

JBoss Drools Business Rules

Capture, automate, and reuse your business processes in a clear
English language that your computer can understand

Paul Browne

 BIRMINGHAM - MUMBAI

JBoss Drools Business Rules

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2009

Production Reference: 1260309

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-06-4

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

Credits

Author

Paul Browne

Reviewer

Peter Johnson

Acquisition Editor

David Barnes

Development Editor

Usha Iyer

Technical Editor

Aditi Srivastava

Copy Editor

Sneha Kulkarni

Production Editorial Manager

Abhijeet Deobhakta

Project Coordinator

Neelkanth Mehta

Indexer

Hemangini Bari

Proofreader

Dirk Manuel

Production Coordinator

Dolly Dasilva

Cover Work

Dolly Dasilva

Foreword

Drools was co-created by Bob McWhirter and I at Codehaus, a fantastic collaborative
environment for open source development. Drools 2.0, the first official release of
Drools, was a great volunteer effort from a range of people working tirelessly over
evenings and weekends.

There is a long-running joke that much of Drools 2.0 was written while under the
influence of beer—much to the chagrin of a CTO who was told this little anecdote
just after telling us that transactions worth millions of dollars were processed with
Drools 2.0.

The success of Drools 2.0 didn't go unnoticed. I was soon given the opportunity, by
Marc Fleury, to work full time on Drools at Jboss—now a division of Red Hat. With
the backing of JBoss, I was soon able to hire several of the key Drools community
members, of Drools such as Michael Neale, Edson Tirelli, and Kris Verlaenen. Each of
them has become an evil genius in his own right, making Drools what it is today. Bob
is also employed at JBoss, but has since moved onto other Ruby-based endeavours.

I've known Paul for a number of years, throughout which he's been an active and
valued community member. I remember the conversation two years back when Paul
talked about his desire to write a Drools book. His initial goal was to write a small
e-book, but I guess his ambitions and imagination got the better of him, prompting
him to do something much more ambitious. So it's with great pleasure that I see
Paul finally achieve this, his first Drools book. We didn't make things easy for him.
Drools 5.0 was a continually changing platform during it's development cycle, on
which he was trying to base this book. The main focus of this book is the web-based
governance system, what other vendors call a BRMS. And luckily, most of the
important aspects are here in all their glorious detail.

Previous Drools versions have challenged commercial vendors in this space, allowing
people to state what they know and not have to waste time translating this knowledge
into a machine-understandable format. Drools 5.0 is about to be released, and is a
monumental peace of engineering over Drools 2.0, 3.0, and 4.0. It brings together rules,
workflow, and event processing, along with an enterprise governance system, to form
the foundations of the what I call a Business Logic Integration Platform.

I've always stated that end business users struggle to understand the differences
between rules and processes, and more recently between rules and event processing.
They just want to model it using some software. The traditional way of using
two vendor offerings forces the business user to work with a process-oriented
or rules-oriented approach. But this gets in the way, often with great confusion
over which tool they should be using to model which bit. If you combine these
technologies in the right way and take a behavioural modelling approach, you form
something that is simpler and at the same time much more powerful. This allows the
business user to work more naturally, where the full range of approaches is available
to him or her, without the tools getting in the way. From being process-oriented to
rule-oriented or shades of grey in the middle—whatever suits the problem being
modelled at that time. We are taking this one step further and are adding event
processing with Drools Fusion. Thus, we are creating a more holistic approach to
software development. The term 'holistic' is used for emphasizing the importance
of the whole and the interdependence of its parts.

The JBoss Drools community continues to grow at a fantastic rate and we are very
lucky to get such great feedback and contributions. First-rate commercial support
continues to be available from Red Hat, which helps us to continue what we are
doing. Red Hat provides the branded version of Drools, JBoss Rules, which goes
through additional QA and testing against the rest of the JBoss products, such
as JBoss ESB and JBoss AS, and is available under long term support contracts.
Thousands of sites worldwide have used Drools as a part of their solution.

So where does Drools go from 5.0? Our initial focus will now be on services and
delivering codeless deployments. We will also focus on further enterprise-based
governance enhancements as we continue to move up the stack from a simple
embedded engine. In reality, we've only just started, and there's still much more
of the vision to put into place. So all I can say is, you ain't seen nothing yet.

Mark Proctor
JBoss Rules Lead

About the author

Paul Browne's first job was selling computers in France and things went steadily
downhill from there. He spent millons on behalf of a UK telephone company's
procurement department and implemented direct marketing for a well-known Texan
computer maker before joining the IT department of a company that builds bright
red tractors and other seriously cool machines.

Paul then embraced his techie side (he was writing games in machine code from
the age of 11) and started a consultancy that used IT to solve business problems for
companies in the financial and public sectors in Ireland, UK , Belgium, and New
Zealand. Eight years later, he now works with an Irish government agency that helps
similar software companies to grow past their initial teething pains.

More formally, Paul has a bachelor's degree in Business and French from the
University of Ulster, a master's degree in Advanced Software from UCD Dublin, a
post-grad qualification in Procurement from the Chartered Institute of Procurement
and Supply (UK), and will someday complete his ACCA financial exams.

Paul can be found on LinkedIn at http://www.linkedin.com/in/paulbrowne,
and via the Red Piranha (Business knowledge) project at http://code.google.com/
p/red-piranha/.

I would like to thank my parents for the gift of learning; my wife and
family for the constant encouragement to write this book; the work
colleagues that I've had the pleasure to learn from and all the people
behind the Drools and other outstanding open software projects.

 About the reviewer

Peter Johnson started his computer career in August of 1980, in Burroughs. He
programmed mainframes in COBOL and Algol. He started working in Java in 1998,
and was the lead designer on projects such as a JDBC driver for the DMSII (Unisys
Data Management System II) database that runs on Unisys mainframes. For the
past several years he has been the chief architect in a team that does performance
analysis of Java applications on large-scale Intel-based machines (8 to 32 CPUs), and
evaluates various open source software for enterprise readiness. In addition, Peter
is a JBoss committer and is a co-author of the book JBoss In Action, published by
Manning. Peter often speaks on Java performance and various open source topics
at industry conferences such JBossWorld and the annual Computer Measurement
Group International Conference.

Table of Contents
Preface 1
Chapter 1: Drooling over JBoss Rules 7

Who are you? What's your problem? 8
Does this sound like where you work? 8

Life or death business rules 10
What would you do? 10

Business rules in your organization 13
Exercise — rules in your organization 14
The chocolate factory 14
Build your own rule engine in Excel 15
Why can't the tech guys write the rules for me? 16

Why existing solutions don't cut it 16
Rule engines to the rescue 17

Other rules (Microsoft Outlook) 18
Meet JBoss Rules 19

A bit more on open source 20
The JBoss Rules community 21

Where to get help 21
How to ask for help 22

The bigger picture 23
Members of your team 24

How do I write the rules 25
Introducing the BRMS (Guvnor) 26
Parts of the solution 27

Rules editor 27
Rules compiler 27
Runtime 27
Fact model 27
Java 28

Table of Contents

[ii]

Rule repository 28
Rest of the system 28

When not to use a rule engine 29
Summary 29

Chapter 2: Getting the software 31
What are we going to install? 31

Who should install it? 32
Installing Java 32
Installing JBoss 34

Actual install 37
Installing the BRMS/Guvnor 39
Installing Eclipse 40
Installing the Drools plug-in 42

Finding the plug-in 44
Installing Maven 46
Installing sample projects for this book 51

Setting up the sample project in Eclipse 52
Getting Maven and Eclipse to work together 54

Troubleshooting 57
Summary 57

Chapter 3: Meet the Guvnor 59
Taking a tour with the Guvnor 59

Getting started 59
General navigation 60

The search screen 61
Administration 62

Loading the samples 62
What did we just do? 63
More on the admin page 63
Rules 66
Packages 70
Deployment 73
QA—Quality Analysis 73
Hello World example 75

Summary 78
Chapter 4: Guided Rules with the Guvnor 79

Passing information in and out 79
Building the fact model 80
Importing the fact model into Guvnor 87

Guided rules using the fact model 89
The step-by-step answer 90

Running this scenario 96

Table of Contents

[iii]

What just happened? 97
Summary 97

Chapter 5: From Guvnor to JBoss IDE 99
A more powerful rule 99

Have a go 100
Updating the rule—step by step 101

The When part 101
Looking behind the curtain—a text-based rule 102

A small problem... 103
Rule attributes 104

More on the guided editor 105
Possible comparisons 105
Condition types 105
Add more options 106
Multiple field constraints 107
The Then part 108
More rule options and attributes 109

Text editing 110
Introduction to the JBoss IDE 111
Hello World in the JBoss IDE editor 114

What just happened? 116
Try it yourself 119

Summary 120
Chapter 6: More rules in the JBoss IDE 121

Rule syntax 121
Patterns for the When part 122
Patterns for the Then part 124
Shipping chocolate bars 124
The problem (and remind me why I need business rules) 125

Why rules scale better—a reminder 126
Getting and building the sample 126

Rules 127
ChocolateShipment.java 130
CustomerOrder.java 131
OompaLoompaDate 132
The RuleRunner file 133
MultipleRulesExample 134

Running the sample 135
Console 135

More powerful rule syntax 138
Lefthand side 138
Righthand side—Then 143

Guided editor in the JBoss IDE 143
Summary 144

Table of Contents

[iv]

Chapter 7: Testing your Rules 145
Testing when building rules 145

Making testing interesting 146
Testing using Guvnor 146
Testing using FIT 147

Getting FIT 148
The FIT requirements document 148
Running FIT on our sample 152
What just happened? 152
What can go wrong? 153

The FIT plumbing 155
What is unit testing? 156

Why unit test? 157
Unit testing the Chocolate Shipments sample 158
What just happened? 159

What if it goes wrong? 162
Failures and errors 162
Testing an entire package 163

Summary 164
Chapter 8: Data and Rules in Excel 165

Reading data from Excel 165
Business rules for this sample 166
Getting and running the sample 166

Input 167
Rules 168
Running the sample 169
What's going on? 169
Under the covers 169
More on Cells and Ranges 170

Sophisticated, but repetitive rules 173
Some Excel magic 175
Decision tables behind the scenes 176

Header information 176
RuleTable—Evaluate the buy trades 177
RuleTable—Execute the buy trades 179
Other rule tables 180
Mixing rules and decision tables 180

Running the Chocolate Trading example 181
What just happened? 182
Have a go 186

Summary 186

Chapter 9: Domain Specific Language (DSL) and RuleFlow 187
What is a Domain Specific Language (DSL)? 188

Expanders 189
The DSL format 190
Other DSL editing options 191
Writing DSLs 192
Meet the sample 193

Running the DSL example 195
Guvnor and DSL-based rules 195

Ruleflow 197
Ruleflow is not workflow 199
That Homeloan example again 199

Linking rules to Ruleflow 202
A quick introduction to stateful applications 203

Stateful rules and Ruleflow 204
Summary 206

Chapter 10: Deploying Rules in Real Life 207
One size fits all architecture 207

What needs to be deployed? 209
Rules as code or data? 210

Deployment process 211
What's a repository? 212

Deploying rules 212
Push or pull? 213
Loading our rules 214

Looking inside RuleRunner.java 214
Helper methods 215

Public methods 220
Stateless 220
Stateful 222

Alternative method—RuleAgent 224
Web deployment 225

Maven for packaging 225
Summary 228

Chapter 11: Looking under the Cover 229
Rule engine concepts 229

Facts or objects 230
Working memory 230
Pattern matching, Agenda, and Activations 231
Conflict resolution 231
A more dynamic Agenda 233
Truth maintenance 233

Back to the future (with chocolate shipping) 234
Logging working memory 236

Looking at the working memory log 237
Drools Audit Log Viewer 238

Rete algorithm 240
Rete in action 242
Debugging rules 244

Debugging rules in the Eclipse IDE 244
Rules debug perspective 246
Other Drools views while debugging 250

When to log, when to test, and when to debug 251
Summary 251

Chapter 12: Advanced Drools Features 253
Pigeons, Drools, and Complex Event Processing 254

Implementing Complex Event Processing using Fusion 255
More powerful events 260

Inline beans 261
Loading data when your beans don't exist—Smooks 261

From pigeons to biscuits—Drools Solver for your local supermarket 263
How Drools Solver works 264

Implementing a Solver 265
More information on Solver 267

Forward and backward chaining 268
Changing the conflict resolution methodology 269
Standard rule engine API—JSR 94 270

Other rule engines 271
New API 272

Drools flow—a full workflow engine 273
New features in Guvnor 274
Does this still sound like where you work? 275

Summary 277
Index 279

Preface
In business, a lot of actions are trigged by rules: "Order more ice cream when the
stock is below 100 units and temperature is above 25° C", "Approve credit card
application when the credit background check is OK, past relationship with the
customer is profitable, and identity is confirmed", and so on. Traditional computer
programming languages make it difficult to translate this "natural language" into
a software program. But JBoss Rules (also known as Drools) enables anybody with
basic IT skills and an understanding of the business to turn statements such as these
into running computer code.

This book will teach you to specify business rules using JBoss Drools, and then put
them into action in your business. You will be able to create rules that trigger actions
and decisions, based on data that comes from a variety of sources and departments
right across your business. Regardless of the size of your business, you can make
your processes more effective and manageable by adopting JBoss Rules.

Banks use business rules to process your mortgage (home loan) application, and to
manage the process through each step (initial indication of amount available, actual
application, approval of the total according to strict rules regarding the amount of
income, house value, previous repayment record, swapping title deeds, and so on).

Countries such as Australia apply business rules to visa applications (when you
want to go and live there)—you get points for your age, whether you have a degree
or masters, your occupation, any family members in the country, and a variety of
other factors.

Supermarkets apply business rules to what stock they should have on their shelves
and where—this depends upon analyzing factors such as how much shelf space
there is, what location the supermarket is in, what people have bought the week
before, the weather forecast for next week (for example, ice cream in hot weather),
and what discounts the manufacturers are giving.

Preface

[2]

This book shows how you can use similar rules and processes in your business or
organization. It begins with a detailed, clear explanation of business rules and how
JBoss Rules supports them.

You will then see how to install and get to grips with the essential software required
to use JBoss Rules. Once you have mastered the basic tools, you will learn how to
build practical and effective of the business rule systems.

The book provides clear explanations of business rule jargon. You will learn how to
work with Decision Tables, Domain-Specific Languages (DSL)s, the Guvnor and
JBoss Integrated Development Environment (IDE), workflow and much more.

By the end of the book you will know exactly how to harness the power of JBoss
Rules in your business.

What this book covers
Chapter 1: This chapter gives you a good platform to understand business rules and
JBoss rules. We look at the problems that you might have (and why you're probably
reading this book). We look at what business rule engines are, and how they evaluate
business rules that appear very simple and how they become powerful when
multiple rules are combined.

Chapter 2: This chapter explains setting up Java, setting up Business Rule
Management System (BRMS)/Guvnor running on the JBoss App Server, setting up
Eclipse, and installing the Drools Plug-in. It also details the installation of the Drools
examples for this book and the Maven to build them.

Chapter 3: Guvnor is the user-friendly web editor that's also powerful enough to test
our rules as we write them. We take up an example to make things easier. Then we
look at the various Guvnor screens, and see that it can not only write rules (using
both guided and advanced editors), but that it can also organize rules and other
assets in packages, and also allow us to test and deploy those packages. Finally, we
write our very first business rule—the traditional 'Hello World' message announcing
to everyone that we are now business rule authors.

Chapter 4: This chapter shows how to use the Guvnor rule editor to write some more
sophisticated rules. It also shows how to get information in and out of our rules, and
demonstrates how to create the fact model needed to do this. We import our new fact
model into the Guvnor and then build a guided rule around it. Finally we test our
rule as a way of making sure that it runs correctly.

Preface

[3]

Chapter 5: This chapter pushes the boundries of what we can do with the Guvnor rule
editor, and then brings in the JBoss IDE as an even more powerful way of writing
rules. We start by using variables in our rules example. Then we discuss rule attributes
(such as salience) to stop our rules from making changes that cause them to fire again
and again. After testing this successfully, we look at text-based rules, in both the
Guvnor and the JBoss IDE, for running 'Hello World' in the new environment.

Chapter 6: This chapter looks again at the structure of a rule file. At the end of this
chapter, we look at some more advanced rules that we can write and run in the IDE.

Chapter 7: This chapter explains how testing is not a standalone activity, but part
of an ongoing cycle. In this chapter we see how to test our rules, not only in the
Guvnor, but also using FIT for rule testing against requirements documents. This
chapter also explains Unit Testing using JUnit.

Chapter 8: This chapter explains how to use Excel Spreadsheets (cells and ranges)
as our fact model to hold information, instead of the write-your-own-JavaBean
approach we took earlier. Then we use Excel spreadsheets to hold Decision tables, to
make repetitive rules easier to write.

Chapter 9: This chapter aims to make our rules both easier to use, and more powerful.
We start with DSLs—Domain-Specific Languages. This chapter follows on from the
'easy to write rules' theme from the previous chapter and also discusses both ruleflow
and workflow.. It would be great to draw a workflow diagram to see/control what
(groups of) rules should fire and when. Rule flow gives us this sort of control.

Chapter 10: This chapter shows you how to deploy your business rules into the real
world. We look at the pieces that make up an entire web application, and where rules
fit into it. We see the various options to deploy rules as part of our application, and the
team involved in doing so. Once they are deployed, we look at the code that would
load and run the rules—both home-grown and using the standard RuleAgent. Finally
we see how to combine this into a web project using the framework of your choice.

Chapter 11: This chapter looks at what happens under the cover by opening up the
internals of the Drools rule engine to understand concepts such as truth maintenance,
conflict resolution, pattern matching, and the rules agenda. In this chapter, we explore
the Rete algorithm and discuss why it makes rules run faster than most comparable
business logic. Finally we see the working memory audit log and the rules debug
capabilities of the Drools IDE.

Chapter 12: This chapter deals with the other advanced Drools features that have
not yet been covered. This includes Smooks to bulk load data, Complex Event
Processing, and Drools solver to provide solutions where traditional techniques
would take too long.

Preface

[4]

What you need for this book
We need four pieces of software for this book. All of these are open source,
can be downloaded easily from the Internet, and are available under a
business-friendly license.

We need Java as this is the core computer language upon which all of the other tools
are built. We need BRMS/Guvnor and JBoss App Server to provide a web-based
rules editor aimed at business users. We also need to install Maven, a build tool that
takes the various Java scripts (source) and transforms them into a package that we
can deploy on a web server. We need Eclipse and the Drools plug-in to edit the Java
files that we will use for transporting information around the system. We also need
to download Drools examples for this book which are available at
http://code.google.com/p/red-piranha.

Who this is book for
If you are a business analyst—somebody involved with enterprise IT at a high level,
who understands problems and planning solutions, rather than coding in-depth
implementations—then this book is for you.

If you are a business user who needs to write rules, or a technical person who needs
to support rules, this book is for you.

If you are looking for an introduction to rule engine technology, this book will satisfy
your needs.

If you are a business user and want to write rules using Guvnor or the JBoss IDE, this
book will be suitable for you.

This book will also suit your need if you are a business user and who wants to
understand what Drools can do and how it works, but would rather leave the
implementation to a developer.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We'll see that one file contains two rules:
Hello World and GoodBye."

Preface

[5]

A block of code will be set as follows:

public void setChocolateOnlyCustomer
(boolean choclateOnlyCustomer) {
this.chocolateOnlyCustomer = chocolateOnlyCustomer;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

for (int i = 0; i < rules.length; i++) {
 String ruleFile = rules[i];
 log.info("Loading file: " + ruleFile);

Any command-line input and output is written as follows:

cd C:\projects\drools-book-examples

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"When Eclipse opens (and you've selected the workspace), select File | New Project
from the menu".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[6]

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide the
location address or website name immediately so we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Drooling over JBoss Rules
My grandfather was a docker in Belfast who loaded and unloaded ships. My father
was an accountant who tracked and valued the items as they moved around the
world. My job is to replace both of them with automated systems, and apply a
complex set of business rules that determine what gets loaded first and how much
it is worth. For items such as fresh produce, the answer is complex and often changes
by the hour.

If you look at your family tree, you'll probably see a similar progression. We've
gone from lifting bags of coal to being workers who move knowledge around.
We may not have blisters on our hands, but we do get sore heads from the business
(medical, legal, financial and similar) problems that we deal with.

How do we know if we're doing a good job? For our grandfather's generation, it
was easy to see people and companies who moved the most 'stuff' around. For our
generation things are different—We're moving knowledge that we can't see. We
often need to apply unclear business rules to our job. To be successful we need to
do our job quicker, faster, and better than anybody else.

JBoss Rules can help us become better and faster at managing our knowledge. To
explain how, this chapter looks at:

Who you are and what your problem is
Life or death business rules
Business rules in your organization
Why existing solutions don't cut it
How rule engines can come to the rescue
An introduction to JBoss and JBoss Rules
The bigger picture and parts of the solution
How to write the rules
When not to use a rule engine

•
•
•
•
•
•
•
•
•

Drooling over JBoss Rules

[8]

Who are you? What's your problem?
If you are reading this, you probably know important information. You might be in
the medical, legal, or accountancy professions. You may be the only person in the
company who understands how to process refunds to tractor dealers in the Chicago
area. You may be the most experienced underwriter in the mortgage application
department. Or you may be the person who is most capable of talking to 'those guys
in IT'. Perhaps you've taken part in one or more Business and IT projects, or maybe
this is your first one.

Whoever you are, you've got a problem. Maybe your team is too busy for the
workload it has, maybe you can't recruit enough people to work for you, or maybe
you can get the people, but it takes too many resources to train them. Whatever
the cause, there are not enough minds to go around, and costly or embarrassing
mistakes happen as a result.

You've probably already joked about being able to clone your key people. Wouldn't
it be great to leave your clone working at the desk while you get some time on the
beach; or even just get to go home on time? Although JBoss Rules does not allow you
to clone yourself, it does allow you to clone your mind that is, put your knowledge
into a computer. Once in the computer, this knowledge can be copied, reviewed, and
kept working even after you go home.

Your second thought after hearing the "put your knowledge into a computer" bit
is probably, "If the computer knows what I know, will I be out of a job?". Maybe.
Or more likely, you'll no longer do the routine 80% of your job that you hate—the
rubbish that fills up your day. It means that you will spend more of your time doing
the 20% that you enjoy, including talking to people, meeting customers, improving
the process, planning your next golf (sorry, "business networking") trip, or whatever
you find interesting.

This book is aimed at non-technical users, although it contains a lot of information
for people who want to get under the covers of JBoss Rules. Don't worry even if the
entire extent of your PC skills is limited to writing a couple of formulae in Excel.
You're going to be OK.

Does this sound like where you work?
Everybody complains about his or her job from time to time. You probably have a
mug saying "You don't have to be crazy to work here…but it helps". Just try out our
10-question pop quiz and see if it sounds somewhat like the place where you spend
most of you working hours:

Chapter 1

[9]

1. Is Bob, in the corner, the only person who knows how the system really
works? Can the business scale only if we have an expert? Is critical
knowledge lost when people like Bob leave?

2. If you're Bob (owning the knowledge), are you sick of people asking you
stupid questions? Do you think: don't these people know that you've got
a job to do?

3. Are your customers getting a different answer every time they call your
company (and getting more than slightly irate about it)? Are you at risk
of receiving a slap on the wrist (or worse, a fine) from a regulator or other
standards body?

4. Do you find yourself working around, rather than with, your computer
systems? Have you ever thought of pouring coffee into your computer
keyboard in frustration? (Trust me, it doesn't help.)

5. Are things always done by the book, or is there a lot of informal knowledge
that is just in people's heads?

6. Did you prepare for a quality (ISO 9001) audit and then leave the process
documentation unused on a shelf? Is there anybody around who knows or
wants to change this process? Is this the right balance between being too hard
to change (and being stuck in a rut) and being too easy (resulting in chaos)?
If a change is made, will people know about it and will they take any notice?

7. Does your business knowledge exist in some easily usable format? Is its
format easy to update? Can everybody use it from one central location (so
that copies are not 'out of sync')? Can you track changes made and roll them
back if you get it wrong?

8. Do the right people (and only the right people) have access (both read and
update) to this information? Does this access need to change depending on
the context of what the user is doing at the time?

9. Do people in your organization work on projects? Do they come together
to form goal-driven teams and then go back to their original jobs when the
objectives have been achieved? Do you know how to document the outcome
of these projects as rules so that they can be reused?

10. Are tasks carried out in isolation? How do we ensure that tasks and
team members collaborate effectively? In the old days, everything was
done in-house. Now the 'office as a factory' must also seamlessly interlink
with other suppliers plugged in as part of the process.

Drooling over JBoss Rules

[10]

If some of these problems seem familiar, then maybe, just maybe, business rules
and JBoss Rules can help. But if you think you've got problems, consider the
following example.

Life or death business rules
The health services in Bangladesh (like many elsewhere) can't get enough doctors.
Training more doctors is not an answer. Those who do qualify tend to leave for
higher rates of pay elsewhere. So, given the desperate need for trained medical
staff in rural areas (for example, to curb child mortality rates), what are the health
workers to do?

The more qualified a doctor is, the more likely he is to take a flight. The district
hospital in Matlab, Bangladesh, boasts an operating table, lamp, oxygen cylinder,
and anesthetic machine, all carrying the EU's gift tag. They gleam, partly because
they are unused. Several surgeons and anesthetists have been trained, but none
so far have been retained. "Other than holding a gun to their head, doctors do not
stay here.", comments Shams Arifeen, a researcher in the International Centre for
Diarrhoeal Disease Research, Bangladesh (ICDDR, B). Doubling their pay is not
the answer because they can earn five or ten times as much in private practice.
Besides, specialists want to educate their children in the capital Dhaka, not in
Bangladesh's backwaters.

What would you do?
Imagine that you were standing in that clinic without medical training, when a
mother asks you to look at her sick child. What will you do? The solution that the
Bangladesh health workers came up with was IMCI or Integrated Management of
Childhood Illness. IMCI takes the knowledge in a doctor's head and writes it down
as a set of rules that health workers can follow. When a sick child is brought into the
remote clinic, the health worker is able to follow the simple step-by-step instructions
to make quite a sophisticated diagnosis.

Chapter 1

[11]

The following figure shows IMCI:

Look at the boxes in the above diagram—it's a set of medical rules.
(Source, World Health Organisation, http://whqlibdoc.who.int/
publications/2005/9241546441.pdf.) Using these rules a health care worker
can quickly come to the following conclusions:

When the child is under two years of age, then refer to doctor immediately
When the child's skin does not bounce back when pinched, then the child
is dehydrated
When the child is dehydrated then give rehydration salts

•

•

•

Drooling over JBoss Rules

[12]

This is a real life example of business rules. Although it is paper-based and useful to
the medical profession, it's a good example of business rules all the same.

Rules are 'when something is present, then do this'. And not just single
rules, but many of them. Together, loads of simple rules allow you to come
up with quite a sophisticated diagnosis.
Ruleflow and Workflow allow you to group your rules and decide which
should fire first. If you're a health worker with a sick child, you want to do
the most important checks first. Depending on the outcome, you then apply
the next set of medical rules.

Everybody, including the doctors, is happy that his or her knowledge has been
translated into rules. The doctors are happy because they can (guiltlessly) move to
better-paying jobs. The medical workers using the system are happy because they
can help the sick children that they see every day. The children gain because the better
availability of medical knowledge is literally the difference between life and death.

If you've used a computer language before, you might find the above
example strange. 'Traditional' computer languages are more like a set
of instructions: Do step 1, do step 2, repeat 5 times, and so on. Rules are
different; they allow you to make many individual statements of what
you know to be true and then let the computer decide if these rules apply
(or not) to the current situation. This is similar to the way in which the
human mind works.
Look again at the example. We don't specify any order for our rules.
All of them, one of them, or none of them might apply in a given situation.
A child under two who was dehydrated potentially could be referred to
a doctor and given rehydration salts on the way in. This could be the
outcome we want, or we may wish to rewrite our rules to be
 more precise—but always in the "when (something is true) then
(do this)" format.

For more information on this real life example, read The Economist magazine's
online article at: http://www.economist.com/research/articlesBySubject/
PrinterFriendly.cfm?story_id=9440765.

•

•

Chapter 1

[13]

Business rules in your organization
You're going to be hearing a lot about 'business rules' over the next couple of pages,
so it might be helpful to clarify what they are. We use the term 'business rule' to
show that rules are non-technical. They could also be called 'medical rules', 'financial
rules', 'insurance rules', 'benefit payment rules', and so forth. It all depends on the
organization you work for, and the particular niche that it finds itself in.

A business rule is any bit of knowledge that can be expressed in the following format:

When 'something' is true, Then do 'this'.

Er, that's it. Nothing more complicated than that.

You do have knowledge like that in your organization, don't you? All companies
and organizations have business rules, even if they are implied (that's, unwritten)
or buried (as code) in existing systems (for example the ones with black screens and
green text that you see in Hollywood movies).

Examples of these rules are:

When a football team wins a game, jump up and down and shout loudly
When a staff member gets promoted, give them a pay rise of 10%
When a person's salary is less than 30,000 dollars, apply a tax rate of 20%
When somebody leaves the office before 4 pm, make sarcastic comment
about 'taking a half-day vacation'

This book uses the "when...then" format for business rules. In practical
terms, these are very similar to "if...then" statements you may have seen in
any computer language.
The key reason for using 'when' is to underline that business rules will 'fire'
whenever the condition is true. Traditional 'if' statements will only fire if
we happen to be at that step in the process at the time.

 Business rules themselves tend to be simple. Their power comes from the fact that
there are many of them (tens, hundreds, or even thousands). Just as you have many
rules in your head (when you see a bear, run away), the trick is knowing when to
apply them (what happens when you see a bear in the zoo?). Later we'll look at
writing rules clearly and testing them to ensure that they do what you want.

•

•

•

•

Drooling over JBoss Rules

[14]

Business rules should be written as clearly as possible (in English, or your human
language of choice). While this makes your life easier when writing the rules, more
importantly, it allows other people to review your rules in the future. Various
estimates are that 95% of all work on a computer system is in this 'review and
update' phase long after the original team has left. So clarity is one of the biggest
advantages of using rule engines.

Exercise — rules in your organization
As a simple exercise, take 10 minutes to list some of the business rules in your
organization. Don't worry if they are simple or difficult. Just write them out in the
"when…then" format.

Here's one I did earlier.

The chocolate factory
The following figure shows sample business rules for a chocolate factory:sample business rules for a chocolate factory:

Since I was a child, I've always wanted to work in a chocolate factory, and here's
my chance. The figure shows the sample rules that I came up with. The first three
columns are the 'when' part of our business rule or the Left-Hand Side (LHS). The
last (fourth column) is the 'then' part, also known as the Right-Hand Side (RHS).

Chapter 1

[15]

For example, the first record in the table says:

When the Finance department sees that we've sold more than 30,000 Chocolate
Crunchie bars, then they should Order more chocolate.

You'll notice that there are a couple of departments other than Finance
(Manufacturing, Product Testing, Sales, and Shipping). Although I made
these rules up, often the rules that get deployed are a combination of rules from
various teams.

When I'm reading books such as this, I wonder how I take this
concept or theory and actually use these in a 'real system'. Well, I don't
want to spoil the surprise, but the actual business rules we will be
writing and deploying are very similar to the 'clear English' examples
discussed earlier.
There's a lot of clever stuff happening under the covers to keep our
business rules simple, but that's how it should be ,with the machines,
rather than people, doing the hardwork.

Build your own rule engine in Excel
You are probably wondering why some of the rules in the figure are highlighted.
These are the rules that will 'fire' whenever we sell more than 30,000 Chocolate
Crunchie bars. You could imagine another set of rules highlighting whenever we
have less than 100 boxes of Mint Surprise left in stock.

That's all a rule engine does. It selects the rules that are correct for the current
situation and then carries out whatever they say. If you're good at Excel, you could
probably mimic this behavior using auto filters or conditional formatting so that the
colors would change automatically.

Sometimes things can be as simple as they seem. If you're coming from a
business department, it makes sense that all the rules should be applied,
often all at once. Why shouldn't the manufacturing and finance people
carry out their actions simultaneously?
Technical people (like me, for the first couple of months) might miss this
point. We're used to telling computers to do things one at a time and have
to 'unlearn' our years of experience that says that computers must do
things exactly one step at a time.
We did say that this book is for everybody. Items like this just help level
the playing field.

Speaking of technical people…

Drooling over JBoss Rules

[16]

Why can't the tech guys write the rules for me?
If you're a good business manager, you've probably been taught to delegate. Until
now, for anything technical (such as computer systems) you've probably been
delegating to those 'techie guys'. So why don't the tech guys write the business rules
for you?

The answer is that the tech guys can write the rules on your behalf, but it's a bit like
booking a flight through a travel agent rather than over the Internet. Sometimes it's a
much better idea to do it yourself.

Have you ever turned up at the airport and found that the travel agent got
it wrong? Doing it yourself means that there is one less link in the chain
that can go wrong. Booking your own flight (and writing your own rules) is
quicker and easier.
Have you understood what all the hieroglyphic codes on the paper ticket
meant? (I'm showing my age—most airlines phased out paper tickets years
ago). The chances are that if you give a technical person the rules to write, he
or she is probably going to do it in a computer language such as C#, Java, or
VB. There is nothing wrong with that; it's just that they might as well write it
in Egyptian hieroglyphics for all that you will able to understand it—there
is no way you will be able to check if they got it right. Business rules solve
this problem.

For simple flights (for example, Dublin-London return), booking online (that is,
doing it yourself) is fine. For multi-stop round-the-world tickets, getting advice from
a travel agent is often a good idea. Likewise for rules: write most of the simple ones
yourself and then get some help with writing the complex ones.

Why existing solutions don't cut it
Computers have been around for a long time and we're not the first people to use
them to solve these kinds of problems for business people. In general, these business
systems do three things:

1. Capture information, for example, via a web interface (presentation layer).
2. Apply business knowledge to this information (business layer).
3. Store or forward this information (service or data layer).

It is the business layer that we are most concerned with. The presentation and service
layers, while not trivial, are known problems that lend themselves to some degree of
standardization. In contrast, the business layer will be unique to each organization,
as it reflects the processes and knowledge of the organization.

•

•

Chapter 1

[17]

In some ways, the business layer is the 'learned memory of the organization'.
Despite (or perhaps because of) years of implementing EIS (Executive Information
Systems), many of them suffer from the following problems:

All three layers tend to be tightly interlinked, so it is not easy to extract the
business logic and use it elsewhere.
Business knowledge and rules are often hidden in code. This is difficult to
audit and can lead to discrepancies between the documentation and the
actual implementation.
It is hard for the domain experts (the guys with the business knowledge)
 and the technical experts to collaborate as they (literally) speak
different languages.
The business layer can be difficult to update, both in implementation and for
fear of undesirable side effects.

Although theory states that these functions should be separated, the fact that the
business tier is often expressed in a programming language like Java means that
other functions (for example, database access) often creep in over time. Even worse,
there is no clearly delineated place to put the business logic, which is why it can
become scattered throughout the system, making it hard to reuse.

Given that we've had these problems for many years, how can we do any better?

Rule engines to the rescue
A rule engine can solve these problems—at least to some extent. Instead of having
technical, spaghetti code, it allows us to keep our business rules as simple as
possible, just like the examples we saw earlier. A rule engine allows us to 'run' these
business rules into the rest of our bigger computer system so that we can get our
values from a web page, save the results into a database, or anything else we need to
do with our information. At the same time, our business rules stay in a 'clear English'
format so that we are able to review them later.

So, what is a rule engine? Very simply, it is a place in which we can evaluate our
business rules. Without it, our rules would be stuck 'on paper' and we'd have no way
of feeding them into our system.

Here are a couple of points that explain why rule engines are better than most
computer systems:

Rule engines allow you to say "what to do", not "how to do it". This means
that you can focus on what you know to be true, and allow the machine do the
heavy lifting of figuring out the consequences of all of these combined truths'.

•

•

•

•

•

Drooling over JBoss Rules

[18]

Logic and data separation: You probably already have a database to store
information. It's a good place for data, but a bad home for your business
rules. Having a rule engine gives your rules a natural home where you can
manage your (entire) business knowledge properly.
Speed and scalability: The way rule engines work (based on the Rete
algorithm, if you're interested) has been mathematically proven to be faster
and more scalable than most traditional handcoded 'if…then' solutions.
Powerful tools: For developers, as well as for business analysts, tools provide
easy ways to edit and manage rules. More importantly, they give immediate
feedback—no more slogging through 10 web screens to reproduce a 'bug' in
the business logic.
Auditing: Rule systems provide an explanation facility allowing you to audit
how and why a particular decision was made.

Other rules (Microsoft Outlook)
If you're a power user of Microsoft Outlook, then you probably have mail filters set
up that say something like:

When a mail comes in that looks like spam, then put it into the trash can
When a mail comes in saying 'Jboss Rules', then put it in the folder
marked 'rules'

•

•

•

•

•
•

Chapter 1

[19]

The figure shows business rules hiding in your mailbox. In this figure can you
recognize the 'when...then' format? You've already been using a rule engine without
even knowing it! But the rule engine in Outlook is limited to email sorting and we
need something more powerful to meet our business problem. Enter JBoss Rules.

Meet JBoss Rules
Your boss or somebody from the IT department or a consultant has mentioned
Drools as part of the solution. After having a good laugh at the name (it's a long
story) you want to find out more. We'll look at this in two parts—Who is JBoss, and
what is the Drools/JBoss Rules team.

JBoss is a division of Red Hat (NYSE:RHT). This means that Drools is backed by an
industry-leading company. The support from this company is available whenever
you need it.

Even better, a key part of JBoss and Drools is open source. To put this in quality
terms, both the JBoss and Drools teams are confident enough about their product to
let you poke inside it. It's a bit like getting a tour of the Mercedes car factory.

Open source also shows the confidence that the team has in the quality of the
product and of their support, If you don't think the support is good enough, you are
free (and able!) to get third parties to do the job to your satisfaction. Because the bulk
of how JBoss/Red Hat makes their money is service related, they're pretty confident
that that option won't be needed.

You may be confused by the naming of the project. Is it Drools or JBoss
Rules? Officially it is now the latter, although it started out as 'Drools' and
the name is still in common usage. This book tends to use 'Drools' as it is
shorter to type and read. Both terms refer to the same thing—the business
rules product from Red Hat and JBoss.

Drools is an advanced rule engine (and a lot more besides, as we shall see later). It
allows you to state things that you know to be correct (for example, if the expenses
claim is above $5000, then a senior manager needs to sign it off). As somebody who
has knowledge of business rules, you'll be able to feed the rule engine with what
you know.

Drooling over JBoss Rules

[20]

A bit more on open source
A few years ago, if you searched for the words 'open source business' on the internet,
you would have found people describing it as a little bit 'hippy', or maybe old style
communists resurfacing in another form. Those critics (including Microsoft—for
example, http://port25.technet.com/) have now happily embraced open source
as a part of their business model.

Imagine buying a car with the bonnet welded shut so that only the car's
manufacturers could service it. Would you be happy with that? (Audi almost did
this with their smaller A2 model). Most closed source traditional software are like
that—you are at the mercy of the one supplier for bug fixes and improvements. What
happens if that supplier goes bust?

Now, I know next to nothing about car engineering, but I still find it comforting
that I could choose almost any mechanic to fix my car. Likewise, with open source
software you're unlikely to change the software yourself, but it's comforting to know
that you could hire somebody to do it for you if required.

All of JBoss Rules is available as open source under the Apache open
source license. That's Apache, the web server that powers most of the web
sites you read every day.
The Apache license is particularly business-friendly, and you can take
the code and use it in pretty much any way you want, as long as you
acknowledge that your product was 'built using Drools'. You
don't have to publish your changes or additions (as another famous
open source license, the GPL, requires you to do). Nor do you have
to pay any license fee for using their product, even as part of a
commercial deployment.
Of course, you'd want to confirm the exact details with your lawyer. But
the chances are that he or she will tell you the same thing and charge you
a lot more for doing so.

The next question is where do Red Hat and JBoss make their money if they're not
selling a product? The answer is through a combination of training and consulting
services, as well as selling cross-tested 'stable' versions guaranteed to work with
most standard server configurations.

All of the software we use in the book is available for free from the JBoss community
web sites. And it's also available as an enterprise product with full Red Hat support,
if that's important to your organization.

Chapter 1

[21]

The JBoss Rules community
As JBoss develops its rules' code 'in the open', it's easy to get in touch with the
developers to get help.

Where to get help
Check around the sites listed as follows before firing off your 'please help me' email.

The Product home page is the official home page, tailored more to a
business audience. If you're trying to sell a Drools BRMS (Business Rules
Management System) to your boss, this is the place to go.
http://www.jboss.com/products/rules

The Community home page is a slightly more detailed resource. This
provides links to a lot of useful resources, including the Drools technical
documentation. The information on this page tends to be more 'bleeding
edge', including stuff that may not yet have made it into the official
enterprise versions.
http://www.jboss.org/drools/

The Wiki is a much more rough-and-ready resource. It has guides of varying
quality, dealing with specific issues (for example, deploying the rules
engine on non-JBoss web/application servers). Wikis are writable as well as
readable, so if you're doing something that doesn't appear to be documented
here, think about adding it. The chances are that the solution is technical and
generic enough to be sharable.
http://wiki.jboss.org/wiki/JBossRules

The mailing lists are where you can see previous questions asked by Drools
users and developers. This is where you can ask for help. But read the
next section on how to ask for help, or I can guarantee that your pleas for
assistance will go unanswered.
http://www.jboss.org/drools/lists.html

The Bugs and feature requests page shows you what the Drools
development team is currently working on. Yes, when we said the project
was open, we meant it. You may get far too much information, but better
that than too little. If you feel something is missing from the current version,
checking here might show that it's on its way. And if you talk to the guys
on the mailing lists (they really appreciate end-user feedback), you might be
able to persuade them to add your feature here.

http://jira.jboss.com/jira/browse/JBRULES

•

•

•

•

•

Drooling over JBoss Rules

[22]

If there is a bug that you need fixing or feature that you need
implementing as soon as possible, one way of getting it done quickly
might be to offer to sponsor development. That is, pay for the JBoss Rules
team to add it on your behalf.
Often this works best if the feature is already on Drools team's 'todo'
list, but may be 18 months from development due to other priorities.
Although the feature will be open sourced, it will get built faster and
better than any other alternative—these guys know the product inside
out. Once inside the product, it will continue to work in future releases
and maybe get further improvements 'for free'! It's an effective, if
non-traditional way, of getting you what you need.

How to ask for help
If you got locked out of your house, how would you ask your neighbor for help?
Would you be arrogant, and demand the he/she helps you straight away (ignoring
that he might be doing something important themselves), or would you ask nicely,
explaining your problem, what you've done to try and sort it out, and then ask
him or her if they can help you? Which approach is most likely to succeed?

Asking for help in an open source project is somewhat similar. Any open source
team is busy—the core guys also have bosses and deadlines to meet. So if you've got
a problem with Drools, you can increase the chances of getting help from the JBoss
Rules guys by doing the following:

1. To start out, assume that the problem is due to a mistake that you've made.
I'd consider myself experienced with computers, but you'd be amazed
at some of the 'duh!' errors that I still make. Check spellings. Check the
instructions. Check that you're connected to the network. Then check again.

2. Read the manual or search the Web. Then read it again. Unless you're
pushing the boundaries of what Drools does, the chances are that somebody
has seen this problem before. Google is great for this. Put in the error
message that you're getting and you'll get back plenty suggestions of
areas to investigate.

3. When you search the Web/mailing lists, look at problems that are similar but
not exactly the same as your own. Often, the solution will be similar (if not
exactly the same).

4. Ask a colleague for a sanity check, even if he or she may not be familiar
with the product. Two pairs of eyes are better than one. Often, while you're
walking through the sample, you'll see the basic mistake you've made.

Chapter 1

[23]

Have you done all of this once, twice, thrice? Now you're ready to ask a question
from the mailing lists. If your question is clear, has enough (relevant) detail, and you
have put in lot of effort to solve the challenging problem yourself, the greater are
your chances of getting a quick reply. Before you type your email, read the classic
article How To Ask Questions The Smart Way at http://catb.org/~esr/faqs/
smart-questions.html

This section might make the Drools team appear unfriendly, but they're
not. They're very approachable and down-to-earth guys. You also have
a direct line to them, unlike most commercial software projects. But, like
all open source projects, they are asked a lot of lazy I-can't-be-bothered-
to-read-the-manual type of questions. So spend an extra 10 minutes
to compose your email and you'll be rewarded with support worth
hundreds of dollars. If you want to know what really irks the Drools
guys, read this blog post: http://blog.athico.com/2007/11/
drools-user-mailing-list-growth.html.

After all that preparation, send your email to the user mailing list at
http://www.jboss.org/drools/lists.html. Then wait. Do not re-send it.
Remember that Drools is an open source project and you may never get your
question answered, or get it answered only after a couple of days' delay. If you need
guaranteed support, consider buying a subscription from Red Hat.

Don't be surprised that the answer, if and when you get one, is along the lines of
'have you considered trying X, Y, or Z?' Don't expect a complete solution, but just
good suggestions as to areas that you can try to resolve the problem.

When you do find the solution, post the answer to the mailing lists. Keep it technical,
with nothing confidential to your organization. Drools users who will follow in your
footsteps will be eternally grateful. It will also earn you major kudos with the team,
which will benefit you when you ask another question in the future.

The bigger picture
You're unlikely to go through the trouble of putting your knowledge into a rules
system and leave it at that. You've a problem that you're trying to solve. For that,
you're going to use rules as part of a bigger system.

Drooling over JBoss Rules

[24]

Here's the five-minute guide to almost any computer system. It takes information
from users (these days, mainly via a web page), does something with it, and then
stores it somewhere (normally in a database). You may recognize some database
brand names such as Oracle, SQL Server, or MySql. Think of the database as a very
big version of Excel. Sometimes the flow of information goes the other way—access
information in the database, and then show it on the web page. That's it! So what are
you paying all these IT consultants for?

Drools helps you with the middle 'do something with the information' bit. Here
you apply the business knowledge (the stuff that's currently in your head) to the
information that is passing through.

We recommend Drools, as one of the other options is to put your brain into a glass
jar (think of a mad scientist lab with rows of brains suspended in bubbling liquid)
and somehow wire it in to the system. Drools is a much less painful option.

Members of your team
Unless you're a business user by day and techie by night, we don't expect you
to build the entire web system by yourself. In general, as a business user, you'll
supply two bits of information to the IT team. The rest should be considered
'plumbing'—stuff that should be done according to industry standards and best
practices, but that otherwise will be hidden from you (the user) and should 'just
work' (like water coming out of the tap).

The two sorts of information you'll generally need to provide are:

The user's interactions with the completed system. For example, the web
page that the user uses to log in, the first screen they see after they log in, and
what the various buttons on this screen do. Entire books have been written
on this subject and so we won't get into those details.
The actual business rules. Unlike the screens, this is 'behind the scenes' stuff.
This is your knowledge applied to the data that's being captured on the
web pages. Even if you don't use Drools or any another rule engine, you'll
still need to do this step. Otherwise, how will the system know to pay for
prescriptions for Viagra,and not for aspirin? (or whatever your business rules
actually are).

•

•

Chapter 1

[25]

How do I write the rules
So, you want to get right in and start wiring up the rules. You've got four choices of
editors for rule-writing:

You can use the Business Rules Management System (BRMS) from Drools,
which is called Guvnor. This is a web-based application that's aimed at
people like you. Not only is it easy to use, but it can be set up once for
the entire team to use via Internet Explorer, Firefox, or your favorite web
browser. In general, this is the editor that we recommend, unless you need
a feature that is only available in one of the other editors. The following
screenshot gives an idea of what a business rule looks like in Guvnor— there
is more information on this in Chapter 4.

You could write the rules via a simple text editor such as Notepad. This a bit
masochistic and dull, staring at black and white text with no help as to what
is expected. We mention it here only to show that there is nothing special
about the rules format; it's just a plain text file.
You can write rules in Microsoft Excel or any spreadsheet that can output
Excel-like spreadsheets (for example, Sun's Open Office). You have to follow
a certain template (it's not that difficult once you see it). The Excel format
lends itself to rules that repeat themselves a lot (the sample Drools for
Decision Tables has lots of different categories of car insurance claims).
Use the Drools IDE, which is based on Eclipse. IDE stands for Integrated
Development Environment, so Eclipse is a bit like 'Microsoft Office for
Techies'. The chances are that your technical team is using it anyway (to
write in a language called Java, although it can be used with other computer
languages). The Drools IDE bit adds plug-ins to Eclipse to allow rule editing
and debugging.

