ∈ ground(Pwf) which is
rewritten from a V-rule R ∈ ground(P). Similarly to (1), we can also show

that s[m→→ v] s
local ∈ Ŝα .

(6) valinhmvd(o, m, v, c) ∈ Swf
α

By Definition 11.1.2, valinhmvd(o, m, v, c) must be derived via a trailer
rule in ground(Pwf). It follows that valcandidate(c, m, o) ∈ Swf

α−1,

locmvd(c, m, v) ∈ Swf
α−1, local(o, m) /∈ Iwf , and multiple(c, m, o) /∈ Iwf , by

Definition 11.1.2. So c[m]
v
; o ∈ Ŝα−1 and c[m→→ v] c

local ∈ Ŝα−1 , by the in-

duction hypothesis. Moreover, lc(o, m) /∈ IBP(Î) and mc(c, m, o) /∈ IBP(Î),

since Iwf is isomorphic to Î . It follows that o[m→→ v] c
value ∈ ICi

P, Î
(Ŝα−1) ⊆

T
P, Î (Ŝα−1) = Ŝα , by Definitions 7.2.5 and 7.2.6.

(7) codinhmvd(o, m, v, c) ∈ Swf
α

By Definition 11.1.2, codinhmvd(o, m, v, c) must be derived via a trailer
rule in ground(Pwf). It follows that codcandidate(c, m, o) ∈ Swf

α−1,

codmvd(o, m, v, c) ∈ Swf
α−1, local(o, m) /∈ Iwf , and multiple(c, m, o) /∈ Iwf , by

Definition 11.1.2. So c[m]
c
; o ∈ Ŝα−1 by the induction hypothesis. More-

over, lc(o, m) /∈ IBP(Î) and mc(c, m, o) /∈ IBP(Î), since Iwf is isomorphic to

Î .

Note that by Definition 11.1.2, codmvd(o, m, v, c) must be derived via a
rule Rwf ≡ codmvd(o, m, v, c)← ρb(C1), . . . , ρ

b(Cm),¬ ρb(G1), . . . ,¬ ρb(Gn),
in ground(Pwf), which is rewritten from the following C-rule in ground(P),
R ≡ code c[m→→ v]← B1, . . . , Bm,¬F1, . . . ,¬Fn, where Bi and Fj are pos-
itive literals, Ci = (Bi) c\o and Gj = (Fj) c\o, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Similarly to (1), we can show that valb
Ŝα−1

((Bi) c\o) = t for all 1 ≤ i ≤ m

and valb
Î
(¬ (Fj) c\o) = t for all 1 ≤ j ≤ n. It follows that o[m→→ v] c

value ∈

CC
P, Î (Ŝα−1) ⊆ T

P, Î (Ŝα−1) = Ŝα , by Definitions 7.2.4 and 7.2.6.

(8) valcandidate(c, m, o) ∈ Swf
α

Chapter 11. Implementation 87

By Definition 11.1.2, valcandidate(c, m, o) must be derived via a trailer
rule in ground(Pwf). It follows that isa(o, c) ∈ Swf

α−1, locmvd(c, m, v) ∈

Swf
α−1, c 6= o, and override(c, m, o) /∈ Iwf , by Definition 11.1.2. So o : c ∈

Ŝ α−1 and c[m→→ v] c
local ∈ Ŝα−1 , by the induction hypothesis. More-

over, ov(c, m, o) /∈ IBP(Î), since Iwf is isomorphic to Î . It follows that

c[m]
v
; o ∈ ICc

P, Î
(Ŝα−1) ⊆ T

P, Î (Ŝα−1) = Ŝα , by Definitions 7.2.5 and 7.2.6.

(9) codcandidate(c, m, o) ∈ Swf
α

By Definition 11.1.2, codcandidate(c, m, o) must be derived via a trailer rule
in ground(Pwf). It follows that isa(o, c) ∈ Swf

α−1, coddef(c, m) ∈ Swf
α−1, c 6= o,

and override(c, m, o) /∈ Iwf , by Definition 11.1.2. So o : c ∈ Ŝ α−1 by the

induction hypothesis, and ov(c, m, o) /∈ IBP(Î), because Iwf is isomorphic

to Î . Moreover, since coddef(c, m) ∈ Swf
α−1, therefore there is a C-rule in P

which specifies the instance method m for the class c, according to Defini-
tion 11.1.2. It follows that c[m]

c
; o ∈ ICc

P, Î
(Ŝα−1) ⊆ T

P, Î (Ŝα−1) = Ŝα , by

Definitions 7.2.5 and 7.2.6.

II. ⇐
First construct an extended atom set K̂ from Jwf as follows: generate one

o : c in K̂ for every isa(o, c) in Jwf , one s :: c in K̂ for every sub(s, c) in Jwf , one

s[m→→ v] s
local in K̂ for every locmvd(s, m, v) in Jwf , one o[m→→ v] c

value in K̂ for every

valinhmvd(o, m, v, c) in Jwf , one o[m→→ v] c
code in K̂ for every codinhmvd(o, m, v, c)

in Jwf , one c[m]
v
; o in K̂ for every valcandidate(c, m, o) in Jwf , and one c[m]

c
; o

in K̂ for every codcandidate(c, m, o) in Jwf . Clearly, to prove that the conditions are

true, it suffices to show that K̂ ⊇ Ĵ .

