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1 Introduction

Search is a universal problem-solving mechanism in artificial intelligence (AI). In Al problems,
the sequence of steps required for solution of a problem are not known a priori, but often must
be determined by a systematic trial-and-error exploration of alternatives. The problems that have
been addressed by Al search algorithms fall into three general classes: single-agent pathfinding
problems, two-player games, and constraint-satisfaction problems.

Classic examples in the Al literature of pathfinding problems are the sliding-tile puzzles, includ-
ing the 3 x 3 Fight Puzzle (see Fig. 1) and its larger relatives the 4 x 4 Fifteen Puzzle, and 5 x 5
Twenty-Four Puzzle. The Eight Puzzle consists of a 3 X 3 square frame containing eight numbered
square tiles, and an empty position called the blank. The legal operators are to slide any tile that is
horizontally or vertically adjacent to the blank into the blank position. The problem is to rearrange

the tiles from some random initial configuration into a particular desired goal configuration. The
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sliding-tile puzzles are common testbeds for research in Al search algorithms because they are very
simple to represent and manipulate, yet finding optimal solutions to the N x N generalization of
the sliding-tile puzzles is NP-complete[40]. Other well-known examples of single-agent pathfinding
problems include Rubik’s Cube, the travelling salesman problem, and theorem proving. In each
case, the task is to find a sequence of operations that map an initial state to a goal state.

A second class of search problems include two-player perfect-information games, such as Chess,
Checkers, and Othello. The third category is constraint-satisfaction problems, such as the Eight
Queens Problem. The task is to place eight queens on an 8 x 8 chessboard, such that no two queens
are on the same row, column or diagonal.

We begin by describing the problem-space model on which search algorithms are based. Brute-
force searches are then considered including breadth-first, uniform-cost, depth-first, depth-first
iterative-deepening, and bidirectional search. Next, various heuristic searches are examined includ-
ing pure heuristic search, the A* algorithm, iterative-deepening-A*, depth-first branch-and-bound,
the heuristic path algorithm, and recursive best-first search. We then consider single-agent al-
gorithms that interleave search and execution, including minimin lookahead search, real-time-A*,
and learning-real-time-A*. Next, we consider two-player game searches, including minimax and
alpha-beta pruning. Finally, we examine constraint-satisfaction algorithms, such as backtracking,
constraint recording, and heuristic repair. The efficiency of these algorithms, in terms of the costs
of the solutions they generate, the amount of time the algorithms take to execute, and the amount
of computer memory they require are of central concern throughout. Since search is a univer-
sal problem-solving method, what limits its applicability is the efficiency with which it can be

performed.



2 Problem Space Model

A problem space is the environment in which a search takes place [31]. A problem space consists
of a set of states of the problem, and a set of operators that change the state. For example, in
the Fight Puzzle, the states are the different possible permutations of the tiles, and the operators
slide a tile into the blank position. A problem instance is a problem space together with an initial
state and a goal state. In the case of the Eight Puzzle, the initial state would be whatever initial
permutation the puzzle starts out in, and the goal state is a particular desired permutation. The
problem-solving task is to find a sequence of operators that map the initial state to a goal state.
In the Eight Puzzle the goal state is given explicitly. In other problems, such as the Eight Queens
Problem, the goal state is not given explicitly, but rather implicitly specified by certain properties
that must be satisfied by a goal state.

A problem-space graph is often used to represent a problem space. The states of the space
are represented by nodes of the graph, and the operators by edges between nodes. Edges may be
undirected or directed, depending on whether their corresponding operators are invertible or not.
The task is a single-agent path-findng problem is to find a path in the graph from the initial node
to a goal node. Figure 1 shows a small part of the Eight Puzzle problem-space graph.

Although most problem spaces correspond to graphs with more than one path between a pair
of nodes, for simplicity they are often represented as trees, where the initial state is the root of the
tree. The cost of this simplification is that any state that can be reached by two different paths
will be represented by duplicate nodes, increasing the size of the tree. The benefit of a tree is that
the absence of cycles greatly simplifies many search algorithms. In this survey, we will restrict our
attention to trees, but there exist graph versions of most of the algorithms we describe as well.

One feature that distinguishes AI search algorithms from other graph-searching algorithms is

the size of the graphs involved. For example, the entire chess graph is estimated to contain over
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Figure 1: Eight Puzzle Search Tree Fragment

10%° nodes. Even a simple problem like the Twenty-Four Puzzle contains almost 10%° nodes. As
a result, the problem-space graphs of Al problems are never represented explicitly by listing each
state, but rather are implicitly represented by specifying an initial state and a set of operators to
generate new states from existing states. Furthermore, the size of an Al problem is rarely expressed
as the number of nodes in its problem-space graph. Rather, the two parameters of a search tree
that determine the efficiency of various search algorithms are its branching factor and its solution
depth. The branching factor is the average number of children of a given node. For example, in the
Eight Puzzle the average branching factor is v/3, or about 1.732. The solution depth of a problem

instance is the length of a shortest path from the initial state to a goal state, or the length of




a shortest sequence of operators that solves the problem. If the goal were in the bottom row of
figure 1, the depth of the problem instance represented by the initial state at the root would be

three moves.

3 Brute-Force Search

The most general search algorithms are brute-force searches, since they do not require any domain-
specific knowledge. All that is required for a brute-force search is a state description, a set of
legal operators, an initial state, and a description of the goal state. The most important brute-
force techniques are breadth-first, uniform-cost, depth-first, depth-first iterative-deepening, and
bidirectional search. In the descriptions of the algorithms below, to generate a node means to
create the data structure corresponding to that node, whereas to expand a node means to generate

all the children of that node.

3.1 Breadth-First Search

Breadth-first search expands nodes in order of their distance from the root, generating one level
of the tree at a time until a solution is found (see Figure 2). It is most easily implemented by
maintaining a queue of nodes, initially containing just the root, and always removing the node at
the head of the queue, expanding it, and adding its children to the tail of the queue.

