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Introduction

This short work introduces the basics of discrete mathematics—in particular, sets, functions

and relations.  It is intended for beginning students of computer science.  They will find that a

knowledge of the concepts covered here will aid them in understanding many areas of

computer science, for instance, data types, databases, specification, functional and logic

programming.

This material was written as lecture notes to accompany a short course on Discrete Mathematics

given to first-year students in the Department of Computing at Imperial College.  The work is

self-contained, though rather concise.  I shall be grateful if any inaccuracies are brought to my

notice.

These notes are pitched at a fairly abstract level.  Abstraction is a powerful tool for the

computer scientist, as it allows us to focus on what is important by removing the irrelevant,

and thereby make sense of the mass of information associated with a given problem.  It allows

us to solve a class of problems once for all, instead of having to perform similar reasoning on

each of the individual problems.  However it can be intimidating to deal with abstract objects

until they become more familiar.  If at any point things seem to be getting “too abstract” (too

many x's and y's), the reader is recommended to make them more concrete by thinking of a

particular example, or series of examples.

Further Reading

J.L. Gersting, Mathematical Structures for Computer Science, 3rd ed., Freeman 1993.

B.T. Denvir, Introduction to Discrete Mathematics for Software Engineering, Macmillan 1986.

J.K. Truss, Discrete Mathematics for Computer Scientists, Addison-Wesley 1991.

Many other books cover the material and are suitable.
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Discrete Mathematics

1. Sets

For the moment assume that sets are formed from a pool of individuals, which are thought of

as single and indivisible.  A set is a collection of such individuals.  We write x∈A to mean that

individual x is a member of the set A.  x∉A means that x is not a member of A, in other words

¬(x∈A).

There is a clear correspondence between sets and types in a language such as Miranda.  For

instance in Miranda there is a predefined type bool (the Booleans, or truth values), and there

are two values of type bool, called True and False.  We can regard bool as being the set with

members True, False, which we write {True, False}.  Where in Miranda we might write

True::bool, in set notation we write True∈bool.

1.1 Equality.

Whenever we introduce a structure (in this case sets), an important part of knowing what we

mean is to know when two objects of the structure are equal, in other words denote the same

thing.  Assume that we know when two individuals are equal.  When are two sets equal?

Extensionality.  Sets are quite transparent; they are nothing more or less than what they

contain.

The Principle of Extensionality: A set is determined by its extension, i.e. its members.

So two sets are equal if they contain the same objects:

For any sets A,B, A=B if and only if

for every individual x  (x∈A ⇔ x∈B)

1.2 Subsets.

DEFINITION.  Let A, B be any two sets.  Then A is a subset of B iff  for every x (x∈A ⇒
x∈B)

Notation:  A ⊆ B.

REMARKS (1) We can use a quite general argument: Assume we know A ⊆ B and a∈A.  Then

a∈B.

For instance, if we know rodents ⊆ mammals and squirrel∈rodents, then we can deduce

squirrel∈mammals.

(2) The principle of extensionality tells us that
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A=B  iff A ⊆ B and B ⊆ A

PROPOSITION.  Let A,B,C be sets.  If A ⊆ B and B ⊆ C then A ⊆ C.

Proof  Assume A ⊆ B and B ⊆ C.  Take any a∈A.  We must show a∈C.  But A ⊆ B.  Hence

a∈B.  Also B ⊆ C.  Hence a∈C as required.

1.3 Defining sets.

There are two basic ways:

(1) Enumeration.  Just list the elements within braces {}.

For instance {cat,dog}

points = {N,S,E,W}

N  = {0,1,2,...}

N  is of course an infinite set (the “natural numbers”).  The “...” indicates that the remaining

elements are enumerated by some rule (in this case “add one to the previous number”).  Notice

that {dog, cat} and {cat, dog, cat} are the same sets as {cat, dog}, by extensionality.  It does

not matter if we change the order or repeat elements.

(2) Comprehension. Define a set by the property its members possess.  Let P(x) be some

property, which we here think of as a predicate which may or may not hold for various values

of x.  Then the corresponding set is all those individuals x for which P(x) holds.

Notation {x | P(x)}  or {x: P(x)}

EXAMPLE {x | x is a prime number}

We can also define sets as subsets of sets we already know about: {x∈A | P(x)} means the set

of all those members x of A for which P(x).  It is equivalent to {x | x∈A & P(x)}.

EXAMPLE Primes = {x∈N  | x is prime}

Notice that the empty (or null) set ∅ can be defined by comprehension:

∅ = {x | false}

We shall also use the notation {}.

REMARK  The use of completely unrestricted comprehension has the problem that contradictory

or paradoxical sets can be defined (such as the Russell set of all those sets which are not

members of themselves).  There are ways round this, and it need not worry us here.
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1.4 Operators on sets.

As well as defining sets directly we can also build them up from sets already defined.