We will show that T
P, Î (K̂) ⊆ K̂ . Thus K̂ ⊇ Ĵ by Proposition 4.1.2, because

Ĵ = lfp(T
P, Î). Recall that by Definitions 7.2.6 and 7.2.5,

T
P, Î (K̂) = VC

P, Î (K̂) ∪CC
P, Î (K̂) ∪ ICt(K̂) ∪ ICc

P, Î
(K̂) ∪ ICi

P, Î
(K̂)

Let A be any atom in T
P, Î (K̂). Consider the following cases:

(1) A ∈ VC
P, Î (K̂)

Then there is a V-rule R ≡ H← C1, . . . , Cm,¬G1, . . . ,¬Gn in ground(P),
such that H matches A, Ci (1 ≤ i ≤ m) and Gj (1 ≤ j ≤ n) are positive literals,
valb

K̂
(Ci) = t for all 1 ≤ i ≤ m and valb

Î
(¬Gj) = t for all 1 ≤ j ≤ n. Consider

the rewriting Rwf of R, ρh(H)← ρb(C1), . . . , ρ
b(Cm),¬ ρb(G1), . . . ,¬ ρb(Gn).

First we will show that ρb(Ci) ∈ Jwf for all 1 ≤ i ≤ m: (i) If Ci = o : c, then

Chapter 11. Implementation 88

ρb(Ci) = isa(o, c). Since valb
K̂

(o : c) = t, it follows that o : c ∈ K̂ by Defini-

tion 5.3.1. Therefore, isa(o, c) ∈ Jwf , by the construction of K̂ ; (ii) Sim-
ilarly, we can show that Ci = s :: c, then ρb(Ci) = sub(s, c) ∈ Jwf ; (iii) If
Ci = s[m→→ v], then ρb(Ci) = mvd(s, m, v). Since valb

K̂
(s[m→→ v]) = t, it fol-

lows that s[m→→ v] s
local ∈ K̂ , or there exists c such that s[m→→ v] c

value ∈ K̂

or s[m→→ v] c
code ∈ K̂ . So locmvd(s, m, v) ∈ Jwf , or there exists c such that

valinhmvd(s, m, v, c) ∈ Jwf or codinhmvd(s, m, v, c) ∈ Jwf , by the construc-

tion of K̂ . Because Jwf = CPwf ,Iwf (Jwf), therefore mvd(s, m, v) ∈ Jwf , accord-
ing to the trailer rules in Definition 11.1.2.

By Lemma 11.2.2, ρb(Gj) /∈ Iwf for all 1 ≤ j ≤ n. So ρh(H) ∈ CPwf ,Iwf (Jwf) =
Jwf , by Definition 4.2.5. It follows that: (i) If A = o : c, then H = o : c. So

ρh(H) = isa(o, c) ∈ Jwf , thus o : c ∈ K̂ ; (ii) Similarly, if A = s :: c, then

s :: c ∈ K̂ ; (iii) If A = s[m→→ v] s
local, then H = s[m→→ v]. So ρh(H) =

locmvd(s, m, v) ∈ Jwf , thus s[m→→ v] s
local ∈ K̂ .

(2) A ∈ CC
P, Î (K̂)

Then A = o[m→→ v] c
code. It follows that c[m]

c
; o ∈ K̂ , lc(o, c) /∈

IBP(Î), mc(c, m, o) /∈ IBP(Î), and there is a C-rule R in ground(P),
R ≡ code c[m→→ v]← C1, . . . , Cm,¬G1, . . . ,¬Gn, such that Ci (1 ≤ i ≤ m)
and Gj (1 ≤ j ≤ n) are positive literals, valb

K̂
((Ci) c\o) = t for all 1 ≤ i ≤ m

and valb
Î
(¬ (Gj) c\o) = t for all 1 ≤ j ≤ n. Consider the rewriting Rwf

of R, Rwf ≡ codmvd(o, m, v, c)← ρb(B1), . . . , ρ
b(Bm),¬ ρb(F1), . . . ,¬ ρb(Fn),

where Bi = (Ci) c\o for all 1 ≤ i ≤ m and Fj = (Gj) c\o for all 1 ≤ j ≤ n. Sim-

ilarly to (1), we can also show that ρb(Bi) ∈ Jwf for all 1 ≤ i ≤ m. By
Lemma 11.2.2, ρb(Fj) /∈ Iwf for all 1 ≤ j ≤ n. So codmvd(o, m, v, c) ∈
CPwf ,Iwf (Jwf) = Jwf , by Definition 4.2.5.

Because c[m]
c
; o ∈ K̂ , therefore codcandidate(c, m, o) ∈ Jwf , by the con-

struction of K̂ . Note that lc(o, c) /∈ IBP(Î) and mc(c, m, o) /∈ IBP(Î). Since

Iwf is isomorphic to Î , it follows that local(o, c) /∈ Iwf and multiple(c, m, o) /∈
Iwf . So codinhmvd(o, m, v, c) ∈ CPwf ,Iwf (Jwf) = Jwf , according to the trailer

rules of Pwf and Definition 4.2.5. It follows that o[m→→ v] c
code ∈ K̂ .