Since it never generates a node in the tree until all the nodes at shallower levels have been
generated, breadth-first search always finds a shortest path to a goal. The amount of time used
by breadth-first search is proportional to the number of nodes generated, since each node can be
generated in constant time, and is a function of the branching factor b and the solution depth d.
Since the number of nodes at level d is b%, the total number of nodes generated in the worst case

is b+ b2+ b> + - -+ b?, which is O(bd), the asymptotic time complexity of breadth-first search.



Figure 2: Order of Node Generation for Breadth-First Search

The main drawback of breadth-first search is its memory requirement. Since each level of the
tree must be saved in order to generate the next level, and the amount of memory is proportional to
the number of nodes stored, the space complexity of breadth-first search is also O(bd). As a result,
breadth-first search is severely space-bound in practice, and will exhaust the memory available on

typical computers in a matter of minutes.

3.2 Uniform-Cost Search

If all edges do not have the same cost, then breadth-first search generalizes to uniform-cost search.
Instead of expanding nodes in order of their depth from the root, uniform-cost search expands nodes
in order of their cost from the root. At each step, the next node n to be expanded is one whose
cost g(n) is lowest, where g(n) is the sum of the edge costs from the root to node n. The nodes are
stored in a priority queue. This algorithm is also known as Dijkstra’s single-source shortest-path

algorithm[6].



Whenever a node is chosen for expansion by uniform-cost search, a lowest-cost path to that
node has been found. The worst-case time complexity of uniform-cost search is O(bc/m), where ¢
is the cost of an optimal solution, and m is the minimum edge cost. Unfortunately, it also suffers

the same memory limitation as breadth-first search.

3.3 Depth-First Search

Depth-first search remedies the space limitation of breadth-first search by always generating next
a child of the deepest unexpanded node (see I'igure 3). Both algorithms can be implemented using
a list of unexpanded nodes, with the difference that breadth-first search manages the list as a
first-in first-out queue, whereas depth-first search treats the list as a last-in first-out stack. More
commonly, depth-first search is implemented recursively, with the recursion stack taking the place

of an explicit node stack.

Figure 3: Order of Node Generation for Depth-First Search

The advantage of depth-first search is that its space requirement is only linear in the search



depth, as opposed to exponential for breadth-first search. The reason is that the algorithm only
needs to store a stack of nodes on the path from the root to the current node. The time complexity
of a depth-first search to depth d is O(b?), since it generates the same set of nodes as breadth-first
search, but simply in a different order. Thus, as a practical matter, depth-first search is time-limited
rather than space-limited.

The disadvantage of depth-first search is that it may not terminate on an infinite tree, but
simply go down the left-most path forever. Even a finite graph can generate an infinite tree. The
usual solution to this problem is to impose a cutoff depth on the search. Although the ideal cutoff
is the solution depth d, this value is rarely known in advance of actually solving the problem. If
the chosen cutoff depth is less than d, the algorithm will fail to find a solution, whereas if the cutoff
depth is greater than d, a large price is paid in execution time, and the first solution found may

not be an optimal one.

3.4 Depth-First Iterative-Deepening

Depth-first iterative-deepening (DFID) combines the best features of breadth-first and depth-first
search[45, 18]. DFID first performs a depth-first search to depth one, then starts over, executing a
complete depth-first search to depth two, and continues to run depth-first searches to successively
greater depths, until a solution is found (see Figure 4).

Since it never generates a node until all shallower nodes have been generated, the first solution
found by DFID is guaranteed to be along a shortest path. Furthermore, since at any given point it
is executing a depth-first search, saving only a stack of nodes, and the algorithm terminates when
it finds a solution at depth d, the space complexity of DFID is only O(d).

Although it appears that DFID wastes a great deal of time in the iterations prior to the one

that finds a solution, this extra work is usually insignificant. To see this, note that the number of
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Figure 4: Order of Node Generation for Depth-First Iterative-Deepening Search

nodes at depth d is b%, and each of these nodes are generated once, during the final iteration. The
number of nodes at depth d — 1 is b, and each of these are generated twice, once during the final
iteration, and once during the penultimate iteration. In general, the number of nodes generated by
DFID is b% 4+ 2091 4+ 36%2 4 ... 4 db. This is asymptotically O(bd) if b is strictly greater than one,
since for large values of d the lower order terms become insignificant. In other words, most of the
work goes into the final iteration, and the cost of the previous iterations is relatively small. The
ratio of the number of nodes generated by DFID to those generated by breadth-first search on a
tree is approximately b/(b—1). In fact, DFID is asymptotically optimal in terms of time and space
among all brute-force shortest-path algorithms on a tree[18].

If the edge costs differ from one another, then one can run an iterative deepening version of
uniform-cost search, where the depth cutoff is replaced by a cutoff on the g(n) cost of a node. At

the end of each iteration, the new threshold is the minimum cost of all nodes generated but pruned



on the previous iteration.

On a graph with cycles, however, breadth-first search may be much more efficient than any
depth-first search. The reason is that a breadth-first search can check for duplicate nodes whereas
a depth-first search cannot. Thus, the complexity of breadth-first search grows only as the number
of nodes at a given depth, while the complexity of depth-first search depends on the number of
paths of a given length. For example, in a square grid, the number of nodes within a radius r of
the origin is O(r?), whereas the number of paths of length r is O(3"), since there are three children
of every node, not counting its parent. Thus, in a graph with a large number of very short cycles,
breadth-first search is preferable to depth-first search, if sufficient memory is available. For one

approach to the problem of duplicate nodes in depth-first search, see [46].

3.5 Bidirectional Search

Bidirectional search is a brute-force algorithm that requires an explicit goal state in addition to the
basic problem space[37]. The main idea is to simultaneously search forward from the initial state,
and backward from the goal state until the two search frontiers meet. The path from the initial
state is then concatenated with the inverse of the path from the goal state to form the complete
solution path.

