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Purpose of the Course
CS 70 is a course designed as an alternative to Math 55. In comparison to Math 55, we will focus on fewer
topics, and the topics covered will be motivated by computational tasks. We hope to make the course more
relevant to CS students and hence to instill a deeper and longer-lasting understanding of the underlying
mathematics.

What we want to teach:

• Precise, reliable, powerful thinking:
will allow you to use and develop more complex and subtle ideas in CS, well beyond the obvious
“brute force” approach to every problem, and will help you to avoid silly errors on all your CS final
exams.

• The ability to state and prove nontrivial facts, in particular about programs:
will enable you to write rigorously correct programs, which in turn provide solid building blocks for
ever-more-complex yet still reliable systems;

• Mathematical foundations and ideas useful throughout CS:
will provide familiarity with logic, inductively defined structures, integer and polynomial arithmetic,
and probabilities—concepts that underly all of the more advanced courses in CS.

Course outline (abbreviated).

• Propositions and Proofs

• Mathematical Induction: recursion, the stable marriage problem

• Propositional Logic: automated proof and problem-solving

• Arithmetic Algorithms: gcd, primality testing, the RSA cryptosystem

• Polynomials and their Applications: error-correcting codes, secret sharing

• Probability and Probabilistic Algorithms: load balancing, hashing, probabilistic constructions, condi-
tional probability Bayesian inference

• Diagonalization, Self-Reference, and Uncomputability

Propositions and Proofs
Many of the unenlightened believe proofs to be pointless formal exercises in guessing a way through a maze
to reach a 2,400-year-old fortune cookie.

Far from it. We all like to say things:
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“This encryption system cannot be broken”
“My program works efficiently in all cases”
“There are no circumstances under which I would lie to Congress”
“It is inconceivable that our legal system would execute an innocent person”

and so on. Few of us like to say things that turn out to be false. Proof means never having to say you’re
sorry—it provides a means for guaranteeing your claims once and for all.1 What we would like to do now
is to make these concepts more precise. (Most discrete mathematics courses just get on with doing proofs;
this isn’t a bad idea, but does skip over some important concepts.)

Proofs in mathematics and computer science (as opposed to law and politics) require a precisely stated
proposition to be proved.

A proposition is a sentence that is either true or false.2PROPOSITION

A theorem, informally speaking, is a proposition that is guaranteed by a proof.THEOREM

Examples of propositions:

(1a) Some mammals lay eggs. (1b) Some mammals have feathers.
(2) The acceleration of a rigid body is proportional to the force applied.
(3) The angles of a triangle add up to 180 degrees.
(4) For all nonnegative integers n, n2 +n+41 is prime.
(5) For all integers n, if n > 2 then there are no positive integers a, b, c such that an +bn = cn.
(6) For every even integer n > 2, there are two primes a and b such that a+b = n.

It is important to note that every proposition is true or false with respect to a possible world. A world (or aWORLD

model in logical terminology) is, conversely, something with respect to which every proposition of interestMODEL

is either true or false—that is, it is completely specified.

For physics, chemistry, biology, etc., which are empirical sciences, we are usually interested in truth with
respect to the real world—the one we actually live in. But of course, we don’t know which one that is. For
example, (1a) happens to be true in the real world, but could easily have been otherwise; whereas (1b) may
or may not be true. [Exercise: what could we mean by this? Could one prove that (1b) is false?]

(2) is one of Newton’s laws. It was assumed to be incontrovertibly true for many years, and many explana-
tions were given for why it could not possibly be otherwise; but it is in fact false in the real world.3

Now mathematicians, physicists, and engineers have been proving theorems in Newtonian mechanics for
centuries and continue to do so. As a matter of physical fact, most of these theorems are false in the real
world. They are, however, still theorems in Newtonian mechanics. An incorrect proof is not a proof, but a
false theorem may still be a theorem provided it follows logically from a specified set of axioms. An axiomAXIOMS

is a proposition that is assumed to be true without proof. In Newtonian mechanics, Newton’s laws are taken
as axiomatic.

Proof, therefore, is a means of showing that a theorem follows logically from a set of axioms.PROOF

1“What about incorrect proofs?” you may ask. An incorrect proof is not a proof, any more than artificial grass is grass.
2Sentences that are not propositions include questions and commands—these cannot be true or false, although they can be

perceptive or absurd.
3Many people state that Newton’s laws were disproved by Einstein. This is not the case; Einstein merely proposed laws that are

inconsistent with Newton’s. Empirical laws such as Newton’s can only be disproved by observations or by discovering an internal
inconsistency.
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Now we have to explain what is meant by “follows logically.”

