REFERENCES

[Sablon and Bruynooghe 94]

[Sadri 87]

[Sadri and Kowalski 88]

[Sanderson et al. 90]

[Shanahan 89]

[Shanahan 90]

[Sripada 91]

[Stefik 81]

[Sussman 73]

[Van Hentenryck 89]

[Wilkins 88]

[Wilkins 90]

27

Gunther Sablon and Maurice Bruynooghe. Using the event
calculus to integrate planning and learning in an intelligent
autonomous agent. In C. Backstrom and E. Sandewall, ed-
itors, Current Trends in AI Planning, pages 254-265. 10S
Press, 1994.

Fariba Sadri. Three recent approaches to temporal reason-
ing. In Antony Galton, editor, Temporal Logics and their
Applications, pages 121-168. Academic Press, 1987.

Fariba Sadri and Robert A. Kowalski. A theorem proving
approach to database integrity. In J. Minker, editor, Founda-
tions of Deductive Databases and Logic Programming, pages

313-362. Morgan Kaufmann Publishers, Inc., 1988.

Arthur C. Sanderson, Luiz S. Homem de Mello, and Hui
Zhang. Assembly sequence planning. Al Magazine, 11(1):62—
81, 1990.

Murray P. Shanahan. Prediction is deduction but explana-
tion is abduction. In Proceedings IJCAI 89, page 1055. In-
ternational Joint Conference on Artificial Intelligence, 1989.

Murray P. Shanahan. Representating continuous change in
the event calculus. In Proceedings ECAT 90, pages 598-603,
August 1990.

Sury M. Sripada. Temporal Reasoning in Deductive
Databases. PhD thesis, Imperial College, Department of
Computing, 180 Queen’s Gate, London SWT 2BZ, England,
1991.

Mark Jeffrey Stefik. Planning with constraints. Artificial
Intelligence, 16, 1981.

Gerald Jay Sussman. A computational model of skill acqui-

sition. Technical Report MIT AI 279, MIT, August 1973.

Pascal Van Hentenryck. Constraint Satisfaction in Logic Pro-

gramming. The MIT Press, 1989.

David E. Wilkins. Practical Planning: Ezxtending the Clas-
stcal Al Planning Paradigm. Morgan Kaufmann Publishers,
Inc., 1988.

David E. Wilkins. Can Al planners solve practical problems?
Computational Intelligence, 4(4):232-246, November 1990.

REFERENCES

[Esghi and Kowalski 89]

[Fikes and Nilsson 71]

[Finger and Genesereth 85]

[Fink and Veloso 94]

[Kakas and Mancarella 90]

[Kluzniak 87]

[Kowalski and Sergot 86]

[McCarthy and Hayes 69]

[Missiaen 89|

[Missiaen 91a]

[Missiaen 91b]

26

Kave Esghi and Robert A. Kowalski. Abduction compared
with negation by failure. In Proceedings of the 6th Inter-
national Conference on Logic Programming, pages 234-255.

The MIT Press, 1989.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach
to the application of theorem proving to problem solving.

Artificial Intelligence, 2(3/4):189-208, 1971.

J.J. Finger and M.R. Genesereth. Residue: A deductive ap-
proach to design synthesis. Technical Report STAN-CS-85-
1035, Stanford University, Stanford, California, 1985.

Eugene Fink and Manuela Veloso. Prodigy planning algo-
rithm. Technical Note CMU-C5-94-123, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213,
March 1994.

A. C. Kakas and P. Mancarella. Database updates through
abduction. In Proceedings VLDB 90, pages 650-661, August
1990.

Feliks Kluzniak. Type synthesis for ground prolog. In J.-L.
Lassez, editor, Proceedings of the jth International Confer-
ence on Logic Programming, Melbourne, 1987, pages 788—
816. The MIT Press, 1987.

Robert A. Kowalski and Marek Sergot. A logic-based calculus
of events. New Generation Computing, 4(1):67-95, 1986.

John McCarthy and Patrick J. Hayes. Some philosophical
problems from the standpoint of artificial intelligence. Ma-

chine Intelligence, 4:463-502, 1969.

Lode R. Missiaen. Situation calculus and event calculus in
modal logic Z. Report CW85, Department of Computer
Science, K.U.Leuven, Celestijnenlaan 200A, B-3001 Leuven,
Belgium, March 1989.

Lode R. Missiaen. Localized abductive planning for robot
assembly. In Proceedings 1991 IEEE Conference on Robotics
and Automation, pages 605-610. IEEE Robotics and Au-
tomation Society, April 1991.

Lode R. Missiaen. Localized Abductive Planning with the
Fvent Calculus. PhD thesis, KU Leuven, Department of
Computer Science, Celestijnenlaan 200A, B-3001 Leuven,
Belgium, September 1991.

REFERENCES

References

[Allen 83|

[Allen 84]

[Borillo and Gaume 90]

[Bruynooghe 86]

[Bry Manthey and M. 90]

[Chapman 87]

[Clark 78]

[Cox and Pietrzykowski 86]

[Denecker and De Schreye 92]

[Denecker Missiaen and B. 92]

[Esghi 88]

25

James F. Allen. Maintaining knowledge about temporal in-

tervals. Communications of the ACM, 26(11):832-843, 1983.

James F. Allen. Towards a general theory of action and time.

Artificial Intelligence, 23:123-154, 1984.

Mario Borillo and Bruno Gaume. An extension to Kowalski
and Sergot’s event calculus. In Proceedings ECAI 90, pages
99-104, August 1990.

Maurice Bruynooghe. Compile time garbage collection. Re-
port CW43, Department of Computer Science, K.U.Leuven,
Celestijnenlaan 200A, B-3001 Leuven, Belgium, 1986.

Francois Bry, Rainer Manthey, and Bern Martens. Integrity
verification in knowledge bases. Technical Report D.2.1.a,

ECRC, April 1990.

David Chapman. Planning for conjunctive goals. Artificial

Intelligence, 32:333-378, 1987.

Keith. L. Clark. Negation as failure. In H. Gallaire and
J. Minker, editors, Logic and Data Bases, pages 293-322.
Plenum Press, New York, 1978.

P. T. Cox and T. Pietrzykowski. Causes for events: their
computation and applications. In J.H. Siekmann, editor,
Proceedings CADE-86, Lecture Notes in Computer Science,
pages 608—621. Springer-Verlag, 1986.

Marc Denecker and Danny De Schreye. SLDNFA; an abduc-
tive procedure for normal abductive programs. In K. Apt,
editor, Proceedings International Joint Conference and Sym-
posium on Logic Programming, Washington, 1992.

M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal
reasoning with abductive event calculus. In Proceedings of
the European Conference on Artificial Intelligence (FECA192),
Vienna, pages 384-388, August 1992.

Kave Esghi. Abductive planning with the event calculus. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Logic
Programming 1: 5th ICLP, pages 562-579, 1988.

10 CONCLUSION 24

planned event had failed. In this way, a possible plan failure could be detected as soon as
possible. The maintenance mechanism of Section4.2.4 could change the plan to restore the
violated constraint before continuing execution. If this mechanism fails, a new plan would
need to be generated for the remaining goals.

9.2 Compound Actions and Intervals

In event calculus, actions are assumed to occur instantaneously. However, it would be more
realistic to associate a duration or an interval with an action and to allow every action to
decompose into more elementary actions. We could model an interval in event calculus with
its start and end points. However, Allen advocates the use of an explicit representation of
compound actions and intervals [Allen 83, Allen 84]. Allen’s theory can be represented in
logic [Sadri 87], and it would be interesting to apply the abductive proof procedure to this
theory and use it for plan generation. This would result in a planning system with a more
expressive representation language.

10 Conclusion

This article describes Artificial Intelligence planning within a logic programming framework.