Bidirectional search still guarantees optimal solutions. Assuming that the comparisons for
identifying a common state between the two frontiers can be done in constant time per node, by
hashing for example, the time complexity of bidirectional search is O(bd/ %) since each search need
only proceed to half the solution depth. Since at least one of the searches must be breadth-first
in order to find a common state, the space complexity of bidirectional search is also O(bd/Q). As a

result, bidirectional search is space bound in practice.
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3.6 Combinatorial Explosion

The problem with all brute-force search algorithms is that their time complexities grow exponen-
tially with problem size. This is called combinatorial explosion, and as a result, the size of problems
that can be solved with these techniques is quite limited. For example, while the Eight Puzzle, with

about 10° states, is easily solved by brute-force search, the Fifteen Puzzle contains over 10'3

states,
and hence cannot be solved with brute-force techniques on current machines. Faster machines will

not have a significant impact on this problem. For example, the 5 x 5 Twenty-Four Puzzle contains

almost 102° states.

4 Heuristic Search

In order to solve larger problems, domain-specific knowledge must be added to improve search effi-
ciency. In Al, heuristic search has a general meaning, and a more specialized technical meaning. In
a general sense, the term heuristic is used for any advice that is often effective, but isn’t guaranteed
to work in every case. Within the heuristic search literature, however, the term heuristic usually

refers to the special case of a heuristic evaluation function.

4.1 Heuristic Evaluation Functions

In a single-agent path-finding problem, a heuristic evaluation function estimates the cost of an
optimal path between a pair of states. For example, Fuclidean or airline distance is an estimate of
the highway distance between a pair of locations. A common heuristic function for the sliding-tile
puzzles is called manhattan distance. It is computed by counting the number of moves along the
grid that each tile is displaced from its goal position, and summing these values over all tiles. For
a fixed goal state, a heuristic evaluation is a function of a node, h(n), that estimates the distance

from node n to the given goal state.
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The key properties of a heuristic evaluation function are that it estimate actual cost, and that
it be inexpensive to compute. For example, the Euclidean distance between a pair of points can be
computed in constant time. The manhattan distance between a pair of states can be computed in
time proportional to the number of tiles. In addition, most naturally occurring heuristic functions
are lower bounds on actual cost, and this property is referred to as admissibility. For example,
airline distance is a lower bound on road distance between two points, since the shortest path
between a pair of points is a straight line. Similarly, manhattan distance is a lower bound on the
actual number of moves necessary to solve an instance of a sliding-tile puzzle, since every tile must
move at least as many times as its distance in grid units from its goal position.

A number of algorithms make use of heuristic functions, including pure heuristic search, the A*
algorithm, iterative-deepening-A*, depth-first branch-and-bound, and the heuristic path algorithm.

In addition, heuristic information can be employed in bidirectional search as well.

4.2 Pure Heuristic Search

The simplest of these algorithms, pure heuristic search, expands nodes in order of their heuristic
values h(n)[8]. It maintains a Closed list of those nodes that have already been expanded, and an
Open list of those nodes that have been generated but not yet expanded. The algorithm begins with
just the initial state on the Open list. At each cycle, a node on the Open list with the minimum
h(n) value is expanded, generating all of its children, and is placed on the Closed list. The heuristic
function is applied to the children, and they are placed on the Open list in order of their heuristic
values. The algorithm continues until a goal state is chosen for expansion.

In a graph with cycles, multiple paths will be found to the same node, and the first path found
may not be the shortest. When a shorter path is found to an Open node, the shorter path is saved

and the longer one discarded. When a shorter path to a Closed node is found, the node is moved
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to Open, and the shorter path is associated with it. The main drawback of pure heuristic search is

that since it ignores the cost of the path so far to node n, it does not find optimal solutions.
Breadth-first search, uniform-cost search, and pure heuristic search are all special cases of a

more general algorithm called best-first search. They differ only in their cost functions: the depth

of node n for breadth-first search, g(n) for uniform-cost search, and h(n) for pure heuristic search.

4.3 A* Algorithm

The A* algorithm[13] combines features of uniform-cost search and pure heuristic search to effi-
ciently compute optimal solutions. A* is a best-first search in which the cost associated with a
node is f(n) = g(n)+ h(n), where g(n) is the cost of the path from the initial state to node n, and
h(n) is the heuristic estimate of the cost of a path from node n to a goal. Thus, f(n) estimates
the lowest total cost of any solution path going through node n. At each point a node with lowest
f value is chosen for expansion. Ties among nodes of equal f value should be broken in favor of
nodes with lower h values. The algorithm terminates when a goal node is chosen for expansion.

A* finds an optimal path to a goal if the heuristic function h(n) is admissible, meaning it
never overestimates actual cost[13]. For example, since airline distance never overestimates actual
highway distance, and manhattan distance never overestimates actual moves in the sliding-tile
puzzles, A* using these evaluation functions will find optimal solutions to these problems. In
addition, A* makes the most efficient use of a given heuristic function in the following sense:
among all shortest-path algorithms using a given heuristic function h(n), A* expands the fewest
number of nodes[4].

The main drawback of A*, and indeed of any best-first search, is its memory requirement.
Since at least the entire Open list must be saved, A* is severely space-limited in practice, and is

no more practical than breadth-first search on current machines. For example, while it can be
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run successfully on the Eight Puzzle, it exhausts available memory in a matter of minutes on the

Fifteen Puzzle.

4.4 TIterative-Deepening-A*

Just as depth-first iterative-deepening solved the space problem of breadth-first search, iterative-
deepening-A*(IDA*) eliminates the memory constraint of A*, without sacrificing solution optimality[18].
Each iteration of the algorithm is a complete depth-first search that keeps track of the cost,
f(n) = g(n) 4+ h(n), of each node generated. As soon as a node is generated whose cost ex-
ceeds a threshold for that iteration, its path is cut off, and the search backtracks before continuing.
The cost threshold is initialized to the heuristic estimate of the initial state, and in each successive
iteration is increased to the total cost of the lowest-cost node that was pruned during the previous
iteration. The algorithm terminates when a goal state is reached whose total cost does not exceed
the current threshold.