(3) A ∈ ICt(K̂)

If A = o : c, then there exists x such that o : x ∈ K̂ and x :: c ∈ K̂ . So
isa(o, x) ∈ Jwf and sub(x, c) ∈ Jwf , by the construction of K̂ . It follows that
isa(o, c) ∈ CPwf ,Iwf (Jwf) = Jwf , by Definition 4.2.5 and the trailer rules of

Pwf . Thus o : c ∈ K̂ . Similarly, if A = s :: c, we can also show that s :: c ∈ K̂ .

(4) A ∈ ICc

P, Î
(K̂)

Chapter 11. Implementation 89

If A = c[m]
v
; o, then o : c ∈ K̂ , c 6= o, c[m→→ v] c

local ∈ K̂ , and ov(c, m, o) /∈

Î , by Definition 7.2.5. Because K̂ is constructed from Jwf and Iwf is iso-
morphic to Î , it follows that isa(o, c) ∈ Jwf , locmvd(c, m, v) ∈ Jwf , and
override(c, m, o) /∈ Iwf . So valcandidate(c, m, o) ∈ CPwf ,Iwf (Jwf) = Jwf , by

Definition 4.2.5 and the trailer rules of Pwf . Thus c[m]
v
; o ∈ K̂ . Similarly,

if A = c[m]
c
; o, we can also show that c[m]

c
; o ∈ K̂ .

(5) A ∈ ICi

P, Î
(K̂)

Then A = o[m→→ v] c
value, and c[m]

v
; o ∈ K̂ , c[m→→ v] c

local ∈ K̂ , lc(o, m) /∈

Î , mc(c, m, o) /∈ Î , by Definition 7.2.5. Because K̂ is constructed from

Jwf , and Iwf is isomorphic to Î , it follows that valcandidate(c, m, o) ∈ Jwf ,
locmvd(c, m, v) ∈ Jwf , local(o, m) /∈ Iwf , multiple(c, m, o) /∈ Iwf . So by Defini-
tion 4.2.5 and the trailer rules of Pwf , valinhmvd(o, m, v, c) ∈ CPwf ,Iwf (Jwf) =

Jwf . Thus o[m→→ v] c
value ∈ K̂ .

Finally, to finish the proof that Jwf is isomorphic to Ĵ , we still need to show that
the following conditions are true:

(1) for all o, m: local(o, m) ∈ Jwf iff lc(o, m) ∈ IBP(Ĵ)

(2) for all c, m, o: multiple(c, m, o) ∈ Jwf iff mc(c, m, o) ∈ IBP(Ĵ)

(3) for all c, m, o: override(c, m, o) ∈ Jwf iff ov(c, m, o) ∈ IBP(Ĵ)

Note that local/2, multiple/3, and override/3 can only be derived via the trailer rules
as defined in Definition 11.1.2. Moreover, Jwf = CPwf ,Iwf (Jwf). It follows that:

(1) local(o, m) ∈ Jwf , iff there exists v such that locmvd(o, m, v) ∈ Jwf , iff there

exits v such that o[m→→ v] o
local ∈ Ĵ , iff lc(o, m) ∈ IBP(Ĵ).

(2) multiple(c, m, o) ∈ Jwf , iff there exists x 6= c such that valcandidate(x, m, o) ∈
Jwf or codcandidate(x, m, o) ∈ Jwf , iff there exists x 6= c such that x[m]

v
; o ∈

Ĵ or x[m]
c
; o ∈ Ĵ , iff mc(c, m, o) ∈ IBP(Ĵ).

(3) override(c, m, o) ∈ Jwf , iff there is x, such that x 6= c, x 6= o, sub(x, c) ∈
Jwf , isa(o, x) ∈ Jwf , and there is v such that locmvd(x, m, v) ∈ Jwf or

coddef(x, m) ∈ Jwf , iff there is x such that x 6= c, x 6= o, x :: c ∈ Ĵ , o : x ∈ Ĵ ,

and there is v such that x[m→→ v] x
local ∈ Ĵ or there is a C-rule in P which

specifies the instance method m for the class c, iff ov(c, m, o) ∈ IBP(Ĵ).

2

Before we finally show the main theorem of this section, we need to introduce
notations to represent the intermediate results during the computation of the well-
founded model of a given program.

Chapter 11. Implementation 90

Definition 11.2.3 Given the well-founded rewriting Pwf of an F-logic program P,
define:

Twf
0 = ∅ Uwf

0 = SPwf (Twf
0) for limit ordinal 0

Twf
α = SPwf (Uwf

α−1) Uwf
α = SPwf (Twf

α) for successor ordinal α

Twf
α =

⋃

β<α

Twf
β Uwf

α = SPwf (Twf
α) for limit ordinal α 6= 0

Twf
∞ =

⋃

α

Twf
α Uwf

∞ = SPwf (Twf
∞)

Lemma 11.2.4 Let α range over all ordinals, then Twf
α , Twf

∞ , Uwf
α , and Uwf

∞ are all
in normal form.

Proof.