A proposition B follows logically from another proposition A if B is true in all possible worldsFOLLOWS LOGICALLY

in which A is true.

This relationship is often written as A |= B, which can be pronounced “A logically entails B.” If one draws
a picture of the set of worlds where A holds and the set of worlds where B holds, the set where A holds will
be contained within the set where B holds whenever A |= B. More mathematically, let M(A) be the set of
worlds where A holds and M(B) the set of worlds where B holds (we call these worlds the models of A andMODELS

B). Then

A |= B if and only if M(A) ⊆ M(B)

This relationship is shown in Figure 1(a). The direction of the ⊆ may be somewhat counterintuitive: nor-
mally we think of A being “stronger” or “bigger” than B if A entails B. One route to reain intuition is to
remember that every axiom added to A reduces the set of possible worlds where A holds, so makes it more
feasible for this set to be contained within the set of B-worlds (Figure 1(b)).

M(A)

M(B)
M(B)

M(A)

M(A’)

(a) (b)

Figure 1: (a) A entails B iff B is true in every world where A is true. (b) Adding axioms to A to make A′

reduces the set of possible worlds; the figure shows a case where this allows A′ to entail B.

We said earlier that a proof guarantees a proposition. More precisely, using the definition of logical entail-
ment, we see that a proof guarantees the truth of a theorem to the extent that the axioms themselves are true.
We will see in the next section some of the methods by which this guarantee is provided.

Let us return to the consideration of the propositions in our list above. Proposition (3), “The angles of a
triangle add up to 180 degrees,” is one of Euclid’s axioms. It is simply postulated to be true. In fact, it is true
only in planar geometry. A triangle inscribed on the surface of a sphere can violate the axiom; and general
relativity says that space itself is curved, so geometries violating the axiom are actually more realistic. As
with Newtonian mechanics, the theorems that Euclid (and many generations of schoolchildren after him)
derived are true only in an idealized “flat” universe.

When we come to purely mathematical propositions, the situation is a little different: mathematical axioms
are taken as defining the world under discussion rather than attempting to describe it. For example, Peano’s
axioms define what it means to be a natural number (nonnegative integer):

0 is a natural number
If n is a natural number, s(n) is a natural number
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where s(·) is the successor function. We usually write s(0) as 1, s(s(0)) as 2, and so on. From this simple
beginning, we can build up more definitions—addition, multiplication, subtraction, division, prime numbers,
and so on. Theorems in mathematics are (usually) true because the axioms of mathematics are (usually) true
by definition.4 Mathematical texts usually talk about proving that a proposition is true or false, which is
really shorthand for “entailed by the standard axioms” or “inconsistent with the standard axioms.” We will
do the same thing, but we will try to be careful about citing the axioms that are required. Why do this?
First, it’s a good practice because it eliminates some errors that occur when one accidentally invokes a false
axiom; second, it often reveals opportunities to prove a more general theorem because some axioms may
not be required for the proof; and third, the axioms you’re relying on may later turn out to be inconsistent,
so it’s good to keep a record. (This third possibility is extremely unlikely for most of the proofs we will do.)

Logical Connectives
We can form new propositions out of existing propositions in several ways. Here are few. Let P,Q be
arbitrary propositions in what follows.

Negation: ¬P is the proposition “not P”, which is true if P is false.

Disjunction: P∨Q is the proposition “P or Q”, which is true if at least one of P or Q is true.

Conjunction: P∧Q is the proposition “P and Q”, which is true if at both of P or Q is true.

Implication: P =⇒ Q is the proposition “P implies Q”, which is true if P is false or if Q is true.

See also Table 1 for a definition of these operators.

Note that these operators may be combined multiple times to build a complex compound proposition. For
instance, P∨¬(P =⇒ Q) is a valid proposition if P and Q are; it is true if and only if P is true.

Predicates
Sometimes we have a collection of propositions. For instance, consider the list of propositions:

A = “02 +0+41 is prime”

B = “12 +1+41 is prime”

C = “22 +2+41 is prime”

D = “32 +3+41 is prime”
...