Since IDA* performs a series of depth-first searches, its memory requirement is linear in the
maximum search depth. In addition, if the heuristic function is admissible, the first solution found
by IDA* is an optimal one. Finally, by an argument similar to that presented for DFID, IDA*
expands the same number of nodes, asymptotically, as A* on a tree, provided that the number
of nodes grows exponentially with solution cost. These facts, together with the optimality of A*,
imply that IDA* is asymptotically optimal in time and space over all heuristic search algorithms
that find optimal solutions on a tree. Additional benefits of IDA* are that it is much easier to
implement, and often runs faster than A*, since it does not incur the overhead of managing the

Open and Closed lists.
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4.5 Depth-First Branch-and-Bound

For many problems, the maximum search depth is known in advance, or the search tree is finite.
For example, consider the travelling salesman problem (TSP) of visiting each of a set of cities and
returning to the starting city in a tour of shortest total distance. The most natural problem space
for this problem consists of a tree where the root node represents the starting city, the nodes at
level one represent all the cities that could be visited first, the nodes at level two represent all the
cites that could be visited second, etc. In this tree, the maximum depth is the number of cities, and
all candidate solutions occur at this depth. In such a space, a simple depth-first search guarantees
finding an optimal solution using space that is only linear in the number of cities.

The idea of depth-first branch-and-bound (DFBnB) is to make this search more efficient by
keeping track of the lowest-cost solution found so far. Since the cost of a partial tour is the sum of
the costs of the edges travelled so far, whenever a partial tour is found whose cost equals or exceeds
the cost of the best complete tour found so far, the branch representing the partial tour can be
pruned, since all its descendents must have equal or greater cost. Whenever a lower-cost complete
tour is found, the cost of the best tour is updated to this lower cost. In addition, an admissible
heuristic function, such as the cost of the minimum spanning tree of the remaining unvisited cities,
can be added to the cost so far of a partial tour to increase the amount of pruning. Finally, by
carefully ordering the children of a given node from smallest to largest estimated total cost, a lower
cost solution can be found more quickly, further improving the pruning efficiency.

Interestingly, IDA* and DFBnB exhibit complementary behavior. Both are guaranteed to return
an optimal solution using only linear space, assuming that their cost functions are admissible. In
IDA*, the cost threshold is always a lower bound on the optimal solution cost, and increases in each
iteration until it reaches the optimal cost. In DFBnB, the cost of the best solution found so far is

always an upper bound on the optimal solution cost, and decreases until it reaches the optimal cost.
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While IDA* never expands any nodes whose cost exceeds the optimal cost, its overhead consists of
expanding some nodes more than once. While DFFBnB never expands any node more than once,
its overhead consists of expanding some nodes whose costs exceed the optimal cost. For problems
whose search trees are of bounded depth or for which it is easy to construct a good solution, such
as the TSP, DFBnB is usually the algorithm of choice for finding an optimal solution. For problems
with infinite search trees or for which it is difficult to construct a low-cost solution, such as the

sliding-tile puzzles or Rubik’s Cube, IDA* is usually the best choice.

4.6 Complexity of Finding Optimal Solutions

The time complexity of a heuristic search algorithm depends on the accuracy of the heuristic
function. For example, if the heuristic evaluation function is an exact estimator, then A* runs in
linear time, expanding only those nodes on an optimal solution path. Conversely, with a heuristic
that returns zero everywhere, A* becomes uniform-cost search, which has exponential complexity.

In general, the time complexity of A* and IDA* is an exponential function of the error in the
heuristic function[33]. For example, if the heuristic has constant absolute error, meaning that it
never underestimates by more than a constant amount regardless of the magnitude of the estimate,
then the running time of A* is linear in the solution cost[10]. A more realistic assumption is constant
relative error, which means that the error is a fixed percentage of the quantity being estimated.
In that case, the running times of A* and IDA* are exponential[35]. The base of the exponent,
however, is smaller than the brute-force branching factor, reducing the asymptotic complexity and
allowing somewhat larger problems to be solved. For example, using the Manhattan Distance

heuristic, IDA* can optimally solve random instances of the Fifteen Puzzle[18].
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4.7 Heuristic Path Algorithm

Since the complexity of finding optimal solutions to these problems is generally exponential in
practice, in order to solve significantly larger problems, the optimality requirement must be relaxed.
An early approach to this problem is the heuristic path algorithm (HPA)[36]. HPA is a best-first
search algorithms, where the figure of merit of a node nis f(n) = (1 —w)*g(n)+w*h(n). Varying
w produces a range of algorithms from uniform-cost search (w = 0), through A* (w = 1/2), to pure
heuristic search (w = 1). Increasing w beyond 1/2 generally decreases the amount of computation,
while increasing the cost of the solution generated. This tradeoff is often quite favorable, with small
increases in solution cost yielding huge savings in computation[22]. Furthermore, it can be shown
that the solutions found by this algorithm are guaranteed to be no more than a factor of w/(1 —w)

greater than optimal[3], but often are significantly better.

4.8 Recursive Best-First Search

The memory limitation of the Heuristic Path Algorithm can be overcome simply by replacing the
best-first search with IDA* using the same weighted evaluation function. However, with w > 1/2,
IDA* is no longer a best-first search, since the total cost of a child can be less than that of its
parent, and thus nodes are not necessarily expanded in best-first order. An alternative algorithm
is Recursive Best-First Search (RBFS)[22]. RBFS is a best-first search that runs in space that is
linear in the maximum search depth, regardless of the cost function used. Even with an admissible
cost function, RBF'S generates fewer nodes than IDA*, and is generally superior to IDA*, except
for a small increase in the cost per node generation.

It works by maintaining on the recursion stack the complete path to the current node being
expanded, as well as all immediate siblings of nodes on that path, along with the cost of the best

node in the subtree explored below each sibling. Whenever the cost of the current node exceeds
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that of some other node in the previously expanded portion of the tree, the algorithm backs up
to their deepest common ancestor, and continues the search down the new path. In effect, the
algorithm maintains a separate threshold for each subtree diverging from the current search path.