First we show by transfinite induction that Twf
α is in normal form for any ordinal

α. The case is trivial for limit ordinal 0. If α is a successor ordinal, then Twf
α =

SPwf (Uwf
α−1) = lfp(C

Pwf ,U
wf
α−1

). It follows that Twf
α is in normal form, by Lemma 11.2.1.

Now suppose α 6= 0 is a limit ordinal. Then Twf
α =

⋃
β<α Twf

β . By Definition 11.2.2, we

need to show that for all o, m, v: mvd(o, m, v) ∈ Twf
α iff locmvd(o, m, v) ∈ Twf

α , or there
is c such that valinhmvd(o, m, v, c) ∈ Twf

α or codinhmvd(o, m, v, c) ∈ Twf
α .

(1) ⇒
If mvd(o, m, v) ∈ Twf

α , then there exists β < α such that mvd(o, m, v) ∈ Twf
β .

Twf
β is in normal form by the induction hypothesis. Thus locmvd(o, m, v) ∈

Twf
β ⊆ Twf

α , or there is c such that valinhmvd(o, m, v, c) ∈ Twf
β ⊆ Twf

α or

codinhmvd(o, m, v, c) ∈ Twf
β ⊆ Twf

α .

(2) ⇐
If locmvd(o, m, v) ∈ Twf

α , then there exists β < α such that locmvd(o, m, v) ∈
Twf

β . It follows that mvd(o, m, v) ∈ Twf
β ⊆ Twf

α , since Twf
β is in normal form by

the induction hypothesis. On the other hand, if there exists exists c such that
valinhmvd(o, m, v, c) ∈ Twf

α or valinhmvd(o, m, v, c) ∈ Twf
α , then there exists

γ < α such that valinhmvd(o, m, v, c) ∈ Twf
γ or codinhmvd(o, m, v, c) ∈ Twf

γ .
It follows that mvd(o, m, v, c) ∈ Twf

γ ⊆ Twf
α , since Twf

γ is in normal form by
the induction hypothesis.

Similarly, we can also prove that Twf
∞ is in normal form. Moreover, for any ordinal

α, Uwf
α = SPwf (Twf

α) = lfp(C
Pwf ,T

wf
α

). It follows that Uwf
α is in normal form, by

Lemma 11.2.1. Similarly, we can also show Uwf
∞ is in normal form.

2

Chapter 11. Implementation 91

Theorem 11.2.5 Given the well-founded rewriting Pwf of an F-logic program P, the
well-founded model of Pwf is isomorphic to the optimistic object model of P.

Proof.

Let Mwf = 〈Twf ; Uwf 〉 be the well-founded model of Pwf . Then by Proposi-
tion 4.2.4, Twf = Twf

∞ and Uwf = Uwf
∞ − Twf

∞ . Let M = 〈T; U 〉 be the optimistic

object model of P. Then by Lemma 9.1.2, T = π(T̂∞) and U = π(Û∞ − T̂∞). There-
fore, by Definition 11.2.1, to show that Mwf is isomorphic to M, it suffices to show
that Twf

∞ is isomorphic to T̂∞ and Uwf
∞ is isomorphic to Û∞.

First note that Twf
α and Uwf

α are in normal form for any ordinal α, by Lemma 11.2.4.

Now we will prove by transfinite induction that Twf
α is isomorphic to T̂α and Uwf

α is

isomorphic to Ûα, for any ordinal α.

(1) If α = 0, then Twf
0 is isomorphic to T̂0, since Twf

0 = ∅ and T̂0 = ∅.
Uwf

0 = SPwf (Twf
0) = lfp(C

Pwf ,T
wf
0

), by Definitions 11.2.3 and 4.2.6, and

Û0 = ΨP(T̂0) = lfp(T
P,T̂0

), by Definitions 9.1.2 and 7.2.7. It follows that

Uwf
0 is isomorphic to Û0, by Proposition 11.2.3.

(2) If α is a successor ordinal, then Twf
α = SPwf (Uwf

α−1) = lfp(C
Pwf ,U

wf
α−1

), by

Definitions 11.2.3 and 4.2.6, and T̂α = ΨP(Ûα−1) = lfp(T
P,Ûα−1

), by Defini-

tions 9.1.2 and 7.2.7. Moreover, Uwf
α−1 is isomorphic to Ûα−1 by the induction

hypothesis. It follows that Uwf
α is isomorphic to Ûα, by Proposition 11.2.3.

Similarly to (1), we can also show that Uwf
α is isomorphic to Ûα.

(3) If α 6= 0 is a limit ordinal, then Twf
α =

⋃
β<α Twf

β and T̂α =
⋃

β<α T̂β. Clearly,

Twf
α is isomorphic to T̂α, because Twf

β is isomorphic to T̂β for all β < α,

by the induction hypothesis. Similarly to (1), we can also show that Uwf
α is

isomorphic to Ûα.

Note that Twf
∞ =

⋃
α Twf

α and T̂∞ =
⋃

α T̂α. Therefore, it follows that Twf
∞

is isomorphic to T̂∞, because Twf
α is isomorphic to T̂α, for any ordinal α. More-

over, Uwf
∞ = SPwf (Twf

∞) = lfp(C
Pwf ,T

wf
∞

), by Definitions 11.2.3 and 4.2.6, and Û∞ =

ΨP(T̂∞) = lfp(T
P,T̂∞

), by Definitions 9.1.2 and 7.2.7. Thus Uwf
∞ is isomorphic to Û∞,

by Proposition 11.2.3.
2

Chapter 11. Implementation 92

11.3 Data Complexity

In general, the optimistic object model of an F-logic program is not necessarily re-
cursively enumerable. However, for function-free F-logic programs, the Herbrand
universe is finite and thus the optimistic object model can be effectively constructed.
In this section we discuss data complexity for such programs.