Listing this family of propositions quickly gets tedious, not to mention the problem of running out of letters
for these propositions. Therefore, it is useful to have a notion of a function that, given a natural number n,
produces a proposition that states something about n. A standard name for this is a predicate.

A predicate P is a function mapping each n to a proposition P(n) that depends on n in somePREDICATE

way.

4We say “usually” because occasionally a proposed set of axioms for some part of mathematics is shown to be inconsistent—that
is, self-contradictory—and therefore cannot be true.
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For instance, with the above example, we might define a predicate P by

P(n) = “n2 +n+41 is prime”.

Then P(17) acts as short-hand for the proposition that 172 + 17 + 41 is prime. This is a useful way of
grouping an infinite collection of propositions.

Note that if P is a predicate, whether it is true or not depends on the value of n. P(17) might be true but
P(18) might be false. For any specified value of n, P(n) is a proposition that is either true or false.

Of course, we can apply any of the standard logical operators to predicates as well. For instance, if P(n) and
Q(n) are predicates, then P(n)∨Q(n) denotes a predicate that is true at the values of n where either P(n) is
true or Q(n) is true.

Quantifiers
At this point, we’ll introduce a little bit more notation. Let us write proposition (4) as

(4) ∀n . n2 +n+41 is prime

The ∀ symbol is the universal quantifier; here, it binds the variable n, and means “for all n . . .” StrictlyUNIVERSAL
QUANTIFIER

speaking, the proposition should be written

(4) ∀n ∈ N . n2 +n+41 is prime

where N is the set of natural numbers. This qualification is too often omitted when the context makes it only
somewhat obvious. In general, if P is a predicate, then ∀n ∈ N . P(n) is a proposition that is either true or
false.

How does one prove a universally quantified statement? We can check that it is true for lots of examples:
n = 0, n = 1, and so on all the way up to n = 39. Does this constitute a proof? Of course not! The
proposition is false because 402 + 40 + 41 is not prime. In other words, P(40) is false. The case n = 40 is
called a counterexample for the proposition.COUNTEREXAMPLE

Proposition (5) is Fermat’s last theorem. It has been known for over 300 years, and called a theorem for
much of that time because Fermat claimed to have a proof and no counterexample was ever found. It recently
became a proper theorem when Andrew Wiles developed a proof (several hundred pages long).

Proposition (6) is Goldbach’s conjecture. A conjecture is a proposition that has not been proved or dis-CONJECTURE

proved. Using quantifier notation, it is written

∀n . if n is even then ∃a,b such that a and b are prime and a+b = n

Here, ∃ is the existential quantifier, meaning “For some . . .” or “There exists . . .”. For any particular n,EXISTENTIAL
QUANTIFIER

the existentially quantified statement can be proved simply by finding any particular a and b, whereas of
course the universal quantification over n cannot be proved by exhibiting examples. It can be disproved
by exhibiting a counterexample, but none has been found despite testing up to enormous values of n; we
suspect the conjecture is true.

One may say, “Surely something so simple ought to be provable easily!” But Fermat’s last theorem has
turned out (so far) to have a very complex proof; and Kurt Gödel’s famous Incompleteness Theorem showed
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P Q ¬P P∧Q P∨Q P =⇒ Q P ⇔ Q
False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

Table 1: Truth-table definitions of the standard logical operators.

that there are true propositions that have no proof in arithmetic. Unfortunately there is also no way to tell if
Goldbach’s conjecture is one of those.5

In general, if P is a predicate, then the proposition ∃n ∈ N . P(n) can be proven true by a simple example
of n such that P(n) is true, but disproving it requires showing that P(n) is false for all n. In comparison,
proving the proposition ∀n ∈ N . P(n) true requires showing that P(n) is true for all n, where disproving it
can be done easily by finding a single counterexample, i.e., a value of n such that P(n) is false.

A universally quantified proposition is very much like a lengthy conjunction. For instance, define the set
S = {1,2,3,4}. Then the proposition ∀x∈ S . P(x) is equivalent to the proposition P(1)∧P(2)∧P(3)∧P(4).
Likewise, existentially quantified propositions are much like a disjunction, and ∃x ∈ S . P(x) is equivalent
to P(1)∨P(2)∨P(3)∨P(4).

We have gone on long enough about propositions and proofs. Let’s start proving some propositions.