Union A ∪ B = {x| x∈A or x∈B}

Intersection A ∩ B = {x| x∈A and x∈B}

Difference A-B = {x | x∈A and x∉B}

Symmetric difference A ∆ B = (A-B) ∪ (B-A)

Clearly A∩B ⊆ Α ⊆ Α∪B.

DEFINITION.  Two sets A,B are disjoint iff A∩B = ∅.

Notice that Α∪B is the union of three disjoint sets: A-B, B-A, A∩B.

DEFINITION.  For any finite set A, the cardinality of A is the number of elements contained in

A.

Notation:  |A|

PROPOSITION.  Let A,B be any finite sets.  Then  |Α∪B| = |A| + |B| - |A∩B|

So if A,B are disjoint then |Α∪B| = |A| + |B|.

Notice that it does not make sense to write e.g. |A| ∪ |B|, since |A| and |B| are numbers, not

sets.

1.5 Laws on operators and counterexamples.

∪ ,∩,-, ∆ are all binary operators (they take two arguments).  They remind us of the

arithmetical operators +, ×,-, ÷.

There are two very convenient properties which a binary operator * can have:

DEFINITION.  A binary operator * is

commutative iff for all x,y,    x*y = y*x

associative iff for all x,y,z   (x*y)*z = x*(y*z)

If * is associative we can omit the brackets and write x*y*z.

Which of these laws hold for the arithmetical operators? It is well-known that + and × are

commutative and associative.  However - and ÷ are neither commutative nor associative.  To

see that - is not commutative it is enough to observe that 3-4 ≠ 4-3.  This is because since the
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commutativity property asserts that something is true for all numbers x,y, to disprove it it is

sufficient to produce one example where this fails.  This is known as a counterexample.  We

can produce a counterexample to show that - is not associative:

(3-4)-5 = -6

3-(4-5) = 4

EXERCISE.  Show that ÷ is neither commutative nor associative by providing counterexamples.

Other universal statements (those beginning “for all ...”) can be disproved by counterexample.

For instance to show that A ⊆ B fails (for some particular A,B), exhibit an individual a such

that a∈A but not a∈B.

DEFINITION.  A universal statement is a statement of the form “for all x, P(x)”, where P(x) is

some statement.  A counterexample is an individual a such that P(a) is false (in other words not

P(a)).

Turning to the set operators, one can show that ∪ and ∩ are both commutative and associative.

Let us check that ∪ is associative: Take any sets X,Y,Z.  We wish to show that (X∪Y)∪Z =

X∪(Y∪Z).  But

(X∪Y)∪Z = {x | x∈X∪Y or x∈Z} definition of ∪
= {x | (x∈X or x∈Y) or x∈Z} definition of ∪

X∪(Y∪Z) = {x | x∈X or (x∈Y or x∈Z)}

But we know that “or” is associative – it can be checked by truth tables that (A∨B)∨C ↔
A∨(B∨C).  Hence (X∪Y)∪Z = X∪(Y∪Z).  This could also have been shown by Venn

diagrams.

It is clear that ∪ and ∩ enjoy the same properties on sets that ∨ and ∧ have on propositions.

Two further laws on operators are of interest:

Distributivity.  In arithmetic we know

x × (y+z) = x × y + x × z

but in general

x + (y × z) ≠ (x+y) × (x+z)

We say that ×  distributes over + (from the left, though this is immaterial as here ×  is
commutative) but + does not distribute over × .

In the case of sets, for any A,B,C,
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A ∩ (B∪C) = (A∩B) ∪ (A∩C)

A ∪ (B∩C) = (A∪B) ∩ (A∪C)

This may be proved via translation into logic or by Venn diagrams.

Idempotence.  For any set A,  A∪A = A and A∩A = A.  We say that ∪ and ∩ are idempotent.

1.6 Other set forming operations.

Powerset.  Given any set A we can form a new set P(A) consisting of all the subsets of A:

P(A) = {X | X ⊆ A}

Notice that the elements of P(A) are sets.

EXAMPLE.  P({1,2}) = {∅,{1},{2},{1,2}}

PROPOSITION.  If A is a finite set and |A| = n then |P(A)| = 2n.

To see this let A = {a1,...,an}.  We form a subset X of A by taking each element ai in turn and

deciding whether or not to include it in X.  This gives us n independent choices between two

possibilities (in or out).  The number of different subsets we can form is therefore 2n (in other

words 2× ... ×2 [n times]).

In general there are mn ways of making n independent choices between m options.

Cartesian product..  An ordered pair (a,b) is a pair of objects a and b where the order matters.

Thus (a,b)≠(b,a) unless a=b.  Moreover (a,b) is different from {a,b}, since a set is unordered.

For any a,b,c,d,

(a,b)= (c,d)  iff a=c and b=d

DEFINITION.  For sets A,B the Cartesian product A×B is {(a,b) | a∈A and b∈B}

Notation:  We can write A2 instead of A×A.

EXAMPLES.  (1) The real plane 2.  Points are described by their coordinates (x,y)

(2) Computer marriage bureau.  Let M be the set of all men registered and W the set of all

women registered.  Then the set of all possible matches is M×W.