See [22] for full details on RBF'S.

5 Interleaving Search and Execution

In the discussion above, it is assumed that a complete solution can be computed, before even the
first step of the solution need be executed. This is in contrast to the situation in two-player games,
discussed below, where because of computational limits and uncertainty due to the opponent’s
moves, search and execution are interleaved, with each search determining only the next move to
be made. This paradigm is also applicable to single-agent problems. In the case of autonomous
vehicle navigation, for example, information is limited by the horizon of the vehicle’s sensors, and
it must physically move to acquire more information. Thus, one move must be computed at a time,
and that move executed before computing the next. Below we consider algorithms designed for

this scenario.

5.1 Minimin Search

Minimin search determines individual single-agent moves in constant time per move[20]. The
algorithm searches forward from the current state to a fixed depth determined by the informational
or computational resources available. At the search horizon, the A* evaluation function f(n) =
g(n) + h(n) is applied to the frontier nodes. Since all decisions are made by a single agent, the
value of an interior node is the minimum of the frontier values in the subtree below the node. A
single move is then made to the neighbor of the current state with the minimum value.

Most heuristic functions obey the triangle inequality characteristic of distance measures. As a
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result, f(n) = g(n)+ h(n) is guaranteed to be monotonically nondecreasing along a path. Further-
more, since minimin search has a fixed depth limit, we can apply depth-first branch-and-bound to
prune the search tree. The performance improvement due to branch-and-bound is quite dramatic,
in some cases extending the achievable search horizon by a factor of five relative to brute-force
minimin search on sliding-tile puzzles[20].

Minimin search with branch-and-bound is an algorithm for evaluating the immediate neighbors
of the current node. As such, it is run until the best child is identified, at which point the chosen
move is executed in the real world. We can view the static evaluation function combined with
lookahead search as simply a more accurate, but computationally expensive, heuristic function. In
fact, it provides an entire spectrum of heuristic functions trading off accuracy for cost, depending

on the search horizon.

5.2 Real-Time-A*

Simply repeating minimin search for each move ignores information from previous searches and
results in infinite loops. In addition, since actions are committed based on limited information,
often the best move may be to undo the previous move. The principle of rationality is that
backtracking should occur when the estimated cost of continuing the current path exceeds the cost
of going back to a previous state, plus the estimated cost of reaching the goal from that state.
Real-time-A* (RTA*) implements this policy in constant time per move[20].

For each move, the f(n) = g(n)+ h(n) value of each neighbor of the current state is computed,
where ¢g(n) is now the cost of the edge from the current state to the neighbor, instead of from the
initial state. The problem solver moves to the neighbor with the minimum f(n) value, and stores
with the previous state the best f(n) value among the remaining neighbors. This represents the

h(n) value of the previous state from the perspective of the new current state. This is repeated
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until a goal is reached. To determine the h(n) value of a previously visited state, the stored value
is used, while for a new state the heuristic evaluator is called. Note that the heuristic evaluator
may employ minimin lookahead search with branch-and-bound as well.

In a finite problem space in which there exists a path to a goal from every state, RTA* is
guaranteed to eventually to find a solution, regardless of the heuristic evaluation function[20].
Furthermore, on a tree, RTA* makes locally-optimal decisions given the information it has seen so

far.

5.3 Learning-Real-Time-A*

If a problem is to be solved repeatedly with the same goal state but different initial states, one
would like an algorithm that improves its performance over time. Learning-real-time-A* (LRTA*)
is such an algorithm. It behaves almost identically to RTA*, except that instead of storing the
second-best f value of a node as its new heuristic value, it stores the best value instead. Once one
problem instance is solved, the stored heuristic values are saved and become the initial values for
the next problem instance. While LRTA* is less efficient than RTA* for solving a single problem
instance, assuming it starts with admissible initial heuristic values, over repeated trials its heuristic
values will eventually converge to their exact values. at which point the algorithm returns optimal

solutions.

6 Two-Player Games

The second major application of heuristic search algorithms in Al is two-player games. One of the
original challenges of AI, which in fact predates the term “artificial intelligence”, was to build a

program that could play chess at the level of the best human players[47].
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6.1 Minimax Search

The standard algorithm for two-player games is minimax search with heuristic static evaluation[43].
The algorithm searches forward to a fixed depth in the game tree, limited by the amount of time
available per move. At this search horizon, a heuristic function is applied to the frontier nodes.
In this case, a heuristic evaluation is a function that takes a board position and returns a number
that indicates how favorable that position is for one player relative to the other. For example, a
very simple heuristic evaluator for chess would count the total number of pieces on the board for
one player, appropriately weighted by their relative strength, and subtract the weighted sum of
the opponent’s pieces. Thus, large positive values would correspond to strong positions for one
player, called MAX, whereas large negative values would represent advantageous situations for the
opponent, called MIN.

Given the heuristic evaluations of the frontier nodes, values for the interior nodes in the tree
are recursively computed according to the minimax rule. The value of a node where it is MAX’s
turn to move is the maximum of the values of its children, while the value of a node where MIN
is to move is the minimum of the values of its children. Thus, at alternate levels of the tree, the
minimum or the maximum values of the children are backed up. This continues until the values of
the immediate children of the current position are computed, at which point one move to the child

with the maximum or minimum value is made, depending on whose turn it is to move.

6.2 Alpha-Beta Pruning

One of the most elegant of all Al search algorithms is alpha-beta pruning. Apparently John
McCarthy came up with the original idea in 1956, but didn’t publish it. It first appeared in print
in an MIT tech report[12], and a thorough treatment of the algorithm can be found in [26]. The

idea, similar to branch-and-bound, is that the minimax value of the root of a game tree can be
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determined without examining all the nodes at the search frontier.