Proof by enumeration
We begin with a very simple proof method based on the definition of logical entailment. Consider the
following trivial example:

Given: Roses are red and violets are blue
Prove: Roses are red.

This is “obviously correct” because of the meaning of “and.” A proposition “P and Q,” which in mathemat-
ical notation is written P∧Q, is true just when P is true and Q is true. Thus, we can view “∧” as an operator
that constructs a complex proposition called a conjunction out of two simple ones. This operator is definedCONJUNCTION

by the truth value of the complex proposition for all possible truth values of its constituents, as shown in
Table 1.

To prove formally that roses are red (P), given that roses are red and violets are blue (P∧Q), we first identify
all the possible cases where P∧Q is true. There is just one such case, namely the fourth line of the table.
And indeed, in that case, “roses are red” (P) is also true. This completes the proof.

Duh. This seems rather daft, but actually it illustrates very well the fundamental concept of formal proof by
enumeration of possible cases. We will see later in the course that the same basic idea can be instantiated in
a program that performs feats of deduction well beyond the powers of human beings.

Proof by enumeration is tedious beyond belief, so we’ll look at only one more case:

Given: If Dewey isn’t elected, then I’ll eat my hat
Dewey isn’t elected

Prove: I’ll eat my hat

5Gödel’s Incompleteness Theorem is not generally a good excuse for being unable to find a proof in a homework question.
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The first sentence here has the form of an implication. In mathematical notation, this is written as P =⇒ Q.IMPLICATION

The truth table for “ =⇒ ” is given in Table 1. Notice that the implication P =⇒ Q is only false in the case
where its antecedent P is true and its consequent Q is false. The implication is true in those cases whereANTECEDENT

CONSEQUENT
the antecedent is false. This is fine, because in such cases the implication simply doesn’t apply.

Proof: First, we identify all those cases where P =⇒ Q and P are both true. There is just one such case,
namely the fourth line of the table. And indeed, in that case, “I’ll eat my hat” (Q) is also true. 2

Notice the 2 marking the end of a proof.6 Some people like to read texts and papers just looking at the
parts between the “Proof:” and the 2, regarding the ordinary text as useless filler. Other people do the exact
opposite, regarding the proof text as tedious detail. You can usually guess which category a person belongs
to.

Proof by application of inference rules
Notice that, once we have done a proof by enumeration, we can extract a general pattern called an inference
rule. One of the patterns in the preceding section wasINFERENCE RULE

For any propositions P and Q, the proposition P can be inferred from the proposition P∧Q.

This can also be written using the following notation:

P∧Q
P

(and-elim)

This is an inference rule. The propositions above the line are the hypotheses (assumptions). If all thoseINFERENCE RULE

hypotheses are known to be true, then the inference rule tells us that we can safely conclude that the propo-
sitions below the line are true, too. Inference rules are often shown with a short version of their name next
to them; the above is called and-elimination.AND-ELIMINATION

Another pattern from the preceeding section was:

For any propositions P and Q, the proposition Q can be inferred from the propositions P and
P =⇒ Q.

This can be written as the following inference rule:

P, P =⇒ Q
Q

(modus ponens)

This is called modus ponens (Latin for “placing method”) and is one of the most common steps used inMODUS PONENS

proofs. Notice that this particular rule has two hypotheses (one is P, the other is P =⇒ Q); beware that
both must be satisfied before we can apply the inference rule to conclude Q. There are many more such
rules. See Figure 2 for a listing. You can easily convince yourself of the correctness of these inference rules
through a proof by enumeration.

Rules can be chained together. For example, if we know A∧B and B =⇒ C, we can apply and-elimination
to derive B and then modus ponens to derive C. A full truth-table proof would require eight rows to handle
the three propositions.

6In better days, people wrote QED instead, standing for for quod erat demonstrandum—Latin for which was the thing to be
demonstrated.
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P∧Q
P

(and-elim)
P

P∨Q
(or-intr)

P∧Q
Q

(and-elim)
Q

P∨Q
(or-intr)

P, Q
P∧Q

(and-intr)
P∨¬P

(excluded middle)

P∨Q, ¬P
Q

(or-elim)
P∨Q, ¬Q

P
(or-elim)

P =⇒ Q, P
Q

(modus ponens)
P, ¬P

Q
(contra)

P =⇒ Q, ¬Q
¬P

(modus tollens)
P =⇒ Q, R =⇒ S
(P∨R) =⇒ (Q∨S)

P =⇒ Q, Q =⇒ R
P =⇒ R

(trans)

Figure 2: Several useful inference rules.