We have presented a logical theory based on event calculus for representing planning prob-
lems and reasoning about time and change. Plan generation in event calculus is obtained
through the application of the abductive proof procedure, an extension of SLDNF resolu-
tion, specialized for event calculus. This procedure generates assumptions in order to prove a
given goal. A constraint mechanism deals with the non-monotonicity of a property’s persis-
tence over an interval. A plan modification mechanism is used to reduce backtracking. The
use of domain constraints and CLP techniques for checking these constraints improves the
efficient treatment of inequality constraints. The prototype implementation CHICA demon-
strates the possibility of building a practical Al-planner using techniques of computational
logic, including resolution, extended unification, abduction and constraint logic program-
ming. Powerful domain heuristics are required to solve non-trivial planning problems; these
heuristics prune the search space, and determine the node selection and the computation
rule of CHICA’s generic search algorithm. CHICA has been applied successfully to solve
planning problems in three non-trivial planning domains.

Plan execution, replanning and reactive planning are possible extensions to closed-world
preplanning that can be explored within the same logical framework of this article.

Acknowledgments

Fariba Sadri improved the quality of this manuscript indirectly by her many useful comments
on the doctoral work preceding this manuscript. We thank Gunther Sablon for correcting
the first draft of this manuscript, and Robert Main and Jon Wilkes for correcting the final
version of this manuscript. Franciska Soete nicknamed the planner implementation, CHICA.

9 EXTENSIONS AND FUTURE RESEARCH 23

8.3 Room finishing problem

The room finishing problem is the largest problem that has been solved so far. The finishing
involves papering the walls, making electrical connections, putting water pipes in the walls
and so on. The room is empty except for one or more tables that can be moved by the
workers. The tables are positioned against the walls, and can be moved from one wall to
another by a worker; at most one table can be placed against a particular wall. A worker is
a plumber, a paper hanger, or an electrician. A plumber connects a water pipe to the water
supply after the water pipe has been inserted into a wall by any of the workers. Therefore,
a worker drills a hole in the wall and inserts the pipe; the drilling of a hole makes the wall
dirty. A plumber can also supply and cut off the water to the room. A paper hanger glues
a sheet of paper using the table and hangs it on the wall after the wall has been cleaned by
any of the workers; no table may be in front of a wall being papered. An electrician connects
two walls electrically using wiring pipes.

The problem domain is described by 16 properties, 12 types of actions, 19 initiates rules,
16 terminates rules and 12 succeeds rules; for example:

succeeds(E) «—
act(E,insert_water_pipe(W,PL,WP)), wall(W), plumber(PL), water_pipe(WP),
holds_at(new_pipe(WP), E), holds_at(hole_in(WP,W), E), holds_at(available(W,PL), E).

Ten different pruning rules are defined, and 16 prop_priority/2 facts determine the com-
putation rule. CHICA finds a solution with 24 events in 318 seconds. This long execution
time results from the large search space that was generated: 4565 nodes. Powerful heuristics
are the only way to reduce the search space. Drawing up and testing heuristics for real world
planning problems is not trivial: it took Wilkins several months to implement a production
line planner for a large Australian brewery [Wilkins 90].

9 Extensions and Future Research

9.1 Plan execution and replanning

CHICA is a preplanner that calculates a plan prior to its execution. During execution, all
planned events should be executed and no events external to the plan should happen, or else
the plan might not achieve its planning goal. In the real world, the execution component
could encounter unplanned events and execution of the planned events could be unsuccessful.
These cases must be detected by an execution monitor equiped with sensory devices, and
the effect on the plan must be computed. If the plan is no longer valid, it should change
or be recalculated. In an emergency, a reactive planning component would take appropriate
action immediately.

Such extensions to preplanning can be solved within the same logical framework [Esghi 88,
Missiaen 91b]. If the execution component executed the plan Ap + At associated with a set
Ac, then the elements of Ac would be constraints of the form not clipped(e,p,t). During
execution, such a constraint would be active if the current time were within the interval [e,t].
Sensing the property p to be false would indicate that an external event had occurred, or a

8§ EXAMPLE PLANNING PROBLEMS 22

is the unary predicate that defines the actual robots in the given problem. The property
free_robot is replaced by free(R), designating that the robot R is free.

CHICA solves different three and four block problems with one, two and three robots.
Two simple pruning heuristics are used: a robot should not pick up the same block more
than twice and a robot may not put a block on the table more than once. The predicate
priority_of_plan/2 prioritizes the solution that uses the largest number of robots in its plan.
The computation rule is determined by the definitions of prop_priority/2.

8.2 Multiple robot assembly problem

The flashlight planning problem is an example of an assembly problem [Sanderson et al. 90,
Missiaen 91a]. The flashlight assembly has four parts: cap, stick, receptacle, and handle.
The two ends of the receptacle are designated as top(receptacle) and bottom(receptacle).
The cap must be screwed onto the top of the receptacle, the handle must be screwed onto
the bottom of the receptacle, and the stick must inserted into the receptacle; these goal
conditions are represented respectively as screw_on(cap, top(receptacle)), screw_on(handle,
bottom(receptacle)) and in(stick, receptacle). Initially, all parts are disassembled. The bot-
tom of the receptacle must be closed by the handle before the stick can be put into the
receptacle.

The robot cell consists of a number of robots which share a common feeder. A robot can
perform the following actions:

- insert a part into another part that is held by another robot;

- screw a part onto the top or onto the bottom of another part held by another robot;
- pick up a part that is provided by the feeder;

- release a part onto the table;

- pick up a part from the table.

The feeder is a stack device that gives one part at a time to the robot.
Pruning rules eliminate infinite branches in the search space, for example:

{Robot can get the same part from the feeder only once}
prune_plan(R, Plan) «—
robot(R), part(O), number_of_events_of_act(Plan, get(O, R), N), N > 1.

No definitions for prop_priority/2 and priority_of_plan/3 are given which result in a depth-
first, left-to-right execution. The node selection and the computation rule follow from the
ordering of the domain rules and from the ordering of the goals in the body of these rules.
For example, if a robot tries to get hold of a part, it first tries to get that part from the
feeder before it tries to pick that part from the table. Resolution steps are always performed
before abduction steps; as a result, existing actions are used before new actions to satisfy a
goal.

CHICA solves the flashlight assembly problem for a robot cell with two robots in 64
seconds on a Sun SPARCstation 14; 53 nodes have been created in the search tree; persis-
tence constraints in Ac were checked 536 times, of which 28 resulted in the application of a
maintenance step thus avoiding backtracking.

8§ EXAMPLE PLANNING PROBLEMS 21

selects non-ground literals and binds skolems using extended unification whereas ABPLAN
abduces equality assumptions explicitly. CHICA is the first planner to present the correctness
and completeness problems of context-dependent actions and derived properties in planning
within a logic programming framework.

Most domain-independent planners descend from STRIPS [Fikes and Nilsson 71]. In
STRIPS, an action is associated with an add-and-delete list of properties. These properties
are added to or deleted from the world state in which the action is applied. Plan modification
is obtained by inserting a new action, imposing an ordering constraint, or instantiating a
variable. Event calculus in Horn clause logic is more expressive than a STRIPS representation
or any of its extensions. For example, none of the STRIPS’ extensions can represent and
derive truth values of derived properties. All properties must be represented explicitly in
the add and delete lists of the actions, which complicates validation and maintenance of the
domain description of real world problems.

CHICA'’s plan modification is achieved by the abductive proof procedure. Inserting a new
action and imposing an ordering constraint correspond to abducing facts in A. In CHICA,
instantiating a variable is performed by extended unification, whereas in other planners this
is done by a complex, often ill-defined, matching algorithm. Constraint propagation as in
MOLGEN [Stefik 81] and SIPE [Wilkins 88], is done in CHICA by means of finite domain
constraint logic programming techniques.