Figure 5 shows an example of alpha-beta pruning. Only the labelled nodes are generated by
the algorithm, with the heavy black lines indicating pruning. At the square nodes MAX is to
move, while at the circular nodes it is MIN’s turn. The search proceeds depth-first to minimize the
memory required, and only evaluates a node when necessary. First, nodes e and f are statically
evaluated at 4 and 5, respectively, and their minimum value, 4, is backed up to their parent node
d. Node h is then evaluated at 3, and hence the value of its parent node g must be less than or
equal to 3, since it is the minimum of 3 and the unknown value of its right child. Thus, we label
node g as <= 3. The value of node ¢ must be 4 then, because it is the maximum of 4 and a value
that is less than or equal to 3. Since we have determined the minimax value of node ¢, we do not
need to evaluate or even generate the brother of node h.

Similarly, after statically evaluating nodes k and [ at 6 and 7, respectively, the backed up value
of their parent node j is 6, the minimum of these values. This tells us that the minimax value of
node 7 must be greater than or equal to 6, since it is the maximum of 6 and the unknown value of
its right child. Since the value of node b is the minimum of 4 and a value that is greater than or
equal to 6, it must be 4, and hence we achieve another cutoff.

The right half of the tree shows an example of deep pruning. After evaluating the left half of
the tree, we know that the value of the root node « is greater than or equal to 4, the minimax value
of node b. Once node ¢ is evaluated at 1, the value of its parent node o must be less than or equal
to 1. Since the value of the root is greater than or equal to 4, the value of node o cannot propagate
to the root, and hence we need not generate the brother of node ¢. A similar situation exists after
the evaluation of node r at 2. At that point, the value of node o is less than or equal to 1, and the
value of node p is less than or equal to 2, hence the value of node n, which is the maximum of the

values of nodes o and p, must be less than or equal to 2. Furthermore, since the value of node m

22



= n <=2

SRS EE:

2

e f h k | q  r

Figure 5: Alpha-Beta Pruning

is the minimum of the value of node n and its brother, and node n has a value less than or equal
to 2, the value of node m must also be less than or equal to 2. This causes the brother of node n
to be pruned, since the value of the root node a is greater than or equal to 4. Thus, we computed
the minimax value of the root of the tree to be 4, by generating only seven of sixteen leaf nodes in
this case.

Since alpha-beta pruning performs a minimax search while pruning much of the tree, its effect
is to allow a deeper search with the same amount of computation. This raises the question of
how much does alpha-beta improve performance? The best way to characterize the efficiency of a

pruning algorithm is in terms of its effective branching factor. The effective branching factor is the
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d*™" root of the number of frontier nodes that must be evaluated in a search to depth d.

The efficiency of alpha-beta pruning depends upon the order in which nodes are encountered
at the search frontier. For any set of frontier node values, there exists some ordering of the values
such that alpha-beta will not perform any cutoffs at all. In that case, all frontier nodes must be
evaluated and the effective branching factor is b, the brute-force branching factor.

On the other hand, there is an optimal or perfect ordering in which every possible cutoff is
realized. In that case, the effective branching factor is reduced from b to b'/2, the square root of
the brute-force branching factor. Another way of viewing the perfect ordering case is that for the
same amount of computation, one can search twice as deep with alpha-beta pruning as without.
Since the search tree grows exponentially with depth, doubling the search horizon is a dramatic
improvement.

In between worst-possible ordering and perfect ordering is random ordering, which is the av-
erage case. Under random ordering of the frontier nodes, alpha-beta pruning reduces the effective
branching factor to approximately b3/4[32]. This means that one can search 4/3 as deep with

alpha-beta, yielding a 33% improvement in search depth.

6.3 Node Ordering, Quiescence, Iterative-Deepening, and Transposition Tables

In practice, however, the effective branching factor of alpha-beta is closer to the best case of b'/2 due
to node ordering. The idea of node ordering is that instead of generating the tree left-to-right, we
can reorder the tree based on static evaluations of the interior nodes. In other words, the children
of MAX nodes are expanded in decreasing order of their static values, while the children of MIN
nodes are expanded in increasing order of their static values.

Two other important ideas are quiescence and iterative-deepening. The idea of quiescence is

that the static evaluator should not be applied to positions whose values are unstable, such as
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those occurring in the middle of a piece trade. In those positions, a small secondary search is
conducted until the static evaluation becomes more stable. In practice, this can be achieved by
always exploring any capture moves one level deeper.

Iterative-deepening is used to solve the problem of where to set the search horizon[44], and in
fact predated its use as a memory-saving device in single-agent search. In a tournament game,
there is a limited amount of time allowed for moves. Unfortunately, it is very difficult to accurately
predict how long it will take to perform an alpha-beta search to a given depth. The solution is
to perform a series of searches to successively greater depths. When time runs out, the move
recommended by the last completed search is made.

The search graphs of most games, such as chess, contain multiple paths to the same node, often
reached by making the same moves in a different order, referred to as a transposition of the moves.
Since alpha-beta is a depth-first search, it is important to detect when a node has already been
searched, in order to avoid researching it. A transposition table is a table of previously encountered
game states, together with their backed-up minimax values. Whenever a new state is generated, if
it is stored in the transposition table, its value there is used instead of searching the tree below the
node.

Virtually all two-player game programs use full-width, fixed-depth, alpha-beta minimax search
with node ordering, quiescence, iterative-deepening, and transposition tables, among other tech-

niques.

6.4 Special Purpose Hardware

While the basic algorithms are described above, much of the performance advances in computer
chess have come from faster hardware. The faster the machine, the deeper it can search in the

time available, and the better it plays. Despite the rapidly advancing speed of general-purpose
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computers, the best machines today are based on special-purpose hardware designed and built
only to play chess. For example, DeepBlue is a chess machine that can evaluate about 100 million
chess positions per second[17]. It recently lost a six-game tournament to Gary Kasparov, the world

champion, but did win one game and draw several others.

7 Constraint-Satisfaction Problems

In addition to single-agent path-finding problems and two-player games, the third major applica-
tion of heuristic search is constraint-satisfaction problems. The Eight Queens Problem mentioned
previously is a classic example. Other examples include graph coloring, boolean satisfiability, and
scheduling problems.