In this dissertation we consider only a subset of F-logic, which contains three kinds
of atoms: o : c, s :: c, and s[m→→ v]. Any ground atomic query must have one of these
three forms, where o, c, s, m, v are constants.

As for Datalog programs, we can divide any F-logic program, P, into two disjoint
parts: an intentional database (IDB), PR, which consists of all rules in P and no
facts, and an extensional database (EDB), PF, which contains only the facts in P.
We can think of PR as a function that maps any EDB, PF, to the optimistic object
model of the combined F-logic program PR∪PF. Following [57], we have the following
definition of data complexity.

Definition 11.3.1 (Data Complexity) Given an IDB PR and an EDB PF, the
data complexity of PR is defined as the computational complexity of deciding the
truth value of any ground atomic query in the optimistic object model of PR ∪PF, as
a function of the size of PF.

Given an F-logic program P = PR ∪ PF and its well-founded rewriting Pwf , let
Pwf

R be the IDB of Pwf , and Pwf
F be the EDB of Pwf . By Definitions 11.1.1 and 11.1.2,

Pwf
R consists of the trailer rules shown in Figure 12 plus the rewritings of all rules in

PR. The EDB Pwf
F consists of the rewritings of all facts in PF. Because the rewriting

of an F-logic rule is linear and the size of the trailer is a constant, the size of Pwf
R is

linear in the size of PR and the size of Pwf
F is also linear in the size of PF.

By Theorem 11.2.5, the well-founded model of Pwf is isomorphic to the optimistic
object model of P. Therefore, the data complexity of the optimistic object model
semantics reduces to the data complexity of the well-founded semantics.

Because the rewriting does not introduce new function symbols, the rewriting
of a function-free F-logic program is a function-free Datalog program. Since data
complexity of the well-founded semantics for function-free programs is polynomial
time [18], we have the following corollary.

Corollary 11.3.1 The data complexity of the optimistic object model semantics for
function-free F-logic programs is polynomial time.

Chapter 12

Conclusion and Future Work

We have developed a comprehensive model theory for nonmonotonic multiple value
and code inheritance for general, unrestricted object-oriented knowledge bases. Our
new inheritance semantics supports implicit inference by inheritance as well as explicit
deduction via rules. Inference by inheritance supports a multitude of features, such as
overriding, nonmonotonic multiple value and code inheritance, meta programming,
and dynamic class hierarchies — the important features that are fundamental to
advanced object-oriented knowledge management.

12.1 Contributions

Here we summarize our contributions in this work:

(1) In the setting of three-valued models, we formalize the notions of locality,
context, and inheritance candidacy, and formally define the inheritance pos-
tulates that capture the common intuition behind overriding and conflict
resolution in nonmonotonic multiple value and code inheritance. These pos-
tulates specify the minimum requirements for an object model of a program.

(2) We specify an extended alternating fixpoint procedure which can be used to
compute object models for F-logic programs.

(3) We define stable object models which satisfy a certain computational prop-
erty of the alternating fixpoint procedure that we introduce. Moreover, we
formally prove that stable object models satisfy all the inheritance postulates.

(4) We define a unique object model, called optimistic object model, for any given
F-logic program. We prove three different characterizations of the optimistic
object model semantics: the optimistic object model is the least fixpoint of

93

Chapter 12. Conclusion and Future Work 94

the extended alternating fixpoint computation; it is the least stable object
models with respect to information ordering; and it is a minimal object model
with respect to truth ordering.

(5) We propose a linear-time rewriting algorithm which translates F-logic pro-
grams to a certain kind of general logic programs, and formally prove the
isomorphism between the well-founded model of the rewritten program and
the optimistic object model of the original F-logic program.

(6) Our new inheritance semantics has been implemented in the Flora-2 sys-
tem [59], which incorporates F-logic, HiLog, and Transaction Logic into a
single, coherent logic language.

To the best of our knowledge, the optimistic object model semantics is currently
the only model-theoretic semantics for nonmonotonic multiple value and code inher-
itance that applies to general, unrestricted object-oriented knowledge bases.

12.2 Future Work

Our formalization of value and code inheritance defines the concepts of locality, con-
text, inheritance candidacy, and introduces the inheritance postulates. These notions
have implications beyond the semantics and implementation of inheritance. In par-
ticular, this sets the foundation for a framework in which various inheritance policies
can be defined programmatically.

The overriding semantics in our new model theory can be termed as most-specific-
definition-based overriding [25], which is commonly used in AI systems. However, we
do not claim that this is the only useful inheritance semantics in object-oriented
knowledge bases. It has been argued that no single inheritance policy can suit all
needs. Indeed, some advanced applications require a variety of overriding and in-
heritance semantics. For instance, path-based overriding [25] is widely used in the
research on discretionary access control; inflating inheritance [28] and null inheri-
tance [28] are used for multilevel security in databases [27]. The difference between
most-specific-definition-based and path-based overriding can be seen in the following
example.