CHICA'’s goal directed search mechanism follows from the abductive proof procedure.
For practical planning problems, CHICA’s search can be controlled by heuristics defining
computation, selection, and pruning rules. Comparison of CHICA’s search mechanism with
other Al planners is difficult because search control is the least documented aspect of Al plan-
ners: TWEAK [Chapman 87] and Prodigy [Fink and Veloso 94] are exceptions. TWEAK is
a theoretical planning implementation that uses dependency-directed breadth-first search.
Prodigy’s planning algorithm uses a combination of backward chaining non-linear planning
and forward chaining linear planning. Prodigy could accommodate for heuristic rules to
decide which branch of the search space to explore next. In addition, Prodigy uses learning
procedures to improve the efficiency of the planner. In a similar way, CHICA has been used
as the planning component of an intelligent autonomous agent [Sablon and Bruynooghe 94].

8 Example planning problems

The prototype planner CHICA has been applied to three problem domains: the multiple
robot block world, the assembly of a flashlight, and a room decoration problem?®.

8.1 Multiple robot block world

The multiple robot block world is an extension of the robot block world of Program 3. The
robot actions pick and put have an extra parameter designating the robot performing the
action, for example pick(X,R) names the action that the robot R picks the block X. robot/1

SCHICA was implemented in ProLog by BIM under SunOS 4.2; it has an OpenLook graphical user
interface.

7 CHICA COMPARED WITH OTHER PLANNING SYSTEMS 20

6.2.1 Computation rule

The goal literals that can be selected are succeeds/1, maintain/3 and holds_at/2. The default
selection is left-to-right, but first the literals succeeds/1, then the literals maintain/3, and
finally the literals holds_at/2. The left-to-right selection of the goals holds_at(P,T) can be
overruled by specifying a priority number N for each property P in the domain definition
of the problem. For example, in the robot block world of Program 3 we add the following
definitions:

{a low number indicates a high priority}
prop_priority(on(X,Y), 1).
prop_priority(clasped(X), 1).
prop_priority(clear(X), 2).
prop_priority(free_robot, 3).

6.2.2 Node selection rule

The default selection rule is depth-first; this can be overruled by calculating a priority number
for the parial plans Ap in the search space: priority_of-plan(Ap+, N-). The predicate pri-
ority_of_plan/2 is defined in the problem domain definition. This simple scheme is adequate
in most cases, but any other domain specific node selection strategy can be implemented.

6.2.3 Pruning a node

Pruning heuristics reduce the search space. The domain dependent heuristics must detect
plans Ap that cannot lead to a valid plan or that will lead to an undesirable plan such as a
non-optimal plan. For example, in the robot block world, a plan in which the robot picks
the same block more than twice is not optimal:

prune_plan(Plan) — block(X), number_of_events_of_act(Plan, pick(X), P), P > 2.

7 CHICA compared with other planning systems

CHICA is the first practical planner using the abductive event calculus. ABPLAN can be
considered a theoretical predecessor of CHICA [Esghi 83]. ABPLAN’s event calculus uses
a STRIPS-like representation for the pre- and postconditions of an action, and as a result,
cannot express context dependent events. ABPLAN’s reasoning component is based on
constraint solving which avoids backtracking by removing previously generated assumptions.
Esghi suggests using an assumption based truth maintenance system for this purpose, but
such an implementation is unknown to the authors. It is not clear how ABPLAN obtains
completeness by controlling the search for a solution. Shanahan proposed improvements
to ABPLAN’s event calculus by adding a persistence axioms, thus eliminating ABPLAN’s
meta-level integrity constraints [Shanahan 89]. We further improved the event calculus for
planning by adding a predicate succeeds/1 for expressing an action’s preconditions and by
adding a maintenance axiom in order to reduce backtracking. Unlike ABPLAN, CHICA’s
reasoning component is based on a sound abductive proof procedure, SLDNFA. CHICA

6 SEARCH ALGORITHM 19

- T+ Ap + At F o(G?), for some variable substitution o
- T+ Ap+ At F Ac
- As is satisfied

search(G°, Sol) can be defined using the procedure tree_search(L, Sol), which implements
a generic search algorithm:

o Initialization:
Create a root node < G° Ap® At°, Ac®, As® >, and create a singleton list £ of the
root node; call tree_search(L, Sol).

o tree_search(L, Sol):

1. if £ is empty then fail

2. if £ is not empty then
Select anoden e L, L1 =L —n,n=<G,Ap, At, Ac, As >

a. it G = 0O, then Sol =n
b. else if n can be pruned, then call tree_search(Lq, Sol)

c. else, let G =g1,...,9k-1,Gks Gkt1s - Gn,
- select a literal ¢, € G
- Perform all macro refutation steps starting from g:
findall(< (g1, Gh-1, L3, Gkt1,- -, 9n), Ap1, Aty, Acy, Asy >,

716f—5t6p(gk; Ap; At: AC, AS} LS} Apl: Atl: Acl; Asl)a
S)

- ,CQ - ,Cl —|— S

- call tree_search(Ls, Sol)

The nodes in the proof tree correspond to plans and the branches correspond to macro
refutation steps. Finding a successful macro refutation corresponds to finding a solution
node, a node with an empty goal. The search algorithm will calculate a part of the search
tree explicitly until a solution node is found. After each macro refutation step, the search
must decide which leaf node to continue from. This is called the node selection. A node can
be pruned from the search tree based on pruning heuristics; this node and all of its successor
nodes are then no longer considered. At a selected leaf node that is not pruned, the search
algorithm must select a goal literal, which corresponds to the computation rule.

6.2 Search strategy

The proof tree of Section 6.1 resembles the search space of a refutation proof in logic pro-
gramming. The procedure tree_search(L, Sol) implements a generic search algorithm. De-
pending on the particular choice of the node selection, the computation, and the pruning
rules, tree_search(L, Sol) can implement any uninformed search strategy and any heuristic
search procedure.

6 SEARCH ALGORITHM 18

on the precedence relation (different from Atg) necessary to construct the finite failure tree
of clipped(e,p,t). If successful, idy—clipped(e,p,t) is added to Ac, and id,~At} is added to a
separate association list Atp. idy is a unique index associated with every constraint in Aec.
In a maintenance step, since idy—clipped(e,p,t) is removed from Ac, the assumptions At}
must be removed also. However, only the time relations of At} can be removed that were
not used in another resolution step or assumed by another abduction step. Therefore, the
transitively closed At is reconstructed from the sets of basic time relations At? of Atp, with
t # k, and from the set Atpg:

At = transitive closure_of (Atg + AtY + ...+ At} | + Ati_l_l + ...+ AL)

5.5 Macro refutation step

From the structure of the rules of an event calculus program, it follows that the only recursive
temporal predicates are holds_at/2, maintain/3 and succeeds/1. A macro refutation step will
select one of these literals in the goal and perform a number of single refutation steps until a
new goal is obtained that consists of temporal recursive literals only. Hence, given a goal that
only consists of the predicates holds_at/2, maintain/3 and succeeds/1, a macro refutation
step will transform this goal into a new goal with the same structure. At, Atp and Atp
are put together in one term. For simplicity, we refer to this compound term as the time
relations At. The predicate ref-step/10 defines the macro refutation step:

ref-step(G+, Ap+, At+, Ac+, As+, Gs-, Api-, Aty-, Acq, Asy)

(i is either holds_at/2, maintain/3 or succeeds/1. ref-step/10 performs a number of abduc-
tive refutation steps as follows.

< G Ap ALACAs >, ..., < GUAP L AL A As >, L., < Gs, Apy,Aty,Acy,Asy >

(s contains only literals for either holds_at/2, maintain/3 or succeeds/1. In every refuta-
tion step ¢ > 1, a literal is selected different from holds_at/2, maintain/3 and succeeds/1.
The constraint checking of As and Ac and the updating of the components of At is per-
formed as explained in the previous sections. ref_step/10 is a non-deterministic procedure.
Because a recursive predicate can be selected only once, the number of solutions generated
by ref_step/10 is finite.