PROPOSITION.  If A,B are finite sets then |A×B| = |A|.|B|.

To see this, suppose A={a1,...,am}, B={b1,...,bn}.  Draw a table with m rows and n

columns of the members of A×B
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(a1,b1) (a1,b2)   ...

(a2,b1) (a2,b2)   ...

. . .

Such a table clearly has m.n entries.

We also want products of more than two sets.  For any n an n-tuple is a sequence (a1,...,an) of

n objects where the order (and any repeats) matter.  Thus

(a1,...,an) = (b1,...,bn)   iff   for i=1 to n, ai=bi

Given sets A1,...,An we can form the n-ary product A1×. . .×An, which is defined to be the set

of all n-tuples (a1,...,an) such that ai∈Ai  (i=1,...,n).  The product of A with itself n times is

written An.

EXAMPLES.  (1) 3-D space 3

(2) timetable = day × time × room × courseNo

A typical element:  (Monday,15.30,311,140)

PROPOSITION.  If A1,...,An are finite sets then |A1×. . .×An| = |A1|.|A2|... .|An|.

Products correspond exactly to the tuple types of Miranda.  For instance (num,char) is

Miranda's way of forming the product num× char.  Our timetable example might be rendered:

timetable ::=  (day, time, room, courseNo)

(Monday,15.30,311,140) :: timetable

There is also a connection with the record types of Modula.  Suppose we wish to have a

database which stores information about people.  An array will be unsuitable, since the

information, such as height, age, colour of eyes, date of birth, will be of different types.

Instead in Modula we can define

Person = RECORD

who: Name;

height: REAL;

age: [0..120];

eyeColour: Colour;

dateOfBirth: Date

  END

Such records are products:

Person = Name × REAL × [0..120] × Colour × Date
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Records can be nested, so that in the above example, we might have

Date = RECORD

day: [1..31];

month: [1..12];

year: [1900..1990]

END

REMARK.  We can now form the product of three sets in three different ways:

A × B × C (A × B) × C      A × (B × C)

These are all different strictly speaking, so that × as a binary operator is not associative.

However there is a clear correspondence between the elements

(a,b,c) ((a,b),c)          (a,(b,c))

so that the sets are in a sense equivalent.  Nevertheless they are structured differently.

EXAMPLE (Denvir).  Each person has three names, drawn from a set N.  We can represent the

full name either as

Name1 ::= (FirstName, SecondName, Surname)

i.e. N×N×N, or as

Name2 ::= (Forenames, Surname)

where

Forenames ::= (FirstName, SecondName)

i.e. (N×N)×N.  The information stored is clearly the same, but the structure is different.

1.7 Partitions

If we divide a set into non-overlapping chunks we get a partition of the set.

DEFINITION.  Let S be a set.  A partition of S is a family A1,...,An of subsets of S such that

• each Ai is non-empty

• the Ai cover S, that is, S = A1∪... ∪An
• the Ai are pairwise disjoint, that is, every pair of sets selected from them is disjoint:

if i≠j then Ai∩Aj = ∅

Notation:  It is sometimes convenient to write A1∪... ∪An as [i<nAi.

9



1. Sets

EXAMPLES.  (1) Humans are partitioned into male and female

(2) Integers are partitioned into even and odd

We shall return to partitions when discussing equivalence relations.

2. Relations

We wish to capture the concept of objects being related, e.g.

John loves  Mary

St Albans is north of London

South Kensington is between Gloucester Road and Sloane Square

2 < 15

P implements Q

In predicate logic, these are predicates or relations over individuals.

For our formal definition of relations we view a relation as a set.  For instance, suppose the set

of all people is People.  We form a set “loves” consisting of all ordered pairs of people where

the first loves the second:

(x,y)∈loves  iff  x loves  y

Thus loves ⊆ People × People.

Informally we shall tend to use the logical notation, writing loves(x,y) rather than (x,y)∈loves.

DEFINITION (n≥1).  An n-ary relation is a subset of a Cartesian product A1×. . .×An of n sets.

We use R,S,... to range over relations.  If R ⊆ A1×. . .×An we say that R is a relation on

A1×. . .×An.  The type of R is A1×. . .×An.  Instead of (a1,...,an)∈R we usually write

R(a1,...,an).  We say that “a1,...,an are related by R”.

A case of particular importance is where the relation R is binary, that is R ⊆ A×B, some A,B.

We say that R is a relation from A to B.  If R ⊆ A×A we say that R is a binary relation on A.

Similarly if R ⊆ An then R is an n-ary relation on A.  Often it will be convenient to use infix

notation for binary relations and write aRb instead of R(a,b).  For instance, “<” is a binary

relation on  and we usually write x<y rather than <(x,y).

REMARKS.  (1) A relation does not have to be “meaningful”; any subset of a Cartesian product

is a relation.  For instance “<” is a binary relation on N , and is the set
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< = {(0,1), (0,2), (1,2), ..., (47,108), ...}

But any other set of ordered pairs of natural numbers such as

R = {(2,7), (101,12), (13,0)}

is also a binary relation on N .