•

•

•

•

Drooling over JBoss Rules

[26]

The IDE is more powerful, but also more complex. We'll talk about its extra features
later, but most of the commonly used ones are already in the BRMS (and over time,
the remainder will be implemented). It's possible to easily switch between IDE
and BRMS.

Whichever way you choose, the rules that get fed into the rule engine are pretty
much the same. In fact, the BRMS allows you to import and manage rules written as
text/Decision Tables via the IDE. So, for now, following the BRMS is a good choice.

Introducing the BRMS (Guvnor)
The BRMS is a web page that you open in Internet Explorer, Firefox, or your favorite
Internet browser. You've seen web pages before, right? The BRMS allows you to
enter your knowledge as business rules via a web page.

BRMS or Guvnor? The web-based rule editor that we will talk about in
this section started out as the Business Rules Management System or
BRMS. Unfortunately, other rule engine vendors use the term BRMS to
refer to something completely different (not just the editor, but the core
rule engine as well). Hence the renaming of the Drools BRMS to Guvnor,
which also reflects that this web-based application can also be used to
manage other things such as deployment, testing, and processes.

At the start you can enter rules via the guided editor (a similar idea to the helpful
'wizards' that you might have come across in Windows). Later, as you get more used
to the rules syntax, you might want to edit the rules directly in the text editor.

There are a couple of other things that the BRMS gives you over and above basic
'rules editing', such as:

Team editing
Version management of rules and related assets
Asset management
A deployment mechanism
Security (Login)
Import and export of data

•

•

•

•

•

•

Chapter 1

[27]

Parts of the solution
By now you should have understood the basic concept that a rule engine allows you
to capture your knowledge and integrate it into an enterprise web system. However,
a rule engine isn't just a black box. There are a couple of parts to it that are useful to
know about. (I don't know much about car mechanics, but I can check the oil and
tyre pressure. We'll keep the Drools technical bits at that level.)

Rules editor
This is the choice of BRMS, IDE, Decision Table, or plain text file. All produce
a similar underlying rule language. The mechanism for deploying these rules
(RuleAgent or some other equivalent) is similar.

Rules compiler
Something needs to translate the near-English rules language into something the
rules engine can understand—this is what the compiler does. Your main awareness
of the compiler (as a BRMS user) is when it complains that it does not understand the
way that you are phrasing your rules.

Runtime
As the information flows through your system, something has to be applied to the
(compiled) rules. This is where the Drools runtime comes in. In general, you don't
worry about the technical aspects of this. You just care that there is something
applying the business rules that you have written in the live/production system.

Fact model
So we have a working system with information flowing from the Web, modified
by the rules, and then saved in the database. Obviously, when writing our rules,
we need to know the form that this information will be in. (Will we ask the user for
salary before or after tax? Will we ask the user what country he or she lives in or just
the post/zip code?) The information has to be in a certain format. (Think of an Excel
spreadsheet. We need to know which column the salary information is stored in,
and if this is before or after tax.) The description of the information we need and the
format it is stored in is known as the fact model.

Drooling over JBoss Rules

[28]

Java
Rather than writing the fact model in Excel, it's mostly written in Java. Don't worry,
at the level we're working (specifying the names of the information that we're
collecting and if it's a number, piece of text, and so on), it's not that complicated.
Remember that if you can handle Excel, you can do this. We've two approaches to
building the fact model:

For most of this guide, we'll assume that somebody else has done the analysis
and that all the information you need when writing the rules will magically
be there. Realistically, you're going to find things that are missing when you
start writing your rules. The Drools technical guide has more information on
how to build the fact model using Java.
It's probably not beyond your ability to modify the fact model (just follow
the recipe even if you don't fully understand the low-level details). The main
reason you won't update it is that other parts of the system, such as the web
screens and the database, also use the fact model as it's a key part of how the
system is linked together. So, change a bit here without talking to the other
guys and you risk breaking things for them.

An important note is that the BRMS helps you edit the rules, and typically does not
form a part of the production system that the end users will see. That task is left to
the core rules engine.

Rule repository
Rules are important and you're going to spend a substantial amount of time writing
them. While you can store them on your PC's hard disk, can you guarantee that
they're not going to get corrupted? If you store them on a shared network drive (with
backups) how to you manage the different versions (for example, you want to see the
business rules as of July 4th last year)? How do you allow collaborative editing and
track changes made by different people?

A rule repository solves these problems for us. Luckily, there is one built into the
BRMS/Guvnor. But we've a couple of other options (for example, Subversion)
should be wish to tie into the rest of the system.

Rest of the system
Remember that a rule engine will not run in isolation, but be embedded in a wider
system. What the 'rest of the system' will be will depend on your project, but the
rules will pass data back and forward to it by means of the fact classes.

•

•

Chapter 1

[29]

When not to use a rule engine
This may seem strange for a book about (JBoss) business rules, but there are times
when you should not use a rule engine, even if it initially appears to be a good idea.
A couple of things you should consider before using a rule engine, are:

Don't use a rule engine if your application doesn't have much complexity.
A lot of applications are just web pages that save information in a database.
Even if there are a couple of checks for business logic, is there enough to
justify the complexity of a rule engine? However, applications tend to
increase in complexity over time. So keep this in mind when you're making
your decision.
Don't use a rule engine for the first time on a project that has strict deadlines
or is high-profile. Like all new technologies (to your organization), either
prototype the solution or gain the skills on a smaller project first.
Don't use a rule engine when it's the wrong technology. What you may be
looking for is workflow, or doing things in a strict sequence. Or you may just
need a web page management solution such as Spring Webflow.

There are many places where you can use a rule engine. This is especially true when:

The business logic changes often
There are people who understand the business problem in great detail, but
may not have the technical IT skills
The problem may be too fiddly or complex for other solutions
You need an agile solution—rule engines allow you to easily change the
business logic in an iterative manner

Summary
This chapter has given us a good platform for understanding business rules and
JBoss Rules. We saw the problems that you might have. We looked at what business
rule engines are, and how they can evaluate business rules that appear very simple,
yet when multiple rules are combined are extremely powerful.

In the next chapter, we'll use this platform to dive into hands-on business rules. We'll
start with learning more about the Business Rules Management System (Guvnor).

•

•

•

•

•

•

•

Getting the software
The previous chapter showed you all of the wonderful things that we can do with
Drools. But we will not get very far if we don't install the software first. So, in this
chapter we will see how to install the software.

What are we going to install?
We will be installing four pieces of software. All of these are open source (that
is, free), can be downloaded easily from the Internet, and are available under a
business-friendly license.

Java: This is the core computer language upon which all of the other tools
are built.
BRMS/Guvnor and JBoss App Server: This is a web-based rules editor
aimed at business users. We install JBoss App Server as the easiest place to
run this editor.
Maven, a build tool that takes the various Java scripts (source) and
transforms them into a package that we can deploy on a web server. Using
Maven makes our examples easier to understand, as Maven automatically
downloads all the other software required.
Eclipse and the Drools plug-in: Eclipse allows us to edit the Java files that we
will use for transporting information around the system. The Drools plug-in
gives us a more technical editor for rules, and the ability to see what is going
on inside the rules engine.
Drools examples for this book— hands-on samples so that you get to know
Drools inside out.

•

•

•

•

•

Getting the Software

[32]

Who should install it?
Broadly speaking, there are two types of people reading this book.

Technical people, who are already familiar with Java, but who want to
understand business rule technology
Business people who have the domain knowledge, but to whom the
technology (and Java) may be new territory

Although the setup guide here is suitable for both groups, don't be afraid to ask for
help. The reason why all of the setup instructions are here in one place is that you
can ask your nice, friendly, technical support person to 'set up everything in Chapter
2', and then return to Chapter 3 knowing that everything is in place. Indeed, many
companies have their desktops locked so that regardless of your knowledge, you're
going to have to request this technical assistance.

Why are the instructions in this guide only for Windows? What about the
Mac and Linux users?
As a complement to the Linux users, we'll assume that you know enough
about a computer to translate the instructions for your platform. Mac
users are in a trickier position. I am sorry that we had to concentrate on
the most popular platform. The software here will work on the Mac (it iswill work on the Mac (it is work on the Mac (it is
Java, after all), but you may need to follow up the links at the end of the
chapter to get Mac-specific instructions.

If you're technically adept, allow about one to two hours to install all of the software,
assuming you have a fast Internet connection so that you're not waiting too long
for downloads. Many of these instructions may be obvious (or you've done them
before). So feel free to plough on, but quickly check through to ensure that you've got
things set up correctly.

Installing Java
Java is the computer language in which Drools and all other products used in this
book are written. So it's pretty important that we install it. Fortunately, it's an open
source product from Sun that will run on almost every computer platform.

It's important to note that there are different versions of Java, such as:

The JRE (Java Runtime Engine) is intended for end users. The JDK
(Java Development Kit) contains this runtime, plus tools for the people
developing using Java (that's us!).

•

•

•

Chapter 2

[33]

Standard Edition (SE) is what we'll be using. There is also an Enterprise
Edition (EE) that takes the SE and adds a few more powerful services. While
it is likely that your business rules will be deployed in an enterprise system,
the SE is enough for the topics that we will cover in this book.
Some versions of Java come bundled with the Netbeans IDE (a Java editor).
This is optional, as we use the Eclipse Java editor instead (because we can get
a Drools plug-ins for Eclipse, but not Netbeans).

When downloading Java, remember that the version we use is the JDK (developers'
edition) of Java SE. To start, go to the web site http://java.sun.com/javase/
downloads/index.jsp.

Download the latest version (at least 6 or 6.1) of Java, selecting the correct language
and operating system for your computer. On the next screen, select the download
method that you want to use. If you're not sure, click the link Windows Offline
Installation and save the file in a place that you'll remember.

Once the download is complete, open this file. Click on Run, and then Accept the
license agreement, (but only if you don't intend to export it to North Korea, as per
the licence!). Unless you've specific reasons for doing otherwise, accept the defaults
of features and location by clicking Next. But be sure to make a note of the Install to
folder first (for example C:\Program Files\Java\jre1.6.0_06\).

•

•

Getting the Software

[34]

The install should chug away for a couple of minutes. You'll also be asked to install
the runtime. Again, unless you've any specific reasons for doing otherwise, accept
the default features and locations by clicking Next.

Let the install chug away for another couple of minutes. Amuse yourself by looking
at the advertisement for OpenOffice that appears. (By the way, OO is a very good,
and free, replacement for Microsoft Word, and is being used to write this book. So
if you have (ahem) a less-than-legal copy of Word, consider using OpenOffice as a
'drop in' replacement/upgrade available from www.OpenOffice.org.)

After another couple of minutes, you should see the 'Install complete' screen. Click
on Finish.

The installer may open a web browser asking you to register. This is an optional
step. Feel free to provide your personal details to Sun if you wish. It's a reputable
company, but I prefer to keep my private details, well, private.

Congratulations, you now have the Java development tools installed!

Installing JBoss
The BRMS/Guvnor is a web-based business rules editor. So we need a web server
to install it on. If you don't happen to have a web server that can run Java to hand
(although many companies do), then it's easy enough to install one. We're using
JBoss App server as it has the fewest steps to get the BRMS up and running.

Even though we're installing JBoss here, it is possible to run the BRMS/
Guvnor on other Java-based App/Web servers such as Websphere,
Weblogic, Tomcat, or Oracle Application server. See the wiki on www.
jboss.org/drools for more details.

Before we start the process, we need to tell JBoss where to find the version of Java
that we just installed. We do that by carrying out the following steps:

1. First, right-click on the My Computer icon on your computer desktop.

Chapter 2

[35]

2. Then, from the pop-up menu, select Properties, and the following screen
should appear. (A quicker way to carry out these two steps is to press the
Windows + Pause keys at the same time.)

3. Click on the Advanced tab in the window that appears.

Getting the Software

[36]

4. Then click on the Environment Variables button.

5. Click on the New button in this window. In the New User Variable window,
enter the variable name JAVA_HOME and the location at which you
installed Java on the previous step. On my machine this is
C:\Program Files\Java\jdk1.6.0_06, but it may be different on yours.

Chapter 2

[37]

6. Click on OK (multiple times) to close the windows that have been opened
during the preceding steps.

Actual install
Now you're ready to download JBoss from http://www.jboss.org/jbossas/
downloads/. Click on the download link on this page (take the latest stable version).
At the time of writing it's 4.2.2.GA, although 5 should be stable by the time you read
this. You'll be taken to the SourceForge download page. Select the filename ending in
.zip (and no other letters). Your download should begin. Save this file in a place that
you'll remember.

At the time of writing, there is an issue between JBoss 5 and the (in
progress) Guvnor. While this is likely to be resolved by the time you
read this, if you do encounter any problems (Error setting attribute
SecurityManagement) please try the 4.2.3 version

When the download has finished, unzip (that is, extract) the files to a folder of your
choice. By default, I use c:\software\JBoss. It might be helpful to follow this
convention on your machine so that all path names given in the book will be exactly
that same as on your PC.

If you don't already have a ZIP program (such as WinZip) installed on your machine
(that is, if you double-click on the ZIP file and nothing happens, or Windows asks you
which program you want to use), then install a ZIP utility. (There are several. I tend to
use the open source 7-zip utility, which is available from http://www.7-zip.org/.)

That's it! We now have the JBoss App Server installed (which was painless!). Now,
to run it, open the folder we just created (using Windows Explorer). Double-click on
the bin folder and you'll see a set of files. To start JBoss, click on run.bat.

After a couple of seconds, you'll see a new window with white text on a black
background. Look for the words Starting Jboss (Microcontainer), which indicate
that JBoss has found Java on your machine.

You may get a security question from Windows (or whichever firewall software that
you use). This is normal, so click on OK or Unblock.

Getting the Software

[38]

After a few seconds churn away, the text whizzing past should stop and you should
get a message that JBoss has started successfully (this message has been highlighted
for emphasis in the following screenshot).

As a final step to confirm that everything is working OK, open the following address
in your web browser:

http://localhost:8080

Congratulations, you now have the JBoss Web/App Server running on your PC!

Chapter 2

[39]

Installing the BRMS/Guvnor
Open http://www.jboss.org/drools/downloads.html in your web browser
and look for the 'Drools BRMS' download section). This may have been renamed to
Guvnor/version 5 by the time that you read this. In general, take the latest
available version.

Download this file to a place that you will remember. Once the download has
completed, extract (unzip) these files to a temporary folder—it should contain at least
one file, with the name drools-jbrms.war or guvnor.war.

Copy this .war file to the JBoss deploy directory. If you followed the same directory
name as I did when installing JBoss, this should be C:\software\jboss\jboss-
5.0.0.Beta4\server\default\deploy (that is, [wherever-you-installed-jboss]\
server\default\deploy).

Make sure that JBoss is running. (If it isn't, start it as per the previous step by clicking
on run.bat.)

You should see the following line (highlighted) appear in the console telling you that
the application has been successfully deployed.

To check this, open Internet Explorer (or your browser of choice) and go to the web
page http://localhost:8080/drools-jbrms/.

This web link will change depending on the name of the war file you
copied. If the name changes to guvnor.war, then the web page that
you need is http://localhost:8080/guvnor/.

Getting the Software

[40]

After a couple of seconds you should see more activity in the console (make sure that
you have no text highlighted there, as this will block JBoss). Eventually, you should
see the BRMS login screen in the browser, which look somewhat similar to the
following screenshot:

Congratulations, you now have the BRMS/Guvnor successfully installed! If you're
tempted, just click on OK (using a blank User name and Password) to log in and
have a look around.

By default, BRMS/Guvnor doesn't have security enabled. However, it's
easy to switch it on and use the same password security that you use to log
into Windows (via LDAP). See the Drools documentation for more details.

Installing Eclipse
We use Eclipse to edit the Java files that transport data to and from Drools. It's also
the basis for the Drools plug-ins, including the advanced rule editor. To get started,
download Eclipse from http://www.eclipse.org/downloads/.The version that
we want is the Eclipse IDE for Java EE developers, as this version pre-packages a lot
of additional tools and features.

Chapter 2

[41]

On the following screen, select your nearest mirror, and the Eclipse download
should start. Save the downloaded file in a place that you will remember (probably
the same place where you downloaded Java and JBoss). When the download is
complete, unzip the file to a folder of your choice. (I use c:\software\eclipse.)

Opening this folder in Eclipse shows a set of files including eclipse.exe. This is
the Eclipse IDE file. Congratulations, you now have Eclipse installed! (This was
too easy.)

Clicking on the eclipse.exe starts Eclipse. You should see the splash screen, and
then a request for where Eclipse should save its internal files. Normally I just accept
the default, making sure that the checkbox is selected (on the bottom left) so that I
am not asked the question again.

After that, a 'quick start screen' will appear with several useful links (feel free to click
around). When you are ready to go to the workbench, click on the curved arrow icon
on the far right of the screen.

Getting the Software

[42]

A blank Eclipse workspace should be displayed, as shown in the following screenshot:

That's it. Not only have you installed Eclipse, but you have it up and running.

Installing the Drools plug-in
Eclipse is not just a Java editor, but also a platform. This means that we can extend
it with any tool that we require. In this case, we're going to add the Drools plug-ins,
making it easier to edit and debug business rules.

The easiest way to install a plug-in is via the Eclipse update manager. This can find
plug-ins on the Internet and then download them, so it will need to know your
connection details. If you have a direct connection to the Internet (dial-up
or broadband) you won't need to change these.

However, in most corporate situations you will need to tweak the Eclipse settings.
The good news is that the Internet connection details you need will probably
be exactly the same as the connection details in Internet Explorer (and other
web browsers).

Chapter 2

[43]

To find your Internet connection details, open Internet Explorer. From the toolbar at
the top of the screen, select menu option Tools | Internet Options. In the dialog box
that appears, click on the Connections tab and then on the LAN Settings. Make a
note of the details that appear in the pop-up box.

To copy these settings to Eclipse, open the Eclipse IDE. From the Eclipse toolbar
(which is at the top of the screen), select menu option Preferences | General |
Network Connections. You should see a window similar to the following, in which
you can enter in your connection details:

If you are unsure of what to enter here (or if you need to change anything in the first
place) ask your colleagues—the answer will vary from organization to organization.

Getting the Software

[44]

Finding the plug-in
To find out the latest Drools Eclipse update site, open Internet Explorer and go
to http://www.jboss.org/drools/downloads.html. Look for the text 'Eclipse
Workbench update site'—the update site link will be shown next to this. You'll
probably want the most recent version (unless you specifically downloaded an older
version of Eclipse).

Right-click on the Update site link and go Copy shortcut—the text will be similar to
http://downloads.jboss.com/drools/updatesite3.3/. We'll need this address
in a minute.

Back in Eclipse, open the update site wizard from the main Eclipse toolbar (via menu
option Help | Software Updates | Find | Install). On the screen that appears, select
Search for new features to install, and then click on Next. Now we're shown a list
of already-installed features. As we want to add a new one, we click on New
Remote Site.

Chapter 2

[45]

In the pop up dialog box, give the new remote site a name (for example
drools-ide), and the URL of the update site that we searched for and copied earlier.

Click on OK to return to the previous Update Sites dialog box (the New Update Site
should now have been added to the list, with a tick mark against it) and then click on
Finish. Eclipse should then contact the update site to see which (new) plug-ins are
available. A new screen will appear showing the plug-ins that Eclipse has found. Make
sure that the checkbox next to the Drools IDE is selected, and then click on Next.

On the next screen, accept the terms in the license agreement (by selecting the
checkbox), and then click on Next.

Unless you've any particular reason for doing otherwise, accept the default install
directory and click on Finish. Eclipse should now take several minutes to download
the Drools IDE software. After all of the features have been downloaded, you'll get
a message displaying the jars that have not been digitally signed. This is OK (most
Eclipse plug-ins don't have signatures). Click on Install All to proceed with
the installation.

Getting the Software

[46]

Everything going well, you should (after a moment or two) get the Restart Eclipse
message. Click on Yes to complete the installation. You'll know that the install of
the Drools tools went smoothly if you can see the Drools icon toolbar as part of your
Eclipse screen when Eclipse re-opens.

Congratulations, you now have the Drools IDE running on your PC!

Installing Maven
Maven is a Java Build system from Apache (the same people who built the popular
web server). It takes Java source files and converts them into a format that we
actually deploy and use. We use Maven for two things: to build our samples (makes
the samples much easier to download and use), and later to build some of our
own Java code. More Maven documentation is available from the Maven site at
http://maven.apache.org/.

To get Maven, download it from http://maven.apache.org/download.html.
Select the ZIP file (all versions are the same, but compacted for download in different
ways). It's normally best to take the latest stable version. You'll then be asked to
select a mirror. Pick the one nearest to you; it should normally be OK.

Save the file to an easily-remembered place, and then unzip the file to a folder
 of your choice. Following the same convention as before, I use a folder such as
C:\software\maven\.

Chapter 2

[47]

Open the folder that you just created in Windows Explorer, and there should be one
more folder inside it (named apache-maven-x.x-.x). Copy the folder name in the
address bar. In this case it's C:\software\maven\apache-maven-2.0.9, but it is
likely to be different on your computer. We'll use this address to tell Maven which
directory it is located in.

If you can’t see the address bar, select menu option View | Toolbars |
Address Bar from the very top of the screen in Windows Explorer.

Open the environment variables as we did for setting the JAVA_HOME earlier
(right-click on My Computer and go to Properties | Advanced | Environment
variables). This time, click on the New button on the screen to create a new
environment variable.

Add an entry for Variable name (M2_HOME), and a variable value of the folder
(for example, C:\software\maven\apache-maven-2.0.9 that we copied earlier. This
value could be different on your machine; make sure that you use the correct path!).
Make sure there is no trailing '\' character.

Getting the Software

[48]

Click OK, and then highlight the Path entry in the Environment Variables dialog
box (this is the dialog box that you returned to when you clicked OK). Now click on
Edit, as shown in the following screenshot:

Add the value to end of the variable value as shown. This tells Windows where to
find Maven, no matter where we try to start it from.

;%M2_HOME%\bin

Warning! Paths can be temperamental at times, so play around with this
setting a bit if you have any problems with installing Maven..

Chapter 2

[49]

Click on OK a number of times to close all of the open dialog boxes.

Now, to check that we have installed Maven correctly, open a command window
(you may remember this as being called the DOS prompt). We'll be doing it a couple
of times, so it's worth remembering how to do it.

1. In Windows, press Windows + R and a dialog box similar to one shown
below should appear. (The windows key is the one with the windows logo
on it, often found on the bottom left of your keyboard next to the Alt key.

2. In this box, type cmd then click OK.

3. This will open a command window with white text on a black background. If
you're older than 30, you might remember all computers as looking like this!

Another way to open a command window is to find it from the Windows
start menu. This will vary depending on your version of Windows, but
in Windows XP, it is found under, Start | All Programs | Accessories|
Command Prompt. Just look for the following icon on the menu.

Getting the Software

[50]

4. In the command window, type:
 mvn -version

5. Then press Enter. If your Maven installation has been successful you should
see something like the following screenshot:

If you need to change the details of your Internet connection in Eclipse, then you will
need to do something similar for Maven too. This allows Maven to automatically
find and download all the libraries required. The details of your Internet connection
will be same as the ones we used before. To pass these details to Maven, carry out
the following steps:

1. Find the Maven configuration file (which is named settings.xml) and open
it in an editor such as Microsoft Notepad.

2. Find the section beginning with <proxies> and edit it so that it is similar
to the following example. Of course, the values will be different for
your system.

 <proxies>
 <proxy>
 <id>optional</id>
 <active>true</active>
 <protocol>http</protocol>
 <username>user-name-if-required-or-delete-line</username>
 <password>password-if-required-or-delete-line</password>
 <host>url-of-proxy-host</host>
 <port>80</port>
 </proxy>
 </proxies>

Note that we've removed the lines beginning with <!-- , |, and --> as these are
comments. We've also deleted the line beginning with <nonProxyHost>. For
 more information on configuring proxies in Maven, refer to the guide found at
 http://maven.apache.org/guides/mini/guide-proxies.html.

Chapter 2

[51]

Installing sample projects for this book
All of the samples in this book follow the same format. So, a good time to
download one of the samples is when you have technical people around. Our first
downloadable example is from Chapter 6, which can be downloaded from the
sample site at http://code.google.com/p/red-piranha/. Unzip the file to C:\
projects\drools-book-examples. Open a command window (using the Windows
+R key as we used earlier). Move to the directory that we just created by typing the
following line:

cd C:\projects\drools-book-examples

Now we can use Maven to build the samples project by typing the following
command and pressing the Enter key:

mvn clean package

Maven will automatically download all of the required software and libraries.
This can take a couple of minutes. If the download is successful, you should see
output similar to the following:

Congratulations! You have now successfully downloaded the samples for this book,
and all of the required software. Now we're going to set up the samples in Eclipse to
make it easier to look around them.

Getting the Software

[52]

Setting up the sample project in Eclipse
Maven can automatically set up the Eclipse project for us. In the same command
window as the one shown earlier, type the command:

mvn eclipse:clean eclipse:eclipse

This is much quicker and should only take a couple of seconds to run.

Now open Eclipse (using the previous steps, double-click on eclipse.exe). When
Eclipse opens (and you've selected the workspace), select File | New Project from
the menu (on the top left) and the following dialog box will appear:

Select Java Project under the Java folder, and then click on Next. In the dialog box
that appears next:

Give the project a name (I've used drools-book-examples, as I find it easier to
keep the project name the same as the folder name)
Uncheck the use default location checkbox

•

•

Chapter 2

[53]

For the location, enter the folder to which we unzipped the sample files
(for example, C:\projects\drools-book-examples)
Leave all of the other values as they are
Click on Next

•

•

•

Getting the Software

[54]

Eclipse will find the project files that Maven created for us at this location, so all our
libraries and source paths are already set up for us on the next screen.

We can safely click on Finish. Eclipse will ask if you wish to switch to the Java
Perspective. Click on Yes.

If you see a screen without a red cross next to the project name (unlike the following
screenshot) then rejoice, as this means that the samples for this book are set up
successfully and you're ready to go to Chapter 3.

Getting Maven and Eclipse to work together
If you see a red cross next to the project name or if you see the following errors in the
Problem tab, then you need to tell Eclipse where Maven stores its files.

In Eclipse, select Windows | Preferences from the toolbar at the top of the screen.

Chapter 2

[55]

In the dialog box that appears, select menu option Java | BuildPath | Classpath
Variables. You will see a screen similar to the following:

Click on the New tab on the righthand side of the dialog box. In the dialog box that
appears next, enter the Name (M2_REPO) and the Path where Maven stores its files.

Getting the Software

[56]

On Windows XP machines, this is likely to be in the format:

C:\Documents and Settings\Administrator\.m2\repository

Replace Administrator with your username.

On Windows Vista machines, this is likely to be in the format:

C:\Users\Administrator\.m2\repository

Again, replace Administrator with your username.

If there is any doubt, open Windows Explorer and try to navigate to the files.
Alternatively, use the search facility in Windows Explorer to find the .m2 folder on
your machine. It's best to search all of the files under the C drive. This takes longer,
but there's a better chance of finding the file.

Back in Eclipse, when you've finished entering the variable name and value, click on
OK. You will be asked if you want to do a full build. Click on Yes.

After a few seconds, the red crosses should disappear and you should see the project
set up as per the screenshot in the previous step.

Chapter 2

[57]

Troubleshooting
Here is a list of things for you to check if anything goes wrong:

1. Ensure that you have the developer version of Java installed, and not just
the runtime.

2. Check the proxy settings for Eclipse and Maven. If your download stops or
hangs half way through, try running the command again.

3. Check that you don't have two copies of JBoss or Eclipse running at the
same time.

4. Check the versions of JBoss and BRMS/Guvnor that you have installed. If
BRMS/Guvnor is not working, try dropping back to an older version (of both
JBoss/BRMS) and repeat the steps again.

5. If you have any problems with setting up the Eclipse project for the samples
(or even if you're seeing strange Eclipse errors later), remember that Maven is
the master build, and Eclipse (in this case) is just a glorified text editor. So try
these steps; Close Eclipse, Delete the .classpath and .eclipse files in the
root of the folder and the .settings folder, then run the Run the command
mvn eclipse:eclipse again. Then follow the instructions to setup the eclipse
project again

6. If you get a specific error message, try searching that term in Google.
7. Double-check the instructions on the Java, JBoss, Maven, or Eclipse web site

(as appropriate).
8. If everything else fails, read How to ask for help from the previous chapter.

Summary
Whew! We have covered a lot. If you've just re-joined us (because somebody has
kindly set up the technical items for you), then this is what we did:

1. Set up Java.
2. Set up BRMS/Guvnor running on the JBoss App Server.
3. Set up Eclipse and installed the Drools plug-in.
4. Installed the Drools examples for this book and the Maven to build them.

We'll be using all of these tools in the next couple of chapters, starting with the
BRMS/Guvnor to edit our business rules.

Meet the Guvnor
By now, you're probably keen to see if rule engines can live up to the hype. In the
previous chapter, we set up all of the tools that we need. Now we're going to dive
right in and write our first business rule.

Although we have a couple of choices of business rule editor, we will start writing
our rules using the Guvnor editor (formerly known as the BRMS). This is a user-
friendly web editor that's powerful enough to test our rules as we write them. Along
the way, we'll explain some of these concepts:

A quick tour of Guvnor
Loading the samples
Our first business rule—Hello world

Taking a tour with the Guvnor
If you've ever been in London, most of the taxi drivers will call you Guv'nor. We'll
avoid all play with words (and cockney rhyming slang) about 'taking a tour' and
'taxis' in this chapter, and just get on and see what the Guvnor screens can do.

Getting started
When we set up Guvnor in the previous chapter, we tested it by going to a web
address similar to:

http://someServerName:8080/drools-guvnor

http://localhost:8080/drools-guvnor

•

•

•

Meet the Guvnor

[60]

Open up the address in a web browser. The following screenshot uses Internet
Explorer (even if it only shows the web page), but Guvnor will also work with
Firefox, Safari, Opera, and most other browsers. You will see a screen similar to
the following one:

The screenshot shows the Guvnor login screen. By default, any username and
password will be accepted, unless the version has been configured with extra
security (for example, to use your Windows account details-ask whoever did the
setup). Click on OK, and you'll be shown the welcome screen.

General navigation
The first screen you will see is the search screen. This screen, like most screens in
Guvnor, has the following components:

The Drools logo on the upper-left of the screen.
Details of who you are logged in as on the upper-right (this will be blank if
you logged in using a blank username). This area also gives you the option to
log out.
The Guvnor Navigation sidebar (Navigate Guvnor) allows you to access all of
the Guvnor functionality. In the search screen Rules | Find portion is shown.
On the main, rightmost part of the screen is the functionality that we happen
to have open (in this case the search screen). This part of the screen will
change depending on what we are doing.

Navigating in Guvnor is fairly intuitive. Just click on the links (that's anything with a
'+' sign next to it) on the lefthand side of the screen within the navigation toolbar to
make them expand. Click on the displayed items to open them in the righthand side
of the screen. Note that after you open a few screens in this way, you'll have a row of
tabs across the top of the screen (similar to Excel). These allow you to switch easily
between the most commonly used Guvnor screens. The following figure shows the
tab bar in Guvnor:

•

•

•

•

Chapter 3

[61]

The search screen
If you opened any other tab, you can return to the default search screen by clicking
on the Find tab of the Guvnor tab bar. You will see something similar to the
following screenshot:

The search screen (Find) works just like Google, allowing you to search for rules and
other assets that you use within your rules. But what's the Include archived items in
list option for? Remember we said that the Guvnor gave you version management?
Nothing is ever deleted, just shuffled into an archive in case you need it again in the
future—a bit like the 'Undo' feature in word, only much more powerful. Selecting
the Include archived items in list checkbox allows you to search for older or deleted
versions of rules and other assets.

What's this about assets? I thought this was a book about rules.
Rules can't work in isolation. They need a support team. Assets provide
this support—things such as a data model (to get information to and from
rules), packages (to organize the rules into folders), and more. Remember
that all rules are assets, but not all assets are rules.

Meet the Guvnor

[62]

Administration
If you did a search on the previous screen, the chances are that no results were
returned. By default, there is nothing to search for (unless samples or other rules
are hanging around on your machine from a previous version). This is good when
we write our rules (as we have a clean sheet), but not so good for our quick tour. To
make this clearer, let's load some sample rules.

Loading the samples
The Guvnor samples, which provide the business rules for an extremely shady car
insurance company, are available from the Book Samples web site
http://code.google.com/p/red-piranha/.

Download the droolsbook_chapter3_sample.zip file and extract it to a temporary
folder. Find the repository_export.xml file. We'll need this in a minute.

Within Guvnor, click on the Admin tab, then click on Import / Export. (You may
need to expand the Admin tab by clicking on the '+' sign next to it.) You will see the
Backup Manager tab, as per the following screenshot:

Click on the Browse button and select the repository_export.xml file that we
found earlier. Then click on Import (the button with the up arrow next to it).

After clicking on OK to confirm that you want to import the file (remember, this will
wipe out anything that you have done up to this date), the system will churn away for
a few minutes. Then it will display a message indicating that the import is successful.

Chapter 3

[63]

Now go back to the search screen (click on the Find tab, or on the left sidebar click
on the Rules tab, and then select Rules | Find) and look for items with the word
'insurance'. You will now get plenty of search results.

Go ahead, and play around with Guvnor. You can always clear
everything by redeploying Guvnor. To do this, first stop JBoss (you
may need to press Ctrl+C). Then, in the folder that you installed JBoss
into (for example, C:\software\JBoss), there will be a folder called
repository—this is where Guvnor stores all of the rules. If you delete
the folder and restart JBoss, you have a new, clean, version of Drools
Guvnor. Be careful though, as this will wipe everything (Rules and other
assests) that you've created in this version of Guvnor!

What did we just do?
In short, you saved yourself a lot of typing.

By now, you will be getting the feeling that the Guvnor is more than just a web page.
It is an industry-standard repository for your rules. A repository is useless without
being able to import and export information. We just imported the standard Drools
insurance sample into the Guvnor. It makes the web pages that we're going to view a
lot clearer when we see some real life examples.

The Drools repository is based on Apache Jackrabbit. This has its own
storage, but can be configured to use an industry-standard database such as
Oracle, Microsoft SQL Server, or MySQL. No matter how good the database
is, it's still reassuring if we can import to it and export from it. For this,
Guvnor uses and XML-based format. If you're curious, open repository_
export.xml in your favorite text editor and have a look at it.

More on the admin page
The administration page can do more than just import rules. This page gives
you functionality not directly related to rules editing, but vital for managing the
system—for example archiving items, managing rule categories, and so on.

Meet the Guvnor

[64]

To see what else the Admin tab can do, open it (if you haven't already done so) by
clicking on Administration | Admin | Categories. On the lefthand side you'll see
the following options:

Let's run through these:

1. Categories: Every rule lives in a folder (or package) similar to what you
might find on your computer's hard disk. But we can also 'tag' the rule or
asset with a category name (such as 'sales' or 'accounts'). This screen gives the
ability to change these categories and tags.

2. Archived Items: Archiving is like deleting (except that nothing really gets
lost). If we archive a rule or asset, it normally 'disappears' from that screen.
Otherwise the screens would get cluttered with older rules. This option lets
us find archived items if we need them again.

3. Statuses: Rules and assets don't get written in one sitting. Often they pass
through various states such as 'draft', '2nd draft', 'review' and 'production'.
The various states will differ depending on the process your organization
follows. Luckily, this screen allows us to set various asset states (the default
ones being draft and production).

Chapter 3

[65]

4. Import/Export: We've already seen how to import rules into a system.
Export is the process in reverse (extracting rules from our system so that we
can import them on another computer and/or back into our own system
at a later date). Note that the file exported is a compressed ZIP file. The
repository_export.xml file needed for importing it later is stored inside it.

5. Error log: What happens when something goes wrong? The error log gives
you more details (over and above the usual error message that you will see
on the screen).

What's the difference between a category and a status? Although bothcategory and a status? Although both and a status? Although bothstatus? Although both? Although both
are used to describe a rule, they do different things. A status may change
over the lifetime of a rule (for example, moving from draft to production),
while a rule will normally stay in the same category (for example, sales)
during its lifetime. In addition, a rule can have only one status, but can
have many categories assigned to it.

Categories are important—every rule and every asset must have a least one of them.
So let's take a minute to look at the following Edit categories screen. The screen
shows the insurance categories that we imported in the previous step. If you want,
you can add, rename, or delete category names here. We can even nest categories
inside categories. But don't get carried away, as often the complexity isn't needed!

Meet the Guvnor

[66]

Rules
Now that we understand categories, we're ready to look at the rules pages. We
already saw the search/find rules screen as soon as we opened Guvnor. To see the
other rules pages, click on the Rules tab, then expand both the States and Categories
submenus (by clicking on the '+' sign). Double-clicking on the Production state will
allow you to see the insurance rules, as shown in the following screenshot.

If you're clicking through States and Categories, you'll see that many of the rules/
assets are repeated. That's OK—a rule will have a state and one or more categories.
Think of it as many different ways of finding the same thing.

There are a lot of entries here (on the righthand side), but they all belong to a few
simple types.

Process
You are probably familiar with workflow diagrams. JBoss Rules allows you to draw
workflow diagrams in the Eclipse IDE (but not yet in Guvnor). This allows you to
have more control over the order in which groups of rules fire. The insuranceProcess
item in the above screenshot is an example of a process.

The model
We mentioned earlier that rules are deployed as a part of a larger system. So we need
a way of getting information into and out of the rule engine. The model lets us do this.

Chapter 3

[67]

To explain this in more detail, think of how you might email sales information
around our imaginary chocolate company from the previous chapter. You'd
probably send the information in a spreadsheet similar to one that follows, showing
customer sales for the month of February.

The insuranceModel item in the above screenshot is an example of this.

In the above screenshot, we have four columns showing Customer Name, Sales,
Date of Sale, and an indication of whether we've sold items other than chocolate
to the customer. Imagine the spreadsheet for March—the customer details might
change, but the structure of the spreadsheet (including the columns) remains the
same. The structure of the spreadsheet (but not the contents) is the model. For JBoss
Rules, it's written in Java.

Clicking on a model item (in the case of the rules in our Guvnor example, the
insuranceModel item) is a shortcut to the screen to upload or download the model
files that we created in Java.

Guided rules
The aim of the Guvnor is to allow the easy editing of business rules. The guided
rules screen (available by double-clicking on the Quick approval - safe driver, any
policy type rule in the previous screen) allows you to do this. This is a guided editor
that makes intelligent suggestions to help you write your rules. With this editor
you won't be typing any text, but using dropdowns and clicking on icons to create
business rules.

Meet the Guvnor

[68]

The following screenshot is the guided rule editor for the Quick approval rule:

The key features of the lefthand side of this screen are:

Buttons at the top left to Save changes, Copy, and Archive the rule
The When and Then sections of the business rules on the upper-left and
middle left
Three green '+' icons next to the When, Then, and Options sections to add
more constraints or consequences
Multiple '-' icons (next to the textboxes) allowing you to delete existing
constraints or consequences
Options that describe the rule; for example, is it part of a process flow, is it
enabled, and the date that it is effective from
Buttons (near the bottom), used to view the source (View source) and
validate the rule (Validate)
A space (at the bottom of the screen) to allow (optional) information about
the rule to be specified

•

•

•

•

•

•

•

Chapter 3

[69]

On the righthand side of the screen, you will find the following features:

Options on the upper-right,used to change the Status and Categories
Notes on the package to which the rule belongs
Version history and other metadata about the rule, such as who created it
and when

Everything that you do on this screen actually creates the technical rule behind the
scenes (and hides the complexity from you). The View Source button allows you to
see (but not edit) the rule that is created for you. If you want the additional power of
editing technical rules, you can always use the technical rules screen.

Technical rules
Most of the assets in the insurance sample are actually technical rules (for example,
the Quick approval rule. If you open the Driver Glass Coverage rule (by double-
clicking on it in the list of rules) you'll see a similar screen, but with text instead of
the guided editor.

Note that this text-based rule follows the same "when…then" format.

 when
 $driver : Driver (driverID : id)
 $supple : SupplementalInfo (driverId == driverID,
 glassCoverage == true)

 then
 $driver.updateInsuranceFactor(1.05);
 System.out.println("Driver wants glass coverage: " +
 $driver.getInsuranceFactor());

Or, in plain English:

 When
 There is a Driver
 And that Driver has requested glass coverage
 Then
 Update the driver's insurance factor
 Print a message saying that the driver wants coverage

The technical rules follow a predictable pattern, so it gets easier to understand and
even to write. We've to leave something for the next few chapters!

•
•
•

Meet the Guvnor

[70]

Creating a new rule
Clicking on the Create New button just underneath the Rules section on the
navigation bar brings up the following menu. This menu allows you to create new
technical and business rules (like the one's we've just seen). It also allows you to
create DSL-based rules (a way of writing near-English business rules), Decision
Tables (an Excel-like format for business rules), and test scenarios (to make sure that
your rules work the way you intend them to).

Packages
Packages are like folders. They are a way of organising rules and assets. The
difference between packages and directories comes at deployment time, when
everything in one package gets deployed at the same time. Opening the package
(org | acme | insurance | base) shows you all of the assets available in the package.

Most of these concepts (business rules, technical rules, DSL, models, rule flows, and
test scenarios) are familiar, but there are two new items: Functions and Enumerations.
We might want to call Functions, which are useful for calculations and the like, from
the rules. Enumerations are lists of values that we can use in our rules.

Chapter 3

[71]

The Create New button (just below the Packages tab) allows you to create new ones
of each of these items.

If you select the main package (base), you will be able to see a summary of the
package details.

Java recommends a standard notation for packages names (that's where
the name org.acme.insurance.base comes from). Although you
don't have to follow this convention, there is no harm in doing so
(especially when we start talking about the Java-based rule model later).
The package name looks a little bit like an Internet web address (although
it doesn't actually link to anything). The format is:
companyurl.projecturl.subproject.
anyotherdivisionsrequired.
Most of the packages that you create will only need three or four levels.
However, there can be as many subdivisions as you need. You will see
more of these subdivisions when we talk about Java code (Fact models).

Meet the Guvnor

[72]

Some of the features on the package details screen (from top to bottom) are:

The buttons Copy, Rename, and Archive at the top of the screen, used to to
copy, rename, and archive (delete but save a copy) respectively.
Next, just below the Configuration heading are the statements that import
the fact model into the package. These are normally generated automatically
when we add the (Java) fact model.
An optional Description of the package.
A Save and validate configuration button, used to to save (and validate)
the configuration.
A Build package button, used to to build the package and put it into a
deployable condition (or let you know of any problems).
A Show package source button, used to show the package source (for
example, the technical rules language that has been written by Guvnor
on your behalf). This shows the entire package (including imports and
functions), and not just single rules.

The button used to build the package is important, as building the package is the
step before deployment (that is, using our rules in a real-life production system).

•

•

•
•

•

•

Chapter 3

[73]

Deployment
To open the deployment screen, click on the Deployment bar in the lefthand
navigation section (available on all screens). This screen plays a very important
role. It gets your rules and assets from the Guvnor editor and puts them into the
production systems.

When you edit your rules, they don't get deployed (to the live or real world system)
immediately. Can you imagine being in the middle of writing the second of three
new rules and having the incomplete rule set deployed? The Deployment tab allows
you to control when your rules are released to the end users. It also allows you to
view previous deployments.

Clicking on the Deployment tab displays the following screenshot. The list of
available snapshots comes from the packages built by the Build package button
under the Package tab.

In addition to the Delete and Copy buttons, there is a web link (URL). You can use
this in two ways. You can click on it here to download the package (if you wish to
copy and deploy it manually to the target system). Or you can right-click on the link
and copy the URL. Drools provides a component (called the RuleAgent) that we
can deploy into our production system. The RuleAgent can check for updates to the
package (via the URL) and deploy them to production automatically.
The architects of your target system will probably have a specific deployment plan
(generally it's not a good idea to deploy rules directly to production). Guvnor gives
you a couple of options, but this default one will help you to get your system up and
running quickly.

QA—Quality Analysis
Here's a problem: You write rules and you check them to make sure they do what
you intend them to do. They work OK. Then you change a rule. So you have to test
them again. Still OK this time. What if it's the 60th time you've made a tiny change?
Are you tempted to skip the testing yet? Or maybe you'll test, but not as well as you
should. What if you've 600 rules? Do you test all of them?

Meet the Guvnor

[74]

Automating testing in Guvnor
The solution: You automate the testing. This is what the Guvnor Quality Analysis
page allows you to do.

This page is pretty simple. You know the inputs to your rules (for example, the
insurance application form for your typical first-time 21-year old driver) and the
outputs from the rules (the insurance premium that they should pay). The inputs
and outputs should be the same every time, which makes them ripe for automation.

The testing framework alerts you if the test results differ from what you expect. That
way, you spend less time testing and more time playing golf (or whatever it is that
you do). And you end up with better quality tests.

We'll create a simple test scenario when we'll write our 'Hello World' sample in the
next section. But as you can see from the following screenshot, this screen allows you
to run all of the tests.

Many people (me included) recommend Test-Driven Development or
TDD that is, you write your test before you write your business rule
(write test, write rule, verify test, write test, and so on). The reason for
testing first is that, as a human, you may be tempted to "forget" to write
your test if the business rule appears to work OK.
Over time, these single tests build up to give you a 'safety net' that
dramatically reduces the cost of things going wrong. It's much easier and
cheaper to fix something that you've just written (when your tests fail)
rather than three months later when you go live and your airline is giving
away free transatlantic flights by accident on it's web site.

The test scenario screen allows us to run all of the tests in our packageall of the tests in our package the tests in our package
simultaneously, which is a useful sanity check for our rules, before deploying them.

Chapter 3

[75]

The analysis page
The power of business rules comes from writing many simple rules that cover most
business scenarios. For example, insurance rates for drivers under 20 years of age,
insurance for the people above 40 years, insurance for the people above 60 years.
But what if we leave a gap (in this example, insurance for drivers in the age range
of 20-40 years)?

The analysis page carries attempts to catch these gaps. It's not perfect (especially for
more complicated scenarios), but for the items that it catches, you'll be glad that you
used it.

Hello World example
It's traditional to show the simplest possible example—a rule that just says 'Hello
World' when it is fired during a test scenario.

Writing the rule
The easiest way to do this is to create a new technical rule. In Guvnor, select the Rules
tab, click on the Create new dropdown, and then select New DRL (technical rule). A
new screen will appear.

We enter a name (HelloWorldRule), a category (that can be created using the Admin
tab we saw earlier), and use the defaultPackage and (optionally) enter a description
of the rule.

Meet the Guvnor

[76]

Clicking on OK will take us to the (technical) rule editor, similar to the one we saw
on our tour of the Guvnor (although at this point the rule is blank). In the main part
of the screen (the blank part) enter the following text:

rule "Hello World"
when
 eval(true)
then
 System.out.println("Hello world");
end

The important thing about this rule is the when… eval(true)
statement. This means that the rule will always try to fire and carry out
the then part— that is, print the 'Hello World' message.
Normally, our business rules would be much more choosy about 'when
they fire' (and have a lot more conditions in the 'when' part). But for our
simple sample, this suits us fine.

Next, save the changes by clicking on the Save changes button. You should be asked
for an optional 'check in' comment after clicking this button. Congratulations, you've
written your first business rule!

Firing the rule
Now we've a problem. Unlike most computer languages (for example, Java or C#),
we can't 'run' a set of business rules—after all they have no single start point!

So how do we test our shiny new 'Hello World' rule? The answer is that we contrive
a scenario that we know should cause our rule to fire. In Guvnor, this is relatively
easy to do using the QA screen that we saw above. We'll use the QA screen to create
a new test scenario where we can exercise our business rule.

This point about not being able to run rules is important and may be a
major change from what you are used to. Remember that with rules, you
say 'do this when this is true' and leave the rule engine to carry out that
instruction when it finds itself in that scenario.

Chapter 3

[77]

Let's create a new test scenario in Guvnor. A little bit strangely, this is done via
the Packages tab. Select Packages | Create new | New test scenario, and a screen
similar to the one shown in the following screenshot will be displayed:

Similar to what you did for creating a new business rule, enter a Name, Package,
Initial description and then press OK. The scenario-editing screen will then
be displayed.

This screen has three green '+' signs that we use to set up our scenario. From top to
bottom these are:

GIVEN — allows us to set our inputs (that is, create a scenario in which we
know a business rule will fire)
EXPECT — allows us to inspect the output after the rule has fired, to make
sure that it has worked correctly
globals — allows us to pass in environmental variables that the rule may need

•

•

•

Meet the Guvnor

[78]

Fortunately for us, as our rule is set to fire every time, we don't need to set these
up. All we have to do is click the Run scenario button. When we do this, two things
will happen:

1. We will see a message appear on the web page—1 rules fired in 0ms. Pressing
the Show rules fired next to this message shows that the 'Hello World' rule
was activated.