6 Search algorithm

6.1 Proof tree

Given an initial goal G°, the procedure search(G°+, Sol-) is specified as follows:
search(G°+, Sol-)

Sol =< 0O, Ap, At, Ac, As > is a solution node for G°, i.e.,

5 IMPLEMENTATION OF THE ABDUCTIVE PROOF PROC. 17

5.3 Implementation of At

A time point in At is either a constant term from the Herbrand universe or an event skolem.
Event skolems are represented by Prolog constants. Therefore, we represent At as a list
of the following form: [t; — Uy, ..., t, —U,], with t1,...,t, distinct time points denoted by
Prolog atoms that are lexicographically ordered. This total lexicographical ordering </2
should not be confused with the partial precedence ordering on times which is represented
by </2. Every U; is a lexicographicaly ordered set of time points. Every element ¢; —U; has
the following meaning.
V’LL]‘ €U, t; < U

The precedence relation </2 is transitive, asymmetric and irreflexive. Therefore, At must
satisfy the following contraints:

(1) if t; € U; and t; € Z/{j then ¢, € U;
(2) if¢; e Z/{]' then t; € U,
(3) ti ¢ Ui

The operations on At must keep (1), (2) and (3) satisfied.

During refutation, a selected literal ¢; < ¢y is either resolved with At or it is abduced.
Resolution of t; < t; can be done in linear time by consulting A¢t. Abduction of ¢; < 1,
can be done by adding t; < t5 to At. The addition algorithm, which is based on Warshall’s
transitive closure algorithm, is O(n?) [Missiaen 91b)].

The maintenance mechanism of Section 4.2.4 explained the need to remove precedence
relations from At. However, the removal of a precedence relation from At must undo the
associated transitive closure relations. This can only be done correctly if a complete history of
the additions of precedence relations to At is known. As will be explained in the next section,
the assumptions made on </2 during a persistence or maintenance step are recorded and
the transitively closed At is reconstructed anew from the accumulated precedence relations
that are still valid. This operation costs O(n®) using Warshall’s algorithm. This costly
operation is justified because a maintenance step is performed rarely, relative to the number
of persistence steps.

5.4 Implementation of Ac

Section 4.2.3 explained the non-monotonicity of clipped(FE,P,T) with respect to the binding
of skolems and the addition of events to Ap. Therefore, the literals of Ac must be rechecked
when a variable becomes bound or when an action is added to Ap. This constraint checking is
extended with the maintenance mechanism of Section4.2.4. A maintenance step removes the
time relations from At that were only used, both in resolution and abduction, to construct
the failure tree of not clipped(e,p,t). Therefore, alongside At, Aty C At is constructed so that
it consists of the abduced time relations in rules different from rule (2.4). In other words, in
an intermediate goal, whenever a time relation is refuted that originates from a rule different
from rule (2.4) it is resolved with respect to Atg. During the finite failure of clipped(e,p,t),
a set At is constructed containing the time relations that are used, either in a resolution
with At or abduced, and do not belong to Atg. In other words, At} are the assumptions

5 IMPLEMENTATION OF THE ABDUCTIVE PROOF PROC. 16

Object skolem constants are represented by Prolog variables. However, the same object
skolem in an intermediate goal G*, in Ap', in Ac', and in As’, must be represented by the
same Prolog variable symbol. Therefore, these components will be grouped into a com-
pound term called an intermediate solution: < G*, Ap', At!, Act, As® >. During a deductive
refutation, performed during the persistence operation (Section4.2.3) and the maintenance
operation (Section 4.2.4), skolems must be treated as constants. Therefore, a skolemized copy
of the intermediate solution, which replaces every Prolog variable with a unique constant, is
used whenever a deductive refutation is performed.

5.2 Implementation of As

As consists of the inequality constraints and the domain constraints (Section4.2.2):
As = As* 4+ AsP, As? are the inequality constraints, and As? are the domain constraints.

The inequality constraints in As? should be simple inequalities only: x # y, with x,
y, or both representing an object skolem constant. For an event calculus program, this
can easily be achieved by a normalization procedure which transforms the domain clauses
into equivalent clauses that make unifications explicit using =/2 literals in the body of
the clauses [Bruynooghe 86, Kluzniak 87]. Since object skolem constants are represented
by Prolog variables, every inequality in As? can be written as (X # y) with X a Prolog
variable and y a term distinct from X. As? explicitly represents the symmetric relationship
of the inequalities of the form X # Y, in which X and Y are distinct Prolog variables: both
X #Y and Y # X belong to As?.

As? is represented as an association list: [X; —)i,..., X, —V,]. A key-value pair, X)),
has the following meaning.

Vy, e Y, X 7& Y

A domain constraint is of the form y € D in which y is a skolem and D is a set of terms

from the Herbrand universe. The meaning of x € D, in which D = {dy,...,d,}, is,

xX=dV...Vx=d,

The skolem constant x is represented by a Prolog variable. The values of D are ground
terms. As? is also represented by an association list of key—value pairs, in which the key is
the domain variable and the value is the corresponding domain. The domain is represented
as an ordered set. Propagation eliminates redundant representation of inequality constraints
on domain variables in both As? and As?.

During a refutation, the following operations are performed on As:

1. The addition of an inequality x # y to As.
2. The addition of a domain constraint X € D to As.

3. The simplification (and checking) of As to take care of the non-monotonicity of As
with respect to the binding of Prolog variables, which represent object skolems.

All of these operations will either fail or return a new As. The mechanism of the operations
was explained in Section 4.2.2. Their implementation in terms of the data structures of As#

and As? uses set operations and has a time complexity of O(n?), with n the number of
elements in As? or As?[Missiaen 91b].

5 IMPLEMENTATION OF THE ABDUCTIVE PROOF PROC. 15

initiates(start, r). succeeds(el).
initiates(start, q). succeeds(e2).
initiates(el, p) < holds_at(q, el).

initiates(el, p) < holds_at(not_q, el).

initiates(e2, not_q).

terminates(el,r) < holds_at(q,el).

terminates(e2,q).

— holds_at(p, t1), holds_at(r, t1).

Program 8 Transformation on Program 7

General abductive proof procedure The correctness problem follows from the re-
stricted abductive extension of negation by failure for an event calculus program. The prob-
lem of Program 6 follows from the deductive execution of the nested call of terminates(C,P)
in Rule (2.3). Since this is a positive goal, it should be executed abductively instead of deduc-
tively as is done in SLDNFA [Denecker Missiaen and B. 92]. SLDNFA is sound with respect
to the completion semantics and it generates at least all minimal solutions if the compu-
tation terminates [Denecker and De Schreye 92]. However, the general abductive extension
of negation by failure of SLDNFA results in an explosion of the search space. Powerful
and intelligent control strategies will be required to make SLDNFA appropriate for solving
practical planning problems.

5 Implementation of the abductive proof procedure
for event calculus

This section describes the data structures and algorithms of the Prolog implementation of
abductive proof procedure for event calculus. The abductive proof procedure is the reasoning
component of the prototype planner CHICA. The search component of this planner will be
described in Section 6

5.1 Skolem constants

Section4.2.1 explained the difference between object skolem constants and event skolem
constants. The object skolems behave as normal Prolog variables in the unification algorithm
extended with the contraint checking mechanism of As (Section4.2.2). On the other hand,
event skolems cannot bind to terms, and therefore, they behave as normal Prolog constants
during extended unification. The following computation rule contraint is always applicable:

If a goal contains the literal happens(e)in which e is either a variable or a constant, then
happens(e) must be selected before any other literal g/e/ different from happens(e).