Example 12.2.1 Consider the program in Figure 13 which contains facts only. Ac-
cording to the optimistic object model semantics, c4[m] is not a value inheritance
candidate for c1, because it is overridden by a more specific inheritance context, c3[m],
of c1. So we can derive c1[m→→ a] but not c1[m→→ b]. We can see that most-specific-
definition-based overriding only takes into account class memberships and subclass
relationships. On the other hand, path-based overriding factors in topologies of class
hierarchies. In the program, the class c1 has two distinct inheritance paths to c4:

Chapter 12. Conclusion and Future Work 95

c1 → c2 → c4 and c1 → c3 → c4. Although c4[m] is overridden by c3[m] along the
path c1 → c3 → c4, it is not overridden along the path c1 → c2 → c4. Therefore, ac-
cording to the path-based semantics, we could derive c1[m→→ b] and c1[m→→ a] by
inheritance along the two paths, c1 → c2 → c4 and c1 → c3 → c4, respectively. 2

c1

c2 c3[m->>a]

c4[m->>b]

c1 : c2.
c1 : c3.
c2 :: c4.
c3 :: c4.
c3[m→→ a].
c4[m→→ b].

Figure 13: Most-Specific-Definition-Based and Path-Based Overriding

Example 12.2.2 We use the program in Figure 13 to illustrate the idea of pro-
grammable inheritance. As we have explained in Example 12.2.1, under the most-
specific-definition-based overriding semantics, this program yields c1[m→→ a] but not
c1[m→→ b]. In contrast, we can derive both using path-based overriding.

How can one specify path-based inheritance for the class c1 programmatically?
Generally, we can think of path-based inheritance as inheritance directly via imme-
diate superclasses of a given object. For instance, in Figure 13, c2 and c3 are both
immediate superclasses of c1, whereas c4 is not.

The first step is to introduce new syntax1 to represent immediate class member-
ships. To this end, we introduce new atoms of the form, o || c, to denote that c is an
immediate superclass of o (conversely, o is an immediate member of c). Second, we
need to distinguish rules intended for customizing inheritance semantics from rules
for specifying class and object methods. The system will use the inheritance rules
only when the need for customized inheritance arises. For this purpose, we introduce
a special keyword, inh, to mark the rules for programmable inheritance.

With these new language constructs, we can program path-based inheritance for
the class c1 as follows.

inh c1[m→→V] ← c1 ||X, X[m→→V].

Given the program in Figure 13 and provided that the system recognizes this rule to
compute inheritance for c1, we can derive both c1[m→→ a] and c1[m→→ b] (assuming
that c2 also inherits m→→ b from c4). 2

1The original F-logic and the current Flora-2 query language do not have syntax constructs to
represent immediate class memberships.

Chapter 12. Conclusion and Future Work 96

Some papers in the literature discuss ideas on how to customize inheritance se-
mantics. However, most of them propose only ad hoc syntax and do not attempt to
develop a general framework for expressing different inheritance semantics.

The work of Dobbie and Topor [14] restricts the syntax of queries to designate
the source of inheritance, so that at compile time multiple inheritance conflicts can
be detected by checking certain syntactic conditions. This is similar to the approach
taken in C++. However, the special syntax only aims at resolving multiple inheritance
conflicts, but not at defining different inheritance semantics.

Jamil and Lakshmanan [29] introduce meta syntax in their query language to
express withdrawal of inheritance, which enables declaring inheritance to be prohib-
ited from a superclass or by a subclass. Although the scenario considered in [29] is
more general than [14], their work is still primarily concerned with resolving multiple
inheritance conflicts.

In [28], Jamil develops a proof theory for the so called parametric inheritance. In
his framework, rules are marked with two parameters representing different inheri-
tance types (such as override and inflate) and different inheritance modes (such as
value, code, and null), respectively, so that users can parameterize — but not pro-
gram — propagation of inheritance. However, parametric inheritance is still an ad
hoc, complicated, and insufficiently general mechanism for specifying a wide variety of
inheritance semantics. For example, it does not support withdrawal of inheritance as
proposed in [29]. Because the way inheritance is controlled is tightly coupled with the
core query language syntax, the proof theory can not account for nonmonotonic mul-
tiple inheritance. Moreover, it is not clear how to change the inheritance semantics
for a class without even affecting its superclasses.

Jajodia et al. [25] propose a logic-based language that offers flexibility in spec-
ifying various access control policies in database security. It utilizes different inher-
itance semantics as convenient ways of propagating authorizations among subjects
and objects that are organized in class hierarchies. However, their language is crafted
specifically for access control. It is too general on one hand and insufficient on the
other. In particular, it does not support many important features of object-oriented
languages, such as value and code inheritance. More importantly, no formal semantics
for inheritance is attached to their proposed framework.

As we have seen, although the importance of the issue of programmability in
customizing inheritance semantics has been recognized, it has not been very well
studied in the literature. It is not enough to just extend inheritance semantics by
enumerating a limited number of scenarios like [28] or [25], since the semantics suitable
for different applications can be very diverse. Therefore, it is desirable to develop a
general mechanism with which users can program the desired effects of inheritance.