2. We will see a 'Hello World' message in the web server (JBoss) log, similar to
the following:

What just happened?
In the first part we created a rule that essentially said:

rule "Hello World"
when
 Anytime the rules are run
then
 Print a message to the console ("Hello world");
end

The next step (firing the rules) was to contrive a situation where the preconditions in
the when part were met so that the rule would fire. For such a simple rule, this was
easy. In fact, we had nothing to add in this case.

Finally, when we ran this scenario, the rule was activated, and the Hello world
message was successfully printed to the console.

Summary
In this chapter we did three things. We loaded the Drools insurance sample into
the Guvnor editing tool to give us some very good examples. Then we looked at
the various Guvnor screens and saw that Guvnor can not only write rules (using
both guided and advanced editors), but can also organize them and other assets
into packages. The Guvnor screens also allow us to test and deploy these rules.
Finally, we wrote our very first business rule—the traditional 'Hello World' message,
announcing to everyone that we are now business rule authors.

We will use all of these skills in the next chapter. In that chapter, we will start on more
sophisticated business rules, using both Guvnor and more advanced editing options.

Guided Rules with
the Guvnor

In the last chapter we took a tour with the Guvnor and used it to write our first
business rule, and printed out a traditional 'Hello World' message. Although this
rule is a major step forward for us, we're not really using the full power of the Drools
rule engine. In this chapter, we're going to stay with the Guvnor rule editor, and use
it to write some more sophisticated rules. In particular, we're going to:

Show how to put information into and out of our rules
Build a fact model to hold this information
Import our newly built model into Guvnor
Create guided rules using this fact model
Run and test our new fact-based rules

Passing information in and out
The main reason for the simplicity of our Hello World example was that it neither
took in any information, nor passed any information out—the rule always fired, and
said the same thing. In real life, we need to pass information between our rules and
the rest of the system. You may remember that in our tour of the Guvnor, we came
across models that solved this problem of 'How do we get information into and out
of the rules?'.

If you're familiar with Java, models are just normal JavaBeans deployed
into Guvnor/JBoss rules in a JAR (ZIP-like) file; nothing more, nothing
less. In fact, a lot of the time you can use the JavaBeans that already exist
in your system.

•

•

•

•

•

Guided Rules with the Guvnor

[80]

Here's a quick reminder of the spreadsheet that we used as an example in the
last chapter:

If we want to duplicate this in our model/JavaBean, we would need places to hold
four key bits of sales-related information.

Customer Name: String (that is, a bit of text)
Sales: Number
Date of Sale: Date
Chocolate Only Customer: Boolean (that is, a Y/N type field)

We also need a description for this group of information that is useful when we have
many spreadsheets/models in our system (similar to the way this spreadsheet tab is
called Sales)

Note that one JavaBean (model) is equal to one line in the spreadsheet.
Because we can have multiple copies of JavaBeans in memory, we are able
to represent the many lines of information that we have in a spreadsheet.
Later, we'll loop and add 10, 100, or 1000 lines (that is, JavaBeans) of
information into Drools (for as many lines as we need). As we loop,
adding them one at a time, the various rules will fire as a match is made.

Building the fact model
We will now build this model in Java using the Eclipse editor we installed in Chapter
2. Don't worry if this is your first bit of Java; we're going to do it step-by-step.

•

•

•

•

Chapter 4

[81]

1. Open the Eclipse/JBoss IDE editor that you installed earlier. If prompted, use
the default workspace. (Unless you've a good reason to put it somewhere else.)

2. From the menu bar at the top the screen, select File |New Project. Then
choose Java Project from the dialog box that appears. You can either select
this by starting to type "Java Project" into the wizard, or by finding it by
expanding the various menus.

3. In the Create a new Java Project dialog that appears, give the project a name in
the upper box. For our example, we'll call it SalesModel (one word, no spaces).

4. Accept the other defaults (unless you have any other reason to change them).
Our screen will now look something like this:

Guided Rules with the Guvnor

[82]

When you've finished entering the details, click on Finish. You will be redirected to
the main screen, with a new project (SalesModel) created. If you can't see the project,
try opening either the Package or the Navigator tab.

When you can see the project name, right-click on it. From the menu, choose
New | Package. The New Java Package dialog will be displayed, as shown below.
Enter the details as per the screenshot to create a new package called org.sample,
and then click on Finish.

If you are doing this via the navigator (or you can take a peek via Windows
Explorer), you'll see that this creates a new folder org, and within it a subfolder
called sample. Now that we've created a set of folders to organize our JavaBeans,
let's create the JavaBean itself by creating a class.

Did you play with Lego blocks as a kid—multicolored plastic blocks that
you could pull apart and stick together again and again? JavaBeans are
like those Lego blocks—instead of building toy houses, we can build
entire computer systems with them.
Often, while playing Lego, you'd run out of blocks (often red roof tiles)
just when you were about to finish. Luckily, in Java, we can create as
many blocks as we want. The class that we're about to put together is our
mould to let us do this.

Chapter 4

[83]

To create a new Java class, expand/select the org.sample package (folder) that we
created in the previous step. Right-click on it and select New Class. Fill in the dialog
as shown in the following screenshot, and then click on Finish:

Guided Rules with the Guvnor

[84]

We will now be back in the main editor, with a newly created class called Sales.java
(below). For the moment, there isn't much there—it's akin to two nested folders (a
sample folder within one called org) and a new (but almost empty) file / spreadsheet
called Sales.

package org.sample;
public class Sales {
}

By itself, this is not of much use. We need to tell Java about the information that we
want our class (and hence the beans that it creates) to hold. This is similar to adding
new columns to a spreadsheet.

Edit the Java class until it looks something like the code that follows (and take a
quick look of the notes information box further down the page if you want to save a
bit of typing). If you do it correctly, you should have no red marks on the editor (the
red marks look a little like the spell checking in Microsoft Word).

package org.sample;

import java.util.Date;

public class Sales {

private String name;
private long sales;
private Date dateOfSale;
private boolean chocolateOnlyCustomer;

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public long getSales() {
return sales;
}

public void setSales(long sales) {
this.sales = sales;
}

public Date getDateOfSale() {
return dateOfSale;
}

public void setDateOfSale(Date dateOfSale) {
this.dateOfSale = dateOfSale;

Chapter 4

[85]

}

public boolean isChocolateOnlyCustomer() {
return chocolateOnlyCustomer;
}

public void setChocolateOnlyCustomer(boolean choclateOnlyCustomer) {
this.chocolateOnlyCustomer = chocolateOnlyCustomer;
}
}

Believe it or not, this piece of Java code is almost the same as the Excel Spreadsheet
we saw at the beginning of the chapter. If you want the exact details, let's go through
what it means line by line.

The braces ({ and }) are a bit like tabs. We use them to organize our code.
package—This data holder will live in the subdirectory sample within the
directory org.
import—List of any other data formats that we need (for example, dates).
Text and number data formats are automatically imported.
Public class Sales—This is the mould that we'll use to create a JavaBean.
It's equivalent to a spreadsheet with a Sales tab.
Private String name—create a text (string) field and give it a column
heading of 'name'. The private bit means 'keep it hidden for the moment'.
The next three lines do the same thing, but for sales (as a number/long),
dateOfSale (as a date) and chocolateOnlyCustomer (a Boolean or
Y/N field).
The rest of the lines (for example, getName and setName) are how we control
access to our private hidden fields. If you look closely, they follow a similar
naming pattern.

The get and set lines (in the previous code) are known as accessor
methods. They control access to hidden or private fields. They're more
complicated than may seem necessary for our simple example, as Java has
a lot more power than we're using at the moment.
Luckily, Eclipse can auto-generate these for us. (Right-click on the word
Sales in the editor, then select Source | Generate Getters and Setters
from the context menu. You should be prompted for the Accessor
methods that you wish to create.)

Once you have the text edited like the sample above, check again that there are no
spelling mistakes. A quick way to do this is to check the Problems tab in Eclipse
(which is normally at the bottom of the screen).

•

•

•

•

•

•

•

Guided Rules with the Guvnor

[86]

If you do have any problems, you may be able to use the Eclipse quick-fix
feature (highlight the problem, then press Ctrl+1). If that doesn't work,
check again and ensure that the spelling is exactly the same as shown
earlier. If that doesn't work, follow the steps in the How to ask for help
section near the beginning of this book.

Now that we've created our model in Java, we need to export it so that we can use in
the Guvnor.

Chapter 4

[87]

1. In Eclipse, right-click on the project name (SalesModel) and select Export.
2. From the pop-up menu, select jar (this may be under Java; you might

need to type jar to bring it up). Click on Next. The screen shown above will
be displayed.

3. Fill out this screen. Accept the defaults, but give the JAR file a name
(SalesModel.jar) and a location (in our case C:\temp\SalesModel.jar).
Remember these settings as we'll need them shortly.

4. All being well, you should get an 'export successful' message when you click
on the Finish button, and you will be able to use Windows Explorer to find
the JAR file that you just created.

What is a JAR file? JAR stands for Java Archive and is just another name
for a ZIP compressed file (you may be familiar with the WinZip utility).
Although our model is pretty small (only one file), compressing the files
and putting them in one place (the JAR) saves a huge amount of time
when deploying larger systems.

Congratulations! You have not only built your first Java file (possibly), but also
successfully exported it elsewhere for use. But now that we've built this, how do we
use it in the Guvnor?

Importing the fact model into Guvnor
Switching back to the Guvnor, we're now going to create a package to hold our
brand new model that we created in the previous steps.

If you want, you can clear out the samples of Hello World from the last
chapter. Remember that you can't actually delete the items, but you can
archive them. Either way, none of the older samples will get in the way of
what we're doing in this chapter.

1. From the lefthand side menu, select the Packages tab.
2. Go to Package | Create New Package (org.sample) | Create Package.
3. From just below the Packages tab, highlight Create New and then select the

New model (jar) of fact classes.

Guided Rules with the Guvnor

[88]

4. Fill out the dialog box that is displayed, as follows. The Name (SalesModel)
and Package (org.sample) should be the same as the ones we created in
Eclipse. Click on the OK button.

5. Back in the main Guvnor screen, check that everything is in place.

In addition to the upload button (that we're going to use in a minute), this screen
also has a Download button (to retrieve JAR files that you may have uploaded
earlier). It also has the usual Save, Copy, Archive, and Delete options.

To upload our fact model JAR into Guvnor , follow the steps shown below:

1. Click on the Browse button, and then navigate to and select the JAR file that
we exported earlier. Click on OK.

2. After returning to the screen above, click on the upload button (actually, the
'up' arrow icon to the right of upload).

3. If everything goes well, you will get the message File was uploaded
successfully. Click on OK to return to the SalesModel/Package tab.

Chapter 4

[89]

4. Save the updated package (by clicking on the Save Changes button). As with
other saves/check-ins you'll be asked for an optional checkin comment.

5. We can check whether Guvnor has successfully picked up the new package
information by expanding the org.package that was created.

You can see from this example that in the Configuration section, under Imported
types, our class (org.sample.Sales) is listed. This means that Guvnor has not only
uploaded our class file, but will also allow us to write rules that use this class. Now
that Guvnor knows the format of the information that we want to pass in and out,
we can start writing rules using Guvnor.

Guided rules using the fact model
Back at the chocolate factory, we've decided to implement a customer loyalty
scheme. When any customer has sales of greater than 100 dollars, we want to give
them a flat rate discount of 10 dollars. To put it in a slightly more 'rules-like' format,
our new business rule will look something like this:

when
 we have a sale greater than 100
then
 Give a discount (by adding a 'negative' sale)

Guided Rules with the Guvnor

[90]

Yes, as a business rule it's slightly clunky, but it keeps things simple. In real life we'd
just update our sales object with the new balance after the discount (and keep a note
of what discount was given).

Of course, we're going to write this rule using the Guvnor. Or rather, you're going
to try to write the rule in Guvnor based on the last chapter's tour of the guided
editor. I'll show you the full step-by-step answer soon, but the end result will look
something similar to the following:

Some key notes and buttons to use in the Guvnor are:

1. You're going to create a new rule using the guided editor in Guvnor.
2. Click the '+' next to WHEN and THEN to add new conditions/consequences

(such as greater than 100 and Insert Sales -10).
3. The 'green arrow' icon allows you to refine these further.
4. Guvnor will pick up the sales model that we imported earlier and offer it as

choice to you on a menu.
5. If you make a mistake, the '-' icon allows you to delete a line.

The step-by-step answer
Before we write a rule we must make sure that we have a category assigned to it.
We can use any existing category or we can create a new one (under the Admin tab,
expand Categories | New Category). For this step-by-step example, we've created
a new SalesCategory. But categories are just descriptive tags, so it will work with
pretty much any name.

Chapter 4

[91]

After you've chosen a category, follow these steps:

1. Create a new business rule by selecting menu option rules | create new |
New business rule (guided editor).

2. Enter the following values in the screen that is displayed. We will give the
new rule a name (SalesDiscount—although anything descriptive is OK). We
will assign a category (the SalesCategory that we created earlier). Then we
will pick the package (org.sample) from the drop-down list. After entering a
description (optional) we need to click on OK.

3. We'll then be taken to the guided business rule editor that we saw earlier on
our quick tour. In the main section, click on the '+' sign next to the WHEN
label, to add a condition (that is, to restrict the circumstances under which
our rule will fire).

Guided Rules with the Guvnor

[92]

4. The Add a condition to the rule dialog will be displayed. We're going to
choose a fact type of Sales. (Actually, this will be the only fact type in the
drop-down list.) This means that our rule will fire only when a sales fact is
present. To put it another way, our rule only applies to the rules spreadsheet.

5. After choosing this, we'll automatically be taken back to the guided
rule-editing screen.

6. Back on the main screen, we'll see that Sales has been added as a condition.
Currently, this rule will fire for all sales, so we want to restrict it to only those
sales of more than 100 dollars.

7. Because we want to elaborate on the WHEN condition, we need to click
on the green 'arrow' icon immediately next to the Sales condition. We'll be
shown the Modify constraints for Sales dialog box, shown as follows:

Chapter 4

[93]

8. The first dropdown field contains a list of all of the fields (columns) available
for the Sales object. We'll choose sales (that is, the dollar value or amount)
from the drop-down list.

9. Back in the guided editor, another line will have been added. The default
value is please choose. Change this to greater than or equal to, as shown in
the following diagram.

10. Now we need a value to compare this field to (as part of the filter). Click on
the pencil icon to set this. In the Field value dialog box that is displayed, click
on Literal value. Literal values are numbers we can enter directly.

11. Back in the guided editor, a new text box will have appeared. Enter 100
(the value we want to use in our rule) in this text box.

That's it—the WHEN part of the rule is done and should look like the objective
picture that we saw at the very start of this sample). Now would be a good time to
save the rule (and enter a comment if you see fit).

Guided Rules with the Guvnor

[94]

The THEN part is somewhat easier, in that there are fewer steps to create it.

1. Click on the green plus sign next to the Then section. The Add a new action
dialog box will be displayed:

2. We choose to insert a new fact (in the first dropdown). Sales will be the only
option in this menu. Inserting a new fact is like adding a new row to the
Excel Spreadsheet (that is another line of information into the memory).

Logically insert a new fact does the same thing as inserting a new fact,
but automatically removes the row/fact/object as soon as the condition
stops being true. For this example, this wouldn't change anything as the
Sales won't stop being more than 100, but it would make a difference to
more dynamic rules (for example, if another rule reduced the price, and
we wanted to withdraw the discount in this circumstance).

3. Back in the guided editor, the text Insert Sales will now be displayed. Click
on the green arrow next to this to begin setting to values for our new sales
object (this is similar to saying: once we insert a new line into the Excel
Spreadsheet, here are the values that I want to use in the newly created cells).

Chapter 4

[95]

4. First we're going to add a name field. This will appear in the main guided
editor. Click on the pencil next to the name field to add a value. Enter the
value Discount (so that the purpose of the new line/new fact is clear).

5. Now that we've created our first field, we can repeat the process for the
second one—Sales. Add a field (click the green icon next to Insert sales) and
choose sales. Back in the guided editor, click on the pencil next to the new
line, and enter a value of -10.

6. By now, the screen will look like the screenshot back at the start of this
section. Now is a good time to save your rule. Validate the rule by clicking on
the Validate button. All being well, you will see a dialog box similar to the
following example. To close the dialog box, click on the 'x' in the upper-right
corner of the dialog box.

Remember that validation is only a check to catch the most obvious
errors. It's still possible to get warning messages when we run and test
our rule in the next section.

To confirm that the guided editor has written the rule for us, click on the View
source button. The meaning (give a discount for sales of 100) is pretty much as we'd
expect. We've converted the rule into plain English.

Guided Rules with the Guvnor

[96]

Rule "SalesDiscount"
//name of the rule
// use the slightly more readable mvel
when
 we can find a fact / line of more than 100 sales
then
 create a new line / fact
 set the name to "discount"
 set the sales to –10
 add the line back to the model

end
// end of rule

You'll notice that this text is read-only. In the next chapter, we'll show you how to
create your rule directly in the text (technical rule) editor. For the moment we've a
more pressing problem—how do we try this rule out?

Running this scenario
The solution is similar to the one we used for running the Hello World example in
the previous chapter. The rule we want to exercise is a little bit more complicated, so
the scenario that we need to construct is also a little more complicated.

To start, expand the Package tab and then create a new test scenario. Give it a name
(for example TestSales), and select the same package for our rule (org.sample). You
will be presented (again) with the blank scenario test screen. The scenario that we're
going to create is similar to the following screenshot:

Chapter 4

[97]

The steps for building this screen are similar to those we used before. We use the '+'
sign to insert a new GIVEN/EXPECT, the small green arrow to refine the scenario,
and the '–' sign to remove.

1. Click on the plus sign next to GIVEN and choose to insert a new sales fact
(under any name). Click on Add.

2. Click on the Add a field button that appears. In the dialog box, select the
name field.

3. Click on the green arrow next to sales to add another field (column in our
new row). In this case, use Sales and give it a value of 200 (that is, greater
than 100!).

4. Click on the green '+' next to EXPECT. In the New Expectation dialog box
that is displayed, click on show list and then choose the Sales Discount rule.

5. Change the default (that we expect this rule to fire at least once) to
Expect Rules, to fire this many times, and then enter '1' in the new text box
that appears.

6. Save this test scenario using the button at the top of the screen.

All being well, if you now click the Run Scenario button, you will get a green
bar at the top of the screen saying Results 100%, along with some additional text:
Rule [SalesDiscount] was activated 1 times, which indicates that our rule is running
as expected.

What just happened?
The test scenario that we created was equivalent to passing in a spreadsheet with one
row (that is, one Sales Java object with sales of 200 and a name of Acme Corp). We'd
expect our sales discount rule to fire under these circumstances and we tell our test
scenario to look out for this. When we run the scenario, our rule behaves as expected
and fires, giving Acme Corp a discount of –10 Sales for their order.

Summary
In this chapter we have covered five main areas. We saw how to get information
in and out of our rules, and created the fact model in Java needed to do this. We
imported our new fact model into the Guvnor and then built a guided rule around it.
Finally, we tested our rule to make sure that it ran correctly.

Using our fact model in a guided rule is a good foundation for the next chapter. In
the next chapter, we start writing more powerful text-based rules, starting by using
the Guvnor editor, and then moving on to the desktop-based JBoss IDE.

From Guvnor to JBoss IDE
In the previous chapter, we wrote our first real rule using the guided editor in
Guvnor. Although the guided editor is very useful, the rule that we wrote could do
with a few enhancements. We also had a glimpse of the behind-the-scenes text rules,
but they were for read-only purposes. As a part of our enhancements, it would be
good to use the additional power of these text rules. We'll look at using variables in
our rules by using rule attributes to provide extra information about our rules, and
editing text-based rules using Guvnor and the JBoss IDE.

A more powerful rule
Our business rule from the last chapter was a bit silly. In real life there is no such
thing as 'negative sales'. It would confuse not only our customers, but also our own
company. (How would the Oompa Loompas in the shipping department put 10
boxes of chocolate into an empty truck?) Instead, we're more likely to modify the
price of our sales and update this price with the discount, to give the actual price to
be paid.

Applying this concept to our business rule, we'd end up with something like this:

when
 We have a sale greater than 100 Dollars
then
 Discount the sales cost by 10%

From Guvnor to JBoss IDE

[100]

The following screenshot shows the same rule, expressed in the Guvnor's
guided editor:

The screenshot above shows a business rule that applies a discount to the sales price.

We're not going to get very far without understanding variables (such
as mySales and salesValue). You may be familiar with Variables from
other programming languages.
Variables are placeholders for things that we want to refer later. They
are a bit like cells in Excel, but instead of names such as 'a1' or 'b15', we
give them easy-to-remember names. Here, any value put in mySales or
salesValue will be saved until we need it again.

Taking into consideration the knowledge that we have about variables, this rule is
more subtle than our plain-English version. What it actually says is:

When you find a line of sales (in Java or on our spreadsheet) greater than 100,
make a note of that line (and store it in a box called mySales).
Make a note of the actual sales figure in that line (and store it in a box called
salesValue).
Then modify our line of sales (mySales) so that the new sales figure is now
the previous figure minus 10.

Have a go
That's the easy bit. Now you're going to build it, in order to try it out! Try it yourself
before skipping on to the step-by-step guide below.

•

•

Chapter 5

[101]

Updating the rule—step by step
Our new or updated rule uses the same Java fact model as the previous chapter,
so it's going to be a lot easier to build. In fact, the step process is very similar, as it
uses '+' signs to add When (conditions) and Then (consequences). We'll concentrate
on the changes.

The When part
1. Create a new rule and add a condition using a sales fact, exactly as before.
2. When adding the first constraint, enter a variable name (mySales), as shown

in the following dialog box.

3. This brings you back to the main guided editor, which will now show a rule
similar to the following:

4. As before, select equal or greater in the drop-down box (please choose, in
the previous diagram), and use the 'pencil' icon to enter the value (100) that
we are filtering on.

5. On the second line of the newly updated rule, click on the green arrow above
sales. An option to bind the actual sales total to a variable is shown. In this
dialog box, assign it to salesValue.

From Guvnor to JBoss IDE

[102]

Remember that our mySales variable is akin to one line in a spreadsheet.
The salesValue is the sales column from within that line.

6. In the guided editor, the Add a new action dialog box now has additional
options. Click on the green '+' sign, which is next to Then, to make these
options appear.

7. In this dialog box we choose to modify the mySales fact.

The other options on this screen include retract (deleting the fact
from memory) and inserting, or logically inserting a new fact,
which work in the same way as before.

Back in the guided editor, we can click on the 'pencil' icon and enter the formula
(=salesValues-10) to make our rule look like the one in the screenshot back at the
start of this chapter.

Looking behind the curtain—a text-based rule
Before we jump in and run our new rule, let's catch our breath and take a look at the
source. Remember that when we were working through and building the above rule,
we were actually building up a text-based rule behind the scenes. Clicking on the
'view source' button might make our rule a little bit clearer.

rule "SalesDiscount"
 dialect "mvel"
 when
 mySales : Sales(salesValue : sales >= "100")
 then
 mySales.setSales(salesValue-10);
 update(mySales);
end

Chapter 5

[103]

We can guess most of what this means, but running through it allows us to see what
is going on.

Name the rule (SalesDiscount)
Use the Mvel style for writing our rule (slightly clearer than the Java dialect)
When
We can find a row Sales of greater than 100, keep a handle to it called
mySales, and put the actual sales value into salesValue
Then
Reduce the sales by 10
Notify (update) all of the other rules that the sales has changed, so that they
may fire (or not)
End of rule

A small problem...
Now that we know what's going on, we go back to our test scenario that we created
using Guvnor in the previous chapter—the one called TestSales. We would expect
that when we click on the Run Scenario button (making no changes), we would get
the same results 100% message. But that doesn't happen.

What happens is that the scenario fails with the message Rule [SalesDiscount]
activated 11 times. Expected 1 times. What happened? How can our rule have fired
11 times if we only have one test scenario?

What actually happened when we ran the test scenario is this:

1. We put our sales object into the working memory (that is, passed it to JBoss
Rules), with a total sales of 200.

2. Our discount sales rule kicks in.
3. The sales value is now updated by this rule to 190 dollars.
4. Drools detects that our sales object has been modified, and sees if any rule

can be applied.
5. The same discount sales rule is found (as the sales value is still greater

than 100).
6. The sales value is discounted by a further 10 dollars.
7. Repeat the last two steps until the sales value finally drops below 100 dollars.
8. No more rules fire and JBoss Rules exits.

•

•

•

•

•

From Guvnor to JBoss IDE

[104]

So the rule is doing exactly what we asked it to do—applying a discount to orders
with a sales value greater than 100 dollars. There are many instances in which we
want this recursive behavior. In fact, it's one of the advantages of using a rule engine:
It matches the business rule to the situation that it finds itself in, and then it fires.

What exactly is this working memory? Working memory is like a
scratchpad. All of the information that we pass to Drools is stored here.
When rules fire, the information in the working memory gets updated.
And when Drools is finished, a copy of the working memory is passed to
the rest of the program.
The important thing to remember is that Drools only knows about and
fires its rules according the information that we explicitly place in the
working memory.

Rule attributes
However, what we want the rule to do is fire once and then stop. To be more precise,
we do not want to have a rule that fires recursively in a tight loop. How do we
express this intention in a rule?

Luckily, Drools has a feature called rule attributes. This allows us to state more
information about our rule. The rule engine can use this extra information to modify
its behavior.

In our example, we want to switch on the no-loop attribute—meaning that the rule
will fire again only if some other rule has modified the working memory in the
meantime. To express this in our rule using the guided editor in Guvnor, follow
these steps:

1. At the bottom of our rule click on the '+' sign next to the options.
2. Choose no-loop from the drop-down menu.

Chapter 5

[105]

3. Save and run the rule (via the test scenario). It now behaves as we expect.
The test passes it correctly saying that the rule has fired only once.

The no-loop attribute will stop the rule from being called; or rather it
will stop a rule from changing a fact in working memory, which could
otherwise cause the same rule to fire again.
What no-loop will not prevent is the looping of two (or more) rules;
for example, Rule A causing Rule B to fire, which then causes Rule A to
fire, and so on. Well-written business rules with appropriate restrictions
(in the When part) will avoid this situation. For example, we can add a
'discount amount' column in our fact model. Our rule will check that this
column was empty before firing and update the column when it fires.
That way, we would avoid any chance of looping.

Congratulations, you've not only written a much more sensible business rule, but
you’ve also touched upon your first bit of rule engine theory!

More on the guided editor
When we were writing our rule using the guided editor, we came across a lot of
options that we didn't use. Some of these are obvious, but it's worth running through
what they are.

Possible comparisons
When we added a fact comparison, we chose the option of testing to see if our sales
value was greater than 100. This comparison can also be a less than, equal to, not
equal to, equal to or greater than, or equal to or less than test. For text fields (String),
Guvnor will also give you the option of using matches and sounds like.

Condition types
When previously we added our first condition (using the '+' icon next to the WHEN
statement), we chose the Sales fact from the Add a condition to a rule dialog that
appeared. Not specifying a condition type means that the rule will fire every time a
fact is in memory.

From Guvnor to JBoss IDE

[106]

We have a few other options in the second drop-down box (Condition type) in
this dialog:

This is no: This option is a simple negative value. The rule will fire only if
the fact does not exist at all in the working memory.
There exists: The rule will fire once, no matter how many times the fact exists
in working memory.
Any of: The rule will fire, no matter how many times the facts exist in
working memory. It differs from There exists because it can be applied to
multiple types of facts at the same time.

Once we add one of these condition types, we have the option in the main guided
editor to specify (as before) the Fact (for example, Sales) that the condition applies to.

Add more options
On each part of the rule you'll see the Add more options icon (it looks like this).
This allows you to add additional conditions to the same line, based on the same value.
You'll see the full list in the dropdown once you click on this icon, but it allows us to
write more sophisticated conditions, such as:

If salesValue is greater than 100 and less than 200, then give discount level 1
If salesValue is less than 100 or greater than 100, then give discount level 2

•

•

•

•

•

Chapter 5

[107]

Note the following differences between using the ' ' (add more options) icon and
the large green '+' icon that we've been using until now:

1. The '+' icon only allows us to add And conditions (that is, all parts of the
rule have be true before the rule fires). The Add more options allows And
conditions as well as Or conditions. Or conditions are used when only one of
the conditions needs to be true for the rule to fire.

2. The '+' icon allows comparisons based on multiple facts (for example, Sales
and Existing customers). The Add more options only allows comparisons
based on the same fact (for example, only Sales).

Multiple field constraints
When we clicked on the 'green arrow' icon next to Sales, we modified the constraints
for the Sales object via the dialog box that appeared. At the time, we chose to add
restrictions on a field (salesValue), but we have a few other options in this dialog.

We can add a multiple field constraint, which will allow us to combine one or more
conditions. This can be done as All of (and) or Any of (or). If you choose this option
in the editor, you can see that these can be nested to build up sophisticated (but easy
to get lost in) rules.

We also have the option to add a formula according to our condition. We won't go
into the details of this here, as we will come across a similar formula in our text rules,
before this chapter ends.

The following screenshot shows our rule once it has been updated with a multiple
field constraint. In this case, our rule will fire only when the sales value is greater
than or equal to 100 and the name either sounds like acme or matches acme corp.

From Guvnor to JBoss IDE

[108]

So what's the difference between multiple field constraints and just simply adding
constraints using the '+' icon in the editor? Take a look at the same rule using the '+'
icon to add the additional conditions in the following screenshot. When do you think
this rule will fire?

The answer is: never. What this rule is saying is that it should fire only when our
Sales are greater than or equal to 100 and the customer name sounds like acme and
the customer name matches acme corp. The last two conditions are contradictory—
our name must match acme corp, but if it does it won't sound like acme.

So, just by changing the icon that we clicked on, we've changed our rule from 'or' to
'and', thus giving a very different behaviour. Beware of subtleties such as these when
building your rules, and test your rules using scenarios, to ensure that they behave
as you expect.

The Then part
There are also a few options that in the Then part of the guided editor we skipped
over. These are context-sensitive, so they may or may not appear, depending on
what you have in the When part of the rule.

Chapter 5

[109]

The options are:

Set the values of a field on: If we set a variable in the When part, we can
update that value here.
Modify a fact: This is the same as setting the values, except that we notify
the rule engine that the values have changed (which may cause another set of
rules to fire, as in the last example).
Retract a fact: Remove an item from working memory (which is akin to
deleting a line from our spreadsheet). This may cause other rules to fire.
Insert a new fact: This will create a new line on our spreadsheet (and may
cause other rules to fire). This is the option that we used in the last chapter, in
our first sales discount rule.
Logically insert a new fact: This is the same as Insert a new fact, but the fact
is removed again, as soon as this rule stops being true.
Call a method on: This allows you to call a Java method (advanced). In this
way, you can pretty much use the full power of Java to send messages, link
to other systems, and so on, from your rules.

All of the options have dropdowns, which will provide appropriate selections from
our fact model and will update the main editor, allowing you to build your rule step
by step.

More rule options and attributes
In our last version of the sales discount rule, we added a rule option called no-loop,
to ensure that the rule did not recursively cause itself to fire. You may have noticed
that there were several other options in that dropdown, and you may be wondering
what they are used for.

date effective and date expires allow us to switch our rules on or off,
depending on the current date.
dialect: Rule can be written in different dialects—currently Java and MVEL,
with more to come. Both of the currently-supported dialects follow the same
'when...then' format, although MVEL is slightly easier to read (unless, or
sometimes even if, you are familiar with Java). dialect should not be confused
with DSL (Domain Specific Language), which is a templating mechanism that
allows near-English language rules. We'll look at DSL shortly.
duration forces the rule to remain true for the specified duration before it
fires. This can be useful for a commodity-trading application, where the price
(of chocolate beans, for example) must remain high for a specified period of
time before we'd fire a rule to sell it.

•

•

•

•

•

•

•

•

•

From Guvnor to JBoss IDE

[110]

salience: In general, you can't control the order in which multiple rules will
be fired; either something is true, or it isn't. (Remember that this in one of
the big differences from traditional programming languages.) However, we
can give hints to the rule engine as to which rule we consider should be fired
first. All other things being equal, the higher the salience for a rule, the more
likely it is that this rule will be fired first.
agenda-group, auto-focus, and activation-group are all used by Ruleflow,
which we will cover in more detail in a later chapter. For the impatient,
Ruleflow is a means by which you can group rules so that they are only
available to be fired at specific stages in a business process.
no-loop, as we already know, stops rule recursion.
lock-on-active is a stronger version of no-loop, for use with Ruleflow.

Text editing
We looked behind the scenes earlier, and viewed the text rule that Guvnor
automatically builds up for us. That view was read-only, but it is possible to write
text rules directly using the Guvnor editor—that's how we wrote our first 'Hello
World' rule. Even better, it is possible to start writing our rule using the guided
editor, and then switch to the text editor for the trickier parts. To do this, carry out
the steps shown below:

1. View the source of the rule that we created in the guided editor. For this
example, open the sales discount rule and then select View Source.

2. Copy the text of the rule from rule to end, inclusive.
3. In the side bar of Guvnor, create a new technical rule (Rules | Create New

| New DRL). You'll be presented with a New DRL dialog box that looks
familiar. Enter the values as shown in the screenshot below these steps, and
then click on OK.

4. We will be shown the technical rule editor. This is similar to the guided
rule editor except that in place of all the dropdowns, you have space for
editing text.

5. Into the text editor, paste the text of the rule that you copied in step 2 earlier.
We can then save the rule and run it as before.

•

•

•

•

Chapter 5

[111]

That's it. You've written (and run) your first text-based rule. But what is this DRL
thing? A DRL file (often with the extension .drl) is the file where Drools stores its
rules, in much the same way that a file with the extension .doc is a Word file, and a
file with the extension .xls is an Excel file. Inside, it's a DRL file just a text file, which
we can open in Notepad, or one of the other text editors, such as the JBoss IDE.

Introduction to the JBoss IDE
The text editor in Guvnor is useful, but for the moment, it is not as powerful as
some of the other editors that are available. For example, it doesn't have syntax
highlighting (coloring that makes the business rules easier to read) or the inline
highlighting of errors. Compare the plain grey text in Guvnor with the following
screenshot of the JBossIDE, where the rules are much easier to read.

So what is the JBoss IDE? There are a few ways to answer this question:

An IDE is an Integrated Development Environment. This is a fancy way of
saying 'you can edit all of your files in one place'.
The JBoss IDE is based on the Eclipse open source platform. If you look at
the applications on your desktop, you'll see that a lot of them have
common functionality (open file, save file, and so on.). Eclipse provides this
functionality not only for Java, but also for editors for other languages.
There are even Eclipse-based financial applications.
The whole aim of Eclipse is a platform for extensions, so basically the JBoss
IDE = Eclipse + extensions. The extensions provided are not only for rules
editing, but also for things such as workflow, storing information in databases
(Hibernate), faster web development, and distributed applications (Seam).

•

•

•

From Guvnor to JBoss IDE

[112]

Think of the IDE as a text editor that can edit multiple files at a
time. Yes, it can do a lot more powerful things, such as allowing
us to test and run our text-based rules, but we'll get to that later.
Now, does a text editor seem quite as daunting?

We came across the JBoss IDE in Chapter 3, when we used it to edit our Java-based
fact model. In this chapter we're going to concentrate on the rules-editing extensions.

Previously, we only looked at the IDE in passing (as we were using it to create just
enough Java to get by). This time it is worth taking a more detailed look around, as
we'll be using the IDE quite a bit in the next few chapters. The parts of interest in the
above screenshot are:

Main menu bar: This is at the top of screen, and contains commands such
as File, Edit, Search, Window, and Help. A lot of these commands (such as
File, Save, and Edit) will be familiar to you.
Menu icons: There is a set of icons just below the menu bar. Just like Word or
Excel, these are shortcuts to the functionality provided by the main menu bar.

•

•

Chapter 5

[113]

Main editor: In the centre of the screen is the main editing space. In the
screenshot above, this is showing a rule (Sample.drl) being edited. If we
have more than one file open at a time, multiple tabs will appear (in the same
line as Sample.drl) which allow us to switch between the open files. There is
an 'X' on each tab, which allows you to close it. (You will be prompted if you
want to keep any unsaved work.)
The lefthand panel, by default, shows the project explorer (that is, a way
to view all of the files of the project). Like most things in Eclipse, this panel
is configurable. For example, selecting Window | Show View | Other |
General | Navigator will cause a Windows Explorer type view to appear
in the lefthand panel. The project explorer will remain open, and tabs are
available to allow you to switch between these two views of the same project.
The righthand panel, by default, shows an outline of the currently open
file—in this case, the rule we are editing. This is also configurable. For
example, dragging the Outline tab and dropping it onto the lefthand panel
will cause it to be displayed there.
Right-clicking will cause a context-sensitive menu to pop up, just like in other
Windows applications. For example, right-clicking on the Outline tab and
selecting Fast view will minimise the view to an icon in the bottom left of the
screen, to save screen space. Don't worry; you can click on this icon to see its
contents again (or right-click on it to restore it to the way it was previously).
The Status Bar at the bottom of the screen is where the fast view icons
migrate to. It also shows messages from Eclipse, such as if Eclipse is working
on a background task (for example, validating a rule).
The bottom set of tabs are also configurable (that is, we can drag and drop,
or fast-view just like the left- and righthand panels). The two tabs shown in
the screenshot that we're most interested in are Console, where anything
we print out from our rules is displayed, and Problems, which shows any
problem (for example, incorrect spelling) that we may have.

•

•

•

•

•

•

From Guvnor to JBoss IDE

[114]

Now that you're interested in using the JBoss IDE to edit your rules, lets get started.
This is similar to creating a new Java project (which we did in Chapter 3), that is:

1. Choose File | New | Project from the main toolbar, but this time choose
New Drools Project as the next step.

2. Give the project a name (for example, ChocolateFactory), but click on Next
(and not Finish). The dialog that is displayed is shown in the screenshot
that follows.

3. Take the existing samples. (Actually, the only samples we need right now
are the first two, but selecting them now will save you having to recreate the
project later.)

Next, click on Finish. Your JBoss IDE will look similar to the one we walked through.

Hello World in the JBoss IDE editor
When we started with the Guvnor IDE editor, our first rule was 'Hello World'. It
would be a pity to break a fine tradition, so let's write our first rule in the JBoss IDE
in the same way. Even better, the steps that we just followed (to set up samples as
part of a new Drools project) means that all the hard work of typing is done for us.
All we need to do is poke around and understand what is going on.

Chapter 5

[115]

Looking at the project explorer (on the lefthand side) and expanding the folders
(using the small arrow icons) shows that quite a few folders and files have been
added to our project. These follow a standard format, so once you understand them
for this project, you'll be at home in bigger, more complex projects.

src/main/java: this folder contains the text files holding the Java code
(*.java). We saw these in Chapter 3 when we were building our Fact Model
to transport information into and out of the Rules Engine. Of course, Java is a
lot more powerful than that. DroolsTest, a Java-based test, is highlighted in
this folder. We will run it shortly.
src/main/rules: This folder contains the text files containing the source for
the rules.
JRE System Library: This is a shortcut to the Java toolkit. Without the Java
toolkit, the Java code wouldn't mean anything to the computer.
Drools Library: This is a shortcut to the Drools toolkit. If the Drools toolkit is
missing, the computer will not know how to convert the rules into code that
it can understand.
bin: Before we can run our rules, we must convert them from text that
we understand to a format the computer understands. This step is called
compilation, and the computer-format output is stored in the bin folder. In
Guvnor this step is performed behind the scenes, but we are still notified of
any errors in compilation (for example, spelling mistakes).

•

•

•

•

•

From Guvnor to JBoss IDE

[116]

I promised that we were going to have a look at the HelloWorld rule. Let's run
it first. Right-click on the DroolsTest.java file and, from the pop-up menu that
appears, select Run As | Java Application. After a second or two, the following
message will appear in the Console. (Remember the Console? It will be in the bottom
set of tabs on your screen.)

What just happened?
In summary: we loaded some rules and passed them some information; the rules
fired; and words were printed to the Console.

The business explanation
A longer explanation will gloss over what is happening in the Java file (DroolsTest),
except to say that it loads the rule file (Sample.Drl), passes in a fact object (Message)
with a status of 'Hello' and message text of 'Hello World', and then fires the rules.

So what happens when the rules fire? That's the bit we're interested in. So, open
Sample.Drl and let's have a look. We'll see that one file contains two rules:
Hello World and GoodBye. The first two lines of the file are a package statement
(saying what folder it lives in) and an import statement.

What's this import statement? Our Java code passes to the rules the
Message fact object, which contains important information.
Drools needs to know more about what sort of fact it is.
The import statement (standard in Java) tells Drools about the folder
and file where it can find more information. Previously, Guvnor
automatically generated the import statement for us.

Chapter 5

[117]

package com.sample

import com.sample.DroolsTest.Message;

rule "Hello World"
 when
 m : Message(status == Message.HELLO, message : message)
 then
 System.out.println(message);
 m.setMessage("Goodbye cruel world");
 m.setStatus(Message.GOODBYE);
 update(m);
end

rule "GoodBye"
 no-loop true
 when
 m : Message(status == Message.GOODBYE, message : message)
 then
 System.out.println(message);
 m.setMessage(message);

end

The intention of the business rules is fairly clear. Let's work through them line by line:

rule "Hello World"
 when
 We find a message fact, and its status is 'Hello' , put the fact
 in a box called 'm' and put our message text in a box called
 'message'
 then
 Print the contents of the 'message' box
 Set our message text to 'Goodbye Cruel World'
 Set our message status to 'GoodBye'
 Notify the Rule engine that our message fact has changed
end

rule "GoodBye"
no-loop true
 when
 We find a message fact, and its status is 'Goodbye', put it in
 a box called 'm' and put our message text in a box called
 'message'
 then
 Print the contents of the 'message' box
end

From Guvnor to JBoss IDE

[118]

So, this is what happens when the rules are called:

1. When Drools gets called, it starts with a message fact that has a status Hello.
It also looks for rules that match this fact.

2. The first rule (Hello World) matches. It prints the message, updates its status
to GoodBye, changes the message, and notifies Drools of the change in the
fact status.

3. On hearing that facts have changed, Drools searches for rules that match
 this newly-updated fact and finds the Goodbye rule that applies to the
new situation.

4. The contents of the message (GoodBye Cruel World) are printed.
5. There are no more matching rules to fire, so Drools finishes and returns the

updated fact objects to the program that called it.

Easy when you know how, eh?

The technical explanation
Normally, as a business rule writer, you don't care about the system that calls your
rules. You let somebody else worry about all that stuff. But if you're the 'somebody
else' (for example, if you're a Java programmer wanting to know how the magic is
done and how to deploy rules as part of a web application), read on. If you're not a
'techie', there's nothing going on 'behind the scenes' that Guvnor doesn't do for us
automatically; so it may still be worth a peek.

Not surprisingly, the bit that you're interested in as a (Java) programmer is in the (Java)
file DroolsTest. Open it in Eclipse. (Pressing Ctrl+Shift+R, and then typing DroolsTest
is a quick way of opening it.) The key lines to watch out for are as follows:

The public static final void main(String[] args) method is a Java
convention. When we run DroolsTest, the starting point is in this method.
The first line, try, and the catch line towards the end mean 'stop if you
encounter a problem and do something'. In this case, the 'something' is to
print out the details of the problem.
The readRule() method contains the lines of code that we use to find (and
load) our Sample.drl file, and convert it into a RuleBase (that is, a set of
rules that are ready to fire). It may look complicated, but the steps that we
take here are pretty much the same as if we had loaded the rules from a file
or directly from Guvnor. We'll go into these steps in more detail later, when
we cover other rule deployment options.

•

•

•

Chapter 5

[119]

The following two lines call the readRule() method and use it to get a
working memory—a stateless or goldfish-type memory that remembers the
results of our rules firing, and then forgets it as soon as we want it to forget:
RuleBase ruleBase = readRule();
WorkingMemory workingMemory = ruleBase.newStatefulSession();

At the end of our file is the fact object message (public static class
Message). It's the same idea as our sales object from the previous chapter
(a placeholder for carrying information into and out of the rules), except that
this time it shares the file with the rest of the code, instead of having a .java
file all to itself.
Using this message template, the following lines create an actual object (a
bit like making a cookie using a cookie-cutter template), and then add the
information that we want to pass:
Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);

Finally, the following lines pass our message to the rules and tell Drools to
start firing the rules as is appropriate (that is, the bit that we discussed in the
previous section):

workingMemory.insert(message);
workingMemory.fireAllRules();

Try it yourself
Although the business and technical explanations of our rules may appear daunting,
the fact is that the same lines appear again and again—familiarity may not breed
contempt, but hopefully, confidence! In fact, to prove the point, you're going to use the
IDE to change the above rules. Change the rules so that instead of printing Goodbye
Cruel World, it prints Goodbye (whatever your name is). For the really advanced
readers (those who have a taste for playing around with the .java files), do the same
for the Hello message: change it to Hello (insert name here).

Why should we use the JBoss IDE instead of Guvnor? It's your choice, but many
people find that the text editor is more powerful. And if you're interested in the way
we call rules (that is, you going to be the poor soul writing the Enterprise Java code
as well), then this chapter has shown you that we need to load and call our rules; and
you're probably already familiar with the Eclipse environment anyway.

So the IDE isn't that big and scary; it's just another way of wiring the same rules. Go
ahead and play with it. If the worst happens, you can delete and start again.

•

•

•

•

From Guvnor to JBoss IDE

[120]

Summary
This chapter pushed the boundaries of what we can do with the Guvnor rules editor,
and then brought in the JBoss IDE as an even more powerful tool for writing rules.

We started by using variables in our existing sales discount rules, to get around the
problem of having negative sales. Then we came across rule attributes (for example,
salience) to stop our rules from making changes that cause them to fire again and
again. After testing this successfully, we looked at text-based rules—both in Guvnor
and the JBoss IDE—that run the Hello World example in the new environment.

Now that we've written more complicated rules, in the next chapter we'll look at
ways to make sure that our rules don't break—both now, and in the future.

More rules in the JBoss IDE
In the previous chapter we moved away from the Guvnor editor and started using
JBoss IDE to edit our rules. Our Hello World example was a useful start, but we
know that rules can do much more. For example, consider the poor Ooompa
Loompas that are shipping the chocolate bars out of the factory door. Wouldn't it be
nice if we drew up a shipping schedule for them? Before we do that we'll look again
at the structure of a rule file. Towards the end of this chapter, we'll look at some
more advanced rules that we can write and run in the IDE.

Rule syntax
We bumped into our first rule (.drl) file in the previous chapter. We will see a
lot more of it here, so it's worth going over it again. Our rule file can contain the
following elements:

1. package: Package-name is the name of the folder in which a rule file lives.
This is useful for organising our rules (especially when you build up
hundreds of them).

2. import: This pulls in any Java class files (including fact models) that we use
in our rules.

3. global: This defines the global variables that we use. Remember variables
(boxes that hold values)? Earlier, they were emptied as soon as our rule had
fired and only changes to the facts lived on. Compared to 'normal' variables,
global variables live longer, and allow us to pass information into and out of
our rules.

More rules in the JBoss IDE

[122]

Passing information into and out of our rules via a global variable
is almost the same as passing a fact into the rules. The difference is
that the rule engine does not match (or fire) against global variables.variables..
This makes the rule engine more suitable for passing in items that
change slowly, such as the current date, counter, and so on, and
giving rules access to external resources (such as log files).

4. function: Sometimes you may need to perform the same calculation in many
rules. Defining a function allows you to perform the same calculation again
and again. Note that it's often easier to call a normal Java function to carry
out the same task.

5. rule: This is the 'when…then' structure that we've spent most of this bookis the 'when…then' structure that we've spent most of this book
talking about.

6. comments: These are pieces of text ignored by the rule engine, which explain
what is going on with us. They can be on a single line (anything after '//'
until the end of the line) or split over multiple lines (everything between the
/* and */ Comments split over many lines).

In the Hello World example, our rule (the 'when...then') was fairly simple. We matched
Message.STATUS (when), updated that status and printed a message (then). Let's look
at the other options available to us. We'll start with the When part of the rule.

Patterns for the When part
Remember our rule from Chapter 4 that calculated the discount on the chocolate sales?
Using the fact model from that example (sales.java), the following are all valid
'when' conditions. The following code extract shows most of the simple conditions that
we can use in our rules. Note that it would be impossible for this rule to fire, given that
all of the contradictory conditions cannot be met at the same time. Drools would also
complain that we use same variable name ($mySales) twice in one rule.