This constraint guarantees happens/1 is the only literal that can be selected with an event
variable argument. All the other selected literals will never contain event variables in their
arguments. As a result, happens/1 is the only literal that can introduce new event skolems.

4 ABDUCTION IN EVENT CALCULUS 14

procedure would terminate with no solution plan. However, the failing plan in Figure6
could be turned into a solution plan with the addition of the event ¢2 which would terminate
¢, the condition under which el would terminate r. The abduction of such an event would
happen inside a nested call of terminates(C,P) in Rule (2.3). But in the specialized abductive
proof procedure, this could never happen because the literal terminates(C,P) in Rule (2.3)
is executed deductively, preventing abductions.

initiates(start, r). succeeds(el).
initiates(start, q). succeeds(e2).
initiates(el, p).

terminates(el,r) < holds_at(q,el).
terminates(e2,q).

— holds_at(p, t1), holds_at(r, t1).

Program 7 Completeness problem

Y
Y

T T, r , T
start 1 > el P, 4 =@ start g e2 el P

Figure 6 Incorrect plan and solution plan for Program 7

4.3.3 Solutions to completeness and correctness

The previous examples show that correctness and completeness problems occur in the case
of context dependent terminating events. However, we do not exclude such events because
they can express interesting problems.

In cases where correctness or completeness poses a problem, one of the following methods
can be used:

Linearization The problem of correctness can always be solved by considering all possible
linearizations of every intermediate plan. However, this method is impractical for large plan-
ning problems because the number of linearizations of a partial ordering grows exponentially
with the number of time points in that ordering. In CHICA, only subsets of events are
considered for linearization. Using a method of locality, we can determine small independent
subsets of events that interfere with each other in a context-dependent way [Missiaen 91b].
Another solution is to add a constraint module that checks whether the abduced temporal
relations can be satisfied for a theory of linear order [Denecker Missiaen and B. 92].

Program Transformation The problem of completeness can be avoided by a less natural
formulation of a problem domain. For Program 7, termination of property r depends on
the presence of property ¢. Introducing a property not_q and writing all initiates/2 rules
explicitly in terms of ¢ and not_q guarantees completeness.

4 ABDUCTION IN EVENT CALCULUS 13

4.3 Correctness and completeness problems

Event calculus logic is an expressive representation language for planning problems. Event
calculus can represent context-dependent and indirect effects. Chapman has proven that
non-linear planning with such effects is undecidable [Chapman 87]. All non-linear planners
that allow for such effects are incomplete and generally incorrect, and CHICA is no exception.
In this section, we exemplify the correctness and completeness problems, formulate practical
solutions, and relate the problems back to correctness and completeness of SLDNFA.

4.3.1 Correctness

In the simple planning problem of Program 6, the terminates rules define the context de-
pendent effects: el terminates r if ¢ holds, and €2 terminates r if p holds. The abductive
proof procedure will find the solution plan drawn in Figure 5. Indeed, at el, we cannot prove
that ¢ holds, and, therefore, r must remain true until {1. A similar argument applies to
e2. However, this plan is invalid since none of its linearizations are solutions, as shown in
Figure 5. In the first linearization, el is put before €2 so the condition p under which €2 ter-
minates r becomes true. The argument is symmetric in the second linearization. Therefore,
the solution plan of Figure5 is considered incorrect.

initiates(start, r). succeeds(el).
initiates(el, p). succeeds(e2).
initiates(e2, q).

terminates(el,r) < holds_at(q,el).

terminates(e2,r) < holds_at(p,e2).

— holds_at(p, t1), holds_at(q, t1), holds_at(r, t1).

Program 6 Correctness problem

Y
Y

start el e2

start

Y
Y

start e2 el

Figure 5 Solution plan for Program 6 and two possible linearizations

4.3.2 Completeness

For the simple planning problem in Program 7, the abductive proof procedure would find
the failing intermediate solution of Figure6. Since ¢ holds, el terminates r which is true
initially. In the given problem, there is no event that could initiate r, so the abductive proof

4 ABDUCTION IN EVENT CALCULUS 12

clear(c)

\ 4

start €1: put(b,c)

clear(c)

€20 pick(c)

Figure 3 Violated not clipped(start,clear(c),e;)

start €1: put(b,c)

\clear(c) clear(c)

es:put(c,table)

€2: pick(c)

\ 4

Figure 4 Maintenance mechanism

maintenance operation is performed using maintenance rules (2.5) to (2.7). It corresponds to
the white knight mechanism of the planner TWEAK [Chapman 87]. In Rule (2.6), the literals
happens(C), terminates(C, P), E < C, and C < T are executed deductively with skolems
treated as constants, so no abduction can happen. The literals of the body of Rule (2.7)
are called at the positive level of the nested negative call, not white_knight(C,T,P). These
literals can be refuted with the abductive proof procedure, abducing new events and new
time relations.

For example, if we arrive at the plan of Figure3 with Ac = {not clipped(start, clear(c),
€2), not clipped(start, clear(c), €;)}, then the constraint not clipped(start,clear(c),e;) would
be violated and could not be satisfied with the persistence rules. The maintenance step
would remove the constraint not clipped(start, clear(c), €) from Ac and solve the goal main-
tain(start, clear(c), €;) using the maintenance rules, (2.5) to (2.7). Rule(2.6) would find
that e; was a terminating event of clear(c) inside interval [start,e;]. Rule(2.7) would ab-
duce a new event €3, act(es,put(c,table)), initiating clear(c), and the precedence relations
€2 < €3 and €3 < €;. This would result in the plan of Figure4. In general, a maintenance
step must perform an additional operation on At as follows. Together with the removal of
not clipped(e,p,t) from Ac, all of the time relations abduced in Rule (2.4) during checking
this constraint but not used elsewhere, must be removed from At. In other words, all of the
hypotheses that were used solely to contruct the failure tree of not clipped(e,p,t) need to be
removed from At.

4 ABDUCTION IN EVENT CALCULUS 11

/62\
\

e3

start el

Figure 2 Abduction of el < €3

4.2.3 Persistence constraints Ac

In the persistence rules of Program 2, there are two negative literals: not clipped(E,P,T) and
notout(C,E,T). To prove not clipped(E,P,T), the complete search space of clipped(E,P,T)
must be explored. If we want clipped(FE, P, T) to fail, abduction steps should not be performed
in the body of Rule (2.3) in order to prove the literals happens(C) and terminates(C,P). In-
stead, they must be executed deductively, treating skolems as ordinary constants. On the
other hand, to prove the failure of notout(C,E,T), we want the call out(C,E,T) to succeed.
The literal out(C,E,T) is a positive goal and therefore, it must be executed abductively
so that abduction steps can add precedence relations to At via Rule(2.4). For example,
if a refutation arrived at the plan of Programb and the literal to be solved were main-
tain(start,clear(c),el), then the execution of the persistence rules, (2.2) to (2.4), would
prove happens(e3) and terminates(e3,clear(c)) deductively, but not out(start,e3,el) would
fail through the abduction of el < e3. This would result in the new plan presented in Fig-
ure 2.

The success of the call not clipped(E,P,T) is non-monotonic in an abductive refutation;
the abduction of new events and the binding of skolems can make a previously failing goal
clipped(E,P,T) succeed. Therefore, the proven goals not clipped(E,P,T) are accumulated in a
set Ac, and every time a new event is abduced or a skolem gets bound, the negative goals in
Ac must be re-executed, possibly adding new time relations to restore their truth. The goals
in Ac are also called constraints. Checking every constraint in A¢ would be computationally
expensive. The actual implementation uses a method based on locality to determine the
constraints in Ac selectively that could be affected by adding a new event [Missiaen 91b].
Techniques for checking integrity constraints in deductive databases could be used for this
same purpose [Sadri and Kowalski 88, Bry Manthey and M. 90].