Bibliography

[1] S. Abiteboul, G. Lausen, H. Uphoff, and E. Waller. Methods and rules. In ACM
SIGMOD Conference on Management of Data, pages 32–41, 1993.

[2] F. Afrati, I. Karali, and T. Mitakos. Inheritance in object oriented Datalog:
A modular logic programming approach. Technical report, National Technical
University of Athens, 1997.

[3] E. Bertino, S. Jajodia, and P. Samarati. A flexible authorization mechanism
for relational data management systems. ACM Transactions on Information
Systems, 17(2):101–140, April 1999.

[4] A. J. Bonner and M. Kifer. Transaction logic programming. In International
Conference on Logic Programming, pages 257–282, 1993.

[5] A. J. Bonner and M. Kifer. A logic for programming database transactions.
In J. Chomicki and G. Saake, editors, Logics for Databases and Information
Systems, chapter 5, pages 117–166. Kluwer Academic Publishers, March 1998.

[6] M. Bugliesi and H. M. Jamil. A logic for encapsulation in object oriented lan-
guages. In Proceedings of the 6th International Symposium on Programming
Language Implementation and Logic Programming, pages 215–229, 1994.

[7] M. Bugliesi and H. M. Jamil. A stable model semantics for behavioral inheritance
in deductive object oriented languages. In International Conference on Database
Theory, pages 222–237, 1995.

[8] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187–230, February 1993.

[9] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of ACM, 43(1):20–74, 1996.

[10] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Se-
curing XML documents. In International Conference on Extending Database
Technology, pages 121–135, 2000.

97

Bibliography 98

[11] H. Davulcu, G. Yang, M. Kifer, and I.V. Ramakrishnan. Design and implemen-
tation of the physical layer in webbases: The XRover experience. In Sixth Inter-
national Conference on Rules and Objects in Databases (DOOD’2000), London,
United Kingdom, July 2000.

[12] S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service
for RDF. In QL’98 – The Query Languages Workshop, December 1998.

[13] S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based
access to distributed and semi-structured information. In R. Meersman et al.,
editor, Database Semantics, Semantic Issues in Multimedia Systems, pages 351–
369. Kluwer Academic Publisher, Boston, 1999.

[14] G. Dobbie and R. Topor. Resolving ambiguities caused by multiple inheritance.
In International Conference on Deductive and Object-Oriented Databases, pages
265–280, 1995.

[15] A. Farquhar, R. Fikes, W. Pratt, and J. Rice. Collaborative ontology construc-
tion for information integration. Technical Report KSL-95-63, Knowledge Sys-
tems Laboratory, Stanford University, August 1995.

[16] D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker: Or how to enable
intelligent access to the WWW. In Proceedings of the 11th Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, 1998.

[17] A. Van Gelder. The alternating fixpoint of logic programs with negation. In
ACM Symposium on Principles of Database Systems, pages 1–10, 1989.

[18] A. Van Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of ACM, 38(3):620–650, July 1991.

[19] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. A. Kowalski and K. Bowen, editors, Proceedings of the Fifth International
Conference on Logic Programming, pages 1070–1080. The MIT Press, 1988.

[20] C. H. Goh, S. Bressan, S. E. Madnick, and M. D. Siegel. Context interchange:
Representing and reasoning about data semantics in heterogeneous systems.
Technical report, MIT, School of Management, 1996.

[21] C. H. Goh, S. Bressan, S. E. Madnick, and M. D. Siegel. Context mediation:
New features and formalisms for the intelligent integration of information. ACM
Transactions on Information Systems, 1999.

[22] R. V. Guha, O. Lassila, E. Miler, and D. Brickley. Enabling inferencing. In
QL’98 – The Query Languages Workshop, December 1998.

Bibliography 99

[23] A. Gupta, B. Ludäscher, and M. E. Martone. Knowledge-based integration of
neuroscience data sources. In 12th International Conference on Scientific and
Statistical Database Management (SSDBM), Berlin, Germany, July 2000. IEEE.

[24] G.-J. Houben. HERA: Automatically generating hypermedia front-ends for ad
hoc data from heterogeneous and legacy information systems. In Engineering
Federated Information Systems, pages 81–88. Aka and IOS Press, 2000.

[25] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support
for multiple access control policies. ACM Transactions on Database Systems,
26(2):214–260, June 2001.

[26] H. M. Jamil. Implementing abstract objects with inheritance in Datalogneg. In
International Conference on Very Large Data Bases, pages 56–65, 1997.

[27] H. M. Jamil. Belief reasoing in MLS deductive databases. In ACM SIGMOD
Conference on Management of Data, pages 109–120, 1999.

[28] H. M. Jamil. A logic-based language for parametric inheritance. In A. G. Cohn,
F. Giunchiglia, and B. Selman, editors, KR2000: Principles of Knowledge Rep-
resentation and Reasoning, pages 611–622, San Francisco, 2000. Morgan Kauf-
mann.

[29] H. M. Jamil and L. V. S. Lakshmanan. A declarative semantics for behavioral
inheritance and conflict resolution. In International Logic Programming Sympo-
sium, pages 130–144, 1995.