Drools recommends the convention $variableName; dollar sign, first letter
small, and capital letter for each of the following words in the variable
name. But it's only a convention. Note that variable names are also case
sensitive, that is, $variableName is not the same as $VARIABLENAME.

Chapter 6

[123]

Note the use of the "//" single-line comments to explain what each line does.

rule "show various conditions"

when

//Simple match on all sales, no assignment of variable
Sales()

// matches all sales lines, one by one, assigns to local var MySales
$mySales : Sales()

//additional filter on customer name. Corrpesponds to getName() on
sales JavaBean
$mySales : Sales (name=="acme corp")

//'or' - both lines do the same thing
$mySales : Sales (name=="acme corp" or name=="beta corp")
$mySales : Sales (name=="acme corp" name=="beta corp")

//and - three lines do the same thing
$mySales : Sales (name=="acme corp" and sales>100)
$mySales : Sales (name=="acme corp" , sales>100)
$mySales : Sales (name=="acme corp" && sales>100)

//Number comparison
$mySales : Sales (sales==100) //equals 100
$mySales : Sales (sales<100) //less than 100
$mySales : Sales (sales>100) //greater than 100
$mySales : Sales (sales!=100) //not equal to 100
$mySales : Sales (sales>=100) //greater than or equals 100
$mySales : Sales (sales<=100) //less than or equals 100

//Use of bracket reorder the evaluation of the condition
//The 'and' condition is performed first, then the 'or' condition
$mySales : Sales (name=="acme corp",(sales>100 && sales<200))

then
 //do something
end

In the above example, we could also test for customers with empty names by using a
condition similar to:

$mySales : Sales (name== null)

null is another of those words with a special meaning; think of it as void or
completely empty. Note that this is different from name== "", which means it does
have a name, but that name is blank. "" is like a blank sheet of paper, whereas null
means no piece of paper at all. Still confused? Then you can test for both as follows:

$mySales: Sales (name== null or name=="")

More rules in the JBoss IDE

[124]

Sometimes when you're running rules, do you get an error related
to null called nullPointerException? OK, make that you will
frequently get a nullPointerException.
This error means that we are trying to do something like sales.
getName(), except that sales are null. Drools and Java do not know
how to handle this. So it stops, tells you what went wrong, and waits for
your next move.

Patterns for the Then part
In the Then part of the rule we can use just about any Java code, plus the Drools
constructs given as follows. The following consequences are all valid, as long as we
have a variable called $mySales defined in the When part (like we defined in the
previous example):

Any valid Java code, such as thelid Java code, such as the System.out.println("HelloWorld") from
the previous examples.
The insert statement tells Drools that we have created a new fact that it
should be aware of. This can be done using a variable (for example, insert
($mySales)) or creating a new fact on the spot (for example, insert (new
Sales()).
The update statement is similar to insert, but is used where the fact existed statement is similar to insert, but is used where the fact existed
before the rule started (for example, update($mySales)).

In the next example, we'll use a variant of update(), called modify(). This is a
useful shortcut when we need to change several items in a fact at once (for example,
Sales number, date, and name).

Shipping chocolate bars
Armed with the latest business rule information, we can now go about helping our
Ooompa Loompas. They work hard at loading all of the chocolate bars that we are
making onto trucks, to ship to the customers who are busy sending us orders. In fact,
we are getting so many orders that we are limiting each customer to one box of 210
chocolate bars a week.

Now, if you've ever worked in a packing or a shipping department, you know that
your hands are always busy. You just want to be told what and when to pack, and
you don't have to calculate your next step. So, using Drools, we're going to write a
list of what to ship and when to ship to each customer.

•

•

•

Chapter 6

[125]

Because we are nice people, we give our overworked Ooompa Loompas a holiday
now and then. We don't work on holidays, so we ship our chocolate bars the next
working day.

How do we write this in a way a computer can understand?write this in a way a computer can understand? this in a way a computer can understand?

The problem (and remind me why I need
business rules)
If we were writing this in a normal computer language, we'd have something like
the following:

Start Loop
Have we shipped all the chocolate bars yet?
Yes – go to end of loop
Is today a holiday
No – Ship 210 bars and update totals
Is tomorrow a holiday?
No – Ship 210 bars and update totals
. . . .
Have we shipped all the chocolate bars yet?
Yes – go to end of loop
End Loop

This code will (almost) work, but we've got the following problems:

Even though it's written in plain English, can you identify the six business
rules that are embedded in it? Take a peek down to our business rule
solution to find them all.
Most code is not written in English, but in Java or C#. Would you be able to
find the business rules hidden in a technical language like Java?
This example will break if we have more than two holidays in a row, but it's
not immediately obvious from the text.
What if we want to change our business rules (for example, to have time off on
the weekends)? If we do this on a separate line (to keep our sample clear) andkends)? If we do this on a separate line (to keep our sample clear) and
have two days off per weekend, the code becomes 40% (four lines) longer.

•

•

•

•

More rules in the JBoss IDE

[126]

Why rules scale better—a reminder
Imagine that each additional business rule in the above example adds 40% to our
sample function's length. Adding 10 business rules would take about 500 lines to
write (and the size increases exponentially). For the mathematically inclined, that is
10 lines times our 40% extra complexity per rule times our 10 extra business rules or
10*1.4^10. A fault in any of these lines could break the entire function.

By contrast, our Drools business rules are independent. Adding another means that
we add only 10 extra lines each time (not including whitespaces or comments). See
the business rules example below and count the lines yourself! That's 10 lines extra
for the first rule and 10 lines extra for the 16th rule, as each rule does not make the
previous rules more complex to write.

Rules may give a slightly longer solution at the beginning, but increase in efficiency
as the project grows for all but the most trivial solutions.

Getting and building the sample
You could type in the entire example that we will describe in the next couple of
pages. Or you could download the Chapter 6 example from http://code.google.
com/p/red-piranha/, unzip it into a directory of your choice, and then review it at
your leisure. We recommend downloading, as it's a much more pleasant option.

Once you've downloaded and unzipped the Chapter 6 example, you're ready to
open the JBoss IDE. The sample includes the necessary Eclipse settings. Create a
new Eclipse project (as we've done for the previous samples) and in the wizard that
appears, open the folder where you have unzipped the Chapter 6 example. Eclipse
should automatically pick up the project settings.

When you've created the Eclipse project, you will notice that the supporting libraries
(such as the Drools core) are missing. This is deliberate, as it reduces the size of the
example file that you have to download. Fortunately, the sample also contains a
Maven project file (pom.xml). We set up Maven in Chapter 2, so you can build the
project (and download the required libraries) as follows:

1. Open a command window (DOS prompt).Open a command window (DOS prompt).d window (DOS prompt).
2. Go to the folder containing the project, for example,

cd \some-project-folder.
3. Type mvn eclipse:eclipse. This will generate the Eclipse project. Then,This will generate the Eclipse project. Then,

download all of the dependencies.
At this point (once you see the build successful message) when you refresh the
project (right-click on the project name in Eclipse and select Refresh), all of the
required libraries will be available.

Chapter 6

[127]

Downloading the libraries using Maven is a lot faster than downloading
them as part of the ZIP file. After the first download, Maven keeps a localAfter the first download, Maven keeps a local the first download, Maven keeps a local
copy, and as long as the version number is up to date, it will use that file
for future examples. You'll notice the speed difference in future chapters.

For information, if you wanted to go one step further and build the project from the
command line you can also run the command mvn clean package. This will give
you a deployable JAR file. For the rest of this chapter, we'll concentrate on running
the examples through Eclipse.

Rules
Let's take a quick look at our rule file, shipping-rules.drl. The first part of the rule
file contains the usual package and import information. At the bottom of the extract,
we can see the declarations for two global variables.

package net.firstpartners.chap6;

import java.util.Date;

import org.apache.commons.logging.Log;

import net.firstpartners.chap6.domain.CustomerOrder;
import net.firstpartners.chap6.domain.ChocolateShipment;
import net.firstpartners.chap6.domain.OoompaLoompaDate;

global OoompaLoompaDate nextAvailableShipmentDate;
global Log log;

In this case we import the following: handles to Date; where to get information on
the Apache log (a smarter way of printing to the console); three facts that we use to
organize our data; and two global variables.

The three other facts that we import to organize our data are OoompaLoompaDate,
CustomerOrder, and ChocolateShipment. A customer order is the total amount of
chocolate that the customer wants, and will contain many chocolateShipments as
we send them one box a week to meet their order.

Our global variables (the nextAvailableShipmentDate and the handle to the
external log) are placeholders for items that we pass in when we call our rules.

More rules in the JBoss IDE

[128]

Our first rule confirms the holidays when the Ooompa Loompas will not work.
Whenever we find a date, we print out a message to the console. If we don't want to
see this message, we could safely remove this rule.

rule "confirm holidays"

 when
 $holiday : OoompaLoompaDate()

 then

 //Logging message
 log.info("Remember - Ooompa Loompas don't work on:"+$holiday);

end

This rule actually matches against all OoompaLoompaDates in
working memory. This works in this particular example, as the only
OoompaLoompa dates directly in working memory will be holidays. In real
life, our rule would need to be a bit more particular, that is, it should check
whether the date is a holiday using something similar to the following:
When

$holiday : OoompaLoompaDate(holiday==true)

The next rule is one of the key ones in the example. When we find a customer order
for which we haven't shipped all of the chocolate, then we add a new chocolate
shipment to the order.

rule "Chocolate Shipment"
 when
 $CustomerOrder : CustomerOrder(currentBalance>0)

 then

 //Add a new shipment into the CustomerOrder
 ChocolateShipment ChocolateShipment = new
 ChocolateShipment(210);
 modify($CustomerOrder){
 addShipment(ChocolateShipment)
 }

 //notify the working memory of the new shipment
 insert(ChocolateShipment);

 //Logging message
 log.info("Fired Customer Shipment rule - customer is still
 waiting for "+$CustomerOrder.getCurrentBalance()+"
 chocolate bars");

end

Chapter 6

[129]

The next rule looks for any shipments (like the ones created in the previous rule) that
have no shipment date set yet. When it matches, it sets the shipment date to the next
available date (as retrieved from the nextAvailableShipmentDate global variable),
and then rolls forward the next available shipment date by a week.

rule "Add Next Available Shipment Date"

 when
 $ChocolateShipment : ChocolateShipment(shipmentDate ==null)

 then

 modify($ChocolateShipment){
 setShipmentDate(nextAvailableShipmentDate.getCopy())
 }

 nextAvailableShipmentDate.rollForward(7);

 //Logging message
 log.info("Add Next Available Shipment Date:"+$ChocolateShipment
 .getShipmentDate());
end

Our holidays are passed in as facts, so rules can match against them. Whenever a
shipment date lands on a holiday, our next rule will fire and move the shipment
forward one day. If that date also happens to be a holiday, this rule will automatically
fire again. We don't need to write any specific code to handle the 'holidays in a row'
situation. We just state what we know to be true, and let the rule engine manage
the complexity.

rule "modify due to holidays"

 when
 $holiday : OoompaLoompaDate()
 $ChocolateShipment : ChocolateShipment(shipmentDate==$holiday)

 then

 modify($ChocolateShipment){
 getShipmentDate().rollForward(1)
 }

 //Logging message
 log.info("Reschedule Shipment Date to:"+$ChocolateShipment.
 getShipmentDate()+" due to holiday on:"+$holiday);

end

More rules in the JBoss IDE

[130]

When we are shipping our boxes of chocolate, it is likely that the last box won't be
full. For example, an order for 500 fudge chocolate bars will be made up of two boxes
of 210, and one smaller box of 80. Our next rule covers this situation by ensuring that
the last box we ship does not leave us with items still to ship of less than 0. It
does this by matching any customer order with a negative items still to ship and
adjusting the numbers accordingly.

rule "Don't ship more than the customer order"
 when
 $CustomerOrder : CustomerOrder(currentBalance<0)
 $ChocolateShipment : ChocolateShipment(itemsStillToShip<0)
 then

 long $newShipment = $ChocolateShipment.getShipmentAmount()+$
 ChocolateShipment.getItemsStillToShip();

 modify($ChocolateShipment){
 setShipmentAmount($newShipment),
 setItemsStillToShip(0)
 }

 modify($CustomerOrder){
 setCurrentBalance(0)
 }

 //Logging message
 log.info("Removed CustomerOrder Overshipping - new shipment:"+
 $newShipment);
end

ChocolateShipment.java
Our rules depend on three Java-based facts that we saw earlier when we imported
them into our business rules. The first of these is the ChocolateShipment—a note
to the Ooompa Loompas in the shipping department to put a box onto a truck. You
can inspect the code if you want, but given that it is a simple JavaBean (that is, a
placeholder for carrying information into and out of our rules) we can see a better
overview using the outline view in Eclipse / the JBoss IDE.

Reading from the bottom up, we can see that our bean allows us to get (and set)
the following values: the number of items still to ship; the amount in this shipment;
and the date that we are shipping on. The toString method is a Java convention that
makes it easier to print the information that we hold in this Java class to the log. The
two ChocolateShipment methods give us information on how we can create
new shipments.

All of these are referenced in the rules. In fact, if the spelling used in the rules doesn't
match the one we have here, we get an error.

Chapter 6

[131]

CustomerOrder.java
We also saw the CustomerOrder JavaBean imported into our ChocolateShipment
JavaBean. In this sample, we can have one overall customer order containing many
customer shipments to fulfill the order. The outline of the CustomerOrder.java file
(image below) reflects this.

The toString (logging) method, and the get or set methods for shipments,
InitialBalance, and currentBalance follow the normal JavaBean style (remember
that JavaBeans are still just a means of passing information around). The two
CustomerOrder methods give us different options for how we create this bean.
(For information, CustomerOrder() means that we can create the bean with no
parameters, which is perhaps the easiest way of all.)

More rules in the JBoss IDE

[132]

Note the subtle difference in three similar methods that we use to deal with shipments:

The addShipment method allows us to add another customer shipment to
the existing list.
The getShipments method returns the current list of customerShipments.
The setShipments method allows us to pass in an entirely new list of
customerShipments.

There is also an iterator method to make it easier for us to loop over the list
of shipments.

More information on the full power of Java collections (a more powerful
form of the lists we're dealing with here) is available on the Java web site,
http://java.sun.com. We are able to write rules using this power.
For example, the following condition would match customerOrders
with a first shipment to a customer of less than 100.
CustomerOrder (shipments[0].shipmentAmount <100)
Note the use of [0] to refer to the first shipment in the CustomerOrder.
For those interested in how this works, the shipmentAmount matches to
the getShipmentAmount() method on our CustomerShipment class.

OompaLoompaDate
Dealing with dates in Java can sometimes be nasty. For example, Java counts the
days in the month from 1 (as you'd expect), but months in the year start from 0
(January). For this reason we have wrapped the Java Date in OoompaLoopaDate to
hide some of the ugliness and make dates behave as you'd expect.

There's a second, even better, reason for the having OoompaLoompaDate.java in
this sample. Remember that we talked about functions in our rule (.drl) file and
said you'd be better off using normal Java code? The rollForward() method is an
example of this, as it allows us to move to a date 'x' days in the future. In our rules,
we don't care how this is done, just that it works!

Although business logic works great in rules, calculating dates isn't business logic.
Calculating dates in Java makes it easier to unit test. There is more on unit tests in the
next chapter. If you can't wait until then, it's a method of quality assurance—when
we ask to move 10 days on, we know that it will do exactly that.

•

•

•

Chapter 6

[133]

The outline of the OompaLoompaDate.java file can be seen in the following screenshot:

The other new methods to note are hashCode() and equals(). These are standard
JavaBean conventions that allow us to match one date against another more easily.

The RuleRunner file
We saw some code in the HelloWorld example in the previous chapters that loaded
our rule (.drl file) and called the rule engine. For convenience, we have put it into
one file called RuleRunner.java.

The main starting point in this file is the second runRules() method. The steps to
follow for this method are:

1. Load the rule file(s) from disk. We pass in the names of the files when callingLoad the rule file(s) from disk. We pass in the names of the files when calling the rule file(s) from disk. We pass in the names of the files when calling
the methods.

2. Create a RuleBase and a session (our scratchpad) using these rules.
3. Pass any global variables (name, value) into our rule session.
4. Pass any facts. facts.

This code is fairly generic and could easily be reused in your own rule projects. We
will look at the content of the RuleRunner file in more detail in Chapter 11. For the
moment, we'll concentrate on the actual business rules.

More rules in the JBoss IDE

[134]

MultipleRulesExample
By now you must be itching to run this sample; don't worry, we are almost there.
We will run the MultipleRulesExample.java file soon. It's the starting point for the
example. Reading through the file, the main points are:

The package and import statements tell Java what directory this file lives in
and the files from other directories that we need
NEXT_AVAILABLE_SHIPMENT_DATE is a constant value that matches the global
variable of the same name in our rules file
RULES_FILES is a constant value of the name where we find our rules file
The main method, like our previous sample, is where we start when we click
the Run button

public static void main(String[] args) throws Exception

The step-by-step procedure for running the MultipleRulesExample.java class is
given as follows:

1. We create our customer order.
 //Initial order
 CustomerOrder candyBarOrder = new CustomerOrder(2000);

2. We create a placeholder for the starting date for a first shipment. We add it
under the NEXT_AVAILABLE_SHIPMENT_DATE, so that we can pass it into the
rules as a global variable.

 HashMap<String,Object> startDate = new
 HashMap<String,Object>();
 startDate.put(NEXT_AVAILABLE_SHIPMENT_DATE, new
 OoompaLoompaDate(2009,02,03));

3. We create the two Oompa Loompa holidays that we will pass to the rules
later.

 //Holidays
 OoompaLoompaDate holiday2= new OoompaLoompaDate(2009,2,10);
 OoompaLoompaDate holiday1= new OoompaLoompaDate(2009,3,17);

4. We print out our starting point before we fire the rules.
 log.info("===== Setup =====");
 log.info(candyBarOrder);

5. We put our facts into an array (a type of collection) so that we can pass them
all at once.

 //Call the rule engine

•

•

•

•

Chapter 6

[135]

 log.info("========= Calling Rule Runner ==========");

 Object[] facts = new Object[3];
 facts[0]=candyBarOrder;
 facts[1]=holiday1;
 facts[2]=holiday2;

6. We call the rules via the RuleRunner class that we looked at earlier.
 // A lot of the running rules uses the same code. The
 // RuleRunner (code in this project)
 // keeps this code in one place. It needs to know
 // - the name(s) of the files containing our rules
 // - the fact object(s) containing the
 // information to be passed in and out of our rules
 // - a list of global values

 new RuleRunner().runRules(RULES_FILES, facts,startDate);

7. Finally, we print out our results.

 //Look at the results
 log.info("======= Results - shipping schedule =======");
 log.info(candyBarOrder);

Running the sample
Let's run the sample. Right-click on the MultipleRulesExample.java file in
either the navigator view or the package view (just as we did for DroolsTest in
the previous chapter). From the pop-up menu that appears, select Run As | Java
Application. After a second or two the output should appear on the console.

Console
1.	 In the output we can see the starting customer order (date and time removed

for clarity).
INFO: ===== Setup =====
INFO: Initial Chocolate Order:2000 itemsStillToShip:2000 shipments:none-
listed

2. We can see the rules file being loaded.
INFO: =========== Calling Rule Runner ==============
INFO: Loading file: src/main/java/net/firstpartners/chap6/shipping-rules.drl
INFO: found file:src/main/java/net/firstpartners/chap6/shipping-rules.drl

More rules in the JBoss IDE

[136]

3. We can see the globals being passed into the rules session.
INFO: Inserting global name: nextAvailableShipmentDate value:03/02/2009
INFO: Inserting handle to logger (via global)

4. The next step we see is that the rule engine is called (we pass the facts as we
call the rule engine).
INFO: ========= Calling Rule Engine ===========

5. The first rule fires twice, confirming the facts/dates that Ooompa Loompas
take a holiday.
INFO: Remember - Ooompa Loompas don't work on:10/02/2009
INFO: Remember - Ooompa Loompas don't work on:17/03/2009

6. The shipment and the shipment date rules fire (several times) in turns.
INFO: Fired Customer Shipment rule - customer is still waiting for 1790
chocolate bars
INFO: Add Next Available Shipment Date:03/02/2009
INFO: Fired Customer Shipment rule - customer is still waiting for 1580
chocolate bars
INFO: Add Next Available Shipment Date:10/02/2009

7. Because 10/02/2009 is a holiday, our holiday rule fires.
INFO: Reschedule Shipment Date to:11/02/2009 due to holiday
on:10/02/2009

Chapter 6

[137]

8. The shipment and the shipment date rules fire in turns again, with our
holiday rule firing again as we don't work on March 17.
INFO: Fired Customer Shipment rule - customer is still waiting for 1790
chocolate bars
INFO: Add Next Available Shipment Date:03/02/2009
INFO: Fired Customer Shipment rule - customer is still waiting for 1370
chocolate bars
INFO: Add Next Available Shipment Date:17/02/2009
INFO: Fired Customer Shipment rule - customer is still waiting for 1160
chocolate bars
INFO: Add Next Available Shipment Date:24/02/2009
INFO: Fired Customer Shipment rule - customer is still waiting for 950
chocolate bars
INFO: Add Next Available Shipment Date:03/03/2009
INFO: Fired Customer Shipment rule - customer is still waiting for 740
chocolate bars
INFO: Add Next Available Shipment Date:10/03/2009
INFO: Fired Customer Shipment rule - customer is still waiting for 530
chocolate bars
INFO: Add Next Available Shipment Date:17/03/2009
INFO: Reschedule Shipment Date to:18/03/2009 due to holiday
on:17/03/2009

9. The rules continue firing in this manner until we reach the final shipment,
which should contain only 110 bars. However, our normal shipping rules put
too many in the box, 210, leaving us with a negative number. At this point,
our Overshipping rule steps in and corrects the number.
INFO: Fired Customer Shipment rule - customer is still waiting for 110
chocolate bars
INFO: Add Next Available Shipment Date:31/03/2009
INFO: Fired Customer Shipment rule - customer is still waiting for -100
chocolate bars
INFO: Removed CustomerOrder Overshipping - new shipment:110
INFO: Add Next Available Shipment Date:07/04/2009

More rules in the JBoss IDE

[138]

10. At this point, our CustomerOrder object has been completely populated,
and there are no more rules waiting to fire. Control returns to our Java code,
which prints out our completed shipping schedule.
INFO: ======= Results - shipping schedule =======
INFO: Initial Chocolate Order:2000 itemsStillToShip:0 shipments:
Shipment:210 date:03/02/2009 chocolate bars left in order:1790
Shipment:210 date:11/02/2009 chocolate bars left in order:1580
Shipment:210 date:17/02/2009 chocolate bars left in order:1370
Shipment:210 date:24/02/2009 chocolate bars left in order:1160
Shipment:210 date:03/03/2009 chocolate bars left in order:950
Shipment:210 date:10/03/2009 chocolate bars left in order:740
Shipment:210 date:18/03/2009 chocolate bars left in order:530
Shipment:210 date:24/03/2009 chocolate bars left in order:320
Shipment:210 date:31/03/2009 chocolate bars left in order:110
Shipment:110 date:07/04/2009 chocolate bars left in order:0

That's it. The example has now finished running.

More powerful rule syntax
Some of the rules in the previous section hinted at more powerful key words than
we have used in our rules to date. Let us go through the remaining key words in
our rules and explain what they mean. You're unlikely to use all of these, although
it is good to know that they are there for some of the weird and wonderful rules that
you'll be asked to write (or review). More information on the rules syntax can be
found in the Drools documentation, if you're into that kind of thing.

Lefthand side
not
We came across not at the start of the chapter, where we used it within an expression
to select lines where Sales were not equal (!=) to 100. We can also use it at the top
level of a rule. For example, if we add not to our last shipping rule we completely
change its meaning. In this case, it fires only if we do not have any customer orders
left to fulfil.

Chapter 6

[139]

rule
 when
 not (
 $CustomerOrder : CustomerOrder(currentBalance<0)
 $ChocolateShipment : ChocolateShipment(itemsStillToShip<0)
)
 then

Note the use of brackets after not—they make clear to Drools the order in which we
want to read the conditions.

Contains and memberOf
If we wanted to check whether a customer order had shipments, we could use the
contains keyword. contains allows us to examine a list or collection (in this case,
our shipments) and act accordingly. The following rule will fire when a particular
shipment (if we previously assigned a value to $mySpecialShipment) is actually a
part of a customer order.

rule
 when
 CustomerOrder(shipments contains $mySpecialShipment)
)
 then

The not contains keyword would have the opposite effect.

memberOf is a similar test, but in the reverse order. We have a handle to a fact,
and we want to check if it is contained within a wider collection (for example,
$shipmentsToAcmeCorp).

rule
 when
 Shipment(shipment memberOf $shipmentsToAcmeCorp)
)
 then

Similarly, not memberOf is the reverse of this.

More rules in the JBoss IDE

[140]

matches and Soundslike
Both matches and soundslike allow powerful text comparisons. Previously, we
compared text1 == text2 using the standard equals operator. Soundslike uses the
well-documented Soundex algorithm (http://en.wikipedia.org/wiki/Soundex)
to gauge if two pieces of text sound similar when spoken—for example, to match all
Sales where the customer name sounds like acme.

Sales (name soundslike "acme")

matches is even more powerful, but requires an understanding of the industry
standard regexp (regular expressions). For example, the following condition will
match all customer names that begin with a:

Sales (name matches "a*")

We can also use not matches and not soundsLike, if required.

in
in allows Drools to check if a single value is a part of a collection. For example, if we
want our rule to fire only for our three favourite customers (Acme Corp, Breakfast
Roll Inc and Chocolate Creams Co), we could add the following condition:

Sales (name in ("Acme Corp","Breakfast Roll Inc","Chocolate Creams
Co"))

exists
Another way of saying exists is 'at least one'. So the following rule will fire when
we have pushed at least one customer shipment out the door:

rule
 when
 exists (ChocolateShipment())

 then
 log.info("Hurray! We made a shipment!");
end

Chapter 6

[141]

forall
Normally, when we write a rule, it will match against any of the facts in memory and
fire against the matched facts. But what if we want our rule to fire only if all of the
facts match our condition? Something like 'fire only if all our customer shipments
have dates' could be written as follows:

rule
 when
 forall(Shipment(shipmentDate !=null))

 then

forall() can also take multiple conditions, all of which have to be true for all facts
matched, before the rule fires.

collect/accumulate
collect allows us to check how many facts in memory match a given rule, and then
test the results. For example, if we had more than one customer order, we'd have no
easy way of counting the total number of shipments that we made on a particular
date. (We can get shipments for single customer using getShipments(), but this
approach won't scale.)

The following rule will display the total number of shipments (for all customers) on
1st January, 2009:

rule
 when
 $numberofShipmentsOnDay : collect (

 ChocolateShipment(
 new OoomplaLoompaDate(1,1,2009)
)
)
 then
 log.info("Boxes shipped today:"+$numberofShipmentsOnDay);
end

accumulate is a more powerful form of collect. It can do everything that collect
can do, along with additional things such as firing custom code as it works it's way
through the collection. (The Drools documentation has more details on how to use
this power.)

More rules in the JBoss IDE

[142]

eval
Sometimes, after looking at all of those expressions, you still can't find one that fits.
eval allows any expression or formula that returns a Boolean value (that is, a true
or false answer) to be used in evaluating a rule. For example, if we want to get the
names of customers that are longer than 10 letters, we could use the following:

rule
 when
 $s : Sales()
 eval ($s.getName().length >10)

 then

eval is also useful when calling functions. For example, if we had a
function, 'name too long', which returned a Boolean, we could call it using
eval(nameTooLongFunction()).

eval is very convenient as it allows us to include pretty much any
condition in a rule. However, it's considerably slower. With other
conditions, Drools can cache (remember) the results because it can
figure out when these results need to change. With eval, Drools
doesn't have this visibility. Therefore, all eval expressions need to
be rechecked every time the rule is true.
If you have to use eval, it's best to add it as the last condition in
a rule—meaning, it will be called less often. If any of the previous
conditions return 'false', then Drools shortcuts, because there is no
need to check any of the remaining conditions.

from
For the examples we've given so far, we've expressed (or pushed) our information
(the Java facts) into our rules. The from keyword allows the rule engine rules to
pull information as required, for example, from a database using the Hibernate
framework. Assuming that we have correctly set up Hibernate to talk to the database
(a topic so vast that a whole book about it can be written), our rule can use the
following syntax:

rule
 when
 Order() from $myHibernateObjectPassedAsGlobal.subquery
 then …

Chapter 6

[143]

Righthand side—Then
Just like the When part of the rule, there are also more powerful options available
on the righthand side (Then clause) of the rule. At the start of the chapter we came
across simple uses of update() and insert(), but the following keywords are also
valid in our rules:

$someHandle = insert(something): This form of insert works the same as
insert (something), that is, putting 'something' into the working memory.
The difference is that we keep a hold of it (in the variable $someHandle) so
that we can do things with it later on.
retract($someHandle): This removes a fact from the working memory.
For example, we may decide to insert a fact representing a discount, only to
retract it later if the customer cancels an order.
insertLogical(new someFact()): At the start, insertLogical() works
the same as insert—it puts an object into memory. The only difference is
that as soon as the rule stops being true, the fact (someFact) is automatically
retracted from the working memory.
update(object,$somehandle): This is similar to update (object), although we
can specify to the object the handle that we wish to update. If the handle is not
passed (that is, the update we did previously), Drools can use a 'best guess'.

The advanced 'When...Then' options are available both in the text editor (like the
previous examples) and the guided editor.

Guided editor in the JBoss IDE
Until now we've focussed on using the advanced text editor in the JBoss IDE. But it's
also possible to use a guided editor, similar to the one we used in Guvnor. To use
this editor, you can take the following steps:

1. Open any Drools-enabled project in the JBoss IDE, and right-click on theOpen any Drools-enabled project in the JBoss IDE, and right-click on the any Drools-enabled project in the JBoss IDE, and right-click on the
folder where you want to create the file.

2. From the context menu that appears, select New | Other | Guided rule.
(You may need to filter, or open, the drools folder in the dialog box to see
this last option.) Click on Next.

•

•

•

•

More rules in the JBoss IDE

[144]

3. Give the new rule file (for example, myNewRule) a name, and click on Finish.
4. That's it. You should see a new tab open in the editor, as shown in theYou should see a new tab open in the editor, as shown in the

following screenshot:

The guided rule editor is very similar to the guided editor in Guvnor, which we
covered in the previous chapters. It has the same 'when...then' options layout. The
guided editor also has tabs to allow us to view the text that was built behind the
scenes using this graphical builder.

Summary
This chapter extended the limits of what can be done with business rules. We went
through almost every keyword available to us in writing rules and used them to
generate a sample to help the Ooompa Loompas pack chocolate bars onto trucks.
Now that we understand how the rules work, in the next chapter we will look at
testing to ensure that our rules keep on working the way we intend them to.

Testing your Rules
We went through many samples in the first six chapters of the book, and didn't
have to pay out 'real' money if we made a mistake. We could happily play with the
examples, make mistakes, and learn from them. This changes when we start writing
'real' business rules. How much money would a company lose if a rule that you
wrote gave double the intended discount to a customer? Or, what if your airline
ticket pricing rule started giving away first class transatlantic flights for one cent?

Of course, mistakes happen. This chapter makes sure that these costly mistakes don't
happen to you. If you're going through the trouble of writing business rules, you will
want to make sure that they do what you intend them to, and keep on doing what you
intend, even when you or other people make changes, both now and in the future.

The chapter shows how to test your rules. It begins the testing by using Guvnor.
It then shows how to test rules against requirement documents using the FIT
(Framework for Integrated Testing), and then shows how to unit test rules by using
Junit. But first of all, we will see how testing is not a standalone activity, but part of
an ongoing cycle.

Testing when building rules
In this book we play with the examples, and then throw them away when we've
learned everything that we can from them. Real life isn't like that. It's a slightly
morbid thought, but there's every chance that some of the business rules that
you write will last longer than you do. Remember the millennium bug caused by
programmers in the 1960's, assuming that nobody would be using their work in
40 years' time, and then being surprised when the year 2000 actually came along?

Testing your Rules

[146]

Rather than 'play and throw away', we're more likely to create production business
rules in the following cycle:

1. Write your rules (or modify an existing one) based on a specification, or your rules (or modify an existing one) based on a specification, or
feedback from end users.rom end users.

2. Test your rules to make sure that your new rules do what you want them to
do, and ensure that you haven't inadvertently broken any existing rules.

3. Deploy your rules to somewhere other than your local machine, where end
users (perhaps via a web page or an enterprise system) can interact with them.ps via a web page or an enterprise system) can interact with them.

You can repeat steps 1, 2, and 3 as often as required. That means, repeat as many
times as it takes you to get the first version into production. Or, deploy now and
modify it anytime later –in 1, 2, or 10 years time.

We covered step 1 (writing) in the first six chapters of this book. We will cover step 3
(deployment) in Chapter 11. Testing is what we'll cover in this chapter.

Making testing interesting
Normal testing, where you inspect everything manually, is booooooooring! You
might check everything the first time, but after the hundredth deployment you'll
be tempted to skip your tests—and you'll probably get away with it without any
problems. You'll then be tempted to skip your tests on the 101st deployment—still no
problems. So, not testing becomes a bad habit either because you're bored, or because
your boss fails to see the value of the tests.

The problem, then comes one Friday afternoon, or just when you're about to go on
vacation, or some other worst possible time. The whole world will see any mistakes
in the rules that are in production. Therefore, fixing them is a lot more time and
money consuming than if you catch the error at the very start on your
own PC.

What's the solution? Automate the testing. All of your manual checks are very
repetitive—exactly the sort of thing that computers are good at. The sort of checks
for our chocolate shipment example would be 'every time we have an order of 2000
candy bars, we should have 10 shipments of 210 bars and one shipment of 110 bars'.

Testing using Guvnor
Back in Chapters 3 and 4, we used the testing facilities in Guvnor to run our first
rules. We had no other way of running rules that would eventually be deployed into
the enterprise systems. This is another advantage of testing—we can instantly see
whether our tests are correct, without having to wait for our rules to be deployed
into the target system.

Chapter 7

[147]

At a high level, Guvnor has two main screens that deal with testing:

An individual test screen: Here you can edit your test by specifying the
values that you want to input, and the values that you expect once your rules
have fired
A package or multiple tests screen (below): This allows you to run (laterpackage or multiple tests screen (below): This allows you to run (later
on) all of the tests in your package, to catch any rules that you may have
inadvertently broken

Another way of saying this is: You write your tests for selfish reasons because you
need them to ensure that your rules do what you want them to do. By keeping your
tests for later, they automatically become a free safety net that catches bugs as soon as
you make a change.

Testing using FIT
Guvnor testing is great. But, often, a lot of what you are testing for is already
specified in the requirements documents for the system. With a bit of thought in
specifying various scenarios in your requirements documents, FIT allows you to
automatically compare these requirements against your rules. These requirements
documents can be written in Microsoft Word, or similar format, and they will
highlight if the outputs aren't what is specified. Like Drools, FIT is an open source
project, so there is no charge for either using it, or for customising it to fit your needs.

Before you get too excited about this, your requirements documents do have some
compromises. The tests must specify the values to be input to the rules, and the
expected result—similar to the examples, or scenarios, that many specifications
already contain. These scenarios have to follow a FIT-specific format. Specification
documents should follow a standard format anyway—the FIT scenario piece is often
less than 10% of it, and it is still highly human-readable! Even better, the document
can be written in anything that generates HTML, which includes Microsoft Word,
Excel, OpenOffice, Google documents, and most of the myriad of editors that are
available today.

•

•

Testing your Rules

[148]

Like the Guvnor testing, we can use FIT to test whether our individual requirements
are being met when writing our rules. It is possible to run FIT automatically over
multiple requirement documents to ensure that nothing has 'accidentally' broken as
we update other rules.

Getting FIT
When you downloaded the samples for Chapter 6, you probably noticed three
strange packages and folders that we didn't talk about at the time.

fit-testcase: This folder resides just within the main project folder, and
contains the FIT requirements documents that we're going to test against.
chap7: This is a folder under src/main/java/net/firstpartners, and
contains the startpoint (FitRulesExample.java) that we'll use to kick-
start our FIT Tests.
FIT: This folder is next to the chap7 folder. It contains some of the 'magic
plumbing' that makes FIT work. Most business users won't care how this
works (you probably won't need to change what you find here), but we
will take a look at it in more detail in case we want to customize exactly
how FIT works.

If you built the previous example using Maven, then all of the required FIT software
will have been downloaded for you. (Isn't Maven great?) So, we're ready to go.

The FIT requirements document
Open the word document fit-testcase.doc using Word, or OpenOffice.
Remember that it's in the fit-testcase folder. fit-testcase.doc is a normalis a normal
document, without any hidden code. The testing magic lies in the way the document
is laid out. More specifically, it's in the tables that you see in the document. All of the
other text is optional. Let's go through it.

Logo and the first paragraph
At the very top of the document is the Drools logo and a reference to where you
can download FIT for rules code. It's also worth reading the text here, as it's another
explanation of what the FIT project does and how it works.

•

•

•

Chapter 7

[149]

None of this text matters, or rather FIT ignores it as it contains no tables.
We can safely replace this (or any other text in this document that isn't in the table)
with your company logo, or whatever you normally put at the top of your
requirement documents.

FIT is a GPL (General Public License) open source software. This
means you can modify it (as long as you publish your changes). In this
sample we've modified it to accept global variables passed into the
rules. (We will use this feature in step 3.)
The changes are published in the FIT plumbing directory, which is a
part of the sample. Feel free to use it in your own projects.

First step—setup
The setup table prepares the ground for our test, and explains the objects that we
want to use in our test. These objects are familiar as they are the Java facts that we've
used in our rules.

There's a bit of text (worth reading as it also explains what the table does), but FIT
ignores it. The bit that it reads is given in the following table:

net.firstpartners.fit.fixture.Setup
net.firstpartners.chap6.domain.
CustomerOrder

AcmeOrder

net.firstpartners.chap6.domain.
OoompaLoompaDate

nextAvailableShipmentDate

If you're wondering what this does, try the following explanation in the same
table format:

Use the piece of plumbing called 'Setup'
Create CustomerOrder and call it AcmeOrder

Create OoompaLoompaDate and call it nextAvailableShipmentDate

There is nothing here that we haven't seen before. Note that we will be passing
nextShipmentDate as a global so that it matches the global of a same name in our
rules file (the match includes the exact spelling, and the same lower-and uppercase).

Testing your Rules

[150]

Second step—values in
The second part also has the usual text explanation (ignored by FIT) and table (the
important bit), which explains how to set the values.

net.firstpartners.fit.fixture.Populate
AcmeOrder Set initial balance 2000
AcmeOrder Set current balance 2000

It's a little bit clearer than the first table, but we'll explain it again anyway.

Use the piece of plumbing called Populate
AcmeOrder Take the … we created earlier, and set it

to have an initial balance of …
2000

AcmeOrder Take the … we created earlier, and set it
to have a current balance of …

2000

Third step—click on the Go button
Our next part starts the rules. Or rather, the table tells FIT to invoke the rules. The rest
of the text (which is useful to explain what is going on to us humans) gets ignored.

net.firstpartners.fit.fixture.Engine
Ruleset src/main/java/net/firstpartners/chap6/

shipping-rules.drl

Assert AcmeOrder

Global nextAvailableShipmentDate

Execute

The following table is the same again, in English:

Use the piece of plumbing called 'Engine'
Ruleset Use the rules in shipping-rules.drl
Assert Pass our AcmeOrder to the rule engine (as a fact)
Global Pass our nextAvailableShipmentDate to the rule

engine (as a global)
Execute Click on the Go button

Fourth step—check the results
After running our rules, we check to see if the results are as we expected.

Chapter 7

[151]

net.firstpartners.fit.fixture.Results
AcmeOrder Get current balance 0
AcmeOrder Get initial balance 2000

The following table explains whether the results are as we expected:

Use the piece of plumbing called 'Results'
AcmeOrder Check the … we created earlier,

and make sure we now have a
current balance of …

0

AcmeOrder Check the … we created earlier,
and make sure we have an initial
balance of …

2000

Clear (an optional step)
This optional step clears any of the previous steps. This means that, if we want, we
can repeat steps 1 to 4 again in the same requirements document.

net.firstpartners.fit.fixture Clear

Print a summary (an optional step)
Another optional step is to print a summary of how our tests went. This is in
addition to the information that will append to each of the previous steps.

fit.Summary

Footer
Finally, there is some more narrative in the footer. FIT ignores this, so you can
remove or replace this if you want.

There is an important part in this footer. It's a note that the sample
(that we're now using) is based on FIT, and also on a sample by
Michael Neale from the Drools team—http://fit-for-rules.
sourceforge.net/. This sample is based on GPL licenced code.
My understanding (remember that I'm not a lawyer) is that you can
use it internally within your organization; but if it is used outside,
then you will need to publish any changes (if you made any) to the
core FIT testing code.

Testing your Rules

[152]

Running FIT on our sample
So far, all we've seen is a Word document. Let's make the magic happen by running
FIT against this document. In this example we're running FIT through the JBoss
IDE, but it would be easy for anyone with a moderate knowledge of Java (ask your
friendly technical person) to make this work by double-clicking on a Windows icon.
The steps for running FIT on our sample are given as follows:

1. FIT doesn't run against the Word document, but against the HTML version
of the Word document. Save your Word document as HTML. (In Word,
choose File | Save As | Web Page.) Name the file as fit-testcase.htm.

Our project already has this 'Save As HTML' step done, but don't forget
to do it again if you make any changes to the FIT document, later.

2. Run the FIT test. In this case select FitRulesExample in the JBoss IDE
(package explorer or navigator), and right-click on it. Select Run As | Java
Application from the context menu that is dispalyed.

3. You should see a bunch of stuff in the console, beginning with net
firstpartners.chap7.FitRulesExample main and ending with Clearing
domain objects.

4. In between, you'll see the results of our rules firing, such as 28 right, 0 wrong,
23 ignored, 0 exceptions. Remember that we automate our testing in order to
automate our inspection of the results. So don't bother reading the console,
other than to check that FIT has run successfully.

5. To see the results, open fit-test-result.htm. The filenames that
we use (fit-testcase.htm and fit-test-result.htm) are set in the
FitRulesExample.java file, and can be changed to whatever you want.

What just happened?
Fit-test-result.htm is a copy of the original FIT test case, but it has been
updated with the results of our tests. If everything goes well, all of our tables should
be highlighted. As an example, the fourth table where we check the results is shown
as follows:

net.firstpartners.fit.fixture.Results
AcmeOrder Get current balance 0
AcmeOrder Get initial balance 2000

The other main change has been our (optional) summary table. FIT has updated the
output with a summary of the set of tests that it has just run. Most importantly,
it's highlighted.

Chapter 7

[153]

fit.Summary
counts 28 right, 0 wrong, 23 ignored, 0 exceptions
input file C:\projects-drools\chap6-sample\fit-testcases\fit-testcase.htm
input update Thu Sep 04 22:31:39 BST 2008
output file C:\projects-drools\chap6-sample\fit-testcases\fit-test-result.htm
run date Thu Sep 04 22:43:44 BST 2008
run elapsed time 0:01.58

There is a small bug in the version of FIT used here (we didn't have 28 tests). But a
test that fails will always be picked up, which leads us to the question, "What does a
failed test look like?"

What can go wrong?
Let's imagine that our requirements document was slightly different—it said that our
rules have run, and so we should still have a balance left on our order of 150 bars
still to ship. In other words, table 4 of our requirements document should look
something like this:

net.firstpartners.fit.fixture.Results
AcmeOrder Get current balance 150
AcmeOrder Get initial balance 2000

When we save the document using Save as | HTML and run our FIT tests again
(using the steps above), we'll notice two differences. The first indication that a test
has failed is in the console of the JBoss IDE, where we'll see the message: 25 right, 3
wrong, 23 ignored, 0 exceptions. The second change is in the FIT document, where
the results table (table 4) is highlighted in dark gray. Helpfully, it shows you the
actual and expected values. The following figure shows you a failing FIT test:

Net.firstpartners.fit.fixture.Results
AcmeOrder Get current balance 150 expected

0 actual
AcmeOrder Get initial balance 2000

Normally, we would revise our rules and run our FIT tests again until our
requirements were met (hightlighted).

That was a failing rule. But what if something more serious happens that causes our
rules to 'blow up', or throw an exception? We made a note while talking about the
rules that it was important that the rule matches the name of our global variable.

Testing your Rules

[154]

What happens if it doesn't? Let's change the name of the variable in tables 1 and 3.
The following table shows the setup using some made-up name:

net.firstpartners.fit.fixture.Setup
net.firstpartners.chap6.domain.CustomerOrder AcmeOrder
net.firstpartners.chap6.domain.OoompaLoompaDate someMadeupName

The following table shows how to execute the rule using some made-up name:

net.firstpartners.fit.fixture.Engine
Ruleset src/main/java/net/firstpartners/chap6/shipping-rules.drl

Assert AcmeOrder

Global someMadeupName

Execute

When we save the document using Save as | HTML and we run FIT again, we see
an indication of problems in the console (22 right, 3 wrong, 23 ignored, 2 exceptions)
with full details of the error in the updated FIT results document. It is shown as
follows with some details removed, and others highlighted for clarity:

org.drools.spi.ConsequenceException: java.lang.
NullPointerException
….
Caused by: java.lang.NullPointerException
at net.firstpartners.chap6.Rule_Add_Next_Available_Shipment_Date_
0.consequence(Rule_Add_Next_Available_Shipment_Date_0.java:10)

 ... 19 more

When you first see this, there is too much detail (about 19 lines of technical-looking
text, in this example), but the important bits are:

The first line that tells us we have ahe first line that tells us we have a nullpointer exception. As explained
in the previous chapter, this is where a rule expects to have something
available; but what it expects isn't there.
The Caused by line indicates that the problem is in Rule_Add_Next_
Available_Shipment, and more particularly in the consequence
(the 'when' part).

Looking at the When part of Rule_Add_Next_Available_Shipment, we see that itwe see that it
contains the code nextAvailableShipmentDate.rollForward(7). This assumesThis assumes
that our nextAvailableShipmentDate has something passed in to it. But it doesn't,
as we've just changed the FIT rules to use a different name. Hence, it is empty, and
causes the NullPointerException that we see.

•

•

Chapter 7

[155]

This process of deduction would be even more impressive if we hadn't deliberately
broken the rule in the first place.

Even though we change the first (and not the third) table in our FIT
document, we will still get an exception, but of a different kind:
IllegalArgumentException-No domain object for key
'nextAvailableShipmentDate' exists.
As before, the key to resolving the error is to not get scared by the large
amount of detail provided, but to look for clues. In this case something is
wrong relating to nextAvailableShipmentDate. 80% of the problems
are caused by something being misspelt, or the wrong variable name
being used (which is the problem in this case).

The FIT plumbing
If you're interested only in testing against requirements, then you should presume
that FIT for rules 'just works' and skip ahead to the next section (on unit testing). If
you're somewhat technical, you're probably wondering how FIT works under the
covers. If so, read on.

In general, the classes that were mentioned in the FIT template (for example,mentioned in the FIT template (for example,
net.firstpartners.fit.fixture.Setup) are the plumbing that allows the FIT
framework to understand our rules code. These files can be found in the
src/main/java/net/firstpartners/fit folder.

FIT or FIT for rules? FIT is a general-purpose requirements-testing
framework that can be adapted to test almost anything. Normally,
'adapted' means a bit of work to match FIT to your code. Fortunately,
as most rules follow a standard pattern, Micheal Neale (of the Drools
team) has already written the adapter for you as the 'FIT for Rules' project.

The most likely scenario is that 99% of what you need is already covered by this
(modified) FIT for Rules framework, but you may come across something that you
would like to add, or do differently. For example, the modified framework can pass
global variables to the rules, whereas the original source cannot.

The full source is available for both, so these are just pointers to get you started:

1. When we start FitRulesExample, Java finds our main() method and jumps
in. This method sets up parameters (such as input and output files) and calls
the FileRunner file (run method).

Testing your Rules

[156]

2. FileRunner is a part of the FIT framework—the source code is available. But
as a summary, it loads the input document that we specified and scans it for
tables that may contain instructions to carry out a test.

3. You'll notice that the first line of all of the tables in our FIT document start with
an instruction—Setup, Populate, Engine, Results, Clear, and Summary. When
the FIT framework finds one of these, it tries to find the file, and loads it.