(2) We have formally defined “relation” in terms of “set”.  However the idea of a relation is just

as fundamental as that of a set, since in order to understand sets we have to have an informal

grasp of the membership relation ∈ which relates objects to sets.

2.1 Representing relations.

Listing ordered pairs can get tedious and hard to follow.  For binary relations R ⊆ A×B we

have other representations.

a b..

A B(1) Diagram

(a) We can represent aRb by drawing a line

from a to b, as in the diagram to the right.

(b) In the case where R is a binary relation on A we can also use a directed graph, which

consists of a set of nodes joined by arrowed lines indicating a relationship between the nodes.

a1

a2

a3
a4

AWe illustrate by means of an example.  Let
A = {a1,...,a4} and let

R = {(a1,a2),(a2,a1),(a3,a2),(a3,a3)}.

Notice that the direction of the arrows matters.  It is of course possible to use a diagram where

the source and target sets are drawn separately as in (a).
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(c) We can represent a relation on  as an area

in the plane.  The accompanying diagram

represents R, where xRy iff x+y≤7.

7

7

x

y

(2) Matrix (array).  Suppose that |A|=m, |B|=n.  We can represent R by an m×n matrix M of

booleans (T,F).  Let A = {a1,...am}, B = {b1,...bn}.  Then for i = 1,...,m and j = 1,...,n

M(i,j) =  



 
T if aiRbj

F otherwise

It is common to use 1,0 instead of T,F.  M(i,j) is the entry for the ith row and jth column.

On a computer, storing a relation as an array allows random access and easy manipulation, but

can be expensive in space if the relation is much smaller than A × B.  With a sparse relation,

where there are not many ordered pairs, an alternative is an array of linked lists, called an

adjacency list.  As an example, suppose that R is the following binary relation on {1,2,3}:

{(1,1), (1,3), (2,1)}

R has only 3 out of the 9 possible ordered pairs.  We create an array of three pointers, one for

each element of {1,2,3}, and list for each element which other elements it is related to (adjacent

to in the directed graph), as in the following diagram.

1

2

3

1 3

1

•

•

•

2.2 New relations from old

Since relations are sets they inherit certain operators, in particular union, intersection and

complement, defined as follows:
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DEFINITION.  Let R,S ⊆ A1×. . .×An.  Define R∪S, R∩S, R  ⊆ A1×. . .×An by

(a1,...an)∈ R∪S  iff  (a1,...an)∈R or (a1,...an)∈S

(a1,...an)∈ R∩S  iff  (a1,...an)∈R and (a1,...an)∈S

(a1,...an)∈ R   iff  (a1,...an) ∉R

NOTES.  (1) To form a union or intersection the relations must be of the same type.  The type
of the complement R  is the same as that of R.

(2) The notations R+S, R.S are sometimes used instead of R∪S, R∩S respectively.

(3) Union, intersection and complement on relations are the counterparts of the Boolean

operations of disjunction, conjunction and negation in logic.

(4) We can also define R  using set difference: R = A1×. . .×An - R

(5) Frequently complement is indicated by crossing out an infix relation: ≠, ∉ etc.

As well as inheriting structure from sets, relations have operations of their own which do not

apply to sets in general.  We now define identity, inverse and composition.

DEFINITION.  Given any set A, the identity relation on A is defined by

idA = {(a,a) | a∈A}

Clearly idA is just “=” on A.

DEFINITION.  Given R ⊆ A×B define the inverse of R by

bR-1a  iff  aRb

Plainly R-1 ⊆ B×A.

NOTES.  (1) Inverse is only defined for binary relations.  Any binary relation has an inverse.

(2) Inverse should not be confused with complement.

(3) Sometimes inverse is indicated by reversing an infix relation:  > is the inverse of <, etc.

(4) In matrix terms inverse is transpose (not matrix inverse!)

(5) If we invert a relation twice we recover the original relation:  (R-1)-1 = R.

EXAMPLE.  The inverse of “is the parent of” is “is the child of”:

x is the parent of y  iff  y is the child of x
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DEFINITION (Composition).  Given R ⊆ A×B, S ⊆ B×C define R°S ⊆ A×C by

a R°S c  iff  there exists b∈B. aRb and bSc (any a∈A,c∈C)

NOTES.  (1) “R°S” may be read as “R compose S” or “R circle S”

(2) The types of R and S must be compatible or else R°S is not defined.

(3) One may think of b as being an intermediate point on a path from a to c.  Thus a is related to
c by R°S if there is a path from a to c via some member b of B, using R and then S.

(4) In matrix terms ° is multiplication where we use ∧ instead of × and ∨ instead of +.  For

instance





T T

F F 



T F

T T
 = 





T T

F F

If we used 0,1 then × would be as usual and + would obey 1+1=1.  The same example

becomes





1 1

0 0 



1 0

1 1
 = 





1 1

0 0

(5) If R is a binary relation on A it makes sense to form R ° R-1.  In general this is not the same

as idA.