Constraint-satisfaction problems are modelled as follows: There is a set of variables, a set of
values for each variable, and a set of constraints on the values that the variables can be assigned.
A unary constraint on a variable specifies a subset of all possible values that can be assigned to
that variable. A binary constraint between two variables specifies which possible combinations of
assignments to the pair of variables satisfy the constraint. For example, in a map or graph coloring
problem, the variables would represent regions or nodes, and the values would represent colors.
The constraints are binary constraints on each pair of adjacent regions or nodes that prohibit them

from being assigned the same color.

7.1 Brute-Force Backtracking

The brute-force approach to constraint satisfaction is called backtracking. One selects an order for
the variables, and an order for the values, and starts assigning values to the variables one at a time.
Each assignment is made so that all constraints involving any of the variables that have already

been assigned are satisfied. The reason for this is that once a constraint is violated, no assignment
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to the remaining variables can possibly resatisfy that constraint. Once a variable is reached which
has no remaining legal assignments, then the last variable that was assigned is reassigned to the
next legal value. The algorithm continues until either a complete, consistent assignment is found,
resulting in success, or all possible assignments are shown to violate some constraint, resulting in
failure. Figure 6 shows the tree generated by brute-force backtracking to find all solutions to the

Four Queens problem. The tree is searched depth-first to minimize memory requirements.

7.2 Limited Discrepancy Search

Limited discrepancy search (LDS)[14, 25] is a completely general tree-search algorithm, but is most
useful in the context of constraint-satisfaction problems in which the entire tree is too large to
search exhaustively. In that case, we would like to search that subset of the tree that is most likely
to yield a solution in the time available. Assume that we can heuristically order a binary tree so
that at any node, the left branch is more likely to lead to a solution than the right branch. LDS
then proceeds in a series of depth-first iterations. The first iteration explores just the left-most path
in the tree. The second iteration explores those root-to-leaf paths with exactly one right branch, or
discrepancy, in them. In general, each iteration explores those paths with exactly £ discrepancies,
with k£ ranging from zero to the depth of the tree. The last iteration explores just the rightmost
branch. Under certain assumptions, one can show that LDS is likely to find a solution sooner than

a strict left-to-right depth-first search.

7.3 Intelligent Backtracking

One can improve the performance of brute-force backtracking using a number of techniques, such
as variable ordering, value ordering, backjumping, and forward checking.

The order in which variables are instantiated can have a large effect on the size of the search tree.
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Figure 6: Tree Generated to Solve Four Queens Problem
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The idea of variable ordering is to order the variables from most constrained to least constrained[9,
39]. For example, if a variable has only a single value remaining that is consistent with the previously
instantiated variables, it should be assigned that value immediately. In general, the variables should
be instantiated in increasing order of the size of their remaining domains. This can either be done
statically at the beginning of the search, or dynamically, reordering the remaining variables each
time a variable is assigned a new value.

The order in which the values of a given variable are chosen determines the order in which the
tree is searched. Since it doesn’t effect the size of the tree, it makes no difference if all solutions
are to be found. If only a single solution is required, however, value ordering can decrease the time
required to find a solution. In general, one should order the values from least constraining to most
constraining, in order to minimize the time required to find a first solution[5, 11].

An important idea, originally called backjumping, is that when an impass is reached, instead
of simply undoing the last decision made, the decision that actually caused the failure should be
modified [10]. For example, consider a three-variable problem where the variables are instantiated
in the order x,y,z. Assume that values have been chosen for both x and y, but that all possible
values for z conflict with the value chosen for xz. In pure backtracking, the value chosen for y would
be changed, and then all the possible values for z would be tested again, to no avail. A better
strategy in this case is to go back to the source of the failure, and change the value of z, before
trying different values for y.

When a variable is assigned a value, the idea of forward checking is to check each remaining
uninstantiated variable to make sure that there is at least one assignment for each of them that is

consistent with the previous assignments. If not, the original variable is assigned its next value.
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7.4 Constraint Recording

In a constraint-satisfaction problem, some constraints are explicitly specified, and others are implied
by the explicit constraints. Implicit constraints may be discovered either during backtracking
search, or in advance in a preprocessing phase. The idea of constraint recording is that once these
implicit constraints are discovered, they should be saved explicitly so that they don’t have to be
rediscovered.

A simple example of constraint recording in a preprocessing phase is called arc consistency|9, 27,
30]. For each pair of variables 2 and y that are related by a binary constraint, we remove from the
domain of z any values that do not have at least one corresponding consistent assignment to y, and
vice versa. In general, several iterations may be required to achieve complete arc consistency. Path
consistency is a generalization of arc consistency where instead of considering pairs of variables, we
examine triples of constrained variables. The effect of performing arc or path consistency before
backtracking is that the resulting search space can be dramatically reduced. In some cases, this

preprocessing of the constraints can eliminate the need for search entirely.

7.5 Heuristic Repair

Backtracking searches a space of consistent partial assignments to variables, in the sense that all
constraints among instantiated variables are satisfied, looking for a complete consistent assignment
to the variables, or in other words a solution. An alternative approach is to search a space of
inconsistent but complete assignments to the variables, until a consistent complete assignment is
found. This approach is known as heuristic repair[29]. For example, in the Fight Queens problem,
this amounts to placing all eight queens on the board at the same time, and moving the queens one
at a time until a solution is found. The natural heuristic, called min-conflicts, is to move a queen

that is in conflict with the most other queens, and move it to a position where it conflicts with the

30



fewest other queens.

What is surprising about this simple strategy is how well it performs, relative to backtrack-
ing. While backtracking techniques can solve on the order of hundred-queen problems, heuristic
repair can solve million-queen problems, often with only about 50 individual queen moves! This
strategy has been extensively explored in the context of boolean satisfiability, where it is referred
to as GSAT[42]. GSAT can satisfy difficult formulas with several thousand variables, whereas the
best backtracking-based approach, the Davis-Putnam algorithm[2] with unit propagation, can only
satisgy difficult forumulas with several hundred variables.