4. All of these instruction files follow a similar format. They 'extend' another
file called AbstractRulesTesting, which is like a template. So when we
are reading a file (for example, Setup.java), we must remember that it also
contains all of the code from AbstractRulesTesting. (Because many files
use this common template, it saves us a lot of typing.)

5. At this point, FIT has scanned the document, found the table, and loaded
the instruction file (for example, Setup.java). It loops through each cell in
the table and calls the doCell() method in the Setup.java (or other
instruction) file.

6. The doCell() method checks to see what sort of cell it is. It may carry out
different actions depending on whether it's the first row, the first column, or
any other cell.

In this way, FIT loops through the document and sets up the facts to be tested, calls
the rule engine, checks the results, and then prints a summary.

Remember that we would normally write the instruction file to understand our code.
It just happens that we have a set of adaptors (in FIT for Rules) that understands
most of the rules-related code. If we need to modify an adaptor, we can add pretty
much any Java-based code that's required.

The actual mechanics of calling the rules from FIT are the same as our previous
examples. What is different in FIT for Rules is that we express our tests in Word, and
(via our adaptors) FIT understands what values to pass to the rules.

Now that we understand requirements testing, let's look at testing at the next level
down—unit testing.

What is unit testing?
A good enterprise computer system should be built as if it was made of Lego bricks.
Your rules are only a piece of the puzzle. You'll need to go back to the Lego box to
get pieces that talk to the database, make web pages, talk to other systems that you
may have in your company (or organisation), and so on. Just as Lego bricks can be
taken apart and put together in many different ways, the components in a well-
designed system should be reusable in many different systems.

Chapter 7

[157]

Before you use any of these components (or 'bricks') in your system, you will want
to be sure that they work. For Lego bricks this is easy—you can just make sure that
none of the studs are broken. For components this is a bit harder—often, you can
neither see them, nor do you have any idea whether their inputs and outputs are
correct. Unit testing makes sure that all of the component pieces of your application
work, before you even assemble them.

You can unit test manually, but just like FIT requirements testing, you're going to
'forget' to do it sooner or later. Fortunately, there is a tool to automate your unit tests
known as Junit (for Java; there are also versions for many other languages, such
as .Net). Like Drools and FIT, Junit is open source. Therefore, we can use it on our
project without much difficulty. Junit is integrated into the JBoss IDE and is also
pretty much an industry standard, so it's easy to find more information on it. A good
starting point is the project's home page at www.Junit.org.

The following points can help you to decide when to use unit testing, and when to
use the other forms of testing that we talked about:

If you're most comfortable using Guvnor, then use the test scenarios within
Guvnor. As you'll see shortly, they're very close to unit tests.
If the majority of your work involves detailing and signing off against the
requirement documents, then you should consider using FIT for Rules.
If you're most comfortable using Java, or some other programming language,
then you're probably using (J)unit tests already—and we can apply these unit
tests to rule testing.

In reality, your testing is likely to be a mix of two or three of these options.

Why unit test?
An important point to note is that you've already carried out unit testing in the rules
that we wrote earlier. OK, it was manual unit testing, but we still checked that our
block of rules produced the outcome that we expected. All we're talking about here
is automating the process.

Unit testing also has the advantage of documenting the code because it gives a
working example of how to call the rules. It also makes your rules and code more
reusable. You've just proved (in your unit test) that you can call your code on a
standalone basis, which is an important first step for somebody else to be able to use
it again in the future.

You do want your rules to be reused, don't you?

•

•

•

Testing your Rules

[158]

Unit testing the Chocolate Shipments sample
As luck would have it, our Chocolate Shipments example also contains a unit test.
This is called DroolsUnitTest.java, and it can be found in the test/java/net/
firstpartners/chap7 folder.

DroolsUnitTest.java lives in a similar, but parallel, set of folders. It
begins with test instead of main. Having these parallel sets of folders is
a convention used to separate our test code from our production code.
We want to run our tests before we deploy them to production, but not
actually deploy those tests. By having the folders set up in this way, we
fool Java into thinking that these tests live in the same package as the
actual rules, yet they are still separate. This is done so that the tests don't
accidentally get deployed (which is a good thing, as we don't want our
tests to corrupt our production data).

Running the Junit test is similar to running the samples. In the JBoss IDE Navigator
or package explorer, we select DroolsUnitTest.java, right-click on it, and then select
Run as | Junit test from the shortcut menu.

All being well, you should see some messages appear on the console. We're going
to ignore the console messages; after all, we're meant to be automating our testing,
not manually reading the console. The really interesting bit should appear in the
IDE— the Junit test result, similar to the screenshot shown below. If everything is
OK, we should see the green bar displayed—success!

We've run only one unit test, so the output is fairly simple. From top to bottom
we have: the time it took to run the test; the number of errors and failures (both
zero—we'll explain the difference shortly, but having none of them is a good
thing), the green bar (success!), and a summary of the unit tests that we've just run
(DroolsUnitTest).

If you were running this test prior to deploying to production, all you need to know
is that the green bar means that everything is working as intended. It's a lot easier
than inspecting the code line by line.

Chapter 7

[159]

However, as this is the first time that we're using a unit test, we're going
to step through the tests line by line. A lot of our Junit test is similar to
MultipleRulesExample.java that we ran in the previous chapter. For example, the
unit test uses the same RuleRunner file to load and call the rules. In addition, the
Junit test also has some automated checks (asserts) that give us the green bar when
they pass, which we saw in the previous screenshot.

What just happened?
Probably the easiest way to understand what just happened is to walk through the
contents of the DroolsUnitTest.java file.

Our unit code starts with the usual package information. Even though it is in a
separate folder, Java is fooled into using the same package.

package net.firstpartners.chap7;

In our imports section (list of other files that we need), we have a mix of our
domain objects (the facts such as CustomerOrder) that we used earlier for holding
information. We also have the logging tools. What is new is the imports of Assert
(part of our automatic checking tool) and importing the junit test (the template for
our unit test).

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;

import java.util.HashMap;

import net.firstpartners.chap6.domain.CustomerOrder;
import net.firstpartners.chap6.domain.OoompaLoompaDate;
import net.firstpartners.drools.RuleRunner;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.junit.Test;

The start of the main part of the file may be renamed to DroolsUnitTest, but what it
does is the same. The rules are still read from exactly the same file as before.

public class DroolsUnitTest {

 private static Log log = LogFactory.getLog(DroolsUnitTest.class);

 private static final String NEXT_AVAILABLE_SHIPMENT_DATE =
"nextAvailableShipmentDate";

 private static final String[] RULES_FILES = new String[] { "src/
main/java/net/firstpartners/chap6/shipping-rules.drl" };

Testing your Rules

[160]

Earlier, our starting point was called main so that Java knew where we wanted it
to start when we pressed the green Go button. This time, our start method is called
testShippingRules and it's marked with a @Test flag so that we know it's an entry
point. We can have multiple tests, each marked with @Test. The Junit framework
will test each one in turn.

The rest of this code snippet, which involves setting up and calling the business rules
via RuleRunner, is exactly the same as our previous 'calling the rule engine' samples.

 @Test
 public void testShippingRules() throws Exception {

 // Initial order
 CustomerOrder candyBarOrder = new CustomerOrder(2000);

 HashMap<String, Object> startDate = new HashMap<String,
 Object>();
 startDate.put(NEXT_AVAILABLE_SHIPMENT_DATE, new
 OoompaLoompaDate(2009, 02, 03));
 // Holidays
 OoompaLoompaDate holiday2 = new OoompaLoompaDate(2009, 2, 10);
 OoompaLoompaDate holiday1 = new OoompaLoompaDate(2009, 3, 17);

 // Call the rule engine
 Object[] facts = new Object[3];
 facts[0] = candyBarOrder;
 facts[1] = holiday1;
 facts[2] = holiday2;

 // A lot of the running rules uses the same code. The RuleRunner
 (code
 // in this project)
 // keeps this code in one place. It needs to know
 // - the name(s) of the files containing our rules
 // - the fact object(s) containing the information to be passed
 in and
 // out of our rules
 // - a list of global values

 new RuleRunner().runRules(RULES_FILES, facts, startDate);

In our previous example, once we called the rules, we printed the results out to the
screen for manual inspection. This time things are different. We want to make this
checking automatic. Hence, we have added following new lines in the final snippet,
using assertXXX to check if the values that we get back from the rules are
as expected:

Chapter 7

[161]

 // Check that the results are as we expected
 assertEquals(
 "No more bars should be left to ship", 0, candyBarOrder
 .getCurrentBalance());

 assertEquals(
 "Our initial order balance should not be changed",
 2100, candyBarOrder.getInitialBalance());

 assertNotNull(
 "Our list of shipments should contain a value",
 candyBarOrder.getShipments());

 assertTrue(
 "We should have some Cusomter Shipments",
 candyBarOrder.getShipments().size() > 5);
 }

}

In general, our assert checks follow the format: Assert("message if the value is
not as we expect" , valueWeExpected, valueWeGotWhenWeRanTheTest)

The first line (ne (assertEquals) compares the number of candy bars that
should still be left to ship after our rules have fired (should be 0)
The second line (assertEquals) ensures that the initial order is not changed
by the rules, and remains at 2100
The next line (assertNotNull) ensures that the list of shipments that we
made is not empty
The final line (assertTrue) checks that we have more than five shipments
made to a customer

Is it best to have multiple tests or multiple asserts within a single test? It is possible to
have multiple tests, such as someTest() methods (each marked with @Test), and/or
multiple tests using assertXXX within a method. A combination of both is probably
the best. Multiple asserts in one method are great when your test is difficult to set up,
but the test will stop at the first assert that turns out to be false. This means you can
solve the first error, but your test will then stop at the next assert that fails. Having
these asserts in separate test methods shows you instantly how many problem(s) you
have—at the price of having some duplicated setup code.

•

•

•

•

Testing your Rules

[162]

There is a school of thought that advocates test-first design. Write your unit
tests before you write any proper rules—this acts as your specification.
Of course, all of your tests will fail at the start. However, bit by bit, you
must write the rules to make them work. That way, you know when
you've done what you started out to do—no more and no less. And it
means that you can never 'forget' to write your tests.
It may appear strange, but it works for many people. So, it's certainly
worth giving a try.

What if it goes wrong?
We were lucky that our tests worked the very first time. Unfortunately, this is almost
impossible to achieve. For example, assume that we mistakenly wrote a rule that
changed the initial balance.

 assertEquals(
 "Our initial order balance should not be changed",
 2100, candyBarOrder.getInitialBalance());

In this case, when we come to check, our test will fail. We will get a red bar in our
unit tests, detailing what has gone wrong (similar to the screenshot below). The
message in our assert (Our initial order balance should not be changed) and other
details (such as line numbers) are provided to help us trace what is going wrong.
You'll also notice that the Failures count is now 1.

Failures and errors
So what's the difference between failures and errors? Failures are things (such as the
above assert) that we explicitly check for. Errors are the unexpected things that go
wrong. Remember our NullPointerException from the previous section in FIT?
That is, the problem that we face when something is empty that shouldn't be. That
exception is shown as an error in Junit with a red bar (again), along with the details
of the problem to help you fix it.

Chapter 7

[163]

It's simple—green is good and red is bad. But remember, it's always better to catch
mistakes early.

Testing an entire package
Typically, you write a unit test at the same time as writing a set of rules to confirm
that the functionality is 'done'.

After you're 'done', you (or one of your team) should run all of the tests in the project
to make sure that your new work hasn't broken any of the rules or code that already
existed. There are a couple of ways to automatically do this overnight (as part of a
build control tool such as Cruise Control) as part of your build scripts (Maven, the
tool installed to build the samples in this book does this for you), or you can run all
of the tests from the JBoss IDE (akin to the 'run all scenarios in package' that we saw
in Guvnor).

It's pretty easy to run all of your unit tests in one go. All you have to do is this:

1. From the toolbar (at the very top of the JBoss IDE) selecthe toolbar (at the very top of the JBoss IDE) select Run.
2. In the dialog box that is dispalyed, select Junit (near the lower-left of the

screen) and then click on New launch configuration (the icon on the
upper-left of the screen, as shown in the screenshot).enshot).

Testing your Rules

[164]

3. On the righthand side, fill in the following values:

4. Click on Apply (to save it, so that you don't have to go through all of the
steps the next time), and then click on Run.

As before, the JBoss IDE will chug away for a couple of moments, and then the
popup Junit screen will be displayed. As before, if any of the multiple tests fail, you'll
see a red bar, along with details of all of the items that went wrong. When all of your
tests pass, you can be sure that your rules are of top quality.quality..

Summary
Hopefully, you're now confident about testing. In this chapter we've seen how to test
our rules using Guvnor, as well as using FIT for rule testing against requirements
documents, and unit testing using Junit. Now that we can write and test advanced
enterprise rules, let's see another rule format—rules in Excel (decision table) format.

Data and Rules in Excel
At the start of the book we said 'If you can understand Microsoft Excel, then you
should be OK'. To prove this, we're going to devote this entire chapter to Excel.

Almost everybody understands Excel spreadsheets, or their equivalent in OpenOffice
and Google Docs. All of these are simple, grid-based editors that allow us to store,
edit, and share information. Spreadsheets may not be perfect, but they're popular
and well-understood. First, we're going to use them to hold the data that we supply
to the business rules. Then we're going to use spreadsheets to hold the actual rules in
a decision table format.

Reading data from Excel
One of the basic problems that we face is getting information into and out of our
business rules. Until now we've been using JavaBeans. These are great, especially
if you're familiar with Java already. JavaBeans are also good if your information
is already available from a technical source of data, such as a database, that Java
can easily read. But JavaBeans can be time-consuming to create—more so if your
information is already contained in an Excel spreadsheet.

Instead of having to create our Java Beans manually, wouldn't it be great if we could
hand this spreadsheet to the Drools rule engine and say 'here you go—fire the rules
against this information'. It would be even better if our rules could say something
like 'If the value at cell A1 is greater than 100, then update the spreadsheet to say:
value too high'. As a result of our rules firing, the spreadsheet could be updated
with that message.

Fortunately, there is already an open source project called Apache POI that
allows Java-based programs (such as the Drools rule engine) to read and write
data from Excel spreadsheets. We'll use a simplified version, based on POI (from the
Red-Piranha project), in our chapter so that we can read and write from Excel. That
covers the 'store the data in Excel' requirement.

Data and Rules in Excel

[166]

What's the difference between updating values using normal Excel
formulae and updating the values using Drools, as we explain in
this chapter?
For most spreadsheets, the power of Excel (and it is very powerful) is
enough. But, pretty quickly, those formulae become very complex andthose formulae become very complex and formulae become very complex and
difficult to understand, test, and maintain—the same problem of 'traditional
coding' that we talked about in the previous chapters. Rules solve this
problem by expressing your business rules in a clear and clean way.

If you're interested in loading high volumes of data from different formats
(including Excel), fast-forward to the Smooks section in Chapter 12. The advantage
of the Red-Piranha approach is that it allows us to change the formatting or colours
in the spreadsheet. Smooks is better for large volumes of data, but doesn't give you
the pretty colors!

Business rules for this sample
The business rules that we'll walk through in this chapter are based on the following:

The chocolate factory needs to buy cocoa beans to make candy bars
Because the price of cocoa beans rises and falls almost daily (an entire
building in Chicago is dedicated to this market), the chocolate factory decides
to make a bit of side money by trading in chocolate
We trust certain traders more than others, so we will buy from them at a
higher price—that is, we have specific prices for each broker
We also have different selling prices for different traders, as either they have
a bulk-buying agreement, or we factor in the cost of delivery

Of course, this is very simple compared to what really goes on in the market, but it's
enough to show how to store both data and rules in Excel.

Getting and running the sample
Our sample that shows how to read and write Excel data (as our fact model) can be
downloaded (like the last example) from Google Code at http://code.google.
com/p/red-piranha. The file you need is droolsbook-chap8-sample_01.zip. .
Like the previous example, unzip it to a location of your choice. The downloaded file
should contain the Eclipse project, but (as before) you may need to execute the Maven
command mvn clean package to download the required libraries to your computer.

•

•

•

•

Chapter 8

[167]

Input
Open this project and look for the input spreadsheet. It is called chocolate-data.
xls, and is found in the src/main/resources folder. When you open it, it looks
something like the following screenshot—a fairly ordinary spreadsheet with
one value at the top (Current Stock), and below that many rows, one per broker
(A Broker, B Broker, and so on) with five columns. These lines are the various buy
and sell offers that chocolate brokers will make to us. The five columns are contain
Broker Code, Buy or Sell, Quantity, Price, and Status of the trade.

The screenshot below demonstrates named ranges. Referring to cells such as 'A1' ornamed ranges. Referring to cells such as 'A1' or Referring to cells such as 'A1' or
'B12' is great, until you have to modify the spreadsheet when you need to update allall
your rules.

Rather than referring to cells 'A12-E12', we can use a name such as 'G Broker Values'
to refer to a range (group) of cells. If we add or remove lines from the spreadsheet,
the named range will continue to point to the same set of information.

Data and Rules in Excel

[168]

To see the named ranges in Excel, select Insert | Name | Define from the toolbar.
You should see the Define Name dialog box listing all of the ranges in the current
spreadsheet. In effect, there is one named range for each broker (that is, one for each
line in the Excel spreadsheet), and a named range for the current stock value.

Rules
Our rules for the first sample are pretty simple and are still in the standard format
that we're used to. It just prints out the values and marks cells as modified.
Remember, this first sample is all about reading data from Excel.

package net.firstpartners.chap8;

import net.firstpartners.drools.log.ILogger

import net.firstpartners.exceldata.Cell;
import net.firstpartners.exceldata.Range;

global ILogger log;

rule "log then modify cell values"

 when
 $cell : Cell(modified==false)

 then

 $cell.setModified(true);

 //Logging message
 log.info("initial cell value:"+$cell);

end

Chapter 8

[169]

Running the sample
Our main class is ExcelDataRulesExample.java (which is in the directory src/
main/java/net/firstpartners/chap8). Select this Java file in Eclipse and run it
in the usual way (right-click on the file, and then choose Run as Java application).
You'll see some output in the console, but the real change is in the Excel spreadsheet,
which has been copied and then modified.

This output spreadsheet is called chocolate-output.xls, and can be found in the
main project folder. When you open it you'll see that according to our simple rule, all
cells having a range name have been marked as modified. In this case, the cells are
highlighted to make it clear what is going on.

Copying the Excel spreadsheet and then modifying it means that even
if a rule deleted all the values by accident, you still have the original
spreadsheet to go back to and try again!

What's going on?
If you're not interested in the technical nuts and bolts, then skip ahead to the next
section. Just remember that we can read and write information in Excel, and pass this
information to our rules. Still with us? Then you're in for a treat, because we're going
to explain what's just happened in the previous example. Along the way, you'll pick
up information that will help you write rules that use Excel as a fact model to hold
information for our business rules.

Under the covers
Our sample starts in the ExcelDataExample.java file. As before, the flow starts
in the main method. It's fairly clear in this file where our input (chocolate-data.
xls), output (chocolate-output.xls), and rules (log-then-modify-rules.drl)
are. What is different from the previous sample is that we have a piece of code
(Rangeconvertor) that loads the Excel spreadsheet and transforms it into a set of
simple JavaBeans (Cells and Ranges). These JavaBeans are the fact model (containing
the data) that we pass to our rules as normal.

Data and Rules in Excel

[170]

Why not use the Cells and Ranges supplied by the Apache POI
framework? The answer is that you can use them, but the Cells and
Ranges based on Red-Piranha that we will use here are simpler. They also
allow us to add methods (such as getRangeContainsValue) that make
it easier to write rules.

We've already seen that the simple rule for this example matches against all cells, logs
their contents, and marks them as modified. Our RangeConvertor also translates our
(updated) Cells and Ranges back into a proper Excel spreadsheet. For clarity, any cell
that we modify is highlighted—hence all our ranges are highlighted.

More on Cells and Ranges
When we write more sophisticated rules, we'll be matching against Cells and Ranges.
These JavaBeans hold the information that we passed in via the Excel spreadsheet.
Because our rules will be matching against these Cells and Ranges, it's worth looking
at them in more detail.

Our Range JavaBean, like its equivalent in Excel, is used to hold a group of cells. The
items marked on the above screenshot are the ones that we will discuss in more detail.

1. Like Excel, our Range has a name that we can access with the
getRangeName and setRangeName methods.

2. A range is based on the Map interface. That is, our cells are stored within the
range as a cell name, and then the actual cell itself. Our cell names follow the
range name (for example, the first cell in the some_name range would be
some_name_0), but we have convenience methods that handle this for us.

Chapter 8

[171]

3. Our own methods for working with cells are: getCell (the actual cell itself),
getCellValue (a shortcut to the value held within the list), getCellValueList
(a list of all the values within the range), and getRangeContainsValue
(which searches the range and returns true if the value is found).

4. We have other methods to help us print (for example, toString and
toShortString), methods to help us compare ranges (hashcode and equals),
and other Map methods (size,remove, isEmpty, and so on). and so on).

One Range can contain one or more cells, depending on the Excel spreadsheet that is
passed in.

1. A cell is aware of the Range that holds it (getHoldingRange,
setHoldingRange).

2. When a cell is updated by any setMethod, the modified flag is tripped. We
can read this with the isModified method. This is what is used later on to
mark the modified cells (in Excel) are highlighted.

3. We can read or set a value with the getValue oror setValue methods. We also
have convenience methods such as getBooleanValue, getIntValue, and and
getValueAsText to get the values converted to yes/no, numbers, and text
respectively.

4. Like the range, we implement toString, equals, and and hashcode to make Cells
easier to print (to the console) and easier to handle from our rules.

Data and Rules in Excel

[172]

The actual code that converts between the Excel code and our JavaBean code (and
back again) is contained in the RangeConvertor.java and CellConvetor.java files.
We don't need to go into the details. But we should know that we loop through all of
the named ranges in the Excel sheet, and copy the values to and from our JavaBeans
as required. There are a couple of quirks in this conversion process, such as:

1. If we leave the chocolate-output.xls open in Excel, and run our sample
again, we'll get the following error (to resolve it, simply close the file in Excel):
Exception in thread "main" java.io.FileNotFoundException:
chocolate-output.xls (The process cannot access the file because
it is being used by another process)

2. Because of the way that Eclipse builds projects, if you change the input
spreadsheet (chocolate-data.xls), you must save the Excel file (as normal)
and then clean out any old versions by selectingclean out any old versions by selecting Project | CleanProject | Clean from the
Eclipse toolbar. If you don't do this before running the sample, any changes. If you don't do this before running the sample, any changes
that you make will appear to be ignored.

3. If a cell is blank in Excel, then it doesn't exist. (It's a way to make the Excel
file size smaller.) If a cell doesn't exist, then we can't update it with a value,
even if the Rules have changed it—that's why have n/a in some cells rather
than keeping them empty. This is a quirk in the Excel conversion code that a
future version of Red-Piranha should correct.

Red Piranha is a knowledge management tool available as an open source
project on Google Code, at http://code.google.com/p/
red-piranha.
For the purposes of this chapter, Red-Piranha makes it easier to
manipulate data in Excel using Drools. Drools hides the complexity
of Apache POI (the code that does the actual Excel manipulation),
which means that your rules could update other table-based sources of
information such as Google Docs, or web pages containing HTML tables.

You may have noticed that when we invoked the rule engine (via the
DtRuleRunner file), we passed in both Ranges and Cells (that is, we called the
ranges.getAllRangesAndCells method). Surely, this is duplication. Because Ranges
contain Cells, why not pass only the Ranges so that the rule engine can automatically
read all the Cells that are contained within them? The answer is: We can access a cell
within a range using the notation SomeRange.getCell(1).getValue(). But as theBut as the
rule engine cannot detect changes in these second-level JavaBeans, updates to Cells
made in this way will not cause other rules to fire when they should.way will not cause other rules to fire when they should.ill not cause other rules to fire when they should.

Chapter 8

[173]

This restriction applies not only to Ranges and Cells, but also to any 'nested'
JavaBeans that you may write on your own. Later, we'll see ways of notifying Drools
about the changes to the cells. But for the moment, it's best to pass both Ranges and
Cells to the rule engine. Java is smart enough to realise that they are duplicates, so
we only end up with a single copy of the cell being stored in memory.

Note that both Cells and Ranges implement property change listeners
to help the rule engine detect changes in values. However, because your
JavaBeans may not have these, we also notify the rule engine explicitly of
any changes (via update and modify calls).
In this example, contents of Cells may change, but Ranges do not. That is,
the value of a cell may be updated, but the shape or the name of a range is
unlikely to change.

As an aside, you may have noticed that even though we have both Range and Cell
values available (in working memory) to match against, (to keep the sample simple),
the current rules only match against values contained in Cells.

Sophisticated, but repetitive rules
Reading and updating an Excel file is a good trick, but our simple rule doesn't do
much yet. How can we add more sophisticated rules? More importantly, if you've
extended the rules from previous chapters, how do we write repetitive rules without
a lot of copying and pasting? And how do we write rules in an Excel format, and not
just the data, which is what we've done so far in this chapter?

Let's remind ourselves of the chocolate trading rules and write them in a more
'business rule' type format:

When you get a BUY offer for A_Broker, compare the price of the offer
against the price that you are willing to pay. If the price is reasonable, make a
note to execute a buy order.
Put in place similar buy rules for each and every broker.
When you have a note saying BUY, execute the order. execute the order.
When you get a SELL offer for A_Broker, compare the price of the offer
against the price that you are willing to accept. If the price is reasonable,
make a note to execute a sell order.
Put in place similar buy rules for each and every broker.
When you have a note saying SELL, execute the order.execute the order.

•

•

•

•

•

•

Data and Rules in Excel

[174]

Although, there are only four types of rules (evaluate buy, execute buy, evaluate
sell, and execute sell) there are potentially hundreds of duplicate rules. These rules
may be simple compared to those in previous chapters, but they have a higher risk
of error due to their large number. It would be better if we could set them out in a
simple table format like the rules table shown in the following screenshot:

The two images in the screenshot below are actually the same table, except
split to fit into the page. Both are screenshots from the TradingRules.
xls file that you downloaded as a part of the Chapter 8 sample.

The first part of the table shows the usual 'if' conditions. In the column which is
highlighted, we check the broker name, ensure that this is a buy offer, make sure that
no other rule has processed this offer, and then ensure that the price is greater than
what we're prepared to pay for.

Underneath, we have the actual lines of data we use as part of these 'if' conditions.
We only show four, but there are 13 as a part of the sample table, and there could be
many more. These lines combine with our rules, so we can read the first line as:

Check that our broker name is A_Broker. Check that it is a buy offer, and that
nobody else has taken up (modified) this offer. And if the buy offer price is
less than 300 then …

If we didn't have the table format, we'd have had to write out in full each of the rules
from 4 to 13, or however many we have. So the decision table format is ideal for the
rules that are repetitive. The structure stays the same, but the values that we are
checking against change from rule to rule.

That's the 'when' part of the table. What about the other part (the 'then' part)?
In real life, the screenshot below (showing the 'then' part) follows to the right of the
previous table.

Chapter 8

[175]

Our 'then' part follows a similar format, breaking the rules into the structure (the
highlighted part) and the associated values that change for each rule. The 'then' part
matching against our 'when' part (A_Broker (the first line)) is:

Update the status to_Buy This
Log a message about what we plan to do
Notify the rule engine that both Cells and Ranges have been updated (to seeCells and Ranges have been updated (to see have been updated (to see
if any other rules should be fired)

Some Excel magic
The decision tables that you saw earlier are taken directly from our sample Trading-
Rules.xls, but it looks like there is something missing. How does our technical rule
engine understand the near-English language we have in the excel decision tables?

The answer is that we've used a bit of Excel magic to hide this technical complexity
from the business users. In Excel 2003 and Open Office, the feature we use is called
Group and Outline and is found under the Data item on the toolbar. Office 2007 has
this feature under the Group item on the ribbon.

Clicking the '+' sign at the far left of the screen shows the hidden technical mapping.
With the lines unhidden, we can begin to see what is really going on.

Grouping and hiding columns is not the only visual trick that we can
use to make data entry easier. We can use formatting and colors in cells,
borders, and comments—all of which are used on this sample. We can
also use more advanced features such as merged cells and dropdowns
for selecting values from a predefined list.
In general, Drools just ignores these and reads the basic Excel table in
black and white.

•

•

•

Data and Rules in Excel

[176]

Decision tables behind the scenes
A lot of the lines that we've just displayed contain the rule syntax that we've used
in the previous chapter. We'll take a run through the information at the top of our
decision table file and the first two decision tables. Remember that we're writing
these rules to match against the chocolate-data.xls fact model (containing the
data), which we loaded at the start of this example.

Keep in mind that decision tables are just a mechanism to help generate
our rules. Behind the scenes, the rules themselves get translated into the
rules syntax that we're familiar with.

Header information
In Chapters 5 and 6, we saw a list of items that go at the top of our rules files. These
items can go into the header table, which always starts with a RuleSet declaration, as
we can see in the screenshot below.

RuleSet lets Drools know where the header table begins, and everything else is
ignored (for example the Chocolate Trading Rules title is not read). RuleSet also lets
Drools know which package these rules live in, although we do import additional
JavaBeans for this example (the ones that represent our Ranges and Cells). Our Notes
line is ignored as it means nothing to Drools. We could also have used items such as
'global' and 'function' in this part.

Chapter 8

[177]

RuleTable—Evaluate the buy trades
Drools ignores everything else in the Excel file, until it comes to a section marked
as RuleTable, where it expects to find rules laid out in the specific decision table
format. The text following RuleTable is used to autogenerate the rule names, so be
careful with the name that you use.

The first part of the decision table is the CONDITION cells, which makes up
the 'when' part of the rule. In this case, we have one variable definition and four
conditions to be matched before the rule fires. Note the use of parameter variablesNote the use of parameter variables
in the unhidden part of the rules. $param1 or $1 means take the first value from
the cells below and use it as part of the comparison in the rule. The following table
explains the different conditions shown in the above screenshot:

CONDITION $r:Range: Only match against Ranges in working memory.
CONDITION eval($r.getRangeName().equals("$1")): Matches the name of
this range against the parameter from the cell below (for example A_Broker,
B_Broker, and so on).
CONDITION eval($r.getCell(1).getBooleanValue()==$1): Matches the
first cell of this range against the parameter (this value is true for all lines).
Remember that the first cell of data is the Buy / Sell flag.
CONDITION eval($r.getCell(4).isModified() == $1): Checks that the fourth
(that is, last) cell in our Range—'modified' flag—is equal to the parameter
(that is, this parameter is false for all lines). Remember that the last cell
of data that we pass in (from the data spreadsheet, which was the first
spreadsheet mentioned in this chapter) is Status, which starts out as N/A.
CONDITION eval($r.getCell(3).getIntValue() < $1): Checks that the third
cell in our data range (the price that we offered for the chocolate beans) is less
than our parameter (which varies from broker to broker).

Decision tables can use more than one parameter. For example, $2 means
take the second value within the data cells in the same column of the
spreadsheet. For example, if a data cell had values of 10, 20 then $1 would
have a value of 10, and $2 would have a value of 20. (Note that the two
values are separated by a comma.)

•

•

•

•

•

Data and Rules in Excel

[178]

As a reminder, eval() can take any calculation, as long as it returns a true or false
answer. It's great for text and calculations. The downside is that it's not as efficient,
but that's OK for a small ruleset like the one in this example.

The second part of this decision table (ACTION) gives the 'then' part of the rules,
which includes the following:

ACTION $r.getCell(4).setValue("$1");: Sets the value on the fourth cell in the
data range (the status) to our param, which is always Buy This
ACTION log.info("$1");: Logs the message from the following table
ACTION update($r.getCell(4));: Pings the rule engine to let it know that
cell 4 in our data has been updated
ACTION update ($r);: Pings the rule engine to let it know that the entire
Range has been updated

The above screenshot will generate three rules. Each rule will use the same structure,
but will have the values embedded in it. To demonstrate this, the following is the
rule that will be generated for the first line, for A_Broker:

rule "Identify the Buy Trades that we are interested in_12"

 when
 $r:Range(eval($r.getRangeName().equals("A_Broker")))
 eval($r.getCell(1).getBooleanValue()==true)
 eval($r.getCell(4).isModified() == false)
 eval($r.getCell(3).getIntValue() < 300)
 then
 $r.getCell(4).setValue("Buy This");
 log.info("Plan to Buy from Y Broker");
 update($r.getCell(4));
 update($r);
end

There will be similar rules generated for each and every line in each of our decision
tables. This sample generates 13 in total, one for each line of this table.

•

•

•

•

Chapter 8

[179]

RuleTable—Execute the buy trades
We can have multiple RuleTables on one Excel spreadsheet. Each starts with the
keyword RuleTable, and then follows the same decision table format. For example,
take a look at the next decision table, which takes trades marked Buy This and
actually executes the trade. (That is, the first table says we are interested in buying,
but this second rule table is where money changes hands.)

The format (once we unhide or ungroup the technical parts) is the same as before,
even if we've only one line of rules rather than the 13 we had previously. It also has
two conditions and three actions.

The conditions are:

CONDITION: $r:Range , eval($r.getRangeContainsValue("$1")): Only
matches lines of data that have been flagged with param 1 (Buy This).
CONDITION: $output:Range , eval($output.getRangeName()
.equals("$1")): Fires this rule only if we have a place to put our output
(that is, a cell or range in our data sheet called Current Stock).

The actions are:

ACTION: $output.getCell(1).setValue($1);: Increases the value of our
current stock (the cell we previously identified as $output) by the amount
of stock we have just bought. You can demonstrate the formula passed as
params by using the calculation listed in the (white) param cell as $output.
getCell(1).getIntValue()+$r.getCell(2).getIntValue().
ACTION: $r.getCell(4).setValue("$1");: Updates the status of this trade on
the Excel spreadsheet to the param that we pass (that is, Trade Executed).
ACTION: log.info("$1");: Logs what we just did to the console.

•

•

•

•

•

Data and Rules in Excel

[180]

Other rule tables
We have two other rule decision tables in our sample TradingRules.xls file. These
deal with identifying the sales offers that we wish to take up and the execution of
those sales. The format of these two tables is very similar to the two rule tables above
(Evaluate Buy, and Execute Buy). Of course, there is a minor difference—we are
selling chocolate beans rather than buying.

Mixing rules and decision tables
While reading the previous rules Excel file, you may have wondered where the log
object that we used in the previous rules actually comes from. In other chapters we
had to declare a global variable (that our rules had a connection to the outside world,
including the screen or console to actually print or log messages onto) and pass it in
our logging object. In our DecisionTable.xls file we don't have this, but why?

The answer is that as we run this example, we load a second traditional rules file
(log-rules.drl). This file is optional, as we could have used a global variable in
the header section of our Excel rules file, but it's a good way of showing a mixture of
rules and decision tables. After all, Drools translates them behind the scenes to be in
the same format.

A good rule of thumb is to put the business rules stay in Excel and keep the more
expressive, but more technical, 'plumbing' in the .drl (standard rule) format.

Looking at the log-rule.drl file, you'll see that it contains the imported file global
ILogger log and two rules, which are:

1. A rule that matches against unchanged cells and logs (but does not modify)
the contents.

2. A rule that matches against changed cells and logs (but does not modify)
the contents.

Remember that both our Cell and Range JavaBeans have a modified toString()
method to make logging easier. The logging object (The logging object (Ilogger) also comes from the
Red-Piranha project. It prints everything to the console, but also saves it (if we ask it
to) as a part of our Excel output file.

Chapter 8

[181]

Running the Chocolate Trading example
To run the DecisionTable-based Chocolate Trading example, open
ExcelDataRulesExample.java in Eclipse (it's in the same directory as the sample
that we ran in the previous chapter, src/main/java/net/firstpartners/chap8).
Before we run it (by selecting menu option Run | Run As | Java Application from
the Eclipse toolbar), we note that there are a couple of obvious similarities and
differences in this example file:

As before, our input file is called chocolate-data.xls and our output goes
to chocolate-output.xls
Unlike before, we load two rules files: the Excel decision table that we've
just looked through (TradingRules.xls), and a standard rules file (log-
rules.drl) that shows that we can mix and match decision tables with the
'traditional' rule format that we're used to

Like most of the examples in the book, your PC will pause for a couple of seconds,
print out lots of messages to the console, then show the line,
ExcelDataRulesExample - Finished when done.

Opening the output file (chocolate-output.xls), we see that only some of the cells
have been updated (highlighted) in line with the more sophisticated business rules in
this example.

•

•

Data and Rules in Excel

[182]

The following cells are updated:

1. The Current Stock is updated, as both our "execute buy" and "execute sell"
rules modify the total.

2. Status fields for individual offers that we have taken up are highlighted, withthat we have taken up are highlighted, with highlighted, with
a Trade Executed (Buy/Sell) message.

3. Status fields for individual offers that we have not taken up remain white,that we have not taken up remain white,remain white,
with the value unchanged.

4. All other cells remain white, as they have not been modified by our rules.

Logging information is printed to the Eclipse console. More usefully, there is a
second tab in the output spreadsheet (Chocolate-Output.xls), with logging only
from the rules. An extract of this is shown as follows (highlights in bold):

Before we go through what is happening when these rules fire, we'll go back to
basics. We will look through the main log file (in the Eclipse console) to explain what
just happened, from start to finish.

What just happened?
The first thing that we see in our console log when we run ExcelDataRules.java
is that our sample finds the source Excel file (containing the buy and sell data) and
converts it to Cell and Range JavaBeans (which we looked at in detail earlier)—just
like the very first example in this chapter.

ExcelDataRulesExample - found file:chocolate-data.xls

It then logs all Cells and Ranges, and so on, for each broker and range listed in our
Data Excel spreadsheet.

============ Excel Cell Contents In =========
ExcelDataRulesExample - Range:A_Broker
A_Broker_2: cellName:A_Broker_2 value:110.0 comment:null modified:
false
A_Broker_3: cellName:A_Broker_3 value:300.0 comment:null modified:

Chapter 8

[183]

false
A_Broker_0: cellName:A_Broker_0 value:A Broker comment:null modified:
false
A_Broker_1: cellName:A_Broker_1 value:true comment:null modified:false
A_Broker_4: cellName:A_Broker_4 value:n/a comment:null modified:false
…

The sample then loads the 'traditional' style rule file, before loading the decision table.

DtRuleRunner - Loading file: log-rules.drl
…
found file:TradingRules.xls

After it loads the decision table, it compiles it into the standard rule format. Our
sample converts our Excel-based decision table to rules and logs the output—like
the extract we see below. We saw one of the 26 evaluate buy-sell rules earlier in this
chapter. This is the 'execute sell rule', once it has been translated. (This will probably
be at the end of the set of the rules that is output to the log.)

#From row number: 68
rule "Execute the Sell Trades_68"

 when
 $r:Range(eval($r.getRangeContainsValue("Sell This")))
 $output:Range(eval($output.getRangeName().equals
 ("Current_Stock")))
 then
 $output.getCell(1).setValue($output.getCell(1)
 .getIntValue()-$r.getCell(2).getIntValue());
 $r.getCell(4).setValue("Trade Executed(Sell)");
 log.info("Executed Trade");
end

If we have an error (that is, because of incorrect decision table format), it normally
gets flagged here. Often, it can help to look at the rule format that is printed out, to
help you identify the error.

The next step in our example is to insert global variables, of which we have only one
in this example—a handle to the object that we use for logging.

Inserting handle to logger (via global)

And then we call our rules.

DtRuleRunner - === Calling Rule Engine ===

At this point, in our rules, our Excel output matches the console output. As before,
we have no control over the order in which our rules fire. For example, the first set of
rules to fire concern the last broker in the list (Z_Broker).

Data and Rules in Excel

[184]

You may have noticed from the console output that rules are not executed
in the order in which they appear on the decision table. Rather, just like
the other rules that we have seen, they are executed in the order that the
rule engine deems best.
Remember that your rules will fire if something is true. So if you find
yourself writing rules that are sequence-dependant, think again.

The cells are updated with the help of the following steps:

1. The initial rule (from the drl file) logs the initial cell values.
ExcelLogger - initial cell value:cellName:Z_Broker_4 value:n/a
comment:null modified:false
ExcelLogger - initial cell value:cellName:Z_Broker_3 value:500.0
comment:null modified:false
ExcelLogger - initial cell value:cellName:Z_Broker_2 value:300.0
comment:null modified:false
ExcelLogger - initial cell value:cellName:Z_Broker_1 value:false
comment:null modified:false
ExcelLogger - initial cell value:cellName:Z_Broker_0 value:Z
Broker comment:null modified:false

2. The evaluate Sell rule fires (from the decision table).
 ExcelLogger - Plan to Sell to Z Broker

3. The execute Sell rule fires (from the decision table).
 ExcelLogger - Executed Trade

4. The modified cell logger fires (from the drl file).
ExcelLogger - modified cell value:cellName:Z_Broker_4 value:Trade
Executed(Sell) comment:null modified:true

5. This pattern repeats itself for each of the brokers until we have evaluated all
of the buy/sell rules.

6. It is at this point (as the rules have finished firing) that Excel and the console
log diverge again.

 DtRuleRunner - ==== Rules Complete ====

7. We now log a snapshot of the cell values after all of the rules have fired.after all of the rules have fired. all of the rules have fired.

ExcelDataRulesExample - ==== Excel Cell Contents Out ====
… cell contents …

Chapter 8

[185]

Now, our JavaBean to Excel Data file convertor (in the RangeConverter.java file)
outputs its messages. You'll notice that:

Only the cells marked as modified will be updated.
Only one update is made to the current stock (even though it has changed
multiple times—once for each stock trade that we fired). This is because the
Excel updater only converts the finished set of values.
CellConvertor - UpdatingCell:B_Broker_4 value:Trade
Executed(Sell) as String
CellConvertor - UpdatingCell:Current_Stock_1 value:590 as Number
CellConvertor - UpdatingCell:F_Broker_4 value:Trade
Executed(Sell) as String
CellConvertor - UpdatingCell:H_Broker_4 value:Trade
Executed(Sell) as String
CellConvertor - UpdatingCell:J_Broker_4 value:Trade
Executed(Sell) as String
CellConvertor - UpdatingCell:K_Broker_4 value:Trade Executed
(Buy) as String
CellConvertor - UpdatingCell:M_Broker_4 value:Trade Executed
(Buy) as String
CellConvertor - UpdatingCell:R_Broker_4 value:Trade
Executed(Sell) as String
CellConvertor - UpdatingCell:S_Broker_4 value:Trade Executed
(Buy) as String
CellConvertor - UpdatingCell:T_Broker_4 value:Trade
Executed(Sell) as String
CellConvertor - UpdatingCell:V_Broker_4 value:Trade
Executed(Sell) as String
CellConvertor - UpdatingCell:X_Broker_4 value:Trade
Executed(Sell) as String
CellConvertor - UpdatingCell:Z_Broker_4 value:Trade
Executed(Sell) as String

Although it's not noted in the log file, behind the scenes we add the log
output to our output Excel file, and save everything to disk, by starting with
the line.

 // update the excel spreadsheet with our log file
 excelLogger.flush(wb, EXCEL_LOG_WORKSHEET_NAME);

8. Finally, we see a final message saying that everything is complete (and it
is time to open the chocolate-output.xls file to see what the output
looks like).

 ExcelDataRulesExample - Finished

•

•

•

Data and Rules in Excel

[186]

Have a go
The whole point of loading our rules and data from Excel is to make them easier to
modify and maintain. So go on, have a go yourself! Modify the above example
as follows:

Change the sample so that it uses different quantities and prices, and see
the effect.
Add a check to our sell rules to ensure that we cannot sell more chocolate
than we have in our current stock. Hint: Our execute_sell rule already
obtains a handle to the current stock. We can use this as part of an additional
condition to the evaluate_sell rule.
Take a data spreadsheet from your business and use it instead of the data
sheet (chocolate-data.xls) used in this sample. Hint: When writing the
rules, try to make small changes to one rule at a time.

When 'having a go', remember to execute a 'clean project' command in Eclipse
(if you are making modifications to Excel), and make sure that you don't keep your
chocolate-output.xls file open (or you'll get the Java FileNotFoundException
error that we highlighted earlier).

Summary
This chapter, behind all of the details, was pretty simple. We used Excel spreadsheets
(Cells and Ranges) as our fact model, instead of the write-your-own-JavaBean
approach that we took earlier. Then we used Excel spreadsheets to hold decision
tables in order to make repetitive rules easier to write.

In reality, we can use this new capability in three ways:

Use Excel as our data model, with a standard rule (.drl) file
Use Excel to hold our rules, and JavaBeans to hold our data
Use Excel to hold both rules and data

There are several ways of handling rules and data. Use the one that makes it easy
for you to handle your project. In the next chapter, we'll again try to make things
simpler by using DSLs and Ruleflow.

•

•

•

•

•

•

Domain Specific Language
(DSL) and RuleFlow

People new to rule engines are often confused by two things: the syntax of the rules,
and the fact that the rule engine (and not you) decides the order in which your rules
are fired. This chapter will show some ways of making both of these things easy
to understand.

In the previous chapter, we saw how to use Excel decision tables to make it easier
to write rules. This chapter takes off from the 'easy to write rules' theme. Although
writing rules in Excel is good, wouldn't it be much better to write them in a language
that is closer to English, or whatever human language you prefer? Domain Specific
Language (DSL) gives you this option.

The other point of confusion is the order in which rules are fired. Wouldn't it be great
to draw a workflow diagram to see and control which (groups of) rules should fire,
and when? Ruleflow gives us this control.

We'll come to Ruleflow shortly, but first we'll look at how to use DSLs.

Domain Specific Language (DSL) and RuleFlow

[188]

What is a Domain Specific Language
(DSL)?
Every profession has its own language, or what is called a jargon. Although, on the
surface a jargon may appear to be related to English, it's often incomprehensible to
outsiders. If you've watched ER, Grey's Anatomy, House, or any of the other medical
dramas on TV, you know what I mean. You will understand this better with the help
of the following example:

Doctor to nurse:
Give me sterilised scalpel number 4, spreaders—the patient's cardioangiogram
is showing traces of acute defibrillation.

In plain English, this means:
 Give me a knife now, this guy's having a heart attack.

One of the reasons why each profession, or domain, has its own specific language
(or DSL) is that it conveys information much more precisely and concisely. A more
cynical view would be that domain terminology allows professionals to baffle
clients and charge more. But obviously, nobody in the IT industry would ever
take advantage of that fact!

The fact is that business and other professionals speak one language. Our rules, even
though they are 'plainer English', are written (so far) in another language. If we want
to capture the business knowledge from the professionals, we need to speak the
language of the business users. This is where DSLs provided by Drools come in.

Imagine that we could write our rules in a form similar to the extract that follows.
This extract is pretty easy to understand without any technical knowledge. This
would be a good thing, because more people would be able to review and maintain
the rules.

rule "Check Patient for Heart Attack"

 when

 There is a Patient
 - appears not to be breathing
 - has no pulse
 - is white or blue in the face
 then

 Call for Assistance
 Start CPR

end

Chapter 9

[189]

You've been reading this book long enough now to know that the next line after
'imagine … ' is usually 'but of course you can!'. And expanders are a key part of
how we do it.

Expanders
Something needs to convert the near-English rules (like the previous sample) into
the more formal or standard rule (DRL) format that we're used to seeing. That's the
Drools expander. The concept is simple:

1. We start with the near-English business rules. They are saved in a text file
with a .dslr extension, to make it clearer to us what the file contains.

2. The rulefile contains a statement similar to expander chocolate-trading.
dsl. So Drools knows how to translate the near-English file into our standard
rule file format.

3. Using the DSL file, Drools finds the English text and replaces it with a more
technical rule language.

4. Once this find-and-replace process is complete, we will have a file
(in memory, not on disk) containing our standard rule language. It is
similar to the DRL rules that we saw in earlier chapters.

5. Drools can then execute the rules in this DRL as before.

The actual process is even more powerful than find and replace, given that we can
use regular expressions (also known as regex) and wildcards. For example, h\?t
would match (then replace) all three-letter words beginning with "h" and ending
with "t"-for example, "hat", "het", "hit", "hot", "hut", as well as the more nonsensical
words with endings such as "hbt", "hct", and so on.

How does Drools know which expander or DSL file to use? Our
(near-English) rules file tells Drools which file is required, using a
statement such as expander my-dsl-file-name near the top of
the rules (.dslr) file.

The process of taking a more readable file, converting it to a rules file, and then
applying those rules as appropriate, may seem familiar. It's the same sort of process
used in the Excel-based decision tables from the previous chapter. Like decision
tables, DSLs can automatically convert a human-friendly format into something
more Drools-like, and then fire the generated business rules as appropriate.