(6) If R ⊆ A×B then idA°R = R°idB = R

EXAMPLE.  grandparent = parent ° parent

x is grandparent of y  iff  ∃z ( x is parent of z & z is parent of y)

PROPOSITION.   ° is associative

Proof We must show (R°S)°T = R°(S°T) where R ⊆ A×B, S ⊆ B×C, T ⊆ C×D some

A,B,C,D.

But x (R°S)°T w iff  ∃z. x R°S z T w

iff  ∃z ∃y. x R y  S z T w

iff  ∃y ∃z. x R y S z T w

iff  ∃y. x R y  S°T w

iff  x R°(S°T) w

Notice the advantage of using infix notation in this proof. ]

14



Discrete Mathematics

REMARK.  We don't really “need” operators like °, since we can always replace them by their

definitions and work directly (using predicate logic, etc.).  But the operators are a convenient

shorthand and laws such as associativity give us something of the ease and calculating power

of ordinary arithmetic.

We show that two laws do not hold by exhibiting counterexamples:

1.  In general R≠ R-1.  The simplest possible example: Take A = {a,b} (where a≠b) and define

R ⊆A2 to be {(a,b)}.  Then R-1={(b,a)} which is plainly different from R.

2.  Composition is not commutative.  We must find R,S such that R°S≠ S°R.  For both R°S

and S°R to be defined we must have R ⊆ A×B, S ⊆ B×A.  Let A=B={a,b}.  Let R = {(a,a)},

S = {(a,b)}.  Then R°S= {(a,b)} but S°R = ∅ (a diagram makes this clear).  We have the

desired counterexample.

EXAMPLE (to illustrate composition of relations).  Members of staff occupy various rooms

(possibly more than one).  They have various keys, and these keys open various rooms.  We

model this by defining three sets – staff, key, room – and three binary relations

occupies ⊆ staff × room

hasKey ⊆ staff × key

opens ⊆ key × room

We would like to know which staff members can open which rooms.  This will be a relation

canOpen ⊆ staff × room

Plainly  s canOpen r  iff  s hasKey k & k opens r, for some key k.  But this means that

canOpen = hasKey ° opens

Notice that a member of staff may be able to open a room using more than one key.

A question of interest is whether staff members can open the rooms they occupy.  In other

words, is it true that

∀s,r.  s occupies r ⇒ s canOpen r

This is equivalent to asking whether  occupies ⊆ canOpen.

2.3 Applications to relational databases

In this section we describe some simple connections between our work on relations and

databases.  We define the database operations of join, projection and selection.  We only deal
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with the static aspects of databases, not concerning ourselves with updating and maintaining

integrity.

A relational database is a collection of relations.  The records in the database are the tuples

belonging to the various relations.  Each relation has various attributes.  As an example, a

university registry database may have a relation we shall call Student, which stores students'

names and addresses, and their examination number, used for purposes of anonymity.  The

attributes of Student are name, address and number.  It is usual to present the tuples of a

relation in tables.  For instance a table for Student might look like this:

name address number

. . . . . . . . .

Brown, B. 5 Lawn Rd. 105

Jackson, B. 1 Oak Dr. 167

Smith, J. 9 Elm St. 156

Walker, S. 4 Ash Gr. 189

... . . . . . .

Each tuple of the relation corresponds to a row in the table.  Each attribute corresponds to a

column.  Associated with each attribute is a set (or domain) from which it takes its values.  It is

clear that these database relations are just the same as the n-ary relations we have been

studying.  In our example we may write

Student ⊆ name_set × address_set × number_set

using an obvious notation for the sets associated with each attribute.

Suppose that the registry database has another relation, called Exam, which records the results

for students taking the compilers exam.  It has attributes number and grade.  A table for Exam

might look like this:

number grade

. . . . . .

105 A

156 A

189 C

... . . .

Notice that Student and Exam share an attribute, namely number.  We can combine the the two

realtions using an operation called join to get a new relation called Student-Exam which

“matches” the two relations on their common attribute:
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name address number grade

. . . . . . . . . . . .

Brown, B. 5 Lawn Rd. 105 A

Smith, J. 9 Elm St. 156 A

Walker, S. 4 Ash Gr. 189 C

... . . . . . . . . .

Notice that candidate 167 did not sit the exam, and therefore does not appear in the join.

In the language of database theory, the new relation might be written

join Student and Exam over number

We could define the join quite easily using our logical notation:

Student-Exam(n, a, no, g)  iff  Student(n, a, no) & Exam(no, g)

We might wish to modify Student-Exam by hiding the examination number information to get a

new relation Results.  This may be done by the database operation of projection.  The table for

Results would look like:

name address grade

. . . . . . . . .

Brown, B. 5 Lawn Rd. A

Smith, J. 9 Elm St. A

Walker, S. 4 Ash Gr. C

... . . . . . .