Also, there are a number of equivalences that are useful in manipulating logical expressions. For instance,
the proposition P is equivalent to the proposition ¬(¬P), by which we mean P is true if and only if ¬(¬P)
is. We will write this equivalence as P ≡ ¬(¬P). See Figure 3 for a listing of useful equivalences. One
can freely replace a logical expression by anything it is equivalent to. You can convince yourself of their
correctness through a proof by enumeration. Each equivalence leads to an inference rule: for instance, the

equivalence P ≡ ¬(¬P) yields the inference rules
P

¬(¬P)
and

¬(¬P)

P
.

Proof by contrapositive
Consider the propositions

If John is at work, he’s logged in.
If John isn’t logged in, he’s not at work.

Clearly, each of these propositions can be proved from the other. They are logically equivalent propositions—LOGICALLY
EQUIVALENT

that is, their truth values are the same in all possible worlds. Writing the first as P =⇒ Q and the second as
¬Q =⇒ ¬P (where we have used the negation symbol ¬), it is easy to verify this equivalence using truthNEGATION

tables. (We will see many such equivalences in later lectures.)

The proposition ¬Q =⇒ ¬P is the contrapositive of P =⇒ Q. (This is not to be confused with theCONTRAPOSITIVE

converse, which is Q =⇒ P and is not equivalent.) Proof by contrapositive (also called indirect proof)CONVERSE

means proving that P =⇒ Q by proving ¬Q =⇒ ¬P instead. Since the two are equivalent, proving one of
them automatically establishes the other. Here is a very simple example:

Theorem 1.1: For any integer n, if n2 is even then n is even.

Proof: We will prove the contrapositive: if n is odd then n2 is odd.

1. If n is odd, then (by definition) n=2a+1 for some integer a.
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¬(¬P) ≡ P

P∧P ≡ P

P∨P ≡ P

P∧Q ≡ Q∧P

P∨Q ≡ Q∨P

(P∧Q)∧R ≡ P∧ (Q∧R)

(P∨Q)∨R ≡ P∨ (Q∨R)

(P∧Q)∨R ≡ (P∨R)∧ (Q∨R)

(P∨Q)∧R ≡ (P∧R)∨ (Q∧R)

¬(P∧Q) ≡ ¬P∨¬Q

¬(P∨Q) ≡ ¬P∧¬Q

P∨ (P∧Q) ≡ P

P∧ (P∨Q) ≡ P

P =⇒ Q ≡ ¬P∨Q

P =⇒ Q ≡ ¬Q =⇒ ¬P

¬∀x ∈ S . P(x) ≡ ∃x ∈ S . ¬P(x)

¬∃x ∈ S . P(x) ≡ ∀x ∈ S . ¬P(x)

Figure 3: Several useful logical equivalences.

2. For any numbers x and y, we know that x=y =⇒ x2 = y2. Hence

n2 = (2a+1)2 = 4a2 +4a+1 = 2(2a2 +2a)+1

3. Since a is an integer, (2a2 +2a) is an integer.

4. Hence (by the definition of oddness), n2 is odd.

2

Non-proof
Failure to note the justification for each step can lead easily to non-proofs. Consider the following example.

Theorem 1.2: (not!) 1 = −1

Proof: 1 =
√

1 =
√

(−1)(−1) =
√
−1

√
−1 =

√
−1

2
= −1 2

Presumably, at least one of these steps is false. But each one (presumably) looked “reasonable” to the author
of the proof. Writing out the full justifying axioms for each step quickly reveals an axiom that is false: it is
simply untrue that, for any numbers x and y,

√
xy=

√
x
√

y.

Other classic errors:

• Dividing both sides of an equation by a variable. For example:

ax = bx hence a = b
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The “axiom” to which this step implicitly appeals is false, because if x = 0 the claim a = b does not
follow. Some extra work may be needed to prove x 6= 0.

• Dividing both sides of an inequality by a variable. This is even worse! For example:

ax < bx hence a < b

Here the claim a < b is false if x < 0, and unproven if x = 0.