Domain Specific Language (DSL) and RuleFlow

[190]

If we had a medical DSL in place, this find-and-replace process would result in the
following business rule (in Drools syntax):

rule "Check Patient for Heart Attack"

 when
 $patient : Patient(
 breathing == false ,
 pulse == false
 (face == blue or face == white)
)

 then
 $hospital.callForAssistance();
 $patient.startCPR();

end

The DSL format
What is the format of the DSL that will convert the 'medical' rule to a Drools rule,
and vice versa? The format looks something like the following plain-text file, so that
you can view it with almost any editor. The file will have a .dsl extension.

Match against the when part of our medical rules

[when]There is a Patient = $patient : Patient()
[when]-has no pulse = pulse==false
[when]-appears not to be breathing = breathing== false
[when]-is {color1} or {color2} in the face = (face == {color1} or face
== {color2})

Our possible medical actions in the 'when' part

[then]Call for Assistance= $hospital.callForAssitence();
[then]Start CPR=$patient.startCPR();

The format allows a pretty simple find-and-replace process, using the
following parts:

1. Comments (lines beginning with #) are ignored, although they are useful for
explaining what is going on. Similarly, whitespace and blank lines are also
ignored, but laying out the file cleanly using whitespace makes it a lot
more readable.

2. The basic format of the file is [when] or [then] (something to find =
something to replace). The [when] or [then] part means that we will only
match against the left (when) or right (then) part of the rule, as appropriate.

Chapter 9

[191]

3. For example, [when] There is a Patient = $patient: Patient() means,
find the text There is a patient in the when part of our rule, and replace
it with the more Drools-like language $patent : Patient() (that is, match
against all patients in working memory).

4. If the next line starts with a '-' (for example, -has no pulse = pulse==false),
then Drools is smart enough to add a filter to our rule in case of a
match in the original file. This means that we end up with $patient :
Patient(pulse==false), which will match against all patients with no
pulse. This allows us to mix and match the conditions on our rules without
having to specify every possible combination in our DRL translation file.

5. The [when] find {value} = replace {value} allows you to specify a
value in your original rule, which will get passed to the final translation.
For example, -is {color1} or {color2} in the face means we can reuse
this DRL translation for other colors (specified in the 'English' .dslr
rules file) later.

6. The find-and-replace mechanism works in a similar way for translating
the [then] part of the rules from 'near-English' to the more technical
Drools language.

Other DSL editing options
The DSL is just a text file, so we can edit it in Notepad. There is another option for
editing a DSL file in the IDE—the guided editor. If you open a DSL file in the JBoss
IDE, you'll see something similar to the following screenshot:

Domain Specific Language (DSL) and RuleFlow

[192]

There are three main sections to the editor: a place for the DRL Description
at the top, a table showing existing entries in the DSL, and a space at the
bottom to add new entries. The latter space also has buttons to Edit, Remove,
Add, oror Copy entries, as well as an option to Sort the existing ones.existing ones.
Language Expression is what we will Find in the original rules file. Rule
Language Mapping is something we will Replace it with to generate our
Drools technical file. This find-and-replace mechanism is similar to the one
we looked at in the text editor.
We also have Scope ([condition] or [consequence]), which is just another
name for [when] or [then], which we looked at previously.
What is new is the Object field. This object takes the full name of a JavaBean,
including the package (for example net.firstpartners.Patient). This
allows autocompletion (that is, pop-up suggestions) when we are writing the
rules that use this DSL in Guvnor or the IDE. that use this DSL in Guvnor or the IDE.

The IDE editor saves the DRL file in the text format that we looked at earlier. So, we
can switch back and forward between the two editors as required.

Writing DSLs
Imagine that you had to write your own language, from the very beginning. Where
would you start? You could try using an existing dictionary as your inspiration, but
you're likely to map too many words that you don't really need. Or, you could make
it up as you go along, but users would get frustrated with the many delays while
you add yet another word to your language. Remember that the ideal is to have a
more-or-less stable language that users can easily understand so that it is easier for
them to write their rules. So, what are you going to do?

The answer is iteration. You (as a 'knowledge engineer' who understand rules and
DSLs) write the first 10, 20, or 100 rules, adding the elements that you need to the
DSL, as you go. Over time, you'll find that your DSL becomes more and more stable,
needing fewer additions to cope with each additional rule. At this point, you can
hand over the DSL to your business users (with much mentoring and training) and
the users can start writing their own rules based on the (near-stable) DSL.

Of course, picking a representative sample of rules will make writing the initial DSL
much more effective. Staying around to pick up the occasional mapping that your
rule writers need to add, will make them a lot happier. It also helps to have tests
written against your rules (as described in Chapter 7) so that you know instantly if
any of the changes that you are making breaks anything.

Let's look at this process, using a sample that we saw in the last chapter.

•

•

•

•

Chapter 9

[193]

As there is a lot of crossover and code reuse, the samples for this chapter
can be downloaded from the Chapter 8 sample at http://code.
google.com/p/red-piranha.

Meet the sample
Do you remember the rule in the DRL file that we had in the previous chapter—the
one that logged the contents of Excel cells? At the start of log-rules.dsl, it looked
something like the following:

package net.firstpartners.chap8;

import net.firstpartners.drools.log.ILogger

import net.firstpartners.excel.Cell;
import net.firstpartners.excel.Range;

global ILogger log;
rule "print cell initial values"

 when
 $cell : Cell(modified==false)

 then

 //Logging message
 log.info("initial cell value:"+$cell);
end

Our first step is to change the file name to log-rules.dslr, and create a blank DSL
file called cell-logging.dsl. We link the two by adding an expander statement to
the DSLR file (expander cell-logging.dsl).

Once we add the expander statement, we've got a problem: Drools expects to match
everything between when and end against what it finds in the DSL. The problem is
that the DSL is (for the moment) just a blank file. The lines are marked with '>' so
that they are taken as they are. Our .dslr file will now look as follows:

package net.firstpartners.chap8;

import net.firstpartners.drools.log.ILogger

import net.firstpartners.excel.Cell;
import net.firstpartners.excel.Range;

expander cell-logging.dsl

global ILogger log;

rule "print cell initial values"

 when

Domain Specific Language (DSL) and RuleFlow

[194]

> $cell : Cell(modified==false)

 then

 //Logging message
> log.info("initial cell value:"+$cell);
end

For this iteration, we know that we need to put in the entries for the two lines
marked with '>'. Starting with the 'then' part, we add the following lines to our DSL:

#Cell Selection Rules
[when]There is a Cell = $cell: Cell()
[when]-unmodified = modified==false
[when]-modified = modified==true

To cover the second-to-last line (log.info) we add some more lines to our DSL file:

Logging rules
[then]Log the cell contents = log.info("Cell value:"+$cell);

Now that we have a DSL ready (at least for this iteration), we can update our rule
file with more English-language rules. Because we've also changed the package
declaration inline with this chapter's name, the sample now looks like this:

package net.firstpartners.chap9;

import net.firstpartners.drools.log.ILogger

import net.firstpartners.excel.Cell;
import net.firstpartners.excel.Range;

global ILogger log;

We must reference the dsl that we are using
expander cell-logging.dsl

rule "print cell initial values"

 when
 There is a Cell
 - unmodified
 then
 Log the cell contents
End

In real life, once we were happy that this was working, we would carry out some
more iterations. We would do this by covering other methods available on the Cell
Object, and perhaps the Range Object as well.

Chapter 9

[195]

Running the DSL example
This example (with simple cell logging) is ready to run, as part of the
example that you downloaded in the previous chapter. The start point is the
DslChocolateTradingExample Java file found in the net/firstpartners/chap9
folder. If we run it (right-click on the file, and then select Run as | Java application
from the shortcut menu), we'll see all of the following values from the Excel input file
being logged:

ExcelLogger - Cell value:cellName:Z_Broker_4 value:n/a comment:null
modified:false
ExcelLogger - Cell value:cellName:Z_Broker_3 value:500.0 comment:null
modified:false
ExcelLogger - Cell value:cellName:Z_Broker_2 value:300.0 comment:null
modified:false
ExcelLogger - Cell value:cellName:Z_Broker_1 value:false comment:null
modified:false

Note that in the DslChocolateTradingExample, we specify (again) the DSL file that
we are using.

new RuleRunner().runStatelessRules(RULES_FILES,DSL_FILE, ranges.
getAllRangesAndCells(), globals, excelLogger);

You'll notice that in the log file, both the rule file and the DSL file are loaded.

RuleRunner - found rule file:log-rules.dslr
RuleRunner - found dsl file:cell-logging.dsl

Guvnor and DSL-based rules
Domain-specific languages aim to make business users' life easier by allowing them
to write rules in a format they're familiar with. On the other hand, Guvnor is a web
editor intended for business users editing rules. What could be more perfect than
combining the two?

From what we already know, it's pretty simple to start writing DSL-based rules in
the Guvnor Web editor.

1. Open up the Guvnor web editor, as you did in Chapter 3.
2. Create a new package (net.firstpartners.chap9) to hold our information,

like we did in Chapter 4.

Domain Specific Language (DSL) and RuleFlow

[196]

3. Export our fact model that contains the Cell and Range JavaBeans from
Eclipse (the JBoss IDE) and import them into Guvnor under the net.
firstpartners.chap9 package (as you did in Chapter 4).

4. Create a new DSL and give it the same name as the one in Eclipse (Cell.
logging.dsl). Under the chap9 package, set the category to anything. Copy
and paste the contents of our Eclipse-based DSL file into this package, and
save the package. You can create a new DSL under the same menu as Create
a new rule.

5. From the same menu (and in the same package), create a new DSL business
rule (using the text editor) and name it logging-rules.dslr. Copy and
paste the values from the Eclipse (the JBoss IDE) file of the same name.

The file in Guvnor will now look similar to the above screenshot. Clicking on the
Validate button will show the following success message:

While editing your dslr rule, pressing the Ctrl+Space keys will enable the autosuggest
feature, which is shown in the following screenshot:

Chapter 9

[197]

So far, in this chapter, we've looked at DSL (Domain Specific Language) to make
our rules easier to understand. Ruleflow also makes our rules more understandable.
We'll take a look at that, now.

Ruleflow
One of the key features of a rule engine is that we have no control exactly when
our rules will fire. Our rules simply become available to fire (because the 'when'become available to fire (because the 'when'
conditions have been filled), and the rule engine decides the best order in which to to
execute them. We may drop hints about the rules that have higher priority (using
Salience), but the sort of 'fine-grained' controls that we have in other languages are
(for good reason) not there. This is a good thing as it makes the individual rules
simpler, reusable, and easier to understand. However, there are business situations
where we may need to group our rules and control when they fire.

For example, for a mortgage application (which we'll call Homeloan) you may have
several hundred business rules. These might be naturally grouped by the state of the
loan application: rules that fire in the initial enquiry (for example, to provide a quick
quote), rules that fire when the application is received (for example, to make sure
that all of the paperwork is in order), rules that fire when the loan is drawn down
(for example, to ensure that the money is sent out correctly), rules that fire every
month (for example, to calculate interest and accept a loan repayment), and rules
that fire if the loan goes into arrears or if there is a change in the interest rate.

Domain Specific Language (DSL) and RuleFlow

[198]

It would be possible to write our rules to check the status of the application,
for example:

When

 Mortgage application is in 'Monthly Loan Repayment State'
 And (some other conditions unique to this business rule)
 ……

Then
 Carry out monthly interest calculations

This goes on for each and every one of our several hundred rules. The problem with
this is that if our business flow changes (for example, if our bank decides that there
is an exciting new opportunity in the subprime lending market), then we have to
change each and every one of the business rules to reflect this. Next, we test all of
the rules to make sure that none of them inadvertently fire at the wrong time.

The alternative is to map our business flow graphically, like the following diagram.
At a glance, we can now see what the sequence of rule firing is:

We start at Initial Enquiry and allow those rules to fire.
If the Initial Enquiry is followed up, then we loan the money.
After passing through a join point, we make a decision based on the question:
Are there any loan repayments outstanding? If yes, we give our rules that
calculate the loan interest the chance to fire.
There is a (non) rule action to collect repayment before rejoining the
previous point.
This time, if we don't have any repayments outstanding, we allow the
Complete Loan rules to fire, before ending the Ruleflow.

Initial Enquiry

Loan Money

Repayments Outstanding? Calculate Interest

Complete Loan

Join

End

Start

Collect Repayment

•

•

•

•

•

Chapter 9

[199]

Understanding the Ruleflow in a diagram is far easier than deciphering the
information buried in individual rules.

Ruleflow is not workflow
Notice that in the previous section we didn't say 'and at stage X the rules fire'. What
we said was 'at stage X we give the rules a chance to fire'. It's still up to the rulechance to fire'. It's still up to the rule
engine to decide which rules are the most appropriate to fire. Your rules are still fire. Your rules are still
rules, except that effectively another condition has been added to the 'when'
part—checking that the Ruleflow is pointing to the group that our rule is in.

It's worth repeating this statement again. Ruleflow is not workflow. It might look
similar (for example, the JBoss jBPM workflow product has similar diagrams), but it
is subtly different. Let's look at the differences between the two:

Workflow says exactly what will happen at each stage in the process. As soon
as the workflow reaches a step, we will fire the actions associated with it.will fire the actions associated with it. fire the actions associated with it.
Ruleflow says what might happen happen at each stage in the process. The rule engine
selects the rules that actually fire.

It is possible to set individual rules to fire at each step in the flow (just like traditional
workflow). But if you find yourself wanting to do this, then you're really not using a
rule engine in the best way. It is better to mark a group of rules (and not a single rule)
to fire, and then let Drools do its rule-engine stuff.

If you do need traditional workflow, you've got plenty of choices. From
JBoss alone you have jBPM (java Business Process Management) and
Drools (with enhanced workflow features in Drools 5, which we will
introduce in Chapter 12).
Both JBoss workflow products integrate well with the rule engine. For
example, when we have a decision node (to choose what the next step is)
we can use the rule engine to make this decision.
Whatever you do, don't be tempted to write your own workflow—there's
no need to do so with hundreds of open source and commercial workflow
engines to choose from.

That Homeloan example again
To create a sample like the Homeloan, right-click on a project in the JBoss IDE and
select the New | other | Ruleflow menu option. You'll be shown a blank drawing
page (where you can draw your Ruleflow) with the following icons available on the
lefthand side of the screen. To compose your Ruleflow, select the icons that you want
to use, and then use Connection Creation to tie them together.

•

•

Domain Specific Language (DSL) and RuleFlow

[200]

The available steps in our Ruleflow are:

Start: Every flow should have only one start. Naturally enough, this is where
our Ruleflow begins.

Start

RuleFlowGroup: Our RuleFlowGroup has a name. When our Ruleflow
reaches this point in the flow, rules belonging to this Ruleflow group (and
only those rules belonging to this group) will be given the chance to fire.

RuleSet: If you look at the Property tab at the bottom of the screen, you
see additional information about each icon. In this case we can see that the
display name of the icon is RuleSet, and that and that RuleFlowGroup (which we
will use shortly to tie our Ruleflow to our rules) is Evaluate Loan.
Remember that all icons, and not just the RuleSet, have properties that you
can view and change.

RuleSet

Action: In our Homeloan flow we have a step that was more suited to the
traditional programming task (Collect Repayment). This could be printing
a letter, or sending an XML message to another bank, requesting payment.
Although this can be done via our rules (as it's calling the standard Java
code), it's better to be able to state it as a clear step in our flow.

Action

Split: Only the simplest flows run in a straight line from start to finish.
Splits and joins allow the flow to branch and reconnect. As we saw in the
Homeloan sample diagram, splits and joins allow us to create loops in the
Ruleflow. Splits can allow the flow to go down one path or another, or even
down both paths. The decision about the path is rule-based.

•

•

•

•

•

•

Chapter 9

[201]

Split

Join: This action allows multiple branches to come back together. We can
specify to wait for all branches to come back the Join, or just wait for one of
them one.

Join

Milestone: This is a wait state—waiting until specified conditions become
true. The expressions used to specify the wait state are the same as those
on the lefthand side of a rule. The flow will be held until this condition
is fulfilled.

Milestone

SubFlow: This executes the flow in another Ruleflow file. The name of that
other Ruleflow file is specified via the Properties tab.

SubFlow

End: Every flow should have only one end point. Naturally enough, this is
where our Ruleflow terminates.

End

It's not just the icons that have properties. If you select the entire Ruleflow (by
clicking on a blank area of the diagram), we can set properties for it as well.

•

•

•

•

Domain Specific Language (DSL) and RuleFlow

[202]

In this case, we see that the ID of Ruleflow is mortgage-ruleflow and it is a part of
the net.firstpartners.chap9 package. There are also fields to set a version number and
to give the Ruleflow a more human-readable name (in this case, homeloan).

After drawing your diagram and making connections between the Ruleflow steps
(select two workflow steps, right click, then choose create connection from the context
menu that appears). It's always useful to validate the diagram (so that you catch any
errors now, rather than when you try to execute the flow for the first time). To validate
the diagram, right-click anywhere in the whitespace of the Ruleflow diagram and
select Validate from the context menu. Drools will notify you of any errors that it finds
in the Ruleflow.

Just because your Ruleflow validates correctly doesn't necessarily
mean that it will run without any errors. There are many things
that can still go wrong at runtime. Validation is still a good way of
reducing the chances of having errors.

Linking rules to Ruleflow
So far, we drawn a few Ruleflow diagrams and stepped through the different
actions that we can add to the Ruleflow. But how does Drools know which rules
are available to fire at each step in the Ruleflow?

The answer is simple. We tag our rules with the name of the Ruleflow group that
they belong to. (Remember that we set the Ruleflow group name as a part of the
Ruleflow diagram.) By doing this, we end up with a rule looking something like this:

 rule 'YourRule'

 ruleflow-group 'evaluate loan'
 when
 ...
 then
 ...
 end

This way, when our flow gets to the evaluate loan Ruleflow group, we know that
we have at least one rule that is available for firing. Whether the rule fires or not will
depend on the conditions attached to the when part of the rule.

There are other Ruleflow-related attributes that we can add to our rules. These are
as follows:

agenda-group is just another term for Ruleflow group.
auto-focus true allows the rule to capture the focus if no Ruleflow-group
is selected.

•

•

Chapter 9

[203]

activation-group "some-name" is an activation group from which only one
rule in can fire. You can think of it as a more sophisticated form of no-loop
true, which acts on groups instead of single rules.

There is a final part to tying rules and Ruleflow together, but first we need a quick
lesson in stateful applications.

A quick introduction to stateful applications
Most of the rules examples that we've seen are stateless. This means they run, fire
the rules, print the values, and then terminate. When we run the example again, they
'forget' that they have been run before and produce exactly the same output.

Most real-life applications are stateful. How angry would you be if you'd logged into
your web based online banking, only to find the application had forgotten about the
money that you'd lodged in your account the last time you logged on?

In a normal application, such as an online banking web site, we need to remember
what users did last (Are they logged in? What account are they looking at? Are
they in the middle of making a payment? and so on). If we do not remember this
data, users would get annoyed about having to repeat themselves at every step. It
would also lead to some pretty complicated screens, to allow users to enter all of the
information at once. Instead, we allow users to enter information in several steps,
and remember where they are each time.

In an application designed to be used by computers, we don't have to worry about
this. We can force the computer to give us all of the information required in one go,
for example username, password, bank account to take money from, bank account
to give money to, the date on which to execute the transaction, and so on. This is
actually easy for a computer, because we make one call to our banking service and
we are told whether our transaction has succeeded or failed. It's also easier for us to
build our service.

Each service (transferring money, booking flights, or executing share trade) does
only one thing.

Because each service 'forgets' everything after each call, we don't need to worry
about trying to remember what we were doing before.

Because we have no memory, stateless applications (and services) are very scalable.
We can make several copies of the same service and put them in a pool. Any client
can talk to any service—no waiting for a particular server to become available.

•

Domain Specific Language (DSL) and RuleFlow

[204]

In summary, stateless applications are simpler and scale better. Stateful applications,
although harder to design and build, are more user-friendly. There are scores
of books dedicated to explaining which design to choose and how to build them.
But for the time being, there is one important reason why we've introduced
stateful applications.

Stateful rules and Ruleflow
In all of our previous examples, we've fired our rules in a stateless manner. That
is, we pass all of the information that we need to our rules, allow the rules to fire,
and then get the final result back. There is no 'state', and nothing to remember, as
everything is fired in one go.

You may recall the following line from previous examples:

runStatelessRules(RULES_FILES,DSL_FILE, facts, globals, logger);

Notice that no value is returned by this piece of code, nor do we need it. We fire
our rules in one go, and our facts (for example, cells in the Excel spreadsheet) are
automatically updated.

Stateless rule sessions are fine for our simple examples, where everything is
completed in a few seconds. But what about our mortgage application Ruleflow,
where the process can last for days, weeks, or even months? We will have to call our
rules in a stateful way to remember the way we left things the last time we invoked
the rule engine.

Stateful and stateless rules are almost the same. The only difference is the
manner in which we call the rule engine.

The code extract (from RuleFlowExample.java in the net firstpartners chap9
package or folder) shows us how. It also shows that while we gain the power of
having stateful rules, it takes a bit more work on our part to call the rule engine.

StatefulSession session = new RuleRunner()
 .getStatefulSession(RULES_FILES,
 null,
 RULEFLOW_FILE,
 ranges.getAllRangesAndCells(),
 globals,
 excelLogger);

session.startProcess(RULEFLOW_ID);

session.fireAllRules();

Chapter 9

[205]

This code does a few things, such as:

It uses our RuleRunner to load the rule file.
Like before, it passes in our facts (the Cell JavaBeans), globals, and a handle
to the logger. It also passes a handle to the Ruleflow file (so that Drools
knows what process we wish to use).
Unlike before, rules are not fired at this point. Instead, we get a session
back—that is, a handle to the rule engine, with everything loaded and ready
to go.
Our second line of code starts the Ruleflow process by calling the
session.startprocess method. This simply puts the token at the start
of the Ruleflow because no rules are fired as yet. The RULEFLOW_ID that
we pass in is the one that we set in the properties screen of our Ruleflow
(for example, mortgage Ruleflow).
The final line of our code (session.fireAllRules) starts our rules. The
difference between the rules firing in this and the previous samples is that
the Ruleflow is guiding which groups of rules become available to fire, and
when. As before, when all of the possible rules have fired, our fact objects
(the Cell JavaBeans) are updated, and control returns to our program.

The rest of the code example (for example, the code that converts the values from
Excel to JavaBeans and back again, the logging, and so on) remains the same as the
code we've used in other examples.

There are a lot of other things that we can do with the Drools session, and
not just Ruleflow. For example, as we step through the web pages for a
Homeloan application, we can have Drools working in the background
to ensure that all rules remain true, by updating the facts. We'll cover this
truth-maintenance capability in more detail in the next chapter.

•

•

•

•

•

Domain Specific Language (DSL) and RuleFlow

[206]

Summary
This chapter aimed to make our rules both easier to use, and more powerful.

We started with a DSL, or domain specific language. By using DSLs, business rule
editors can write near-English rules in a language suited to their profession. Drools
then does the hard work of finding and replacing these rules, using an expander, so
that we end up with a more technical rule that we can execute in the normal way.

Ruleflow also makes our rules easier to understand. It allows us to extract the flow
that might otherwise be hidden in our rules. We saw how to create the Ruleflow
diagram, and how to run it as part of a stateful rules session.

In our next chapter, we'll see how to take these new rules capabilities and deploy
them as a part of a real-world application.

Deploying Rules in Real Life
All of the previous chapters have shown you how to do many useful things
with business rules—including how to write them in the Guvnor, the IDE, excel
spreadsheet, and the near-English DSL formats. All of this is useless unless you
can make the results of your hard labour available to end users who will interact
with your business rules in some way. To make this possible, you need to get your
business rules off the computer where you wrote them and onto a production server.
It's like a teenager leaving his or her home for the first time and making his or her
way in the wider world.

What we need to do is deploy our business rules.

One size fits all architecture
If you were building a house, you'd employ an architect to design it for you before
anybody started working on the site. That way, the bricklayers, plumbers, joiners,
and electricians would know what the finished product will look like and can plan
their work accordingly. Most computer systems cost far more than your average
house (that is, when you include the cost the wages of the people involved in the IT
project). So it makes sense to take a little time to prepare the architecture for these
systems as well.

Deploying Rules in Real Life

[208]

Fortunately, most computer systems these days are web based; that is, they use web
pages to gather input from users and to display the result. It doesn't matter if these
web pages can be seen only within your company or organisation, or by the world
at large—both use the same underlying technology. There are entire bookshelves
(or the online equivalent) devoted to the best web architecture, but pretty much all
of the designs contain a similar core, as shown in the following diagram:

User
Browser

<<JSP>>

<<Action>>

Browser

Data

Java Beans

Business Agent Business AgentBusiness Agent

Sub Business
AgentDAO Facade

Database XML & Web
Services

Other

<->

<<Servlet>>

Database DAO XML DAO Other DAO

Value Object
Data Cache

Value Object / DTO

Value Object / DTO

Value Object / DTO

Server

Back End

Presentation Layer
(Struts Model-View-Controller

Pattern)

Business Layer

Service Layer
(Data Access Object - DAO

Pattern)

Most web systems take information from the user (at the top of the diagram),mation from the user (at the top of the diagram),
do something with it (the white area in the middle of the diagram), and store
it in a database (at the bottom of the diagram).
The grey areas at the top (Browser) and bottom (Back End Database and
other systems) are outside our immediate control. We have to 'talk' to them.
But, typically, we're stuck with whatever web browser or database someone
else has chosen.
The part that we can control is in the middle, labelled Server. A server
is simply a computer dedicated to running our software and making it
available over the Web.
Our system on the server is built in three layers: the Presentation Layer, the
Business Layer, and the Service Layer.

•

•

•

•

Chapter 10

[209]

These three layers are like a sandwich. Standard technologies make up thee a sandwich. Standard technologies make up the
Presentation Layer (which shows web pages to the user) and the Service
Layer (which talks to databases and other 'backend' systems). The more
interesting sandwich filling (unique to our system) is the Business Layer
right in the middle of the diagram.
As you'd expect from the name 'business rules', the Business Layer is where
the business rules normally reside .

There you have the one-size-fits-all architecture. Now, what are you paying all thoseecture. Now, what are you paying all those
overpriced consultants for?

What needs to be deployed?
The architecture diagram contains a lot more than examples based on simple rules,
which is what we've been looking at until now. There are a lot of pieces that make up
a full Enterprise web system. Many of these should already have been installed as a
'one-off' by the friendly system administrators in your IT department. Others are up
to you to provide.

Let's look at the parts of the solution that you'll need:

Server: An application needs a machine to run on. This could be a box tucked
away under somebody's desk (not ideal), a real server plugged into a rack
somewhere (better), or a 'virtual' server hosted by an IT company or a secure
third-party hosting company (better again).
Operating system (OS): Our server is useless without the basic instructions
that make it work. This would most likely be Windows (a version similar to
what is on your desktop PC), Linux, or some other variant of UNIX. For the
purpose of Java-based rules, our application can deploy on any of these.
Java application server: We talked about deploying this on a desktop PC back
in Chapter 2, when installing JBoss. This gives our application a 'home' to run
on and provides common services such as security, database access, and a
web server.
Application: This consists of the non-rules Java code, web pages, and other
configuration. This is pretty much everything except the business rules, as
depicted on our 'one size fits all' architecture diagram. The application is
often deployed as a .war (web archive) file, a type of ZIP file.
In some cases the configuration files may be deployed separately, to allow
easier changes later. (That is, you only have to update a single file, rather
than the entire application.)

•

•

•

•

•

•

•

Deploying Rules in Real Life

[210]

Support libraries (such as web frameworks or drivers to allow us to talk to
databases) are often deployed as part of the WAR (Web Archive) file, but
can be deployed separately. The choice will often depend on the instructions
provided with the library.
Rules: The business rules that form the core of the system. To a large extent,
the other components are deployed purely to support the rules.

In general, the server, OS, Java, and the application will be supplied by your IT
department (with input from you). The web application may be provided by you,
or by the development team that you are working with. The development team will
also specify the support libraries required (and where on the Internet they can be
obtained). Rules will be developed by you.

Rules as code or data?
Should business rules be embedded as a part of the application code that doesn't
change very often? Or are rules more like your application data (for example,
pricing lists), which you expect to change on an almost daily basis? Depending on
your answers, you will deploy your rules very differently. The answer, somewhat
confusingly, is that rules are 'both'.

Rules are as powerful as the normal code and should be treated in the same
way. (For example, before deployment, any changes should be thoroughly
tested.)
Rules are as easy to change as data because: first, they live outside the
'normal' application; and second, rule engines are expressly designed toapplication; and second, rule engines are expressly designed to
allow easy changes to the business rules.

Organisations will typically have two sorts of deployment processes, which are
as follows:

1. A heavier, more rigorous, process for the deployment of code as, traditionally,
getting it wrong has been at best embarrassing, and at worst very, very costly.

2. A lighter process for deploying data changes—after all, the application is
changing data itself all the time—such as saving user profiles in a database.

Remember that it is also possible to store rules in a database, even though most of
the examples in this book store the rules in a standard text file. For example, hidden
within the Guvnor is an Apache Jackrabbit repository. This repository can use an
industry standard database (such as Oracle, Sybase, MySql, or Microsoft SQL Server)
as its storage area.

•

•

•

•

Chapter 10

[211]

Perhaps the best way of summing this up is that rules give you a lot of power, and
many deployment choices; so be careful how you use them. Whatever view you
take, any changes to your rules in the 'big bad world' of production, or a live system,
should be part of a standard, well-documented process.

Deployment process
We know how to write our business rules. We also know about the other pieces of
the application puzzle (or at least we know who to ask them for). And we've decided
whether we want to treat our rules as code or as data. Now, how do we get them
from our computer (where we have written them) to the production server (where
the entire company, or world, can interact with them)?

What we need is a deployment process.

If you don't have a deployment process, the worst case scenario is that you have to
edit the rules on the production server. In doing so, you not only risk breaking an
application that users are using, but you also risk not having a backup copy.

A slightly less bad scenario is that you edit the rules on your own PC, and then put
them live. If you have no process to manage this transfer, you risk making a mistake.
And your mistake may not be recognized until several days later. How do you
return to the last known good version of your rules?

What we need is a deployment process. So what does a proper deployment process
look like? Although there are many variations, at their core they contain the features
shown in the following diagram:

Development Test

Firewall

Production

The first surprising thing that you encounter is that three separate computers are
used in the deployment process. One (maybe your local PC) is where you write your
rules. Another is the production server, which is a server accessible to the end users.
But the rules aren't deployed directly from development to production. They get
there via a test box—a server that is as similar to the production server as possible. It
allows verification of the code that we are about to deploy, without disrupting users.

Deploying Rules in Real Life

[212]

We need a separate test server to verify our application (and rules). The main reason
for this is that other people will need to test your rules before they go live. No matter
how careful you are, you might miss something. Having a third-party test for your
rules provides an additional level of confidence.

The second group of people involved in the deployment process are the system
administrators. It is unlikely that you will move the code between the various
servers—it will more likely be the sys admins who do the job for you. Their role is to
ensure the stability of these servers, and not just to put your application live. Expect
plenty of questions from the sys admins about differences between versions, the
underlying software requirements, step-by-step instructions on how to install the
software, and which repository to find the code to deploy in.

What's a repository?
One of the questions the system administrators will ask you is "Are you storing your
source code in a repository?" Now, what's a repository? And why do they care—after
all you're deploying the finished, compiled product, not the source code?

The problem with storing your files on a local file system is that if you delete a file
accidentally, it's very difficult to recover. Yes, you have the recycle bin, but what
happens if that is full? What happens if you delete a portion of a file, save it, then
only realize your mistake five minutes later?

A repository solves this versioning problem. It allows you to save a complete history
of all of the changes that you have made and roll back to whichever version you
choose (should this prove necessary). By allowing the merging of files, an entire team
can co-operate on developing an application. There are many repositories available
from many suppliers, including Microsoft, and Subversion.

You'll remember that Guvnor has a built-in repository, and take advantage of this
later in the chapter. This repository stores only rules and items directly related to
rules. For version control of the other items in our application, we would still need a
full repository.

Deploying rules
Just to complicate things further, there are many options for how we can deploy the
rules. They are as follows:

1. We can deploy the rules as plain-text source files—similar to the approach
used in the examples in this book. Although this is perhaps the simplest
approach, we will need the Drools compiler as a support library. This means
that there can be problems, which we will find only after we deploy.

Chapter 10

[213]

2. One alternative is to compile the rules and the dependent objects into
a binary package. It is this package that is deployed on the server. This
approach needs an extra step during our compile or build process, but it will
find problems sooner.

3. A third approach is to pull the rules from the Guvnor repository. Although
this is convenient, this approach doesn't always have the 'somebody else
checks your rules before deployment' step. It is easy (perhaps far too easy) to
push changes to your rules to the production.

There are further variations on the above three themes. They are listed as follows:

We can mix and match any, or all, of these three solutionsatch any, or all, of these three solutions
We can add or remove individual packages (or the entire rule base consisting
of multiple packages) before, or during, our running of the rules
When deploying source files, we can pre-check for syntax errors, but still
allow rules to be compiled on the production server
We can deploy our rules as code (as an integral part of the application) or as
data (that is, build our application to check often for rule-changes)

Remember that Drools is pretty powerful. It can cope with rules swapping in and
out, even when the rules are running as a part of long-term stateful rule session. We
can also serialize (akin to freeze-drying) all of the Drools objects. This means we can
de-serialize them later—a bit like adding water again to bring the rules and other
Drools objects back to life. Serialisation means that 'live' rules can be sent over the
network, and stored in a database for later use, and so on.

Push or pull?
In a normal deployment style, we 'push' the items to be deployed from the
development PC or repository to the test server, and finally to the production server.
The following diagram shows push deployment:

Rule
Repository

Production
Server

The copy, or deployment, (as shown by the arrow) is often a manual copy of the rules
files. This is great because the copy will often be managed by system administrators,
and they will ask you tough questions (such as 'Are you really sure?') before they
deploy. This push style fits very well with treating rules as traditional code.

•
•

•

•

Deploying Rules in Real Life

[214]

On the other hand, aren't rules meant to be dynamic? What if we want to make a
small change to a business rule, which is after all designed to change frequently? Do
we have to wait for a system adminstrator to be available? Will all of the questions
they ask just get in the way?

Rule
Repository

Production
Server

The pull style is meant to be more dynamic than this. In it, the production
application using the rules will check every 'x' minutes, or hours, or days to see
if there is a new set of rules in our rule repository. If so, it 'pulls' the new rules
into the application. This process is similar to Windows Update, and can happen
automatically, behind the scenes. A Drools component called 'RuleAgent' is provided
to help build these kinds of systems.

The pull style works best if you are treating your rules as data that changes often.
It also works best if the kind of changes you are making to your rules preclude
costly mistakes—the sysadmin's 'Are you sure?' question comes from hard-earned
experience. Remember that there is no 'best' deployment mechanism, but only the
one that works best for your project.

Loading our rules
Whether we push or pull our rules to the live system, or deploy the rules a plain
text of a pre-compiled or processed binary, we've got the same problem: How does
our application actually load the rules we give it? In our previous examples, we've
glossed over this process while we concentrated on what the rule engine was doing.
Now it's time to take a detailed look at how we call the rule engine from Java.

Looking inside RuleRunner.java
Almost all of our samples have used some variation on the RuleRunner.java file to
do the hard work of calling our rules. The good news is that the process is the same,
which means that you can reuse it in your own projects. The code in RuleRunner will
cover the following scenarios in which we have to:

Load rules in a stateless manner
Load rules in a stateful manner
Load decision tables

•
•
•

Chapter 10

[215]

Load rules with DSL
Load rules with Ruleflowth Ruleflow

Helper methods
Firstly, we'll look at the code that all of these scenarios will use. The following
code identifies our package, imports the other files that we will need, defines some
constants (the XLS file extension, which is unlikely to change any time during the life
of the program), and also defines the RuleRunner() method—it makes RuleRunner
a JavaBean. Although this is not vital in the book samples, it does make the code
more reusable.

If you're happy being just a business rule author, you're unlikely to
need the mechanics of rule loading to the detail we're going to discuss
here. On the other hand, if you're a rule and Java developer—read on.
We're going to talk about lots of useful stuff.

package net.firstpartners.drools;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.StringReader;
import java.util.Collection;
import java.util.HashMap;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import org.drools.RuleBase;
import org.drools.RuleBaseFactory;
import org.drools.StatefulSession;
import org.drools.StatelessSession;
import org.drools.rule.Package;
import org.drools.compiler.DroolsParserException;
import org.drools.compiler.PackageBuilder;
import org.drools.decisiontable.InputType;
import org.drools.decisiontable.SpreadsheetCompiler;

import net.firstpartners.drools.log.ILogger;

public class RuleRunner {

 private static final String XLS_FILE_EXTENSION = ".xls";
 private Log log = LogFactory.getLog(getClass());

 public RuleRunner() {
 }

•
•

Deploying Rules in Real Life

[216]

The imports fall into the following four broad categories:

Standard Java objects, such as exceptions (errors) when a file is not
found or cannot be opened (IOException), and utilities for reading files
(InputStream, InputStreamReader, StringReader). It also includes Java
standard collections and a Hashmap (a collection of name-value pairs).
Objects from Apache, which provide many useful open source utilities. In
this case, we import the logging utilities. These help us print messages about
what is going on in our samples.
Next, we import the Drools objects. We've seen them before—a RuleBase (or
compiled set of rules) and a RuleBaseFactory to help us load the rules from
a package. We have stateful and stateless sessions (working copies of the
rules), as well as compiler for both standard and decision table based rules.
Finally, we import other Java files from the project—in this case, a utility that
we use to help write log entries for our rules.

The next section contains helper methods that are used by the stateful and stateless
rule loaders.You’ll see that these are marked private, that is, only other methods
within the same file—the public runStatelessRules and getStatefulSession
methods that you will recognize from the samples in previous chapters. The main
helper method used is loadRules, which finds the multiple rule files we pass into it,
as well as any DSL or ruleflow files that we specify.

If we don't have a DSL or Ruleflow file, then we can pass in null,
which is a special Java word meaning 'empty' or 'nothing'.

private RuleBase loadRules(String[] rules,
 String dslFileName,
 String ruleFlowFileName)
 throws Exception{

 RuleBase localRuleBase = RuleBaseFactory.newRuleBase();
 PackageBuilder builder = new PackageBuilder();

 for (int i = 0; i < rules.length; i++) {

 String ruleFile = rules[i];
 log.info("Loading file: " + ruleFile);

 //Check the type of rule file, then load it
 if(ruleFile.endsWith(XLS_FILE_EXTENSION)){

 loadExcelRules(ruleFile,builder);

 } else {

•

•

•

•

Chapter 10

[217]

 loadRuleFile (ruleFile,dslFileName,ruleFlowFileName,
 builder);
 }

 Package pkg = builder.getPackage();
 localRuleBase.addPackage(pkg);

 }

 return localRuleBase;
}

Within the method, there are three main rules-related features that are highlighted in
the code above. They are:

1. The line beginning with for (...) loops though all of the names of the rule
files that we pass in.

2. The line beginning with if (… XLS_FILE_EXTENSION) checks to see if our
rule file is an Excel decision table. Depending on the answer, it calls a helper
method to load a normal, or an Excel, rules file.

3. All of the rules files loaded by the helper method are added to a package
(builder. getPackage), and then combined into a single rulebase
(localRuleBase. addPackage).

The loadRuleFile method (which loads DRL rules) is called by the loadRules
method. However, it only takes the name of a single drl rulefile as a parameter (as
well as the dsl and ruleflow files).

private void loadRuleFile(String ruleFile,
 String dslFileName,
 String ruleFlowFileName,
 PackageBuilder addRulesToThisPackage)
 throws DroolsParserException,
 IOException{

 //This method is more flexible in finding resources on disk
 InputStream ruleSource = RuleRunner.class.getClassLoader()
 .getResourceAsStream(ruleFile);

 //We must be able to find all rule files
 if(null==ruleSource){

 throw new FileNotFoundException
 ("Cannot find rule file:"+ruleFile);

 } else {

 log.info("found rule file:"+ruleFile);

 }

Deploying Rules in Real Life

[218]

 //Check if the user has passed in a DSL
 if(dslFileName!=null){

 //Load the rules, expanding them using the DSL Specified
 InputStream dslSource = RuleRunner.class.getClassLoader()
 .getResourceAsStream(dslFileName);

 //We must be able to find all rule files
 if(null==dslSource){
 throw new FileNotFoundException
 ("Cannot find dsl file:"+dslFileName);
 } else {
 log.info("found dsl file:"+ dslFileName);
 }

 //Load the rules, using DSL
 addRulesToThisPackage.addPackageFromDrl(
 new InputStreamReader(ruleSource),
 new InputStreamReader(dslSource));

 } else {

 //Load the rules, no DSL
 addRulesToThisPackage.addPackageFromDrl(
 new InputStreamReader(ruleSource));
 }

 //if we've specified a ruleflow, add this to the package
 if(ruleFlowFileName!=null){

 //Load the rules , expanding them using the DSL Specified
 InputStream ruleFlowSource =RuleRunner.class.getClassLoader()
 .getResourceAsStream(ruleFlowFileName);

 //We must be able to find all rule files
 if(null==ruleFlowSource){
 throw new FileNotFoundException
 ("Cannot find dsl file:"+ruleFlowFileName);
 } else {
 log.info("found dsl file:"+ ruleFlowFileName);
 }

 addRulesToThisPackage.addRuleFlow(
 new InputStreamReader(ruleFlowSource));

 }
}

Chapter 10

[219]

Notable steps highlighted in this method are:

1. The Java method for locating and loading the RuleRunner.class.
getClassLoader().getResourceAsStream(ruleFile) file. Rather than
being hardwired to a specific location, this file allows Java to search in the
locality for files of the specific name. This is especially useful if this code is
running as a part of a web application.

2. We try to load the rule file using this technique, and then throw an exception
(error message) if the file cannot be found.

3. We check to see if a DSL has been passed in (dslFileName!=null). If yes, we
call the Drools method addPackageFromDrl(ruleSource, dslSource). If
there no DSL file specifed, we call the more simple addPackageFromDrl(rul
eSource) method.

4. We check to see if a ruleflow file has been specified (ruleFlowFileName
!=null). If yes, we load and add it to the package by using the Drools
method addRuleFlow(ruleFlowSource).

The Excel equivalent of this method is loadExcelRules. This method takes the name
of the Excel decision table that we wish to load, and the name of the package that we
want to add it to.

This example doesn't accept a Ruleflow file to keep things simple. It is
possible to use Ruleflow with Excel decision tables in a similar way as
normal DRL rule files are used.

private void loadExcelRules(String excelRuleFile,
 PackageBuilder addRulesToThisPackage)
 throws DroolsParserException, IOException{

 //This method is more flexible in finding resources on disk
 InputStream xlRuleSource = RuleRunner.class.getClassLoader().
 getResourceAsStream(excelRuleFile);

 if(null==xlRuleSource){

 throw new FileNotFoundException
 ("Cannot find file:"+excelRuleFile);
 } else {

 log.info("found file:"+excelRuleFile);
 }

 //first we compile the decision table into a whole lot of rules.
 SpreadsheetCompiler compiler = new SpreadsheetCompiler();
 String drl = compiler.compile(xlRuleSource, InputType.XLS);

 //Show the DRL that is generated

Deploying Rules in Real Life

[220]

 log.debug(drl);

 ////same as previous - we add the drl to our package
 addRulesToThisPackage.addPackageFromDrl(
 new StringReader(drl));
 }

}

This method also finds the named Excel file by using the getResourceAsStream
(excelRuleFile) technique. However, there are two new lines (highlighted). They
are explained as follows:

1. We create a SpreadsheetCompiler helper object (kindly provided by the
Drools project).

2. We call the compile method on this helper object to transform the Excel-
based decision table into the DRL format, which we are familiar with. Just to
prove that our rules are now in the DRL format, we even print them to the
screen by using the log.debug statement.

Once done, we add the rules to the package provided, which is similar to what we
did for the DRL source rules.

Public methods
All of these methods are going on 'under the covers', because the examples from
previous chapters don't use them directly. In fact, unless you want to modify the
behavior (for example, to add Ruleflow to rules based on decision tables), you
might never need this amount of detail. What you will do in your project, like in our
examples, is call one of the following methods:

runStatelessRules

getStatefulSession

As with the samples in the previous chapters, stateless rules are simpler as they fire
once, and then give you a result immediately. Stateful rules, though more complex, are
good for long-lived rules where we will update records and get results multiple times.

Stateless
The runStatelessRules method takes the following parameters:

An array of text names—these are the rule files that the sample will search
for, and then load.
The dslFileName as text (string), or null if it is empty.

•

•

•

•

Chapter 10

[221]

The facts that we wish to pass to the rule engine—a collection of JavaBeans.
A collection of global objects, such as name/value pairs, and so on.
The ruleFlowFileName as text (string), or null if it is empty.
A handle to the logger helper object. This allows the rules to print out what
is happening.

Remember that the difference between facts and globals is that facts
are designed to be updated as a result of business rules firing (and will
cause other rules to fire in turn). Globals, on the other hand, are more for
'reference' data that may or may not change.

To see an example of how this method is called, look at the ExcelDataRulesExample
again. (It's part of the samples in Chapter 8.) The complete details of the
runStatelessRules method:

/**
 * Run the rules
 * @param rules - array of rule files that we need to load
 * @param dslFileName - optional dsl file name (can be null)
 * @param facts - Javabeans to pass to the rule engine
 * @param globals - global variables to pass to the rule engine
 * @param logger - handle to a logging object
 * @throws Exception
 */

public void runStatelessRules(String[] rules, String dslFileName,
 Collection<Object> facts,
 HashMap<String,Object> globals,
 String ruleFlowFileName,
 ILogger logger)
 throws Exception {

 RuleBase masterRulebase=
 loadRules(rules,dslFileName, ruleFlowFileName);

 //Create a new stateless session
 StatelessSession workingMemory =
 masterRulebase.newStatelessSession();

 for (String o: globals.keySet()){

 log.info("Inserting global name:"+o+" value:"+globals.get(o));
 workingMemory.setGlobal(o, globals.get(o));
 }

 //Add the logger

•

•

•

•

Deploying Rules in Real Life

[222]

 log.info("Inserting handle to logger (via global)");
 workingMemory.setGlobal("log", logger);

 log.info("==== Calling Rule Engine ====");

 //Fire using the facts
 workingMemory.execute(facts);

 log.info("==== Rules Complete =====");
}

The key features of this method (highlighted above) are:

1. Load the rule, or DSL, or ruleflow file, by using the DSL, or ruleflow file, by using the loadRules()
helper method.

2. From the loaded RuleBase, create StatelessSession. This is a one-time
scratchpad based on the rules, which is unique to this session.

3. Into this StatelessSession, add the globals in a loop (starting at the for …
line). The logger helper object is also added as a global.

4. Fire the rules, passing in the facts using the Drools method workingMemory.
execute (facts).

When the rules fire, the facts (JavaBeans) are updated. So when this method finishes,
the rest of our Java code has access (via these JavaBeans) to the 'answers' that the rule
engine comes up with.

Stateful
The stateful method takes almost the same set of parameters as does the statelessstateful method takes almost the same set of parameters as does the stateless method takes almost the same set of parameters as does the stateless
one. But there are two points of difference: we don't pass in the facts to it, and the
stateful method returns a value (whereas the stateless method returns nothing).
The returned value is StatefulSession. By returning this, we have a handle to the
memory. This handle gives us the state of the rules, and allows us to come back to
update that state with new facts later, if needed.

/**
 * Run the rules
 * @param rules - array of rule files that we need to load
 * @param dslFileName - optional DSL file name (can be null)
 * @param ruleFlowFileName - optional (can be null)
 * @param facts - JavaBeans to pass to the rule engine
 * @param globals - global variables to pass to the rule engine
 * @param logger - handle to a logging object
 * @throws Exception
 */

Chapter 10

[223]

public StatefulSession getStatefulSession(String[] rules,String
 dslFileName, String
 ruleFlowFileName,
 HashMap globals,
 ILoggerlogger)
 throws Exception {

 RuleBase masterRulebase=loadRules
 (rules,dslFileName,ruleFlowFileName);

//Create a new stateful session
StatefulSession workingMemory = masterRulebase.newStatefulSession();

for (String o : globals.keySet()){

 log.info("Inserting global name: "+o+" value:"+globals.get(o));

 workingMemory.setGlobal(o, globals.get(o));
}

//Add the logger
log.info("Inserting handle to logger (via global)");
workingMemory.setGlobal("log", logger);

return workingMemory;
}

Two differences are highlighted in this method. Firstly, we use
newStatefulSession() to get a working memory (scratchpad). This stateful session
can be called more than once.