In database notation Results may be written

project Student-Exam over (name, address, grade)

In our logical notation we may write:

Results(n, a, g)  iff  ∃ no. Student-Name(n, a, no, g)

Notice that Results is got from Student and Name by a sort of generalized relational

composition.  In fact compositions of binary relations can be constructed by a join followed by

a projection.  Going back to the keys example of the previous section, it can be seen that the

relation “canOpen” may be got from “hasKey” and “opens” using database operations as

project (join hasKey and opens over key) over (staff, room)

Another thing we might wish to do is to select a part of a relation table which is of interest.

Suppose in our registry example we wish to have the names of those who should be
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considered for the prize, and so we select those candidates who got A in the exam.  Starting

from the table Results, we get a table which we might call A-Results:

name address grade

. . . . . . . . .

Brown, B. 5 Lawn Rd. A

Smith, J. 9 Elm St. A

... . . . . . .

In database notation we have

select Results where grade = 'A'

In logical notation we could write

A-Results(n, a, g)  iff  Results(n, a, g) & g = A

The relation A-Results gives us the names we want, but we could reduce clutter by applying a

further projection to get the relation PrizeCands with a single attribute:

name

. . .

Brown, B.

Smith, J.

. . .

This is of course

project A-results over names

We have now introduced three database operations (join, projection, selection) and seen how

each operation has a counterpart in logic.

2.4 Properties of Relations

We now define three standard properties which relations may possess.  They will be of use in

our later study of relations which express equivalence between objects or ordering between

objects.

DEFINITION.  Let R be a binary relation on A.

(i) R is reflexive  iff  ∀x∈A. Rxx

(ii) R is symmetric  iff  ∀x,y∈A. Rxy ⇔ Ryx

(iii)  R is transitive  iff  ∀x,y,z∈A. Rxy & Ryz ⇒ Rxz
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NOTES.  (1) These are all universal properties

(2) We can define them equivalently in terms of the operations on relations introduced in the

previous section:

R is reflexive  iff  idA ⊆ R

R is symmetric  iff  R = R-1

R is transitive  iff  R°R ⊆ R

EXAMPLES.  (1) = is reflexive, symmetric and transitive.

(2) ≤ on numbers is reflexive and transitive but not symmetric.  The same for ⊆ on sets.

(3) < on numbers is transitive but not reflexive or symmetric.

2.5 Transitive Closure

Consider the following situation.  There are various direct flights between various cities.  We

wish to know for any two cities whether there is a possible trip from one to the other allowing

changes of plane.  We can model this by defining a set city of cities and a binary relation F on

city, such that

aFb  iff  there is a direct flight from a to b

This relation may be represented as a directed graph with the cities as nodes, as in the

following example:

Knock

Dublin London

Manchester Edinburgh

Paris
Madrid Rome

Let F+ be the relation

a F+b  iff  there is a trip from a to b allowing changes

Then clearly a F+b iff there is some path from a to b in the directed graph.  For instance there is

a path from Manchester to Rome, but no path from Rome to Manchester.  We would like to

calculate F+ from F.

We can express the relation F+ in terms of F using relational composition.  First note that
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a F+b  iff  there is a path of length n from a to b, some n≥1

Now

aFb  iff there is a path of length 1 from a to b
a F°F b  iff there is a path of length 2 from a to b (via some intermediate city)

Define Fn = F°F°. . .°F (n Fs).  Then for any n≥1

a Fnb  iff  there is a path of length n from a to b

Therefore  a F+b  iff  ∃n≥1. a Fnb.  Moreover

F+ = F ∪ F2 ∪... ∪ Fn ∪. . .

     = [n≥1 Fn

DEFINITION.  Let R be a binary relation on a set A.  The transitive closure of R is the binary

relation on R defined by

R+ = [n≥1 Rn

EXAMPLES.  (1) Program modules can import other modules.  They can also depend indirectly

on modules via some chain of importation, so that for instance M depends on M' if M imports

M" and M" imports M'.  Model this by a set module of modules, and two relations, imports

and depends.  Clearly

depends = imports+

(2) Two people are related if one is the parent of the other, if they are married, or if there is a

chain of such relationships joining them indirectly.  Model this by a set people, with three

relations: married, parent, and relative.  Then

relative = (parent ∪ parent-1 ∪ married)+

Notice that married is symmetric: x married y iff y married x.  This is not the case for parent.

R+ is called the transitive closure because it is transitive and because it is the smallest transitive

relation containing R.  To cast more light on this we now examine an alternative way of

building the transitive closure.  Imagine that we want to make R transitive, and we want to do

this in the most “economical” fashion, by adding as little as possible.  If R is already transitive

we need do nothing.  Otherwise there are a,b,c such that aRbRc but not aRc (so that a,b,c are a

counterexample to R being transitive).  We add the pair (a,c) into the relation.  It is now that

much closer to being transitive.  We can carry on doing this until there is no need to add further

pairs.  We now have a transitive relation.  Anything we added to R was forced upon us by the
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requirement of transitivity, and so we have obtained the smallest transitive relation containing

R.