4.2.4 Maintenance mechanism

If a goal in Ac can no longer be proven via the persistence rules, then the abductive
refutation would fail, and backtracking would return control to a previous choice point
where an alternative branch would be selected. Experiments show that such backtracking
is inefficient because it removes abduction steps in the failing refutation that have to be
recomputed in the alternative refutation. Therefore, to avoid backtracking, we replace the
failing constraint in Ac¢ with a new constraint and modify the plan appropriately. This

4 ABDUCTION IN EVENT CALCULUS 10

SLDNFA.

4.2.1 The event skolems and temporal relations

The abducible temporal relation </2 is transitive, asymmetric and irreflexive. These prop-
erties are not represented explicitly as rules in an event calculus theory because they could
not be used efficiently. Therefore, abduced literals of </2 are collected in a separate set
At C A. Every time a relation t1 < ¢2 is added to At, we compute the transitive closure of
At. If t2 < t1 already belongs to At, then the abduction of ¢1 < ¢2 fails.

The facts for happens/1 and act/2 are collected in Ap, so A = Ap + At. Abduction
of happens(E) will skolemize the event variable £ as E — €1, with €; representing an event
skolem. Event skolems represent unique constants for the events that happen in the plan.
Other skolem constants that do not represent events are called object skolem constants (such
as blocks and locations). During abductive refutation, extended unification can bind skolems
to terms (Section 2.1). Event skolems are prevented from binding in order to avoid multiple
actions in Ap becoming associated with the same event.

4.2.2 Inequalities and the domain constraints

SLDA must be extended to handle inequalities # in the body of the domain rules such as
Rule (3.1) in Program 3. We use the free equality theory to determine the truth value of a
literal @ # y [Clark 78]. This set of axioms constrains the possible interpretations of z = y
and x # y. If the free equality theory cannot determine the truth value of z # y, # y will
be solved as an abducible predicate; x # y will be skolemized and added to a set As. Every
time a skolem is bound, some of the inequalities in As must be rechecked.

In a problem description, we specify domain constraints on variables, replacing un-
typed variables with variables ranging over a finite set of possible values called a domain
[Van Hentenryck 89]. For example, in the block world problem of Program 4, we can replace
the facts (4.8) to (4.10) with a single fact stating that the argument of block/1 ranges over
the set {a,b,c}. In the same way we can state that the argument of location/1 ranges over
the domain {a, b, ¢, table}. Predicates such as block/1 and location/1 define domain variables
and are called domain predicates. To solve a literal such as block(B), we skolemize its argu-
ment as B — # and add the constraint 3 € {a,b,c} to As. As a result, a deterministic step
replaces the nondeterminism of a domain predicate at the resolvent level, reducing branching
considerably. In addition, equality and inequality constraints are used as soon as possible
to reduce the set of values that can be given to skolems. Suppose that « is constrained to
the domain {a, b, c} and to the domain {a,b,d}, then the equation o = 3 will assign the
intersection of the domain of a and f, {a,b}, as their new domain. If the intersection is
empty, o = f will fail; if it is a singleton, both a and 3 will be bound to the singleton value.
Propagation reduces the domain of a skolem in an inequality as soon as the other skolem is
bound. For example, if @ # v € As, «a is constrained to the domain {a, b}, v gets bound to b
during a refutation, then the inequality a # ~ is propagated, a # b, and « € {a, b} reduces
to o € {a} resulting in binding « to a.

4 ABDUCTION IN EVENT CALCULUS 9

initiates(start, on(c,a)).
initiates(start, on(a,table)).
initiates(start, on(b,table)).

) (
) (
) (
) initiates(start, clear(c)).
) (
) (
) (

initiates(start, clear(b)).
initiates(start, clear(table)). a
initiates(start, free_robot).

(4.8) block(a).
(4.9) block(b).
(4.10) block(c).
(4.11
(4.12

) location(table). a b c
) location(B) < block(B).

Y
table table
(4.13) < holds_at(on(b,c), t1), | | >

holds_at(on(c,table), t1), start 1
holds_at(on(a,b), t1).

Program4 Sussman anomaly problem

(5.1) happens(el).

(5.2) act(el, pick(c)).

(5.3) happens(e2).

(5.4) act(e2, put(c,table)). - -

(5.5) happens(e3). el:pick(c) " e2:put(c,table)
(5.6) act(e3, put(b,c)). /

(5.7) el < e2. start

(5.8) €2 < 11. \

(5.9) €3 < (1. e3:put(b,c)

Program 5 Partial plan

4.1 Planning as abduction

A solution plan P in event calculus must satisty 7'+ P = . Given T and G, any planning
problem consists of finding one or more valid plans P that satisty this requirement. The
implication 7'+ P = G matches T'+ A F G of the abduction framework of Section 2. Hence,
planning can be reduced to an abductive derivation by choosing abducible predicates that
constitute a plan in event calculus: A = {happens/1,act/2,</2}.

4.2 Specializations of the abductive proof procedure

SLDA must be modified for event calculus to ensure correctness of plans, to improve efficiency
and to deal with negative goals in event calculus. Negative goals are solved by an abductive
extension of negation by finite failure, a restricted version of the general mechanism used by

4 ABDUCTION IN EVENT CALCULUS 8

(3.1) succeeds(E) —
act(E, put(X,Y)), block(X), location(Y), X#Y,
holds_at(clasped(X), E), holds_at(clear(Y), E).
(3.2) succeeds(E) —
act(E, pick(X)), block(X),
holds_at(free_robot, E), holds_at(clear(X), E).

(3.3) initiates(E, on(X,Y)) < act(E, put(X,Y)).

(3.4) initiates(E, clear(X)) «— act(E, pick(Y)), holds_at(on(Y,X), E), block(X).
(3.5) initiates(E, clear(X)) < act(E, put(X,Y)).

(3.6) initiates(E, clasped(X)) <« act(E, pick(X)).

(3.7) initiates(E, free_robot) — act(E, put(X,Y)).

(3.8) terminates(E, clear(Y)) < act(E, put(X,Y)), block(Y).
(3.9) terminates(E, clear(X)) <« act(E, pick(X)).

(3.10) terminates(E, on(X,Y)) « act(E, pick(X)).

(3.11) terminates(E, clasped(X)) <« act(E, put(X,Y)).

(3.12) terminates(E, free_robot) « act(E, pick(X))

Program 3 Domain theory of the blocks world

3.2.4 Event calculus’ plan

An event calculus’ plan specifies its actions ordered in time. A plan can be defined by facts
for the predicates happens/1 and act/2, and the precedence predicate </2. Programb is
an example of such a plan. Programb5 is a partially ordered plan because the precedence
relation between the time points is not completely defined. Any total ordering yields a linear
plan.

Given an event calculus theory 7" and a (ground) planning goal G, a plan P is a solution
if and only if

1. T+ PF G, and
2. VE; : happens(E;) € P = T + P succeeds(E;)

The first condition states that the given goal G can be proven from the event calculus theory
extended with the facts from P. The second condition states that the preconditions of the
events of the plan must be satisfied. A solution plan P is a valid plan if all the linearizations
of P are also solutions. In Section 4.3, we shall see that a solution plan is not always a valid
plan.

4 Abduction in Event Calculus

This section adapts SLDA of Section 2 to the event calculus theory of Section 3 to obtain a
planning mechanism.

3 EVENT CALCULUS FOR PLANNING 7

defined by Rule (2.1), defines when a property P holds true at some time point 7' in terms
of past events. The predicate happens(E) represents the fact that the event F occurs; the
occurrence of an event has no duration, and therefore we also use E to represent the time
point at which E occurs. The predicate initiates(F,P) states that the event F initiates the
property P. The predicate succeeds(E) states that the preconditions of the event F are
satisfied. The predicate 2 < T states that F must precede T'; as a result, £ initiates P to
be true after £. The last condition of Rule(2.1) is maintain(E,P,T) which states that the
property P holds at a sub-interval of [F,T], excluding £, but including time point 7'. The
predicate maintain(E,P,T) has two definitions: (2.2) and (2.5).