Secondly, the method is actually shorter than its stateless equivalent. The reason is
that we set up the rules, but don't fire them. So if we're using this method (as in the
RuleflowExample.java file from Chapter 9), you'll see that you have to do the hard
work in the Java code that calls this method.

This 'hard work' is familiar, and explains why we don't have to pass in the facts. We
have to insert ourselves in the calling method. An example of the calling code is
as follows:

Collection<Object> allRangeValues = ranges.getAllRangesAndCells();

for (Object fact: allRangeValues){
 statefulSession.insert(fact);

Finally, we also need to remember to call the rules:

statefulSession.fireAllRules();

Deploying Rules in Real Life

[224]

Alternative method—RuleAgent
Drools provides an alternative method for loading the rules, based on the RuleAgent
(found in the org.drools.agent package). The RuleAgent helper can make your
code simpler, as long as you follow the RuleAgent way of deployment. However,
you don't get as much flexibility as you do with the code samples above. Typically,
this means that pre-compiled (binary) packages of rules fit quite well with the way
the Guvnor web editor works.

The way the RuleAgent works is through code plus a properties file. Your code calls
the RuleAgent helper, similar to the following (remember that you will have import
org.drools.agent.RuleAgent at the top of the file):

RuleAgent ra = RuleAgent.newRuleAgent("/RuleAgent.properties");
RuleBase rb = ra.getRuleBase();

// now get a stateful or stateless sessions from RuleBase as before

The RuleAgent.properties text file referred to in the above code snippet looks
similar to the following:

poll=60
NewInstance=false
name=SomeNameUsedInLogging
dir=/my/dir
file = alternativeToDir
url=http://myfirstUrl http://anotherURLIfNeeded
localCacheDir=file://c://temp

Most of the options in the properties file are straightforward, as follows:

Poll = 60: This causes the RuleAgent to check for updates every 60 seconds.
NewInstance: If this is true, and there is an update to the rules, then only
new sessions that are created will pick up the new rules. The previous
sessions will remain unchanged.
name: This is the name that is used in logging.
dir, file, or url: The location where the binary package of rules can be
located. url can be used to point directly to Guvnor.
localCacheDir: The RuleAgent will keep a local copy in case the remote
URL is temporarily unavailable.rarily unavailable.

•

•

•

•

•

Chapter 10

[225]

Web deployment
Normally, you'd expect that we will take what we've just learned and use it to
deploy an example on the Web. However, you could be using one of the hundreds of
Java web frameworks. Each of those web frameworks would be worthy of a book in
itself. Instead, we'll provide a set of notes about what to expect. These notes are not
meant to be exhaustive, but to give you an idea of the steps involved in deploying
Drools as a part of the web framework of your choice.

Each of these frameworks has three major points of integration with JBoss Rules.
These are as follows:

How do we package the project (with Rules and the Drools Libraries) so thatow do we package the project (with Rules and the Drools Libraries) so that
it gets deployed to the web server?
In which folder do we save the rules files in the web project?
Where in the web framework do we call the rules code (seen previously in
this chapter)?his chapter)?

For our walkthrough, we'll use the Appfuse framework (which uses Spring under
the covers). The quick run-through also assumes that you have the MySql database
installed from http://dev.mysql.com/downloads/—the community edition will
do fine. The next few pages assume some knowledge of Java web development due
to the complexity of the subject.

Why Appfuse? Underneath, it uses the popular Spring MVC framework.
But it gives you a choice of web frameworks. It also generates most of
the applications automatically, for immediate results—a bit like Ruby on
Rails. More information on the Appfuse project is available at
www.appfuse.org.

Maven for packaging
Previous chapters have used Maven as a build tool, mainly for setting up Eclipse
projects. It can do a lot more, including pulling down Appfuse from the Web,
creating the package structure for the project, and deploying the code to the web
server. This can be seen with the help of the following steps:

1. Open a command window. Use Maven to download Appfuse, and create a
standard project.

 mvn archetype:create -DarchetypeGroupId=org.appfuse.archetypes-
DarchetypeArtifactId=appfuse-basic-spring -DremoteRepositories
=http://static.appfuse.org/releases -DarchetypeVersion=2.0.2 -
DgroupId=net.firstpartners.chap10 -DartifactId=chap10-sample

•

•

•

Deploying Rules in Real Life

[226]

2. Change the director to the folder created in the previous step using the
cd chap10-sample command.

3. Use Maven again, this time to generate a project skeleton, with the
command mvn war:inplace.

4. Create an Eclipse project by using mvn eclipse:eclipse, and then open the
project in Eclipse.

In the project structure, you'll see the place where we can save our rules files and
other resources, under the resources folder, as shown in the screenshot below.
By default, Maven expects this standard structure. The following figure shows the
RuleFile location:

5. Maven can also run a test web server - mvn jetty:runwar. When the
message [INFO] Started Jetty Server [INFO] Starting scanner at interval
of 3 seconds. appears in the console, open a web browser at http://
localhost:8080/login.jsp. You will see the following web screen, or
sample app, generated by Appfuse. If you want to log in and play around,
enter admin as both the Username and the Password.

Chapter 10

[227]

6. Stop Maven (by pressing Ctrl+C in the command window), when you're
finished playing with it.

7. Now that we have a web application up and running, it's time to start
adding Drools. In Eclipse, we'll modify the pom.xml file so that the web
project knows where to find the Drools libraries. Rather than supplying the
full details here, just copy and paste the <dependencies> section from the
pom.xml file in the sample from Chapter 8.

8. Next, we need to add the code that calls JBoss Rules (that is, the code we
saw previously in this chapter and in the samples). Typically, this is in
the Java file (controller of the model-view-controller pattern) where the
values submitted by the user on the Web have already been converted into
JavaBeans. By happy coincidence, these JavaBeans are very suitable for
passing into the rule engine.

9. More details on how to add a controller for Appfuse-Spring-MVC can be
found at http://www.appfuse.org/display/APF/Using+Spring+MVC.
The file that we will modify according to these instructions is
PersonFormController. In summary, this file (PersonFormController)
extends another file (BaseFormController), and adds one method (that we
will use to call the rules):

 public ModelAndView onSubmit(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors)
 throws Exception {
 log.debug("About to call Rules...");

 //Place the code to call rules here, exactly
 as previous examples

 return new ModelAndView(success);
 }

10. Within the updated PersonFormController, add the code that calls the rule
engine—a copy-and-paste job from the examples in Chapter 9 should work.
The trickiest part for this code is the rules (DRL) file. However, as long as
the rules file is included in the Web Archive (WAR) file that
contains the application, the code in our previous sample,
getClassLoader().getResourceAsStream(ruleFile), should find it.

11. Generate the web application ZIP file by using Mvn War, and deploy it to your
favorite web application using the instructions that come with it.

Remember—this isn't meant to be a complete web application development
tutorial. Rather, it's meant for people familiar with Java web development
to be able to add rules to their applications. If you're not familiar with web
development, it may give you some idea of the required steps.

Deploying Rules in Real Life

[228]

So, let's answer the three big previous questions, here:

How to package the project? The answer is: Use Maven standard
functionality (or an equivalent from another Java build framework) with the
Drools libraries specified as a part of the build script (for example pom.xml).
In which folder do we save the rules files? The answer is: In the resources
folder of the Java project.
Where do we call the rules code? The answer is: We call it from the Java code,
typically the controller class. If you followed the instructions that come with
Appfuse, whenever you click the Submit button on the web browser, the
framework will eventually cause the above rule code to be executed.

Look again at the 'one size architecture fits all' diagram at the start of this chapter.
As promised, the code we have just seen fits right in the middle of the picture, in the
Business Layer of the system.

Summary
This chapter has shown you how to deploy your business rules in the real world. We
looked at the pieces that made up an entire web application, and where our rules fit
into it. We saw the various options for deploying rules as a part of our application,
and also the team that's involved in the process. Once deployed, we looked at the
code that will load and run the rules—both home-grown, and those created using the
standard RuleAgent. Finally, we saw how to combine this into a web project using
the framework of your choice.

•

•

•

Looking under the Cover
In the previous chapters, we've treated the rule engine as a 'black box'. We've
described what goes in and what comes out, but not what happens 'under the
covers'. In this chapter, we open the box and explain how a rule engine works. We
demonstrate how it is a faster and easier-to-maintain solution than traditional coding
methods. We'll also introduce debugging and other ways of seeing what is going on
inside the rule engine in real time, as it happens.

In this chapter, we will cover the following topics:

Rule engine concepts
Logging
Rete
Debugging rules

Rule engine concepts
To understand what we're seeing when we look inside the rule engine, we first
need to understand a couple of rule engine concepts, including a repetition (in more
depth) of something we first covered back in Chapter 1.

•

•

•

•

Looking under the Cover

[230]

Facts or objects
Facts are pretty straightforward. They're the container that we use to transport
information into (and out of) the rule engine. You'll remember that because facts are
standard JavaBeans (we compared them to Lego blocks), a lot of the code already in
your organisation can be used for this purpose. Or, you can write your own—such as
the CustomerOrder and ChocolateShipment.

An 'object' is just another term for a fact (it's where the term Object Orientated
Programming or OOP comes from). Earlier, we saw how we can insert, update, and
retract (remove) facts or objects from the rule engine, and how the rules would react
as a result.

Or rather, we inserted, updated, and retracted the facts from the Working Memory,
and saw the Agenda and Activations change as a result. All three of these are parts
of the Drools Rule Engine, and are a critical part of what happens 'under the covers'.

Working memory
To keep things simple, all of the examples that we've given until now have been
about a 'single user'. That way, we could treat the rule engine and working memory
as almost the same. In real life, the sorts of Enterprise Applications that use rules
will have many people calling rules at the same time. If all of these people shared
the same memory, then things could get pretty confusing. (Imagine if the rules
returned somebody else's bank balance!) The solution is to give everybody their
own workspace, or working memory.

If you're used to working with web servers, you will notice a similar
problem and a similar solution—each user who is interacting with
the server has his or her own unique session, which is isolated from
any other user's session.

We touched upon working memory when we used stateful sessions as a part of the
ruleflow, but working memory is also behind the stateless session. Both stateless and
stateful sessions are types of working memory. In both cases, working memory acts
as a scratchpad, unique to each user, which contains all of the knowledge (facts) that
Drools has been told about the case. When we insert, update, or retract a fact, it's the
working memory that changes. Likewise, when a rule inserts, updates, or retract a
fact, it's the working memory that changes.

Let's repeat it because it's important: Rules change facts in the working memory.
Because of the way that Java works, even though our facts are a part of working
memory, the code that passed in the values still has a 'handle' to them. Thus, it
automatically knows about the changed values.

Chapter 11

[231]

Pattern matching, Agenda, and Activations
You'll remember the spreadsheet below from Chapter 1. It is about the business rules
for the chocolate factory. It's far simpler than the Excel-based decision tables that we
used later in the book. In the following table, the first three columns represent the
'when' part of the rule, and the final, fourth column shows the actions to be taken:

Highlighted are the rules that become available to fire whenever we sell more than
30,000 Chocolate Crunchie bars. This pattern matching (identifying the relevant rules
for any given situation) is a core part of Drools, and something that rule engines do
very well.

In real life we would insert facts to the rule engine (or rather, to working memory),
telling the rule engine that all those candy bars have been sold. As soon as we did so,
the rule engine would identify the relevant rules via pattern matching. These rules
would become 'active' or ready to fire. So, Activations are rules that are ready to fire, and
Agenda is the list of all of these activations.

Conflict resolution
Note that we didn't say Activations 'are rules that fire' but 'rules that are ready to
fire'. Just because there are facts in the working memory that match a rule (that is, a
rule could fire) doesn't mean that the rule will fire. The first question, which might
not be obvious from the chocolate factory sample, is which rule amongst the six
highlighted ones will fire first?

Looking under the Cover

[232]

Because (at a simple level) only one rule fires at a time, Drools needs to decide which
of these rules should fire first. To make this decision, let's introduce an idea called
conflict resolution.

Strictly speaking, more than one rule can fire at a time, especially if
you have multiple working memories. Within the working memory,
the Rete algorithm optimises the matching and firing process.matching and firing process. and firing process.

As soon as the 'when' part of the rule it satisfied, it is added to the Agenda as an
Activation. This creates a list of rules that are available to fire. If there is only one
rule Activation on the agenda, there is no need for conflict resolution—it is fired
straight away. If there are two or more rules, conflict resolution is used to put an
order to the list.

By default, conflict resolution decides the order of priority in the following manner:

1. Salience: Back in Chapter 5, we came across salience as a rule attribute that Chapter 5, we came across salience as a rule attribute that
we could add via Guvnor (or the other rule editors). Under this conflict
resolution method, a rule with a higher salience value will be closer to the
top of the agenda, and thus more likely to fire. Remember that salience only
changes the order of rules whose 'if' part matches the current facts. If this
doesn't happen, you can increase the salience if you wish.

2. Recency: If salience doesn't resolve the rule agenda order, then Drools
looks at Recency, or how many times a rule has fired previously. The more
the rule has fired, the higher it will be on the agenda.

3. Complexity: A rule with more conditions in the 'when' part will be more
specific, that is, it will be fussier when it fires. On the other hand, when it
does fire, it is likely to be more relevant to the current situation. Therefore,
the more complex rules tend to move toward the top of the agenda.

4. LoadOrder: If none of the first three strategies work, then the fallback
situation is to use the LoadOrder of the rules—that is, rules that got loaded
first get fired first. Because we can load rules from many different files, we
can implicitly state which blocks of rules are more important than others.
If you need to refresh your memory, look atemory, look at RuleRunner.Java, from the from the
previous chapter.

Although this is the default conflict resolution strategy, it is possible to change the
methodology employed. There can be good reasons for doing this, but in general, a
well-written set of rules shouldn't need this level of fine-tuning.

Chapter 11

[233]

A more dynamic Agenda
The order in which rules/Activations appear on the Agenda is critical. This is
because only the first rule on the Agenda is guaranteed to fire, even though all of
the other rules on the Agenda match the current set of facts in the working memory.
The other rules may fire in turn, but only if an earlier rule hasn't changed the facts in
the working memory. This means that rules can be dropped from the Agenda before
they get a chance to fire, because there are no longer valid.

Let me explain how housework and chores get done in my home. My wife
gives me a list of tasks to complete—wash the dishes, brush the floor, and
put out the bins. By the time I finish washing the dishes, my wife has lost
patience and has already brushed the floor—so that's no longer on my 'to-
do' list. On the other hand, she has now asked me to tidy up the yard and
wash the car, so that gets added to the list.
Think of the 'to-do' list as the Drools Agenda and you'll get an idea of the
dynamic addition or removal of 'rules to fire' from the list.

Truth maintenance
We change the working memory by inserting and removing facts. Changes in
working memory cause rules to match, get added to the agenda, and fire. Because
rules can also insert, remove, or update the facts in the working memory, a rule
firing can cascade and cause other rules to be added to the agenda and subsequently
fire. These rules, in turn, can cause further rules to become active and fire.

What is going on here is the process of truth maintenance. Given a set of facts,
the rule engine applies the appropriate business rules and modifies the facts as
necessary. If the newly-changed facts mean that other business rules come into play,
then they are applied. Eventually, all necessary rules are fired, and the facts stored in
the working memory represent the truth, or at least the truth as understood by our
business rules.

Any change in facts (for example, if a user submits more information about his or her
insurance application) causes new rules to come into play, in an attempt to maintain
the truth.

Looking under the Cover

[234]

Truth maintenance is a bit like playing pool (or snooker) because of the
following reasons:

1. You take a shot, hitting the white cue ball (that is, introduce a new fact toe a shot, hitting the white cue ball (that is, introduce a new fact to
the system).

2. The rules of physics are applied and the ball rolls across the green baize, and
bounces off the cushions.

3. It may hit another ball (that is, cause another rule to fire). The rules of physics
are applied again, and now two balls are moving.

4. These may hit other balls (more facts getting introduced, more rules getting
fired, and more balls getting moved—although slightly more slowly), until
eventually the whole system (all the balls on the table) is still again.

5. The truth (according to the laws of physics) has been maintained! Or at least,
until another player takes a shot. player takes a shot.

This 'rules changing facts causing other rules to fire' process can lead to rules getting
caught in a loop. Rule 1 changes a fact, which causes rule 2 to fire, rule 2 changes a
fact, which causes rule 1 to fire, and so on. There are a couple of features in Drools
that help to avoid this. Marking a rule with an attribute of 'no-loop' means the rule
cannot cause itself to fire. In Ruleflow, Agenda groups control the amount of rules
available to fire. Writing the conditions (the 'when' part of the rule) as precisely as
possible also helps to avoid this scenario.

If you're a programmer, truth maintenance is a fundamental differencerogrammer, truth maintenance is a fundamental difference
to any language you may have used before. With those languages, you
(the programmer) have to ensure that your code gives the correct results.
With Drools, the rule engine ensures that the result is always consistent
with the business rules that you have given it.e given it.

Back to the future (with chocolate
shipping)
We've just looked at a couple of make-believe rules from the chocolate factory.
Wouldn't it be great to see some real rules and use it to see the internals of the rule
engine that we've just talked about? Fortunately, our Chapter 11 example allows
us to do just that (this example is available for download from the same site as the
previous samples, http://code.google.com/p/red-piranha/).

Chapter 11

[235]

This sample is the same as the chocolate factory that we saw back in Chapter 6, but
with some extra code that makes it easier to see the internal happenings in the rule
engine. The following are the basic rules found in the shipping-rules.drl file:

A rule to confirm (print out) the OoompaLoompa holidays is passed, as a
fact, to the rule engine
A rule matches against unfilled customer orders, and starts sending out
shipments of 210 units at a time
A rule adds an estimated date to these new shipments of chocolate
A rule adjusts this shipment date if it falls on a day that the OoompaLoompas
take as a holiday
A rule ensures that we don't overshoot on the last shipment, adjusting it so
that only the remaining balance is sentt only the remaining balance is sent

Running the Chapter 11 example is similar to before. Open EventRulesExample.
java, right-click anywhere in the file, and select right-click anywhere in the file, and select Run As | Java Application from the
context menu that appears.

The sample comes with an Eclipse project, so you should be able to
open it with File | New Project, and then select the folder to which you
unzipped the sample. If this doesn't work (for example, you are using a
newer version of Eclipse since the book came out), you can regenerate
the project with Maven (assuming that you have it installed). Open a
command window (Dos Prompt) at the folder containing the project (the
one containing pom.xml). After executing the command mvn eclipse:
clean eclipse:eclipse, refresh or reopen the project in Eclipse, and
everything should be set up correctly.

After running the sample, you should get output similar to the following in the
Console window as before, ending the schedule that we have calculated.

Shipment amount:210 date:03/02/2009 chocolate bars left in order:1790
Shipment amount:210 date:11/02/2009 chocolate bars left in order:1580
Shipment amount:210 date:17/02/2009 chocolate bars left in order:1370
….
Shipment amount:210 date:24/03/2009 chocolate bars left in order:320
Shipment amount:210 date:31/03/2009 chocolate bars left in order:110
Shipment amount:110 date:07/04/2009 chocolate bars left in order:0

•

•

•

•

•

Looking under the Cover

[236]

Logging working memory
We've used logging in our earlier examples to print what is going on to the Console.
The output above, showing the shipment amounts, is a good example of this. Mostly,
this is our own logging statement. Although we can add logging statements that get
output when the rules fire, until now we've treated the decisions by the rule engine
about which rule to fire as taking place in a 'black box'. Wouldn't it be great to look
inside and see which rules are getting fired, and why?

The main difference between the example in this chapter and the one in Chapter 6
is that the code in RuleRunner.Java has been modified to display what is going on
internally in the rule engine. The main lines that have been added to this file are:

// create a new Working Memory Logger, that logs to file.
WorkingMemoryFileLogger wmLogger = new
 WorkingMemoryFileLogger(workingMemory);

// Set the log file that we will be using
wmLogger.setFileName("event-log");

….

//Fire using the facts
workingMemory.execute(facts);

//stop logging
wmLogger.writeToDisk();

It's not a big change. The snippet above has only four lines of code, of which
(workingMemory.execute), we're familiar with one already. What happens is:

We create a new WorkingMemoryFileLogger, passing in a handle to the
working memory that we want to log
We set the name of the log file in which the information will be written (in
this case event-log)
We fire the rules as normal, using workingMemory.execute
When the rules have fired, we write the log to disk using
wmLogger.writeToDisk

In real life the log file can become very large, so be careful to disable the logging of
production systems. At the simplest level, this means commenting out the above
code (by placing '//' in front of it).

•

•

•

•

Chapter 11

[237]

Looking at the working memory log
Assuming that you ran the sample in the previous section, you'll already have the
event-log.log file generated. This file should sit at the root of the project (just
under the chap11-sample folder in Eclipse, next to the pom.xml file).

Eclipse doesn't display changes to files by default, so you may need to
refresh the project to see the changes. To refresh your project in Eclipse,
select the project name, then press the F5 key or choose File | Refresh
from the main menu.

If we open this file, we'll see something similar to the following text:

<object-stream>
 <list>
 <org.drools.audit.event.ActivationLogEvent>
 <activationId>Chocolate Shipment [1]</activationId>
 <rule>Chocolate Shipment</rule>
 <declarations>$CustomerOrder=Initial Chocolate Order:2000
itemsStillToShip:2000 shipments:none-listed(1)</declarations>
 <type>4</type>
 </org.drools.audit.event.ActivationLogEvent>
 <org.drools.audit.event.ObjectLogEvent>
 <factId>1</factId>
 <objectToString>Initial Chocolate Order:2000
itemsStillToShip:2000 shipments:none-listed</objectToString>
 <type>1</type>
 </org.drools.audit.event.ObjectLogEvent>
 <org.drools.audit.event.ActivationLogEvent>
 <activationId>confirm holidays [2]</activationId>
 <rule>confirm holidays</rule>
 <declarations>$holiday=17/03/2009(2)</declarations>
 <type>4</type>
 </org.drools.audit.event.ActivationLogEvent>
 <org.drools.audit.event.ObjectLogEvent>

Looking under the Cover

[238]

Drools Audit Log Viewer
Not very readable, is it? To understand what the working memory log is showing,
we need to use the Drools Audit Log View.

To open this view in Eclipse, select Window | Show View | Other | (Drools
Folder) Audit View from the toolbar. You should see an empty version of the above
window. The window is empty as we haven't told the viewer where our working
memory log file is.

See those icons at the top right of the Audit View window? Click on the file icon (it's
the highlighted one on the left, looking like a piece of paper) and choose the audit log
that we opened earlier.

Now the window looks a bit more like the Audit View in the diagram above. But
what does it actually mean? Working through the list, you'll see that the first item
in the log is where the initial chocolate order is inserted into memory. The icon is a
green square.

Because the rules start firing as soon as the facts are inserted, (before the second fact
is inserted) an Activation is immediately created for the Chocolate Shipment rule.
The icon is a right-facing arrow.

Chapter 11

[239]

The third line in the log is the second object being inserted (one of the
OompaLoompa dates passed in as a holiday), causing another activation to be
created for the rule confirm holidays.

A couple of lines later, we see the first rule—the one that confirms holidays—actually
being executed. The icon is a blue diamond.

In total, there are three activation executions in this part of the log. Note that the
executions are not in the order in which they were created, but in the order that
Drools deems fit when it resolves the conflicts. As the third rule is the chocolate
shipment rule, we immediately see an object update in the log. The icon for an
object update is a yellow square.

The line immediately following this in the log is a new rule/Activation created (as a
result of this object being created). The line immediately after that is interesting—it
is another object insertion (we've seen those before). Because the object (a shipment)
has been created or inserted by a rule (the chocolate shipment rule), with anrule), with an
existing object being changed, the following line has a new Activation created
(shipment rule).

Even in this simple example, there are a couple of hundred lines, so we'll skip
them and move on. Before we do this, it's a good time to mention the show cause
functionality in the Audit View. To activate it, right-click on the log and select Show
Cause from the context menu.

For this example, we clicked on the Object updated (4) and the action that caused it
is highlighted. As it happens, what caused the update was the action in the previous
screenshot (that is, the object that had just been inserted by the rule).

Looking under the Cover

[240]

The previous section talked about conflict resolution when there are more than
two rules on the Agenda available to fire. Near the very end of the audit log is an
example of this happening.

The conflict happens where the two right arrows (that is, rules that are on the
Agenda) fire one after the other. The rules are Add Next Available Shipment Date
and Don't ship more than the customer order.

Obviously, this conflict is resolved as one of these rules is activated and fired in the
next line: the Don't ship more than the customer order rule. This section also shows
an Activation cancellation—the second line from the bottom of the screenshot. The
icon for a cancellation is a left-facing arrow.

There is another icon, not shown in the above samples, when an object or fact is
removed from the working memory. The icon for fact removal is a red square.

Other icons not shown in this diagram, but which might appear in your audit log, are:

Drools logo icon: Rule or rule package added or removed
Process icon: Ruleflow started or ended, or Ruleflow group activated
or deactivated

Rete algorithm
The Rete algorithm is at the heart of the events that we just saw in the audit log. The
one-line explanation of Rete is:

Rete makes rules run incredibly fast by sorting the rules in such a way that when
facts change, the rule engine knows instantly which rules need to fire.

•
•

Chapter 11

[241]

The Rete algorithm is a bit like the algorithm used by Google for searching the entire
Web. You don't need to know how it works to use it, but it's nice to have a vague
idea. If you want to know more than the overview here, there are hundreds of pages
on the Web, including Dr Charles Forgy 1974 to 1979 original papers, where he first
outlined Rete—just do a Google search for Charles Forgy Rete Algorithm.

If I was to write a rule engine, and didn't know about Rete, I would do it incredibly
badly. I would probably write a series of loops checking each part of my business
rules every single time a fact might have changed, including every time a rule fires.

For example, the shipping rules have 5 rules, with 3 facts, each holding about 4 values.
In my loop (which I would have to run every time something changed) that would be
60 values (5x3x4 = 60) that I need to check after every single change. That's 60 values
checked hundreds or thousands of times, over the life of a simple application.

That's not going to scale very well—a medium-sized sample would have 100 rules,
with 20 facts in total, holding about 4 values each. This becomes 8000 items to be
checked, and checked repeatedly. Even if we check 2000 items a second, it comes to a
4-second delay each and every time something changes, which can be very frequent
in an enterprise application.

Don't laugh at this description. If you've written any code, you've
probably made the same mistake yourself (I have).
Think of the hundreds of 'if…then' statements that you have scattered
throughout your code, and imagine them gathered together in one
place, often getting called more than once. Sounds a bit more like the
example above? That (along with other optimisations) is why rule
engines are often more efficient than the equivalent 'traditional' code.

It's just as well that I don't write rule engines. Let's try again.

Mostly, the checking of facts is slow because there are duplications in the checks. For
example, if both rules use a common shipment date, the same fact will get checked
twice for changes. What if we spent a bit of time grouping the rules so that one check
will do everything for both rules?

Looking under the Cover

[242]

Rete in action
One example of this grouping is shown in the following screenshot, from the Drools
IDE. It shows the shipping rules from our example, but displayed as a Rete Tree. To
view this yourself, open the Shipping-rules.drl file as normal. Using the tabs at
the bottom of Rete View, click on Rete Tree.

While this looks complicated, the concepts are simple. Drools (the white node at the
top) has analyzed the 'when' part of the five shipping rules, and picked out the facts
(the three red nodes on the second line), and the fields on those facts (the four blue
nodes, most of the third line). These are then connected via the green and yellow nodes
on the third and fourth line, (used to cache the previous values to further reduce the
amount of checks that we need) to the black nodes (the rules that can fire) at the very
bottom of the diagram.

Remember that when we were running our previous examples, there
was a noticeable pause before the rules fired. This was the time taken to
construct the Rete network from the rules. It's a trade off—a slight pause
at the start, compensated for by by a greatly-increased performance later.

Chapter 11

[243]

To analyze which rule needs to fire, all that Drools has to do is to start at the top
node and, depending on what has changed, walk down the tree until it gets to the
black node (representing the 'when' part of the rule) to fire. That's the hard bit done.
Firing the rule once it's been decided is more or less standard Java.

To find out more information on each node, click on it in the Rete Tree
View. If you have the property view open in Eclipse (from the toolbar,
select Window | Show view | Properties), you'll see the name of the
fact/field/rule displayed.

To give an example of this 'walking the Rete tree', imagine that a shipment date
changes on one of the shipments. The path that Drools will follow is shown below.
From these five nodes, one is standard Drools (the one at the top), and the next two
are 'real' checks on the fact and field respectively. The fourth node is an internal
connector. The final node is the actual rule that will fire.

In this example, when the shipment date changes, instead of the of the 60+ checks
previously required, now only two checks need to be done (in the second and
third nodes).

Two checks are obviously faster than 60 (or 8000 in the larger sample), especially if
they are repeated 100 times. The actual Rete algorithm is much more sophisticated
(and faster) than we describe. Drools has further optimizations that make the process
faster still—it's easy to optimise business rules when they are written in standard
'when…then' format.

Looking under the Cover

[244]

Debugging rules
Now that we understand how a rule engine works, let's take a peek at its internals, in
real time.

This book has shown you how to print logging statements to the console to see what
is going on in your rules. It has also shown you how to use the working memory
logger to show you what is happening within the rule engine. But these methods are
'after the fact'—the rules have completed and we are trying to reconstruct what has
happened, long after the program has finished. What if we want to see rules firing
and values changing as they happen?

What we need is debugging. Debugging is like pausing a movie on a DVD player.
Normally, we would run our program (movie) from end-to-end using the play (run)
button. If we don't like the movie (program) we can halt it by clicking on the stop
button (or pressing Ctrl+C). If we need to take a break we can pause it, and maybe
change a few of the movie options such as to view it in widescreen, or to switch the
director's commentary on or off, and so on.

If you've already debugged Java programs, you'll recognise the above description. The
tools we're about to describe are very familiar. But how we do start to debug the rules?

Normally, we can only debug rules when running them through the Eclipse IDE. To
start debugging, we need to do the following two things:

1. We need to tell the Drools IDE that we want to run the rules in a debug tell the Drools IDE that we want to run the rules in a debug
mode, and not just run straight through (which is how we've run our
examples up to this point).

2. We need to tell Drools where to 'pause'. Although it is possible to debug right
from the start of the program, telling Drools to run until it hits a 'breakpoint'the program, telling Drools to run until it hits a 'breakpoint'breakpoint''
saves us from trawling through hundreds, or thousands, of lines of code to
get to the bit that we're interested in.

When the debugger hits the breakpoint in our code, it will pause the program and
allow us to see a snapshot of the frozen program. When we're ready, we can continue
the program, or step through it one line at a time.

Debugging rules in the Eclipse IDE
If you have the rules project for Chapter 11 already open in Eclipse, then we're
almost ready to start debugging. We'll first set the breakpoints—where we want the
debugger to pause:

Chapter 11

[245]

1. Make sure that the project has Drools Nature enabled. To do this, right-click
on the project name, and then select Convert to Drools Project from the
context menu. This command will only switch on Drools. So if you're not sure,
it does no harm to do this again.

2. Open the rules file (ShippingRules.drl) as normal and go to where we
want the debugger to pause.

3. Select the line where we want to place the breakpoint. (In our sample, scroll
down to the second-to-last line of the Chocolate shipment rule.)

4. In the lefthand margin of the editor, right-click and select the command
Toggle breakpoint from the context menu.

The screen should now look like the following screenshot (with the new breakpoint
circled in red).

Using this technique, we can also set breakpoints in Java code—for
example, at more or less any line after the main[] method in
EventRulesExample.java. This is the method of debugging that
programmers reading this book will be familiar with.

If you try clicking elsewhere in the rules file, you'll notice that you can only add
breakpoints in the consequence (then) portion of the rules. This is because of the way that
the Rete algorithm works—effectively, the 'when' parts of the rules are shared at
run-time. Even if we could set a breakpoint in the 'when' part, the Drools IDE would
have no way of knowing which of the shared rules we wished to examine.

Looking under the Cover

[246]

Now that we've told the Drools IDE where to pause for debugging, we need to start
the application in debug mode. This is almost, but not quite, the same as running the
application normally.

1. Open the start point of the application (EventRulesExample.java).
2. Start debugging by right-clicking and selecting

Debug as | Drools Application from the context menu.

The program will now start running (much more slowly!) in debug mode. It is
important to debug the program as a Drools Application (and not a standard debug
application), otherwise the breakpoints that you set in the rules will not be noticed
and the program will continue (slowly!) right until the very end.

A typical program will run five to ten times slower while debugging
because of the additional checks (such as 'Do I need to stop now?')
that need constantly to be made.

Rules debug perspective
When you started debugging, you may have been asked the question Debug
perspective is normally associated with this action—do you wish to switch to it
now? Click on Yes, and Eclipse will look like the example shown in the following
screenshot. You can always switch later, manually, by selecting the Eclipse Toolbar
and going to Window | Open Perspective | Other | Debug.

Both actions leave a button on the toolbar (top right of the picture) to make switching
perspectives easier the next time.

Chapter 11

[247]

Previously, we opened views (such as the logging console) to give us more
information about the project. Perspectives are just bundles of views that are
displayed whenever we carry out a specific activity. Previously, (although we didn't
know it) we were using the editing perspective. Now that we're debugging, it's
useful to see our project from a different angle. The normal perspective is great for
editing or writing files. The debug perspective (that we're looking at now) is great for
debugging projects.

Looking under the Cover

[248]

At first, the debug perspective looks very different from the one that we are used to.
However, if we look at the screen from the bottom up, we'll see that two-thirds of the
bottom screen looks familiar. It contains the following:

The Console (the bottom panel): Like before, this shows text that has been
output from the program
The Editor (the middle left panel): This is for editing the Shipping-Rules.drl
file, with the current line (where the program is paused) highlighted
The Outline (the middle right panel): This shows an outline of the rules
within the current file

The top two panels are new to this view. On the top left is the debug view (as shown
in the screenshot below). For the moment, ignore the video type controls at the top of
the panel, and look at the main panel instead. This main panel shows the stack trace.

When we start a program, our main method calls another method, which in turn
calls another method until the breakpoint that we set is reached (and the program
pauses). It's a bit like those Russian dolls—one method call fits inside another, and
that call that fits inside another, and so on.

We read the stack trace from the bottom up. In this case it is an EventRulesExample,
called the RuleRunner, which called various Drools files (Retoo, Default Agenda, and
so on), which in turn called our rules (Rule_Chocolate_Shipment_0.consequence).

At the top of the debug panel is a DVD-like control panel, which allows you to stop,
start, and step through the program one line at a time (a bit like the 'forward by one
frame' feature on most DVD players. The main icons or buttons are as follows:

•

•

•

Chapter 11

[249]

Resume (the green arrow) — continue until next breakpoint is reached, or the
code ends
Pause (greyed out): Pause the code that is running before it hits the
next breakpoint
Terminate (the red button): Stop the debug session.
Arrows: Allow you to step through the code one line at a timede one line at a time

The other new panel is the Variables view, which is on the top right of the debug
perspective (as shown in the screenshot above). This shows the variables (value
placeholders) in our rules. More precisely, it shows only the variables that the
current rule (highlighted in the editing window) has access to.

The variable view gives us a window into the program in real time. If we step
through the rules line by line, we can see the values being updated step by step.

The format of the screen is a 'treeview', that is, there are three top-level variables
(as used by this rule)—$CustomerOrder, a handle to the logger, and an individual
chocolate shipment that is the process of being created by the current rule. The panel
at the very bottom shows more detail on the currently-highlighted value
(the chocolate shipment).

•

•

•
•

Looking under the Cover

[250]

The three JavaBeans highlighted in the above variable view are as follows:

1. Customer Order: The same fact that was inserted by the Java code and
updated by the rules. Remember that it contains the current and the initial
balance, and a list (array) of all of the shipments as the rules create them. In
the current snapshot there are two shipments that are already populated in
the list (elements [0] and [1]). Each of these elements is a ChocolateShipment
JavaBean (containing the shipment amount). Because this snapshot is taken
before the set shipment date has had a chance to fire, the shipment date is
null or empty.

2. log: This is a global variable, as passed in when we called the rule. It is
displayed in this view. Even through it is a global variable, it is passed in to
the rule.

3. ChocolateShipment: This is the same JavaBean that we are in the process of
creating in this rule. (That is, it is the same chocolate shipment that has been
added to the list at position number [1].) Given that it's 'work in progress',
the shipmentDate is null (empty).

Behind the variable view is a tab Breakpoint. This shows all of the sets
in the rules and Java code. It is far easier to find them here than having
to search through multiple files.

Other Drools views while debugging
There are other views available to help you while debugging. All of these can be
added to the current view using the following option from the toolbar: Window |
Show View | Other | Drools:

Working memory: A live snapshot of the working memory, similar to the
variables view above
Agenda View: A list of the rules that are available to fire (and the order) in
real time, as you step through the rules
Rules: A list of the rules that have been loaded

•

•

•

Chapter 11

[251]

When to log, when to test, and when to debug
Debugging, testing, and logging are all useful tools to help you understand what
is going on with your rules. But when it is best to use each of these tools can be
explained as follows:

Logging is used the most. This is especially true when using a toolkit such. This is especially true when using a toolkit such
as Log4j or Apache Commons, where it can be turned on and off via a
configuration file with little or no perceptible impact on performance.
Writing a test is proactive, and will catch errors before the users do. It also
has the advantage that once it is written it goes on working, and keeps
checking for a recurrence of the problem, and alerts you if required.
Debug is the most powerful feature. However, once you've solved the
problem, most of the effort is lost; and if a similar problem happens in thelost; and if a similar problem happens in the
future, you're likely to have to start again from the beginning.

Summary
This chapter opened up the internals of the Drools rule engine so that we can
understand concepts such as truth maintenance, conflict resolution, pattern
matching, and the rules Agenda. We explored the Rete algorithm, and why it makes
rules run faster than most comparable business logic. Finally, we saw the working
memory audit log and the rules debug capabilities of the Drools IDE. The next
chapter uses this power and knowledge to take advantage of some of the more
advanced features.

•

•

•

Advanced Drools Features
So far we've covered several big topics such as what a rule engine is, why we would
want to use one, and where you can download the Drools Rule Engine. We wrote
rules using the Guvnor web editor and the more sophisticated JBoss IDE, before
testing those rules using a variety of tools. We used Excel to hold both rules and
data, and wrote our own DSL and rule flows. Not only that, we also looked under
the covers to see some rule engine internals and understand how we would go about
deploying rules in real life.

This chapter is a bit different from the earlier chapters. It is a level up from the
introductory chapters as it presents additional information about the topics already
covered in those chapters. A lot of information comes from the latest version of
Drools. Although these features are stable and can be used in production systems,
they may undergo substantial enhancements by the time you read this.

We will cover the new features of Guvnor. They include a new more powerful
API for calling the rule engine from Java, the ability to load data, create Java
Beans dynamically, Complex Event Processing (CEP), and Drools Solver. We also
explain some more under-the-cover features such as backward/forward chaining,
controlling conflict resolution, and Rule Engine Standards (JSR-94).

Let's start with Drools Fusion—Complex Events Processing.

Advanced Drools Features

[254]

Pigeons, Drools, and Complex
Event Processing
Pigeons (the birds that flock around city squares and parks) aren't known for
being clever. So it may strike as strange that they appear in a book about business
intelligence. However, during the Cold War, the Soviets (allegedly) trained pigeons
to inspect ball-bearings on the production line. The pigeons would sit in comfortable
little boxes while the shiny silver ball-bearings steamed past on a conveyor belt.
If the pigeon spotted any that were defective, they would peck a button and the
broken bearing would be gone. Since the fall of the Berlin Wall, all of the pigeons
have been gainfully re-employed at Google (http://www.google.com/technology/
pigeonrank.html).

Thankfully, the pigeons didn't go to work at a bank in the city. (Have you ever seen
anything with feathers drive a Ferrari?) Although the pigeons would be very good
at responding to simple market events (if market is up then sell, and if market down
then buy), more complex analysis escapes them. For example, consider a situation
where the market is down for 30 minutes. The shares in Acme corp are down by
more than 10% than the average. But if you see three buy orders for that share in the
last 60 seconds, then you may think that the market is about to turn, and hence buy
shares in Acme corp.

Never mind the pigeons. Even most humans would find that difficult—think about
trying to read the stock ticker prices (the ones you see rolling across the screen at
MSNBC) for all stocks, while trying to hold the buy and sell information for the last
30 minutes in your head. And do that not only for one, but for a hundred different
types of shares in the market. You have to do this while keeping an eye on your
own trading position so that you're not exposed to one sector of the market (for
example, keeping enough cash, and not too many property or technology shares). No
wonder most traders make their millions and burn out before they're 30—that sort of
Complex Event Processing (CEP) will wear you out.

Most IT applications are like pigeons; they can only handle simple events. Press the
button. Do something. The way to make millions is to design applications that can
handle these complex events, and apply sophisticated business rules to the (evolving)
situation. You have to do it quickly enough (milliseconds) to seize the opportunity
before somebody else does, and keep on doing it as long as the market is open.

CEP is what Drools Fusion provides.

Chapter 12

[255]

Implementing Complex Event Processing
using Fusion
There are a lot of 'under the cover' changes to the latest version of Drools. These
allow it to handle the volume of events that happen (often all at once) during CEP.
However, from the end user point of view using CEP is strangely familiar to:

1. Writing facts (Java Objects).
2. Writing rules—same as before.
3. Notifying Drools of events (in the same way as we asserted facts

previously—facts and events are interchangeable in many ways).

The third step is similar to asserting the facts, which we've done before. The
difference is that events will be in greater number (especially in a stock market
trading system) than the facts. And there will (potentially) be no limit to the amount
of events that can happen, while we will tend to have a good idea of the number of
facts that we will encounter. Fortunately, the upgrades to Drools during the latest
version are specifically intended to handle large volumes of multiple events.

Although we can manually assert the events into working memory, one optimization
for complex event handling is to set the working memory to listen to a stream, and
automatically pipe the event from one to the other. Even with this shortcut, our
solution using CEP will involve the following three files:

1. The Java file describing the event object being used: It is a simple JavaBean,
which is the same as the facts in the previous examples (that is, the facts
could be used as events if desired).

2. The Rule file: It imports rules and other assets (as before), declares the events
used in the rules, and connects them to any event streams that the rules
listen to.

3. The Java code in the application: It loads the rules, either inserts the events or
links it to the stream specified, fires the rules and then does something with
the results.

Advanced Drools Features

[256]

We'll work through this based on a sample from the Drools code, StreamsTest.
java. This is a unit test, but shows how CEP works in practice. We'll start with the
JavaBean file.

public class StockTick {

 private int tradeNumber;
 private String stockName;
 private int price;
 private long currentTimeMillis;

public StockTick(int tradeNumber, String stockName, int price, long
currentTimeMillis) {
 this.tradeNumber=tradeNumber;
 this.stockName = stockName;
 this.price = price;
 this.currentTimeMillis = currentTimeMillis;
 }
 public int getTradeNumber() {
 return tradeNumber; }

 public String getStockName() {
 return stockName;}

 public int getPrice() {
 return price;}

 public long getCurrentTimeMillis() {
 return currentTimeMillis; }
}

Note that this class is immutable—once it's created it cannot be changed. In real
life, events once occurred can't be altered, so the reasoning behind this feature
is understandable.

This 'immutability' is implanted in two parts in the code above: The first part is
that values that can only be set when the JavaBean is created (the line starting with
public StockTick(int tradeNumber, String stockName, int price, long
currentTimeMillis)). The second is that there is no 'set' method on the JavaBean,
but there are methods beginning with 'get' to read the values. There is no chance to
change an event that has already happened.

Chapter 12

[257]

The second file is the rules file, an example of which is given as follows:

package org.drools;

import org.drools.StockTick;

global java.util.List results;

declare StockTick
 @role(event)
end

rule "Test entry point"
when
 $st : StockTick(company == "ACME", price > 10) from entry-point
StockStream
then
 results.add($st);
end

This rules file has the usual package, import, and global statement. The three lines
beginning with declare StockTick are new. They take the StockTick JavaBean we
declared in the previous file, and let the rule engine know that we want to treat it as
an event.

The rule matches all the events from the external stream where that event concerns
the ACME stock, and where the price is greater than 10. When fired, the then part
adds it to a results list—declared as a global variable at the top of the rules file.

The second new part in the rule file is in the when part of the rule beginning with
from entry-point StockStream. We have met the from keyword before. It allows
us to reach outside the rules' working memory (for example, to values in a database
using the Hibernate framework) and allow those values to trigger rules. In this case,
the source of those values is an event stream called StockStream. The code that calls
the rule engine will supply this stream.

An extract of the application code with the complete file is available at
http://anonsvn.labs.jboss.com/labs/jbossrules /trunk/drools-compiler/
src/test/java/org/drools/integrationtests/StreamsTest.java. Most of
what has been removed is package and import statements (most of the Drools classes
referred to can be found in the org.drools package, or subpackages under it, from
the Drools core library). The code is in the form of a unit test, that is, it has assert
statements to check the results of the rules; these statements have also been removed
in the interest of clarity.

Advanced Drools Features

[258]

The first method loads the rules base using the new Drools API (we will talk more
about this API shortly). It searches the classpath for a given file name, loads it as a
rule file, and then returns Drools Knowledgebase based on that rule file.

private KnowledgeBase loadKnowledgeBase(final String fileName)
throws IOException, DroolsParserException
{
 KnowledgeBuilder kbuilder =
 KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(
ResourceFactory.
newClassPathResource(fileName,getClass()),ResourceType.DRL);

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
 kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

return kbase;
}

The second important method in the file is the one that uses these rules to 'do
something'. It's called testEventAssertion(). You may remember from Chapter
7 that unit tests such as this will have every method starting with 'test', and will
be called by the framework. In real life, this method would most likely be called
something similar to 'call rules', but the contents of the method will be similar.

 public void testEventAssertion() throws Exception {
// read in the source using the method explained previously
// and the rules file (drl) we featured earlier
KnowledgeBase kbase = loadKnowledgeBase("test_EntryPoint.drl");

KnowledgeSessionConfiguration conf = new SessionConfiguration();
 ((SessionConfiguration) conf)
 .setClockType(ClockType.PSEUDO_CLOCK);

StatefulKnowledgeSession session = kbase.newStatefulSession(conf);

final List results = new ArrayList();

session.setGlobal("results", results);

 StockTick tick1 = new StockTick(
 1, "DROO", 50, System.currentTimeMillis());

 StockTick tick2 = new StockTick(
 2, "ACME", 10, System.currentTimeMillis());

StockTick tick3 = new StockTick(
 3, "ACME", 10, System.currentTimeMillis());

StockTick tick4 = new StockTick(
 4, "DROO", 50, System.currentTimeMillis());

Chapter 12

[259]

……
WorkingMemoryEntryPoint entry =
 session.getWorkingMemoryEntryPoint("StockStream");

entry.insert(tick1);

 ……
 session.fireAllRules();
}

In this artificial sample we create the four events ourselves, and then
stop them. In real life, there would be another application constantly
passing us events over a longer period. These events can be passed by
another Java thread, a web service, or passed over a network connection.

Several important things are going on in this method:

1. The rules (that we saw earlier) are loaded into a Drools knowledgebase
object using the helper method which we have just reviewed.

2. We create configuration settings. Since this is a test, here we want to use
a clock that we have more control over, rather than one that is tied to an
internal system clock. This is important in situations (such as testing, where
you have multiple rule servers, or you need to 'replay' events later) where
you cannot guarantee that the time will be exactly as you expect. A pseudo
clock gives us control over this situation.

3. Using this configuration, a StatefulKnowledgeSession is created—similar
in concept to the stateful session that we met earlier. A global variable
(results) is passed to this session.

4. Next, four events (of type StockTick) are created. Each time we create a
StockTick, we must pass the stock tick number, the stock name, the price,
and the current system time.

5. We get a handle to the StockStream from the recently created
StatefulKnowledgeSession, using the
getWorkingMemoryEntryPoint() method.

6. Using the handle to the StockStream, we pass in the StockTick events.
Passing in the StockTick events is exactly the same as passing in facts to the
working memory. The advantage of using the stream method is its speed, as
only rules that listen to events will inspect the newly inserted objects.

7. When we've inserted all of the objects, we allow the rules to fire by calling
session.fireAllRules again. Once the rules have finished firing, the
objects (such as the global variable results that we passed in earlier) are
updated and become available for use in the rest of the Java code.

Advanced Drools Features

[260]

If this unit test runs correctly, only one event will match the rule and cause one line
to be added to the results list.