It turns out that the relation we have created is equal to R+ as defined earlier.  We do not prove

this here, though we note that it is a straightforward matter to check that R+ is transitive:

Suppose aR+b, and bR+c.  Then there are paths from a to b and from b to c.  Joining these up

plainly creates a path from a to c so that aR+c.

Calculating transitive closures.  When calculating “by hand” the easiest method is to draw the

directed graph for the given relation R, and then write down the matrix for R+.  To see whether

(i,j) should be included, inspect the graph to see if there is a path from the ith node to the jth

node.  Clearly the word “inspect” is too vague for this to serve as an algorithm, and our

informal method is likely to be error prone on large graphs.  We now consider how a computer

might calculate R+.

We have defined R+ = [n≥1 Rn.  Therefore in order to calculate R+ we can compute

successively

R, R ∪ R2, R ∪ R2 ∪ R3, ...

In terms of paths, R ∪ R2 ∪... ∪ Rn represents all paths of length between 1 and n.  But since

R+ is defined as an infinite union it seems that we will have to carry on computing for ever,

which will not do.  However the process will come to an end at some finite stage because

eventually nothing new will be added.  Suppose the set on which R is defined has n elements.

Then we need not consider paths of length greater than n since they will involve repeats

(visiting the same node of the graph twice).  So Rn+1 is already included in R ∪ R2 ∪... ∪ Rn

and we need not calculate further as we have found R+.  In fact we often don't have to go as

far as n.  In the airline example at the beginning of the section there are 8 cities, but the longest

paths without repeats are of length 3.  Thus we compute F∪F2∪F3 and F4 and we find that F4

⊆ F∪F2∪F3, so that we can stop at that point.  We may describe our procedure by the

following algorithm:

Input R

S:= R

T:= R
S:= R°S

while not S ⊆T do

T:= T ∪S
 S:= R°S

od

Output T
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In the above whenever the while loop is entered, S = Rn+1, T = R ∪ R2 ∪... ∪ Rn

(n=1,2,...).  It is not hard to convert the algorithm into a Modula-2 program involving arrays.

There are many ways of improving the algorithm.  For instance it is not necessary to store R.

A very much more efficient method is Warshall's algorithm (see Chapter 16 of Reasoned

Programming, by K. Broda, S. Eisenbach, H. Khoshnevisan, and S.J. Vickers).

It is sometimes useful to “reverse” the process of finding a transitive closure.  In other words,

given a transitive relation R, the task is to find a smallest S such that S+=R.  The benefit is that

S is smaller, while having the same information content as R, since R can be reconstructed

from S.  However in general there can be many solutions for S.  Later on we shall solve this

problem in the easier setting of partial orders.

3. Functions

DEFINITION.  Given sets A,B, a function f from A to B is a method of associating with each

a∈A exactly one element of B, denoted f(a).

The word “method” is necessarily vague.  We intend the notion of function to be grasped

directly.  Our informal understanding of a function is that it transforms something into

something else (a into f(a) in the above definition).  This concept is particularly applicable to

computer programs, which transform inputs into outputs.

There is a lot of terminology concerning functions, and not all of it is standardised.  We let

f,g,h range over functions, and we write f:A→B to mean that f is a function from A to B.  A is

the domain (or source type) of f, and B is the range (or co-domain or target type) of f.  The

expression f(a) is f applied to the argument a.  If f(a) = b, then f is said to map a to b.  We can

also say that b is the image of a under f, or that a is a pre-image (or inverse image) of b under f.

Note that elements of the domain always have a single image, but elements of the co-domain
can have more than one pre-image or may have none.  If the domain A is a product A1×. . .×An
then we write f(a1,...,an) instead of f((a1,...,an)).  We say that f is a function of n arguments.

When dealing with a function such as f: →  defined by f(x) = x3, quite often it is convenient

not to give it a name, but simply to describe it by its rule for transforming the argument.  So in

this case we can refer to the function as x3.  If we need to be more careful in indicating the

argument we can use the notation x £ x3.

We have defined functions to be total (i.e. to have a value for every argument in the domain),

following usual mathematical practice.  A partial function is a function which need not be

defined on every member of its domain.  It therefore assigns to each element of its domain at
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most one element of the range.  Miranda programs of course compute functions.  On the whole

we would like these functions to be total, but it is easy to write programs which do not

terminate on some (or all) arguments, so that they define partial functions.  Moreover when

designing a program P to compute square roots it is quite reasonable to have P return an error

message for negative inputs, and to regard P as computing a function which is undefined on

negative arguments.

Functions can act on sets other than sets of numbers.  For instance let L be (the set of programs

in) some programming language.  Define a function length: L→N  by

length(P) = number of lines in P (P an L-program)

A compiler transforms programs written in one language L1 into programs in another language

L2.  It may be regarded as a function  compile: L1→L2.

3.1 Representing Functions

Functions can be represented by arrays, diagrams or tables.