[30] M. Kifer. Deductive and object-oriented data languages: A quest for integra-
tion. In International Conference on Deductive and Object-Oriented Databases,
volume 1013 of Lecture Notes in Computer Science, pages 187–212, Singapore,
December 1995. Springer-Verlag. Keynote address at the 3rd International Con-
ference on Deductive and Object-Oriented Databases.

[31] M. Kifer and G. Lausen. F-Logic: A higher-order language for reasoning about
objects, inheritance and schema. In ACM SIGMOD Conference on Management
of Data, pages 134–146, New York, 1989. ACM.

[32] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and
frame-based languages. Journal of ACM, 42:741–843, July 1995.

[33] W. Kim and F. H. Lochovsky, editors. Object-Oriented Concepts, Databases, and
Applications. ACM Press and Addison-Wesley, 1989.

[34] E. Laenens, D. Saccà, and D. Vermeir. Extending logic programming. In ACM
SIGMOD Conference on Management of Data, pages 184–193, 1990.

Bibliography 100

[35] E. Laenens and D. Vermeir. A fixpoint semantics for ordered logic. Journal of
Logic and Computation, 1(2):159–185, 1990.

[36] L. V. S. Lakshmanan and K. Thirunarayan. Declarative frameworks for inheri-
tance. In J. Chomicki and G. Saake, editors, Logics for Databases and Informa-
tion Systems, pages 357–388. Kluwer Academic Publishers, 1998.

[37] J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1984.

[38] Y. Lou and Z. M. Ozsoyoglu. LLO: An object-oriented deductive language with
methods and method inheritance. In ACM SIGMOD Conference on Management
of Data, pages 198–207, 1991.

[39] B. Ludäscher. The FLIP system (F-logic to XSB-Prolog compiler).
http://www.informatik.uni-freiburg.de/ ludaesch/flip/, 1994.

[40] B. Ludäscher, R. Himmeröder, G. Lausen, W. May, and C. Schlepphorst. Manag-
ing semistructured data with FLORID: A deductive object-oriented perspective.
Information Systems, 23(8):589–613, 1998.

[41] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intel-
ligent Systems, 16(2), March/April 2001.

[42] W. May and P. Kandzia. Nonmonotonic inheritance in object-oriented deductive
database languages. Journal of Logic and Computation, 11(4), 2001.

[43] W. May, B. Ludäscher, and G. Lausen. Well-founded semantics for deductive
object-oriented database languages. In International Conference on Deductive
and Object-Oriented Databases, pages 320–336. Springer Verlag LNCS, 1997.

[44] T. C. Przymusinski. Every logic program has a natural stratification and an
iterated least fixed point model. In ACM Symposium on Principles of Database
Systems, pages 11–21, 1989.

[45] T. C. Przymusinski. The well-founded semantics coincides with the three-valued
stable semantics. Fundamenta Informaticae, 13(4):445–464, 1990.

[46] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for
next-generation database systems. ACM Transactions on Database Systems,
16(1):88–131, March 1991.

[47] R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors,
Logic and Databases, pages 55–76. Plenum Press, New York, 1978.

[48] R. Reiter. A logic for default reasoning. 13(1–2):81–132, 1980.

Bibliography 101

[49] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database
engine. In ACM SIGMOD Conference on Management of Data, pages 442–453,
New York, May 1994. ACM.

[50] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, February 1996.

[51] M. Sintek and S. Decker. TRIPLE – An RDF query, inference, and transfor-
mation language. In Deductive Databases and Knowledge Management, October
2001.

[52] D. L. Spooner. The impact of inheritance on security in object-oriented database
systems. In Database Security II: Status and Prospects, pages 141–150, 1988.

[53] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho, A. Maedche, H.-P.
Schnurr, R. Studer, and Y. Sure. AI for the Web — Ontology-based commu-
nity web portals. In 9-th International World Wide Web Conference (WWW9),
Amsterdam, The Netherlands, May 2000.

[54] Y. Sure, S. Staab, and J. Angele. OntoEdit: Guiding ontology development by
methodology and inferencing. In First International Conference on Ontologies,
Databases, and Applications of Semantics, Irvine, California, October 2002.

[55] D. S. Touretzky. The Mathematics of Inheritance. Morgan-Kaufmann, Los Altos,
CA, 1986.

[56] J. D. Ullman. A comparison between deductive and object-oriented database sys-
tems. In International Conference on Deductive and Object-Oriented Databases,
pages 263–277. 1991.

[57] M. Vardi. The complexity of relational query languages. In ACM Symposium on
Theory of Computing, pages 137–145, 1982.

[58] G. Yang and M. Kifer. FLORA: Implementing an efficient dood system using a
tabling logic engine. In Sixth International Conference on Rules and Objects in
Databases (DOOD’2000), London, United Kingdom, July 2000.

[59] G. Yang and M. Kifer. Flora-2: User’s manual. Technical re-
port, Computer Science Department, SUNY at Stony Brook, June 2002.
http://flora.sourceforge.net/.

[60] G. Yang and M. Kifer. Well-founded optimism: Inheritance in frame-based
knowledge bases. In First International Conference on Ontologies, Databases,
and Applications of Semantics, Irvine, California, October 2002.