If you look at the test on the web site, you'll see that the actual line for
inserting events contains a reference to an item called a facthandle.
It is a simple handle to the object after we pass it to the rule engine. It's
useful for testing (and other advanced situations), but does not change
the meaning of the line from the one described on the previous page.

This simple example only hints at the power of complex event processing. For
example, instead of fireAllRules used in the example, we could have called
fireUntilHalt. This is more suitable for situations (such as events) where we
neither know the number of objects or events that may come our way, nor the
timescale in which they will be made available to us. FireUntilHalt is more
suitable for these situations. Typically, there would be two threads to your program
(that is, the computer is doing two things at one time). One thread is similar to
the code in the example above, and calls fireUntilHalt. The other is listening
for events and adding them to the working memory. At a time of our choice (for
example, we choose to stop trading on the stock market) we call halt() and the
rules will no longer fire, even if the events continue to happen.

More powerful events
The events syntax in the previous sample is fairly simple. Primitive events are those
events in which there is no restriction of duration, no need for two events to occur in
or out of sequence, or to occur within a particular time window. To add these kind
of complex restrictions to the when part of the rule, you can use coincides, before,
after, meets, overlaps, during, starts, and finishes as special Drools keywords.
They can help in filtering your rules. The following is an example:

when
 $st : StockTick(company == "ACME", starts > '01/01/2009')
 from entry-point StockStream

There is also the option for sliding time windows. For example, to match all events in
the last 60 seconds, the syntax has to do the following:

StockTick() over window:time(60)

This will match all of the StockTick events that happened in the last 60 seconds.

A detailed list of the syntax is available in test_CEP_TimeRelationalOperators.
drl file at http://anonsvn.labs.jboss.com/labs/jbossrules/trunk/drools-
compiler/src/test/resources/org/drools/integrationtests/test_CEP_
TimeRelationalOperators.drl.

Chapter 12

[261]

Inline beans
For the above sample, as with every other sample in the book, we've had to create
a JavaBean to hold the information going into and out of the rule engine. Although
writing this JavaBean is relatively straightforward, it still involves writing code in
Java. As we saw, this is nothing to be scared of, but it is something you hardly want
to do while writing your rules.

The latest version of Drools can help you with this problem. It allows you to declare
beans within your rule files, and use those beans exactly as we did in other samples.
Declaring an inline bean is fairly straightforward.

global …

declare SomeJavaBeanName
 javaBeanId : long
 name : String
 quantity : Integer
 price : double
end

rule …

In this extract we declare the SomeJavaBeanName bean with fields of javaBeanId
(number, long), name (string or text), quantity (number, integer), price (number,
double). The field types (String, double, and so on) are the same types used in the
real JavaBeans.

Inline beans are ideal for event handling, especially where the event is coming from
an external source. In this case, we change the above bean definition to include @
role(event) as follows:

declare SomeJavaBeanName
 @role(event)
 javaBeanId : long
…

Loading data when your beans don't
exist—Smooks
Declaring the bean inline is great for editing, but how does the rest of the system
know the structure of the bean? If no JavaBean exists in a .java file, then Enterprise
Java has no way of knowing what information it can pass in or out, the names of
these fields, and the type (for example, text or numbers) of these fields.

Advanced Drools Features

[262]

As we've already seen in Chapter 8, the solution for this is providing the data in a
standard format (such as Excel). This means that we know the format the data will
be provided in, so that we can concentrate on the data rather than the format. In
real life, we need to deal with other formats such as XML (a stricter form of HTML
that makes up web pages, useful for data transportation), CSV (Comma Separated
Values)—the most basic Excel format, and other proprietary formats. That's where
the Smooks framework comes in.

If Smooks can handle data from Excel, then why use the method
suggested back in Chapter 8? The answer is that Smooks is better at
handling data. But given that it uses CSV instead of Excel files directly,
it's not so good at keeping the format of the Excel file.

Smooks is an open source Java framework that exists independently of Drools.
Smooks is a Java Framework/Engine for processing XML and non-XML data (CSV,Java Framework/Engine for processing XML and non-XML data (CSV,
EDI, Java, JSON, and so on). You'll need to add the Smooks library to your project in
order to use the functionality it provides.

To put it simply, Smooks loads the Excel (CSV), XML, or any other file and generates
the events declared as inline beans in the rule file. It maps everything from the
source file to the inline bean using the configuration that you provide in smooks-
config.xml. Once the data is loaded as an inline bean, it is asserted into the working
memory. Then the rules that we have written have a chance to fire. The Java code
to do this is standard Drools, with one line telling Drools to use Smooks to load the
incoming data.

//Load the rules into a rulebase and get a session as before
PackageBuilder packageBuild = new PackageBuilder();
packageBuild.addPackageFromDrl(new InputStreamReader(getClass().
getResourceAsStream("myRuleFile.drl")));

RuleBase ruleBase = RuleBaseFactory.newRuleBase();
ruleBase.addPackage(packageBuild.getPackage());

StatefulSession session = ruleBase.newStatefulSession();

// Load Smooks using the Config file
Smooks smooks = new Smooks("smooks-config.xml");

//Tell Drools-Smooks the point in our file that we want to start
loading data.
DroolsSmooksConfiguration conf = new DroolsSmooksConfiguration("
someJavaBeanName ", null);

// Prepare a (Stateless) Session using the Smooks and Drools conf
DroolsSmooksStatelessSession smooksSession = new
DroolsSmooksStatelessSession(session, smooks, conf);

//Get a handle to the data file
javax.xml.transform.Source xmlSource = new StreamSource(getClass().

Chapter 12

[263]

getResourceAsStream("name-of-data-file.xml"))

//Load the data (and allow the rules a chane to fire)
smooksSession.executeFilter(xmlSource);

Once the rules have fired (following excecuteFilter), the Java code has a chance to
inspect global rule variables. Thus, they get a handle to the result.

Mostly what we want to do is map the incoming XML (or other format) directly to
the inline bean that we created in the rule file. In the following XML extract most of
the names correspond directly to the names in our inline bean:

<someJavaBeanName>
 <javaBeanId>123</javaBeanId>
 <name>Onions</name>
 <quantity>72</quantity>
 <price>1.2</price>
</someJavaBeanName>

The smooks-config.xml configuration file to do this mapping can be quite
sophisticated. For more information on how to use all of the available power, visit
the Smooks web site at http://www.smooks.org/.

From pigeons to biscuits—Drools Solver
for your local supermarket
Stock market trading might appear to be a little exotic. How about another trading
problem that is causing the manager of your local supermarket to scratch his or
her head?

Supermarkets, no matter how big they are, have a limited amount of shelf space.
Obviously, supermarkets want to make as much money as possible. So, they want
to stock the most profitable products on their shelves. However, even if chocolate
bars are the most profitable line, a supermarket full of nothing but chocolate bars
isn't going to make many sales. Even the most ardent chocolate fans are going to
need things such as milk, bread, and cheese. So what mix of products will make the
supermarket the most money?

Supermarkets have detailed information on the amount of sales in each of their
stores—those barcode scanners do more than just give you your bill. They track each
and every item sold in the shop. The barcode information also includes the most
basic list of must-have items of the customers. The supermarket knows how much
shelf space it has in any particular store and also the profit margin on each product.
But this information doesn't tell the store manager how much money the store could
potentially make if they had a different mix of goods on the shelves.

Advanced Drools Features

[264]

Part of the problem in answering the question about the best mix of products is that
there are many potential factors involved—there are 100,000 products in a typical
supermarket, and there are about 1,000 different ways of displaying them (top shelf,
end shelf, back of store, next to the milk) in different combinations. (Does beer really
sell well if it is placed next to the baby nappies as the urban legend has it?)

In classic mathematical or computing terms, this is similar to the 'travelling
salesman' problem, where it is technically possible to calculate the answer. Even with
computers more powerful than they are today, it would take you about 100 years to
get an answer; and another 100 years to calculate it all over again if another type of
beer is released in the market.

Once you tell this to the supermarket manager, you realize that (s)he would be
happy even if you found a slightly better way of placing the products than the
current situation. It may not be the best solution, but it's good enough to get him his
bonus. And good enough solutions are something that Drools Solver can help with.

How Drools Solver works
At a very simplistic level, the way Drools Solver works is as follows:

1. One correct solution is supplied at the start—the current mix of products on
the supermarket shelves.

2. Alternative solutions are generated either randomly or via an algorithm that
is most likely to provide usable results.

3. Impossible solutions (for example, milk not being stored in refrigerators) are
discarded. These hard constraints are expressed as rules.

4. The remaining solutions are scored using business rules. The scoring (or soft
constraints) is also expressed as rules.

5. The best available solution is used when we loop back to step 1.

This process repeats until either a certain time period has elapsed, or until Drools
Solver cannot find a better solution.

The Solver could have been written without using business rules, but the addition of
Drools makes it so much better.

Clear rules: What combinations are allowed, and how we score alternatives is
clearly stated.
Scalable rules: The Drools Rete Algorithm means that adding additional rules
will only add milliseconds to the time required, and will not double the time
needed (as per traditional solutions). This is especially important when the
calculations are run repeatedly (as happens within the Solver).

•

•

Chapter 12

[265]

Optimized calculations: Drools detects the change from a previous to new
scenario, and can carry out only those calculations required. That is, it does
not need to recalculate everything from scratch.

Implementing a Solver
A full Solver solution is provided as part of the Drools examples on the download
site (on which the solution below is based). Implementing the five steps given above
is relatively straightforward.

Steps 1 and 5 are provided by implementing the Solution interface. This, like most
of the files mentioned in this section, can be found in the org.drools.solver.core
package (or its subfolders).

We did warn that this chapter was more advanced than the
previous ones! Although we'll explain concepts to a non-technical
level, you'll probably need to have some Java experience (or know
somebody who does) to actually implement the examples.

Think of an interface as a template guiding you to fill in the gaps and complete the
solution—in general, this 'complete template' is contained in a second Java file. In
this case, getFacts() returns the JavaBeans representing the goods on the shelves
of the supermarket as we begin our analysis. The cloneSolution() method allows
step 5 to copy any better solution (that is, save a good copy while it tries to improve
it even further).

public interface Solution {

 Collection<? extends Object> getFacts();

 Solution cloneSolution();
}

Running the solver is easy. We create a configuration, load the configuration file, and
then start the Solver (which may take some time).

XmlSolverConfigurer configurer = new XmlSolverConfigurer();
configurer.configure("SolverConfig.xml");
Solver solver = configurer.buildSolver();

The configuration file ties the remaining parts of the solution
together. The Comments explain what each part means.
<!—Name of the file containing the solver business rules used for
rating the alternatives-->
<scoreDrl>SolverRulesFile.drl</scoreDrl>

<!—How we compare the various solutions – Simple is one of the three

•

Advanced Drools Features

[266]

built in options, or can build or own -->
<scoreCalculator>
<scoreCalculatorType>SIMPLE</scoreCalculatorType>
</scoreCalculator>

<!—Finish solving after 2 minutes, or after 100 attemps, or after we
have achieved the perfect score-->
<finish>
 <finishCompositionStyle>OR</finishCompositionStyle>
 <maximumMinutesSpend>2</ maximumMinutesSpend>
 <maximumStepCount>100</maximumStepCount>
 <feasableScore>0.0</feasableScore>
</finish>

<!—Name of the Java File that generates alternative solutions-->
<selector>
 <moveFactoryClass>NameOfMoveFactory</moveFactoryClass>
</selector>

<!—An accepter filters out the most crazy alternatives. This is
expressed as a score – trial and error will give a value that works
best -->
<accepter>
 <completeSolutionTabuSize>1000</completeSolutionTabuSize>
</accepter>

<!—which of the best alternatives do we use – in this case take the
alternative with the highest score from the rules - ->
<forager>
 <foragerType>MAX_SCORE_OF_ALL</foragerType>
</forager>
</localSearchSolver>

The MoveFactory is another Java class that implements another interface or template
(although there are other files that help in the background as 'abstract' and 'super'
classes). The most important method is createMoveList, which is a list of the items
that we wish to swap on the supermarket shelves in search for a better solution.
It takes the implementation of the Solution interface as a parameter that we
created earlier.

public interface MoveFactory
 extends LocalSearchSolverAware,
 LocalSearchSolverLifecycleListener {

 List<Move> createMoveList(Solution solution);
}

Chapter 12

[267]

The LocalSearchSolverAware and LocalSearchSolverLifecycleListener
files referenced are other interfaces. The methods (not listed here) that implement
the Solution interface help the Solver avoid 'dead ends' that appear to be good
solutions. We did not look at them in detail.

The following is an example of a rule file mentioned in the config file, which shows
'hard' constraints, such that beer and nappies should not be on the same shelf:

rule "Stock items cannot be placed on the same shelf"
 when
 $item1 : StockItem($shelf : shelf, name =="beer");
 $item2 : StockItem (shelf == $shelf, name =="nappies");
 then
 insertLogical(new UnweightedConstraintOccurrence(
 "Incompatible objects on shelves", $item1, $item2));
end

The match against the facts in the when part is the same as usual—remember all
of the facts provided by the solution are inserted into the working memory, and
updated as we cycle through the alternative solutions.

The then part shows how to communicate the fact that nappies and
beer should not sit side by side on the same shelf. We insert a new
UnweightedConstraintOccurrence into the working memory. There are similar
constraints (such as IntConstraintOccurrence) which allow us to communicate a
score on how good the rules think the current solution is.

InsertLogical is similar to insert, except that the object will
automatically be removed if the 'when' part is no longer true.

With all these pieces in place, Solver loads the initial solution, generates and
evaluates alternative solutions, and then repeats the process until it decides to stop.

More information on Solver
Of course, the actual implementation of Drools Solver is much more sophisticated.
More information is available in the Drools documentation. (See Chapter 2 for more
details on where to obtain this.) When reading this documentation you may come
across a line that might puzzle you.

It's recommended to use drools in forward-chaining mode […] This is a huge
performance gain.

Forward and backward chaining are key (if advanced) rule engine concepts. So
perhaps now is a good time to introduce them.

Advanced Drools Features

[268]

Forward and backward chaining
You use forward and backward chaining in real life—except that you don't know
it yet.

Forward chaining is where you have the instructions, but you don't knowrward chaining is where you have the instructions, but you don't know
the end goal of where the instructions are taking you. For example, it's like
following the driving instructions on your SatNav or GPS where somebody
else has entered the end coordinates.
Backward chaining is where you have an end goal in mind, and need to work
out how you get there. For example, if you need to go to the supermarket and
work out the best way to drive there, then the way you work out the route is
an example of backward chaining.

Drools is a hybrid rule engine because it allows both forward and backward chaining.
Most of the examples in this book have used forward chaining. Backward chaining
tends to either happen accidentally, or when we need to answer the question, 'Which is
the set of facts that could lead us to a particular situation?' The Miss Manners example
from Drools can be configured to show backward chaining behavior.

Forward and backward chaining is important because of its effect on performance.
Backward chaining is very powerful, but much slower.

To explain this, consider the example of the tangle of wires behind your television
set. There are probably power cables from your TV, DVD, satellite, games console,
and Wi-Fi leading to the power sockets in the wall.

If we want to confirm that the TV is plugged in (forward chaining), all we
need to do is pull the power lead at the back of the TV, and confirm that the
lead that is plugged in moves.
If we want to confirm which gadgets are plugged in to where, we need to test
each and every cord. This is why backward chaining is much slower.

Forward and backward chaining is implemented using the Rete algorithm, and can
fill the entire contents of a book in itself. But if we did that, we'd miss the chance
to touch on another important 'under the covers' topic of how Drools implements
conflict resolution, and what you can do to configure it.

•

•

•

•

Chapter 12

[269]

Changing the conflict resolution methodology
In the previous chapter we met with a problem with rule engines. If there is more
than one rule available to fire on the Agenda, how do we decide which one goes
first? This is especially important as the first rule to fire might cause the subsequent
rules to be removed from the agenda, and hence prevent them from firing.
The solution was conflict resolution—an in-built method that comes with Drools.
It uses this methodology to resolve which rule fires first. But what if we want to
change this methodology?

The code sample below shows how we do this (this happens behind the scenes
without us needing to change it). Normally, the current order of conflict revolvers is
based on salience (number), last fired, rule simplicity, and then rule order. Adding
the following code will allow you to tweak the conflict resolution strategy of your
rule engine:

 ConflictResolver[] conflictResolvers =
 new ConflictResolver[] {
SimplicityConflictResolver.getInstance(),
SalienceConflictResolver.getInstance(),
 RecencyConflictResolver.getInstance(),
 LoadOrderConflictResolver.getInstance()
 };

 CompositeConflictResolver resolver =
 new CompositeConflictResolver(
 conflictResolvers);

 businessRules = RuleBaseLoader.loadFromUrl(
 BusinessLayer.class.getResource(
 BUSINESS_RULE_FILE),resolver);

In this case we've made simple rules (that is, fewer conditions in the when part) that
are more likely to fire first. We've done that by building up an array of the conflict
revolvers that Drools offers us in the order of importance that we want. Then we add
this array (list) together in a CompositeConflictResolver. Finally, when we load
the rules, we pass in the CompositeResolver. When the rules fire, conflicts (if any)
are resolved using the strategies in the order that we specify.

Like forward and backward chaining, it's important to be aware of the conflict
resolution strategy. Likewise, in everything but the most advanced situations, you
shouldn't need to change it. So if you find yourself tweaking the conflict resolution, So if you find yourself tweaking the conflict resolution,
double-check that the problem isn't in your rules. Make sure you have a good set
of unit tests around your rules. When fixing one rule, make sure that you don't
inadvertently break others.

Advanced Drools Features

[270]

Standard rule engine API—JSR 94
The standard rule engine API, JSR-94 (Java Specification Request), like conflict
resolution, will come up in conversation soon after you bring up the topic of rule
engines with your colleagues. JSR-94 is the Java standard API for dealing with rule
engines in almost the same way as the Java Database Connectivity (JDBC) is the Java
standard way of connecting Java to databases. So why is this piece of information
tucked away in the very last chapter?

JSR-94 only specifies how we call the rule engine, and not the syntax ofpecifies how we call the rule engine, and not the syntax of
the rules themselves. There is no rules standard similar to ANSI SQL (for
databases) to specify the format.
Even when calling rule engines, JSR-94 gives you only a subset of the powerg rule engines, JSR-94 gives you only a subset of the power
of Drools (or most other rule engines).

Although there is no standard rule format, it is possible for Drools
to mimic other commercial rule engine syntax (such as Blaze) using
Domain Specific Language (DSL). At the time of writing you'll need
to write this DSL yourself, but given the open source nature of
Drools, expect much progress in this area. For example, Drools Clips
emulation is already in an advanced stage.

If you choose to use the JSR-94 syntax, you'll need to add an additional
library—drools-jsr94.jar—to your project. The code to load and fire the rules in
the standard manner is very close in concept to the examples we saw earlier, even
if the terminology used will look something similar to the extract below. This code
sample is how the sample from Chapter 6 (remember those ChocolateFactory
rules?) would look using JSR-94.

//Specify the exact provider of the JSR-94 driver
Class.forName("org.drools.jsr94.rules.RuleServiceProviderImpl");
// Get the rule service provider from the provider manager.
RuleServiceProvider provider = RuleServiceProviderManager.getRuleServi
ceProvider("http://drools.org/");

// Get a handle to the Administration API-
RuleAdministration ruleAdministrator = provider.
getRuleAdministrator();
LocalRuleExecutionSetProvider ruleExecSet = ruleAdmin.
getLocalRuleExecutionSetProvider(null);

// Create a Reader for the drl
URL drl = new URL("shipping-rules.drl");
Reader drlReader = new InputStreamReader(drl.openStream());

// Create the RuleExecutionSet for the drl
RuleExecutionSet ruleExecutionSet = ruleExecSet.

•

•

Chapter 12

[271]

createRuleExecutionSet(drlReader, null);

// Register the RuleExecutionSet with the RuleAdministrator
String uri = ruleExectionSet.getName();
ruleAdministrator.registerRuleExecutionSet(uri, ruleExecutionSet,
null);

//Get a stateless execution set from this set
RuleRuntime ruleRuntime = provider.getRuleRuntime();
(StatefulRuleSession) session = ruleRuntime.createRuleSession(uri,
 null,RuleRuntime.STATELESS_SESSION_TYPE);

//Insert the facts – assume that we created these earlier
session.addObject (candyBarOrder);
session.addObject (holiday1);
session.addObject (holiday2);

//Fire the rules
session.executeRules();

In some ways the code is more complicated (as we need to specify at the start that we
are using the Drools Rule Engine). Like before, once the rules have fired, the updated
Java objects will be available for use by the Java program. The Drools documentation
gives further information on JSR-94. If you feel you need to use this, there is an
alternative API to call the rule engine.

Other rule engines
So, if somebody has gone through a lot of trouble to write the JSR-94 specification for
portability (even if you choose not to use it), what other rule engines are available to
use? There are literally hundreds of frameworks that claim to embody business rules.
But if we filter the list according to those that have a moderate amount of features
and traction, either commercially or in the open source community, we get the
following alternatives: (Remember that this is not an exhaustive list.)

BizTalk
Blaze Advisor
Jena
Jess
JRules
OpenRules
PegaRules
RulesPower

•

•

•

•

•

•

•

•

Advanced Drools Features

[272]

Normally, you'd expect at this point a critical evaluation of the rule engines
mentioned in this list—something like 'Jess is a mature Java rule engine with good
tool support (for example, plug-ins from Eclipse). It's a commercial product, and
the rules are written in a Prolog-style syntax, which can be confusing for many Java
programmers.' All of this would be true. However, given my bias (of course, I'm
going to recommend Drools on the basis that it's the most mature, open source
Java-based rule engine), would you believe any of the analysis?

The best way to summarize is that you should do your own research, and Drools
will inevitably be on the shortlist. Some of the frameworks mentioned (for example,
Jena) offer basic rules functionality, but it's not their core purpose (for Jena, it's the
semantic web). Other frameworks claim to be rule engines, but offer only a fraction
of the functionality discussed in this book. Outside Java, remember that Drools.Net
offers a rule engine on the .Net platform (although its features are not as mature as
those in Drools Java), and Windows workflow (the workflow module that is part of
.Net platform) also has a subset of rules functionality.

New API
You may have noticed that the examples in this chapter are using a slightly different
API from those in other chapters. The reason for this is that Drools has a new API.
Don't worry, all of the previous examples will continue to work as before.

Why change something that isn't broken? The changes to the API make interacting
with Drools more 'knowledge engine' based and less 'rule engine' based.

This may seem unusual for a book on rule engines. But a lot of the functionality
that is being added is broadening the capabilities of the engine into areas such as
complex event processing, solving (both of which we saw earlier in this chapter), and
workflow. (We touched upon it in Chapter 9, and we will deal with the extensive
improvements in the next section.) Chances are that if you need a rule engine, you'll
need (at least some of) these capabilities. So it makes sense to enhance Drools and
make the API more generic to accommodate this.

The main parts of the new API that you interact with are as follows—more or less
one for each replacement for the Drools objects we used earlier:

org.drools.builder.KnowledgeBuilder

org.drools.KnowledgeBase

org.drools.agent.KnowledgeAgent

org.drools.runtime.StatefulKnowledgeSession

org.drools.runtime.StatelessKnowledgeSession

•

•

•

•

•

Chapter 12

[273]

The notes accompanying the new release have good examples. The main additionpanying the new release have good examples. The main addition
in the samples below is that in the new API we need to explicitly state that we're
loading a rule file (ResourceType.DRL). This is because KnowledgeBuilder can also
load other resources, such as workflow files. The following sample shows how we
would load the chocolate factory from Chapter 6, but using the new Drools API:

URL drl = new URL("shipping-rules.drl");

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.
newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newUrlResource(url),
 ResourceType.DRL);

//check for errors
if (kbuilder.hasErrors()) {
 System.err.println(builder.getErrors().toString());
}

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(builder.getKnowledgePackages());

StatefulKnowledgeSession ksession = knowledgeBase.
newStatefulKnowledgeSession();

//Insert the facts – assume that we created these earlier
ksession.addObject (candyBarOrder);
ksession.addObject (holiday1);
ksession.addObject (holiday2);

ksession.fireAllRules();

More information on these new objects can be found in the Javadoc at
https://hudson.jboss.org/hudson/job/drools/lastSuccessfulBuild/
artifact/trunk/target/javadocs/stable/drools-api/index.html.

Drools flow—a full workflow engine
Back in Chapter 9 we mentioned that Ruleflow is not a workflow. This holds true,
and Ruleflow can still be used to control when the different sets of rules may fire.
However, Drools 5 now has a first-class workflow engine integrated into it, plus all
of the supporting tools that you'd expect. To remind ourselves of the differences, and
what workflow is:

Ruleflow says what might happen at each stage in the process. The actual
rules that fire are selected by the rule engine.
Workflow says exactly what will happen at each stage in the process. As soon
as the workflow reaches a step, we will fire the actions associated with it.

•

•

Advanced Drools Features

[274]

Typically, workflows model the business process. The following sample is from
the JBoss jBPM (Business Process Management) documentation (the other JBoss
workflow that Drools integrates well with). It describes the business steps needed to
process an e-commerce order.

What both Drools Flow and JBoss jBPM provide are Eclipse-based tools to 'draw' the
workflow—the image above is an example on one using the Eclipse tools. Using the
tool, you then state what Java code you wish to fire at each point in the workflow. (It
is easy to write because the Java code doesn't have to worry about what is happening
around it, only that it will be told to run in the correct circumstances.) Drools and
jBPM also provide a runtime that executes the workflow as the various steps are met.

Drools hooks into the decision-making node for both Drools flow and jBPM, allowing
you to make (rules-based) decisions on what path you want the process to proceed.

New features in Guvnor
Guvnor gains a lot of enhancements in the latest Drools release. These include:

Fine-grained security: You can restrict what groups of users can and cannot do.grained security: You can restrict what groups of users can and cannot do.
Web-based decision tables: They have a similar grid-like format to that
which the Excel decision tables have (as seen in Chapter 8), but are accessible
through the Guvnor web interface.

•
•

Chapter 12

[275]

More powerful scenario-based testing tools: The ability to load files using
Windows Explorer, that is, drag-and-drop uploads to Guvnor.
An editor to take advantage to the declarative modelling/inline beans: There
is no need to create JavaBeans in Eclipse. It can be done in Guvnor instead.d.

There are also substantial under-the-cover improvements to the core rule engine, the
net effect of which is to increase stability and performance.

Does this still sound like where you work?
Back in Chapter 1, you may have taken the 10-question pop quiz with the heading
'Does this sound like where you work?' The aim was to show you the problems that
Drools can solve. Lets take a look at the solutions.

1. Is Bob in the corner the only person who knows how the system really
works? Can the business scale only if we have an expert? Is critical
knowledge lost when people like Bob leave?
Solution: Getting the knowledge out of Bob's head and into a business
rule-based system is a scalable, durable, solution.

2. If you're Bob (owning the knowledge), are you sick of people asking you
stupid questions? Do you think: don't these people know that you've got a
job to do?
Solution: Write your knowledge as business rules. That way, at the very least
it's documented; and even better, it can be run in the rule engine.

3. Are your customers getting a different answer every time they call your
company (and getting more than slightly irate about it)? Are you at the
risk of receiving a slap on the wrist (or worse) from a regulator or other
standards body?
Solution: Having the company's knowledge in one place (the business rules),
and referring to that each time means that clients will get consistent answers.

4. Do you find yourself working around, rather than with, your computer
systems? Have you ever thought of pouring coffee into your computer
keyboard in frustration?
Solution: Drools won't stop you from pouring coffee into your computer. But
since rules-based systems are more flexible, you should be less tempted to try
pouring coffee into your computer in the first place.

•

•

Advanced Drools Features

[276]

5. Are things always done with books, or is there a lot of informal knowledge
that is just in people's heads?
Solution: There will always be an element of informal knowledge in every
business. But since rules are much easier to update than code, the balance
will be shifted towards documented business rules (a good thing).

6. Did you prepare for a quality (ISO 9001) audit and then leave the process
documentation unused on a shelf? Is there anybody around who knows or
wants to change this process?
Solution: If you move your knowledge to rules and workflow, the next
time you have a quality audit you just print the rules and send the auditors
their way.

7. Is your business knowledge in some format that gives payback? (For
example, Electronic instead of that dusty paper copy, and not locked away in
unreadable machine-code.) Is this format easy to update? Can everybody use
it from one central location (so that copies do not get 'out of sync')? Can you
track changes and roll back if you get it wrong?
Solution: Drools gives a repository to securely store your knowledge and
track changes. Even better, it can 'execute' that knowledge (as rules) directly
from the repository.

8. Do the right people (and only the right people) have access (both reading and
updating) to this information? Does this access need to change depending on
the context of what the user is doing at the time?
Solution: The rules repository that comes with Drools Guvnor allows you to
do just this.

9. Do people in your organization work on projects? Do they come together
to form goal-driven teams, and then go back when the objectives have been
achieved? Do you know how to document the outcome of these projects as
rules so that they can be reused both over time and over the organization?
Solution: The project team (among other things) can generate new or updated
business rules. Captured by Drools, these can be shared with the rest of
the organization.

10.	 No task is done in isolation. How do we ensure that tasks and team members
collaborate effectively?
Solution: Rules encourage sharing so that everybody can understand what
is going on. Even better, the Guvnor web editor allows many people to
contribute at the same time, without needing to install special software.

OK, so our pop quiz was slightly biased (this is a Drools book, after all). But the
fundamental problems that Drools solves, and the change that JBoss Drools can
make to where you work, should still be clear.

Chapter 12

[277]

Summary
We've come a long way since the start of this book. Chapter 1 introduced the
problem of capturing business logic in a way that is readable and updateable by
non-technical users. It introduced Drools and rule engines as a solution to the
problem. Chapter 2 showed where to obtain Drools and other open source software,
and how to install it on your computer. Chapter 3 introduced the Guvnor web editor,
available to help non-technical users write business rules.

In Chapter 4 we began to write our first business rules using the Guvnor editor,
and wrote our first JavaBean to support these rules using Eclipse/the JBoss IDE.
In Chapter 5 we wrote more advanced rules using Guvnor, rather than the JBoss
IDE, to write the business rules due to the increased power that it offers. Chapter 6
continued this thread to give a comprehensive guide to the rules syntax.

Testing the rules written in the previous chapters is the focus of Chapter 7, while
Chapter 8 showed how to use Excel to hold both the business rules and the data for
those rules. Chapter 9 showed other ways of expressing your rules using Domain
Specific Language and Ruleflow.

How to deploy all of the business rules created to date was the focus for Chapter 10.
In Chapter 11 we took a view inside the rule engine to help us write better business
rules. Finally, in this chapter, we looked at advanced rules concepts, many of which
have become available in the latest Drools release.

I hope this book inspires you to use Drools business rules in your project. Good luck
and remember to check for updates to Drools at www.jboss.org/drools and code
samples at http://code.google.com/p/red-piranha/.

Index
A
accessor methods

about 85
get 85
set 85

B
BRMS

about 26
editing rules 26

BRMS/Guvnor
about 31
installing 39, 40

Biztalk 271
Blaze Advisor 271
business rule, Guvnor

condition, adding 92-94
field, adding 95
text, editing 110
text-based rule, building 102
updating 101, 102
When part 101
writing, guided editor used 110
writing, JBoss IDE used 111

business rules
about 10, 13
deploying 209
example 10, 12
in organization 13
issues 17
medical rules 10

business rules, exercising in organization
chocolate factory 14
do it yourself 16

rule engine, building in Excel 15

C
Cell

equals 171
getBooleanValue 171
getHoldingRange 171
getIntValue 171
getValue 171
getValueAsText 171
hashcode 171
isModified 171
setHoldingRange 171
setValue 171
toString 171

CEP
about 253
implementing, Fusion used 255-260
Java code 255
Java file 255
Rule file 255

chocolate factory sample
running 234, 235

cloneSolution() method 265
Complex Event Processing. See CEP
createMoveList method

about 266

D
debugging 244
debugging, rules

about 244
agenda view, Drools view 250
debug perspective 246, 247, 248
Drools view 250

[280]

in Eclipse IDE 244, 246
rules, Drools view 250
working memory, Drools view 250

debug perspective
debug view 248
variable view 249

decision tables, Excel
action cells 178
buy trades, evaluating 177
buy trades, executing 179
condition cells 177
header information 176
RuleTable, for evaluating buy trades 177
RuleTable, for executing buy trades 179

deployment, business rules
about 209
alternatives 212, 213
helper methods 215
prerequisites 209
process 211
public methods 220
pull deployment 214
push deployment 213
repository 212
RuleAgent way 224
Rulerunner.java file, looking into 214
rules, deploying 210, 212
rules, loading 214
web deployment 225

Domain Specific Language. See DSL
DRL 111
drlrulefile 217
Drools

about 19
backward chaining 268
CEP 254
forward chaining 268
inline beans 261
new API 272
rule attributes 104

Drools Audit Log Viewer 238, 239
Drools flow

about 273, 274
diagrammatic representation 274

Drools plug-in
about 31
installing 42, 43

updating 44, 45
Drools solver

about 263
working 264

DroolsUnitTest.java 158
DSL

about 109, 188
DSL based rules, in Guvnor 195, 196
example, running 195
expanders 189

E
Eclipse

about 31
installing 40, 42
sample projects, setting up 52

editors
BRMS 25
Drools IDE 25
Microsoft Excel 25
Notepad 25

equals() method, OompaLoompaDate.java
133

Excel
business rules 166
Chocolate Trading example, running

181-186
data, reading from 165, 166
decision tables 176
decision tables, mixing with rules 180
Excel Magic 175
rules, mixing with decision tables 180
sample, downloading 166
sophisticated rules 173, 174

expanders, DSL
about 189
DSL editing opitons 191
DSL format 190
DSLs, writing 192
sample 193, 194

F
fact model, Java

building, Eclipse editor used 80-87
importing, into Guvnor 87

FIT 149

[281]

FIT plumbing 155
FIT requirements document

fit.Summary 151
footer 151
logo 148
net.firstpartners.fit.fixture.Clear 151
results, checking 150
rules, invoking 150
setup table 149
values 150

FIT testing
about 147
best practices 153, 154
FIT, downloading 148
FIT, running on sample 152
Fit-test-result.htm 152
FIT requirements document 148
summary table 152

Framework for Integrated Testing. See FIT

G
getFacts() 265
get method, CustomerOrder.java 131
guided editor

about 105
condition types 105
more options, adding 106, 107
multiple field constraints 107, 108
possible comparisons 105
rule options 109
Then part 108, 109
When part 101

Guvnor
about 26
adiministration 62
business rule, writing 90
fact model, importing 87-89
features 63, 274
general navigation 60
guided rules, fact model used 89
information, getting 79, 80
introduction 59
scenario, creating 96
scenario, running 96
search screen 61

Guvnor administration
about 62
admin page 63
archieved items, admin 64
categories, admin 64
deployment 73
edit categories screen 65
error log, admin 65
features, packages screen 72
import/export, admin 65
packages 70
quality analysis 73
rules 66
samples, loading 62
statuses, admin 64

Guvnor testing 146

H
hashCode() method, OompaLoompaDate.

java 133
Hello World, JBoss IDE

about 114
business explanation 116, 118
key lines, technical explanation 118
technical explanation 118

helper methods
about 215
files, importing 216
getResourceAsStream, loadExcelRules

method 220
Java method 219
loadExcelRules method 219
rule-related features 217

homeloan example
about 199
Ruleflow steps 200

homeloan example, Ruleflow steps
action 200
end 201
join 201
milestone 201
ruleflow group 200
ruleset 200
split 200
start 200
subflow 201

[282]

I
inline beans

about 261
Smooks 262

installing
Drools plug-in 42
Eclipse 40
Java 32
JBoss 34
Maven 46
sample projects 51

J
Java

about 31, 32
downloading 33
fact model, building 80, 82
installing 32-34
versions 32

JBoss
about 19, 31
downloading 37
installing 34, 37
Java version, searching 34-37
running 37

JBoss IDE
about 111
Hello World 114
Java project, creating 114
lefthand panel 113
main editor 113
main menu bar 112
menu icons 112
outline tab 113
project explorer 115
righthand panel 113
status bar 113

JBoss rules
about 19
editors 25
writing 25

JBoss rules community
about 21
asking for help 22
bugs and feature requests page 21

community home page 21
mailing lists 21
product home page 21
wiki 21

Jena 271
Jess 271
JRules 271
JSR 94 270
Junit test

about 157
running 158

L
lefthand side, rule syntax

accumulate 141
collect 141
contains 139
eval 142
exists 140
forall 141
from 142
in 140
matches 140
memberOf 139
not 138
soundlike 140

LocalSearchSolverAware interface 267
LocalSearchSolverLifecycleListener

interface 267

M
Maven

about 46
downloading 46
installing 46, 47, 48, 49
testing 49, 50

mistakes, testing
entire package, testing 163, 164
errors 162
failures 162

MoveFactory class 266

N
new API 272

[283]

P
PegaRules 271
prerequisites, rules deployment

application 209
Java application server 209
operating system 209
rules 210
server 209
support libraries 210

project explorer, JBoss IDE
bin 115
Drools library 115
JRE System library 115
src/main/java 115
src/main/rules 115

public methods
features, runStatelessRules method 222
getStatefulSession method 222, 223
runStatelessRules method 220
runStatelessRules method, calling 221, 222

Q
quality analysis, Guvnor administration

analysis page 75
Hello World example 75
rule, finding 76, 77
rule, writing 75
testing, automating 74

R
Range

equals 171
getCell 171
getCellValue 171
getCellValueList 171
getRangeContainsValue 171
getRangeName method 170
hashcode 171
setRangeName method 170
toShortString 171
toString 171

repository 212
Rete algorithm

about 240
Rete tree 242

rules, debugging 244
righthand side, rule syntax

$someHandle = insert(something) 143
about 143
insertLogical(new someFact() 143
retract($someHandle) 143
update(object, handle) 143

RuleAgent 214
rule attributes 104
rule engine

about 17
advantages 17
concepts 229
fact model 27
Java 28
Microsoft Outlook 18
rules compiler 27
rules editor 27
rules repository 28
runtime 27
uses 29

rule engine concepts
about 229
activations 231
agenda 231, 233
conflict resolution 231, 232
facts 230
object 230
pattern matching 231
truth maintenance 233
working memory 230

rule engines
Biztalk 271
Blaze Advisor 271
Jena 271
Jess 271
JRules 271
JSR 94 270
OpenRules 271
PegaRules 271
RulesPower 271

Ruleflow
about 197
diagramatic representation 199
differences, between Workflow 199
features 199
Homeloan example 197

[284]

homeloan example 199
homeloan example, creating 199
rules, linking to 202
sequence, rule firing 198
stateful applications 203
stateful rules 204, 205

rule options, guided editor
activation-group 110
agenda-group 110
auto-focus 110
date effective 109
date expiry 109
dialect rule 109
duration 109
lock-on-active 110
no-loop 110
salience 110

RulesPower 271
rules

testing 145
rules, Guvnor administration

about 66
features, guided rules 68
guided rules 67
model 66
new rule, creating 70
process 66, 67
technical rules 69

rule syntax, JBoss IDE
chocolate bars, shipping 124
comments 122
function 122
global 121
guided editor 143, 144
import 121
issues 125
lefthand side 138
package 121
patterns, Then part 124
patterns, When part 122, 123
righthand side 143
rule 122
sample, building 126
sample, getting 126
sample, running 135

runrules() method, RuleRunner.file 133

S
sample, Excel

chocolate-data.xls, input 167
downloading 166
ExcelDataExample.java file 169
input 167
rules 168
running 169

sample, rule syntax
building 126
ChocolateShipment.java 130
CustomerOrder.java 131, 132
downloading 126
MultipleRulesExample.java 134
OompaLoompaDate.java 132
RuleRunner.file 133
rules 127-130
running 135-138

sample projects
downloading 51
Eclipse, working with Maven 55-57
installing 51
setting up, in Eclipse 52, 54

set method, CustomerOrder.java 131
shipping-rules.drl file 234

rules 234, 235
Smooks 262
solution interface 266
solver, Drools

about 263
backward chaining 268
conflict resolution methodology, changing

269
forward chaining 268
implementing 265, 266, 267
information 267
JSR 94 270
standard rule engine API 270
working 264

standard rule engine API 270

T
testEventAssertion() 258
testing

FIT plumbing 155, 156
FIT testing 147, 148

[285]

Guvnor testing 146, 147
mistakes 162
unit testing 156

test scenario, Guvnor
running 103

Then part, guided editor
call a method on option 109
insert a new fact option 109
logically insert a new fact option 109
modify a fact option 109
retract a fact option 109
set the values of a field on option 109

toString method, CustomerOrder.java 131
toString mthod, ChocolateShipment.java

 130
troubleshooting 57
truth maintenance 234

U
unit testing

about 156, 157
Chocolate Shipments sample, unit testing

158, 159
Junit 157
unit test, need for 157

V
versions, Java

JDK 32
JRE 32

W
web deployment

about 225
Appfuse-Spring-MVC, adding 227
Appfuse framework, downloading 225
Appfuse framework, used 225
code, adding 227
Drools, adding 227
Maven, used 225
web server testing, Maven used 226

working memory
about 230
logging 236
log viewer 238
text-based rule, building 104
working memory log 237

Thank you for buying
JBoss Drools Business Rules

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing JBoss Drools Business Rules, Packt will have given some of
the money received to the Drools Project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Business Process Management
with JBoss jBPM
ISBN: 978-1-847192-36-3 Paperback: 300 pages

Develop business process models for implementation
in a business process management system.

1. Map your business processes in an efficient,
standards-friendly way

2. Use the jBPM toolset to work with business
process maps, create a customizable user
interface for users to interact with the process,
collect process execution data, and integrate
with existing systems.

3. Use the SeeWhy business intelligence toolset
as a Business Activity Monitoring solution,
to analyze process execution data, provide
real-time alerts regarding the operation of the
process, and for ongoing process improvement

OSWorkflow
ISBN: 978-1-847191-52-6 Paperback: 200 pages

Get your workflow up and running with this step-
by-step guide authored by an active developer of the
OSWorkflow project with real-world examples

1. Basics of OSWorkflow

2. Integrating business rules with Drools

3. # Task scheduling with Quartz

Please check www.PacktPub.com for information on our titles

EJB 3 Developer Guide
ISBN: 978-1-847195-60-9 Paperback: 259 pages

A Practical Guide for developers and architects to the
Enterprise Java Beans Standard.

1. A rapid introduction to the features of EJB 3

2. EJB 3 features explored concisely with
accompanying code examples

3. Easily enhance Java applications with new,
improved Enterprise Java Beans

TYPO3: Enterprise Content
Management
ISBN: 1904811418 Paperback: 595 pages

The Official TYPO3 Book, written and endorsed by
the core TYPO3 Team

1. Easy-to-use introduction to TYPO3

2. Design and build content rich extranets
and intranets

3. Learn how to manage content and administrate
and extend TYPO3

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Drooling over JBoss Rules
	Who are you? What's your problem?
	Does this sound like where you work?

	Life or death business rules
	What would you do?

	Business rules in your organization
	Exercise — rules in your organization
	The chocolate factory
	Build your own rule engine in Excel
	Why can't the tech guys write the rules for me?

	Why existing solutions don't cut it
	Rule engines to the rescue
	Other rules (Microsoft Outlook)

	Meet JBoss Rules
	A bit more on open source
	The JBoss Rules community
	Where to get help
	How to ask for help

	The bigger picture
	Members of your team

	How do I write the rules
	Introducing the BRMS (Guvnor)
	Parts of the solution
	Rules editor
	Rules compiler
	Runtime
	Fact model
	Java
	Rule repository
	Rest of the system

	When not to use a rule engine
	Summary

	Chapter 2: Getting the software
	What are we going to install?
	Who should install it?
	Installing Java
	Installing JBoss
	Actual install

	Installing the BRMS/Guvnor
	Installing Eclipse
	Installing the Drools plug-in
	Finding the plug-in

	Installing Maven
	Installing sample projects for this book
	Setting up the sample project in Eclipse
	Getting Maven and Eclipse to work together

	Troubleshooting

	Summary

	Chapter 3: Meet the Guvnor
	Taking a tour with the Guvnor
	Getting started
	General navigation
	The search screen

	Administration
	Loading the samples
	What did we just do?
	More on the admin page
	Rules
	Packages
	Deployment
	QA—Quality Analysis
	Hello World example

	Summary

	Chapter 4: Guided Rules with the Guvnor
	Passing information in and out
	Building the fact model
	Importing the fact model into Guvnor
	Guided rules using the fact model
	The step-by-step answer

	Running this scenario
	What just happened?

	Summary

	Chapter 5: From Guvnor to JBoss IDE
	A more powerful rule
	Have a go
	Updating the rule—step by step
	The When part
	Looking behind the curtain—a text-based rule

	A small problem...
	Rule attributes

	More on the guided editor
	Possible comparisons
	Condition types
	Add more options
	Multiple field constraints
	The Then part
	More rule options and attributes

	Text editing
	Introduction to the JBoss IDE
	Hello World in the JBoss IDE editor
	What just happened?

	Try it yourself

	Summary

	Chapter 6: More rules in the JBoss IDE
	Rule syntax
	Patterns for the When part
	Patterns for the Then part
	Shipping chocolate bars
	The problem (and remind me why I need business rules)
	Why rules scale better—a reminder

	Getting and building the sample
	Rules
	ChocolateShipment.java
	CustomerOrder.java
	OompaLoompaDate
	The RuleRunner file
	MultipleRulesExample

	Running the sample
	Console

	More powerful rule syntax
	Lefthand side
	Righthand side—Then

	Guided editor in the JBoss IDE

	Summary

	Chapter 7: Testing your Rules
	Testing when building rules
	Making testing interesting
	Testing using Guvnor
	Testing using FIT
	Getting FIT
	The FIT requirements document
	Running FIT on our sample
	What just happened?
	What can go wrong?

	The FIT plumbing
	What is unit testing?
	Why unit test?
	Unit testing the Chocolate Shipments sample
	What just happened?

	What if it goes wrong?
	Failures and errors
	Testing an entire package

	Summary

	Chapter 8: Data and Rules in Excel
	Reading data from Excel
	Business rules for this sample
	Getting and running the sample
	Input
	Rules
	Running the sample
	What's going on?
	Under the covers
	More on Cells and Ranges

	Sophisticated, but repetitive rules
	Some Excel magic
	Decision tables behind the scenes
	Header information
	RuleTable—Evaluate the buy trades
	RuleTable—Execute the buy trades
	Other rule tables
	Mixing rules and decision tables

	Running the Chocolate Trading example
	What just happened?
	Have a go

	Summary

	Chapter 9: Domain Specific Language (DSL) and RuleFlow
	What is a Domain Specific Language (DSL)?
	Expanders
	The DSL format
	Other DSL editing options
	Writing DSLs
	Meet the sample

	Running the DSL example
	Guvnor and DSL-based rules

	Ruleflow
	Ruleflow is not workflow
	That Homeloan example again

	Linking rules to Ruleflow
	A quick introduction to stateful applications
	Stateful rules and Ruleflow

	Summary

	Chapter 10: Deploying Rules in Real Life
	One size fits all architecture
	What needs to be deployed?
	Rules as code or data?

	Deployment process
	What's a repository?

	Deploying rules
	Push or pull?
	Loading our rules
	Looking inside RuleRunner.java
	Helper methods

	Public methods
	Stateless
	Stateful

	Alternative method—RuleAgent
	Web deployment
	Maven for packaging

	Summary

	Chapter 11: Looking under the Cover
	Rule engine concepts
	Facts or objects
	Working memory
	Pattern matching, Agenda, and Activations
	Conflict resolution
	A more dynamic Agenda
	Truth maintenance

	Back to the future (with chocolate shipping)
	Logging working memory
	Looking at the working memory log
	Drools Audit Log Viewer

	Rete algorithm
	Rete in action
	Debugging rules
	Debugging rules in the Eclipse IDE
	Rules debug perspective
	Other Drools views while debugging

	When to log, when to test, and when to debug

	Summary

	Chapter 12: Advanced Drools Features
	Pigeons, Drools, and Complex Event Processing
	Implementing Complex Event Processing using Fusion
	More powerful events

	Inline beans
	Loading data when your beans don't exist—Smooks

	From pigeons to biscuits—Drools Solver for your local supermarket
	How Drools Solver works
	Implementing a Solver
	More information on Solver

	Forward and backward chaining
	Changing the conflict resolution methodology
	Standard rule engine API—JSR 94
	Other rule engines

	New API
	Drools flow—a full workflow engine
	New features in Guvnor
	Does this still sound like where you work?

	Summary

	Index