Rules (2.2) to (2.4) are called persistence rules. They define that maintain(E,P,T) is true
in the absence of an event C' in the interval [F, T] that terminates P. The existence of such
an event is defined by the predicate clipped(FE,P,T).

Rules (2.5) to (2.7) are called maintenance rules; for every event C that terminates P,
there must be an event W which restores P. P must be temporally ordered between C' and 7',
and P must be maintained over the interval [W, T].? The maintenance rules are redundant to
the persistence rules because solutions obtained using the maintenance rules can always be
obtained through backtracking using the persistence rules only. However, the maintenance
rules are precisely added to avoid backtracking (Section4.2.4).

3.2.2 Domain theory

A problem domain is a closed universe with a limited number of actions and properties.
The theory of a problem domain defines how actions affect properties. It also defines the
preconditions of actions, the properties that must hold true to execute the action successfully.
In event calculus, an event F is an instance of some action A, expressed by the predicate
act(E,A).

The domain component of the event calculus theory uses the predicate succeeds/1 to
define the preconditions of the actions. For example, in Program 3, Rule (3.1) states X must
be clasped and Y must be clear when block X is put on location Y. The predicates initiates/2
and terminates/2 define the effects of these actions. In Rule(3.3), putting X on Y initiates
the property X is on Y, and in Rule(3.8), this action terminates the property block Y is
clear.

3.2.3 Problem description and goal

The problem description consists of the objects in the problem and the initial situation. A
special event, start, is used as the initial situation. This event start precedes all other time
points and initiates the properties that are initially true. For example, facts (4.1) to (4.7)
define the initial situation of Program4, Sussman’s anomaly block world problem.* Facts
(4.8) to (4.12) define the objects: the blocks and locations. The denial (4.13) presents the
goal GG of the problem.

3In Chapman’s modal truth criterion, E is called an establisher, C is called a clobberer, and W is called
a white knight [Chapman 87].

“The blocks world example of Program4 is called Sussman’s anomaly because Sussman’s planner
HACKER could not solve it [Sussman 73].

3 EVENT CALCULUS FOR PLANNING 6

properties are true. This is opposed to the state-based approach of situation calculus which is
used by most planning systems. In situation calculus, actions are viewed as state transform-
ers, a state being the set of properties true at a particular time [McCarthy and Hayes 69].
The event calculus is more advantageous than situation calculus because events do not need
to be totally ordered. This alleviates the computational aspect of the frame problem in situ-
ation calculus. Moreover, event calculus can express and calculate the truth value of derived
properties which would lead to inconsistencies in situation calculus [Missiaen 89)].

3.2 Event Calculus for Planning

The event calculus for planning is a logical theory of time for representing planning problem:s.
This theory consists of three parts: the domain independent theory, the definitions of the
problem domain, and the description of the planning problem. An event calculus plan is an
ordering of events to achieve a given planning goal.

3.2.1 Domain independent theory

The domain independent theory consists of the axioms of Program 2. It corresponds to the
Modal Truth Criterion in situation calculus [Chapman 87].

(2.1) holds_at(P, T) —
happens(E), initiates(E, P), succeeds(E),
E < T, maintain(E, P, T).

{ Persistence rules}

(2.2) maintain(E, P, T) — not clipped(E, P, T).

(2.3) clipped(E, P, T) «— happens(C), terminates(C, P), not out(C, E, T).
(24) out(C,E,T)— (T=C;T<C;C<E)"

{Maintenance rules}
(2.5) maintain(E, P, T) «— not m_clipped(E, P, T).
(2.6) m_clipped(E, P, T) «
happens(C), terminates(C, P),
E<C,C<T}
not white_knight(C, T, P).
(2.7) white_knight(C, T, P) «
happens(W), initiates(W, P), succeeds(W),
C < W, W < T, maintain(W, P, T).

Program 2 Domain independent theory

®(p ; q ; r)should be read as p or ¢ or r.
’The case £ = C does not need to be considered because F is always an initiating event for the
property P.

Time points are ordered by the precedence predicate </2. The predicate holds_at(P,T),

3 EVENT CALCULUS FOR PLANNING 5
faulty(a)
‘V &
mp(a), broken(a lamp(a), current_break(a)
(1.5)1 (1.5)1

broken(a) current_break(a)
(1)1 A={broken(a)} % (1.4)
| fuse(a.l'), melted fuse(F general_power_failure
F-«

(ii) A={fuse(a.0)} (iv)l A={general_power failure}

Y

melted_fuse(«) 0

(iii) A={fuse(a,a),
v melted fuse()}

O

Figure 1 Proof tree of lamp diagnosis problem

planning, non-ground literals must be abduced through a skolemizing substitution in order to
generate new events. SLDNFA treats abducible goals distinctly depending on their depth of
execution. At an event depth, where the goals are positive, an abducible goal will be resolved
or abduced. At an odd depth, where the goals are negative, the goals are only resolved. The
failure tree of a negative goal must be reconsidered every time a new abducible is added to
A. SLDNFA avoids recomputation by interleaving the computation of this failure tree with
the construction of A. We do not present SLDNFA in detail here because CHICA uses a
specialized version of SLDNFA for event calculus, explained in Section 4.

3 Event Calculus for Planning

3.1 Event Calculus

Kowalski and Sergot presented event calculus in 1986 as a logical framework for the represen-
tation of, and the reasoning about, time [Kowalski and Sergot 86]. It was originally used as
a mechanism for updating databases and understanding natural language. Since then, event
calculus has been presented in a variety of other ways [Sadri 87, Shanahan 89, Shanahan 90,
Borillo and Gaume 90, Sripada 91, Missiaen 91b].

The event calculus is based on events which initiate and terminate properties. For ex-
ample, the event taking a shower would make the property one’s hair is wet true. Events
are assumed to be atomic; no other events can happen during the execution of an event.
The occurrence of events allows axioms to deduce the existence of time periods during which

2 ABDUCTIVE PROOF PROCEDURE 4

In this refutation, G is an intermediate goal clause, A’ is a set of abducible unit clauses, G°
is equal to the original ground goal G, A is the empty set, G™ is the empty clause (O), and
A™ is the solution set of abducibles. < Gt!, A™! > is obtained from < G*, A* > as follows:
Suppose G* is the conjunction of literals g1,..., ¢, ..., ¢n. One literal g, is selected, and
either a resolution step or an abduction step is performed.

In a resolution step, g is resolved with one of the clauses in 7' 4+ A‘ using extended
unification which binds skolems as well as variables. Let h «— [4,...,[, be a variant of the
selected clause that does not contain any variables used in the refutation until < G*, A? >.
Extended unification constructs a most general unifier (mgu) of the literals g, and h, 0o,
with o a variable substitution and # a (non-variable) skolem substitution. Thus,

Gi'-H = 00’(-917 s 7gk—17llv e "Z“’gk+1’ o)
A = g(AY)

Extended unification of fuse(a,a) and fuse(X,f(X)) results in a mgu fo, with o = {X/a}
and 0 = {a/f(a)}. The mgu of melted_fuse(a) and melted_fuse(f(Y)) is ¢ = {Y/B} and
0 ={a/f(B)}. B is a new skolem constant bound to the variable Y which avoids placing Y
in 6.