The main drawback of this approach is that it is not complete, in that it is not guaranteed to
find a solution in a finite amount of time, even if one exists. If there is no solution, these algorithms
will run forever, whereas backtracking will eventually discover that a problem is not solvable.

While constraint-satisfaction problems appear somewhat different from single-agent path-finding
problems and two-player games, the is a strong similarity among the algorithms employed. For ex-
ample, backtracking can be viewed as a form of branch-and-bound, where a node is pruned when
a constraint is violated. Similarly, heuristic repair can be viewed as a heuristic search where the
evaluation function is the total number of constraints that are violated, and the goal is to find a

state with zero constraint violations.

8 Research Issues and Summary

8.1 Research Issues

The primary research problem in this area is the development of faster algorithms. All the above
algorithms are limited by efficiency either in the size of problems that they can solve optimally, or

in the quality of the decisions or solutions they can compute within practical computational limits.
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Thus, there is a continual demand for faster algorithms.

A related research area is the development of space-efficient algorithms[23]. While the exponential-
space algorithms are clearly impractical, the linear-space algorithms use very little of the memory
available on current machines. The primary issue here is given a fixed amount of memory, how to
make the best use of it to speed up a search as much as possible. In a two-player game search, the
extra memory is used primarily in the transposition table. In single-agent path-finding problems,
one of the most effective uses of additional memory is a form of bidirectional search known as
perimeter search[7, 28, 15]. The idea is to search breadth-first backward from the goal state until
memory is nearly exhausted. Then, the forward search proceeds until it encounters a state on the
perimeter of the backward search. The main advantage to this approach is that the nodes on the
perimeter can be used to refine the heuristic estimates in the forward search.

Another research area is the development of parallel search algorithms. Most search algorithms
have a tremendous amount of potential parallelism, since the basic step of node generation and
evaluation is often performed billions of times. As a result, many such algorithms are readily
parallelized with nearly linear speedups. The algorithms that are difficult to parallelize are branch-
and-bound algorithms, such as alpha-beta pruning, because the results of searching one part of the
tree determine whether another part of the tree needs to be examined at all.

Since the performance of a search algorithm depends critically on the quality of the heuristic
evaluation function, another important research area is the automatic generation of such functions.
This was pioneered in the area of two-player games by Arthur Samuel’s landmark checkers program
that learned to improve its evaluation function through repeated play[41]. In the area of single-
agent problems, a dominant theory is that the exact cost of a solution to a simplified version of
a problem can be used as an admissible heuristic evaluation function for the original problem[33].

For example, in the sliding-tile puzzles, if we remove the constraint that a tile can only be slid into
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the blank position, then any tile can be moved to any adjacent position at any time. The optimal
number of moves required to solve this simplified version of the problem is the manhattan distance,
which is an admissible heuristic for the original problem. Automating this approach, however, is
still a research problem[38].

Another important research area is the development of selective search algorithms for two-player
games. Despite the fact that it can evaluate 100 million chess positions per second, DeepBlue still
lost to Gary Kasparov, a mere human. Obviously, humans are much more selective in their choices
of what positions to examine. The development of alternatives to full-width, fixed-depth minimax
search is an active area of research. See [24] for one example of a selective search algorithm, along

with pointers to other work in this area.

8.2 Summary

We have described search algorithms for three different classes of problems. In the first, single-
agent path-finding problem, the task is to find a sequence of operators that map an initial state
to a desired goal state. Much of the work in this area has focussed on finding optimal solutions to
such problems, often making use of admissible heuristic functions to speed up the search without
sacrificing optimality. In the second area, two-player games, finding optimal solutions is infeasible,
and research has focussed on algorithms for making the best move decision possible given a limited
amount of computing time. This approach has also been applied to single-agent problems as well.
In the third class of problems, constraint-satisfaction problems, the task is to find a state that
satisfies a set of constraints. While all three of these types of problems are different, the same set

of ideas, such as brute-force searches and heuristic evaluation functions, can be applied to all three.
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9 Defining Terms

Admissible: A heuristic is said to be admissible if it never overestimates actual distance from a
given state to a goal. An algorithm is said to be admissible if it always finds an optimal solution
to a problem if one exists.

Branching factor: The average number of children of a node in a problem-space graph.

Constraint-satisfaction problem: A problem where the task is to identify a state that
satisfies a set of constraints.

Depth: The length of a shortest path from the initial state to a goal state.

Heuristic evaluation function: A function from a state to a number. In a single-agent
problem, it estimates the distance from the state to a goal. In a two-player game, it estimates the
merit of the position with respect to one player.

Node expansion: Generating all the children of a given state.

Node generation: Creating the data structure that corresponds to a problem state.

Operator: An action that maps one state into another state, such as a twist of Rubik’s Cube.

Problem instance: A problem space together with an initial state of the problem and a
desired set of goal states.

Problem space: A theoretical construct in which a search takes place, consisting of a set of
states and a set of operators.

Problem-space graph: A graphical representation of a problem space, where states are rep-
resented by nodes, and operators are represented by edges.

Search: A trial-and-error exploration of alternative solutions to a problem, often systematic.

Search tree: A problem-space graph with no cycles.

Single-agent path-finding problem: A problem where the task is to find a sequence of

operators that map an initial state to a goal state.
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State: A configuration of a problem, such as the arrangement of the parts of a Rubik’s Cube

at a given point in time.
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10 Further Information

The classic reference in this area is [33]. More recent survey articles include [34], [19], and [21].
Much of the material in this article was derived from these sources. A number of papers have
been collected in an edited volume devoted to search[16]. The most recent book-length treatment
of this area is [1]. Most new research in this area initially appears in the Proceedings of the
National Conference on Artificial Intelligence (AAAT) or the Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). Prominent journals in this area include Artificial
Intelligence, and the IEEFE Transactions on Pattern Analysis and Machine Intelligence (IEEE

TPAMI).
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