Proof by cases
Sometimes we don’t know which of a set of possible cases is true, but we know that at least one of the cases
is true. If we can prove our result in each of the cases, then we have a proof. The English phrase “damned
if you do and damned if you don’t” sums up this proof method. Here’s a nice example:

Theorem 1.3: For some irrational numbers x and y, xy is rational.

Proof:

1. Since the theorem is existentially quantified, we need only prove the existence of at least one example.
Consider the case x =

√
2 and y =

√
2. It must be true that

(a)
√

2
√

2
is rational

or (b)
√

2
√

2
is irrational.

2. In case (a), we have shown irrational numbers x and y such that xy is rational.

3. In case (b), consider the values x =
√

2
√

2
and y =

√
2. We have

xy = (
√

2
√

2
)
√

2

=
√

2
√

2
√

2
by the axiom (xy)z = xyz

=
√

2
2
= 2

Hence we have shown irrational numbers x and y such that xy is rational.

4. Since one of cases (a) and (b) must be true, it follows that for some irrational numbers x and y, xy is
rational.

2

Notice that even after the proof, we still don’t know which of the two cases is true, so we can’t actually
exhibit any irrational numbers satisfying the theorem. This is an example of a nonconstructive proof, oneNONCONSTRUCTIVE

in which an existential theorem is proved without constructing an example.
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Proof by contradiction
Also called reductio ad absurdum (reduction to an absurd thing), proof by contradiction is closely related
to proof by contrapositive. The idea is to assume the opposite of what one is trying to prove and then show
that, when combined with the axioms, this leads to a contradiction.

Consider the following example. A rational number is a number that can be expressed as the ratio of twoRATIONAL NUMBER

integers. For example, 2/3, 3/5, and 9/16 are all rationals. The reduced form of a rational is a fraction inREDUCED FORM

which the numerator and denominator share no factors other than 1. For example, the reduced form of 3/6
is 1/2. Note that any number with a finite or recurring decimal representation is a rational.

Theorem 1.4:
√

2 is irrational.

Proof:

1. Assume
√

2 is rational.

2. By the definition of rational numbers, there are integers a and b with no common factor other than 1,
such that

√
2 = a/b.

3. For any numbers x and y, we know that x=y =⇒ x2 = y2. Hence 2 = a2/b2.

4. Multiplying both sides by b2, we have a2 = 2b2.

5. b is an integer, hence b2 is an integer, hence a2 is even (by the definition of evenness).

6. Hence, by the theorem proved earlier, a is even.

7. Hence, by the definition of evenness, there is an integer c such that a = 2c.

8. Hence 2b2 = 4c2, hence b2 = 2c2.

9. Since c is an integer, c2 is an integer, hence b2 is even.

10. Hence, by the theorem proved earlier, b is even.

11. Hence a and b have a common factor 2, contradicting step 1.

12. Hence, step 1 is false, i.e.,
√

2 is irrational.

2

Style and substance in proofs
Our proofs justify each step by appealing to a definition or general axiom. The depth to which one must
do this in practice is a matter of taste. For example, we could break down the step, “Since a is an integer,
(2a2 + 2a) is an integer,” into several more steps. [Exercise: what are they?] A justification can be stated
without proof only if you are absolutely confident that (1) it is correct and (2) the reader will automatically
agree that it is correct.

Notice that in the proof that
√

2 is irrational, we used the earlier result, “For any integer n, if n2 is even then
n is even,” twice. This suggests that it may be a useful fact in many proofs. A subsidiary result that is useful
in a more complex proof is called a lemma. It is often a good idea to break down a long proof into severalLEMMA
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lemmata. This is similar to the way in which large programming tasks should be divided up into smaller
subroutines. Furthermore, make each lemma (like each subroutine) as general as possible so it can be reused
elsewhere.

The dividing line between lemmata and theorems is not clear-cut. Usually, when writing a paper, the the-
orems are those propositions that you want to “export” from the paper to the rest of the world, whereas
the lemmata are propositions used in the proofs of your theorems. There are, however, some lemmata (for
example, the Pumping Lemma and the Lifting Lemma) that are perhaps more famous and important than
the theorems they were used to prove.

For further reading on proofs and proof style, see the paper by De Millo, Lipton, and Perlis, “Social processes
and proofs of theorems and programs,” In Communications of the ACM, May 1979, vol.22, , pp. 271–80.
Also Don Knuth’s Mathematical Writing, Mathematical Association of America, 1989.

CS 70, Spring 2005, Notes 1 12