An abduction step can be applied if ¢ is abducible. Let ot! be the variable substitution
replacing all of the variables in g, with new skolem constants. o**! is called the skolemizing
substitution of ¢,. Then,

Gi'-}—l = Uifl(gl? ey Gk—1, Gkg1,y - - - ,gm)
Az-l—l = A’ + O.z—}—l(gk)

Figure 1 is the abductive proof tree of the lamp diagnosis problem, representing the top-
down search space of all possible abductive refutations for a given computation rule or literal
selection rule. The selected literals are underlined. The accumulated set of abducibles, A,
is represented next to the derivation. Each resolution step is indicated with the rule number
applied in Program 1. Abduction steps are indicated with roman numbers.

The given goal faulty(a) can be resolved by either Rule (1.1) or Rule(1.2). Resolution
with Rule (1.1) results in lamp(a), broken(a). The goal lamp(a) is resolved with Fact (1.5).
The remaining goal, broken(a), cannot be resolved with a rule in Program 1 or with a fact in
A. However, broken/1 is abducible, and therefore, broken(a) is solved through an abduction
step, (i), adding broken(a) to A. At this point, all of the goals are solved and A={broken(a)}.

The subtree that originates from the resolution of faulty(a) with Rule (1.2) can be con-
structed similarly. It contains two other refutations with corresponding solutions for A.
Notice that in abduction step (ii) the abduced literal fuse(a,F') is skolemized by replacing ¥
with the new skolem constant a: o = {F/a}.

2.2 SLDNFA

SLDNFA is general abductive proof procedure for normal programs, which contain rules with
negative conditions [Denecker Missiaen and B. 92]. Such proof procedures already existed
before SLDNFA for the propositional case and for safe computation rules that only select
ground abducible atoms [Esghi and Kowalski 89, Kakas and Mancarella 90]. However, in

2 ABDUCTIVE PROOF PROCEDURE 3

SLDA is an extension of the SLD proof procedure in that it computes a set of unit clauses A
restricted to a set of abducible predicates A that must be assumed in order to prove a given
ground goal GG from a theory T:' T'+ A F (. SLDA is based on the abduction inference
rule; given a rule p « ¢ and a fact p, abduction generates an explanation for p by stating
the fact ¢.

from p «— ¢ and p infer ¢

This is not a sound inference rule, however, because ¢ does not logically follow from p « ¢
and p. Therefore, ¢ must be seen as a hypothetical explanation. If the implication p « ¢
corresponds to the notion of causality — which is an intuitive concept — then abduction
will generate plausible explanations.

faulty(L) < lamp(L), broken(L).

faulty(L) < lamp(L), current_break(L).
current_break(L) — fuse(L,F), melted_fuse(F).
current_break(L) «— general_power_failure.

(1.5) lamp(a).
(1.6) 1amp(b).} facts

Ve W N NV N
— = =
R R
N N e S’

Program 1 Diagnosis of faulty lamp

Consider the theory T" about the diagnosis of a faulty lamp (Program 1). Suppose we want
an abductive proof for the goal G = faulty(a). Let the set of abducible predicates, A, be equal
to the set of predicates that have no definition in 7: A = {broken/1, fuse/2, melted_fuse/1,
general_power_failure /0}*. There are three possible extensions for 7' corresponding to three
possible explanations why lamp a is faulty:

Ay = { broken(a) }
Ay = { fuse(a, a), melted fuse(a) }

Az = { general _power failure }

In other words, if we extend 7" with the facts of one of the sets A;, we can prove faulty(a).
In A;, a is a skolem constant that represents an unknown element of the problem domain.
Skolem constants are designated by lowercase Greek letters.

SLDA is an extension of existing residue procedures in which A is the residue left at
the dead ends of a resolution proof [Finger and Genesereth 85, Cox and Pietrzykowski 86].
In our scheme, abducibles may be selected by introducing skolems for variables by eztended
unification. These abducible goals can be not only abduced but also resolved with previously
abduced facts. SLDA constructs a refutation

<GOUAY > L <GLA S L <G AT >

'We assume a ground goal for simplicity. In the remainder of this article, all of the results stated for
ground goals can be reformulated for non-ground goals by introducing an answer substitution.

?Predicates and compound terms are often represented by their name and the number of arguments,
separated by a slash.

1 INTRODUCTION 2

1 Introduction

Al planning is the subfield of Artificial Intelligence (Al) that investigates the automation
of reasoning about actions. Planning is a necessary element of intelligent behavior, and its
effective implementation is important for future applications in manufacturing processes,
robotics, automated navigation, management strategies, and other real-world applications.

Actions change the properties of a problem domain, for example the action taking a
shower causes one to become wet. Given a description of possible actions and how each of
these actions changes the state of affairs, a planner tries to find which actions, together with
their ordering in time, achieve a given goal starting from an initial state of the world. This
article restricts the planning problem to domain-independent preplanning; the techniques
used to generate a plan are independent of the problem domain and the plan is constructed
prior to its execution. The planner constructs the plan in a closed world in which all relevant
actions and properties are known. During its execution, no events external to the plan can
change this world.

We summarize the results of a study on the use of computational logic to build a practical
planning system, CHICA. CHICA’s logic representation language has a clear semantics and
is more expressive than the traditional add-and-delete list representation of actions. Plan
modification operations are achieved by an abductive extension of logic programming, which
enables CHICA to use the deduction engine of logic programming and to apply constraint
logic programming techniques. CHICA’s search algorithm is defined in terms of the search
space of a logic program which enables us to define domain specific heuristics in terms of
computation, selection, and pruning rules. The logical framework of CHICA provides a good
basis to determine precisely the effect of heuristics on the search space.

Section 2 explains the abductive proof procedure, the proof procedure of logic programming
extended with an inference rule called abduction. Abduction generates possible hypotheses
to prove a given goal from a theory. Section 3 defines CHICA’s logical theory of planning,
which is based on event calculus. This theory defines how a property changes its truth value
when an event happens. In Section4, we apply the abductive proof procedure to the event
calculus theory, thus obtaining a reasoning component for planning. Section5 describes
CHICA’s implementation of this reasoning component, and Section6 describes CHICA’s
search control mechanism. Section7 compares CHICA with related work and with other
domain independent planning systems. Section8 describes CHICA’s application to three
planning problems. In Section 9, suggestions are made for extensions and future research.

2 Abductive Proof Procedure

2.1 SLDA

SLDA is an abductive extension of SLD, Selection rule driven Linear resolution for Definite
clauses. In logic programming, the SLD proof procedure proves that a given goal G follows
from a given logical theory T: T (. The SLD proot procedure uses a rule of inference
called resolution which is based on modus ponens augmented with unification:

from p «— ¢ and ¢ infer p

CHICA, an abductive planning system based on
Event Calculus

Lode Missiaen*

Maurice Bruynooghe!
Marc Denecker
Department of Computer Science, K.U. Leuven
Celestijnenlaan 200A, B-3001 Heverlee
Belgium
missiaen@stc.nato.int

26 April 1994

Abstract

This article presents the theory and implementation of an Artificial Intelligence
planner, CHICA. CHICA is a non-linear, domain independent planner based on
techniques of computational logic. The representation language of the planner is
Horn clause logic which is used to model event calculus, a logical theory of changing
properties over time. The reasoning component is an abductive extension of SLDNF
resolution for generating assumptions to prove a given goal. In event calculus, this
procedure generates a plan of events and temporal relations necessary to prove the
planning goal. CHICA uses domain contraints and techniques from contraint logic
programming to efficiently implement inequality, as well as a specialized module to
evaluate temporal relations. CHICA’s generic search algorithm lets the implementor
of a planning domain define a particular search strategy and specify domain
heuristics to prune the search space. CHICA has solved a number of planning
problems successfully: multiple robot block world problems, the assembly of a
flashlight, and a room decoration problem. Extensions to classical Al-planning can be
solved within the same framework, such as plan execution and replanning.

keywords: planning, logic programming, event calculus

*Senior Scientist at SHAPE Technical Centre, The Hague, The Netherlands
TResearch Associate of the National Fund for Scientific Research, Belgium