(1) Arrays.  We illustrate by means of an example.  Suppose we declare A to be an

Array[1..20] of Integer.  We mean that the array stores a unique integer for each value from 1

to 20.  A therefore represents a function f:[1..20]→  (the mathematical name for the set of

integers), where f is defined by

f(i) = A[i] 1≤i≤20

a b..

A B(2) Diagram.  We can represent f(a) = b by

drawing a line from a to b.  This is the same

diagram as for a relation R from A to B, except

that there we were allowed to have a member of

A joined to any number of elements of B,

which is not allowed for functions.

(3) Table .  As an example we might record various values of the function age: People→N .

Thus

Name Age

John 21

Kathy 19

Leonard 18
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3.2 Properties of Functions.

DEFINITION.  Let f:A→B.

(i) f is onto  iff  ∀b∈B ∃a∈A. f(a) = b

(ii) f is one-one (1-1)  iff  ∀a,a'∈A.  f(a) = f(a') ⇒ a=a'

(iii) f is a bijection  iff  f is both 1-1 and onto (and total)

Part (i) says that every element of the range has a pre-image.  Part (ii) can be more easily

understood in terms of the following alternative definition

f is one-one (1-1)  iff  ∀a,a'∈A.  a≠a' ⇒ f(a) ≠ f(a')

In other words no two different elements of the domain can map to the same element of the

range.  (The second form is the contrapositive of the first; in logic P→Q is equivalent to

¬Q→¬ P).

Notice that 1-1, onto and bijection are universal properties, and so to show that a function does

not satisfy them it is enough to produce a counterexample.

EXAMPLE.  Define f:N×N→  by f(x,y) = x+y.  Show that f is onto but not 1-1.

Proof   To show f is onto: Take any n∈N .  We must find (m1,m2)∈N×N such that

f(m1,m2) = n.  But f(n,0) = n+0 = n, and so (n,0) is as required.

To show f is not 1-1: We must produce a counterexample, in other words we must find

(m1,m2), (n1,n2) such that (m1,m2) ≠ (n1,n2) but f(m1,m2)= f(n1,n2).  There are many

possibilities: For instance (1,0) ≠ (0,1) but f(1,0) = 1+0 = 1 and f(0,1) = 0+1 = 1.  In general

since + is commutative, f(m,n) = f(n,m) and so (m,n), (n,m) is a counterexample whenever

m≠n.

3.3 Functions and Relations

A function f: A→B can always be regarded as a relation R ⊆ A×B.  We simply define

R(a,b)  iff  f(a) = b

But not every relation converts to a function like this.  The reason is that with a relation R, for a

given a∈A we allow there to be several b's such that R(a,b) or none.  But with a function we

insist that there must be exactly one b such that f(a) = b.

However there is a different way of converting a relation into a function which always works.

DEFINITION.  Suppose R ⊆ A1×. . .×An.  The characteristic function chR: A1×. . .×An→{T,F}

is defined by
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chR(a1,...,an) =  



 
T if R(a1,...,an)

F otherwise

In the binary case the characteristic function is clearly much the same as the corresponding

matrix, which was defined by

M(i,j) =  



 
T if R(ai,b j)

F otherwise

3.4 Images of Sets

Functions apply to individuals, but we can also talk of the image of a set X under a function f.

This is the collection of all images of members of X under f.  If P is a program which

computes f, and X is some set of various inputs which are fed to P, then we may wish to know

what are the possible outputs.

DEFINITION.  Let f: A→B.  For any X⊆A, define the image of X under f to be

f[X] = {f(a) | a∈X}

The set f[A] of all images of f is called the image set of f (some authors refer to this as the

range of f, conflicting with our earlier definition).

Clearly f[X]⊆Β.  Furthermore f[A] = B iff f is onto.  Notice that we effectively have a new

function g: PA→PB defined by

g(X) = f[X]

3.5 The Pigeonhole Principle and cardinality

Suppose that m objects are to be placed in n pigeonholes, where m>n.  Then some pigeonhole

will have to contain more than one object.  This is called the Pigeonhole Principle (PP).

EXAMPLE.  If there are at least 367 people in a room, then at least two share a birthday.

Let us rephrase the PP in the language of functions: Let O be the set of objects and P the set of

pigeonholes.  An assignment of objects to pigeonholes is described by a function place: O→P.

The PP states that if |O| > |P| then place is not 1-1.

PROPOSITION.  Let f: A→B, X⊆A.  Then |f[X]| ≤ |X|.

Clearly there cannot be more images of a set X than there are members of X, since each

member has at most one image.  In fact we can prove the Proposition using the PP:

Suppose for a contradiction that  |f[X]| > |X|.  Define a place function p: f[X]→X by
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p(b) = some a such that f(a) = b

It does not matter which a we choose, but there clearly will be such an a by definition of f[X].

We are placing the members of f[X] in the pigeonholes X.  By the PP, some pigeonhole has at

least two occupants.  In other words there is some a∈X and b,b'∈f[X] with p(b) = p(b') = a.

But then f(a) = b and f(a) = b', which is a contradiction.  ]

Given a function f: A→B in general the cardinalities of A and B may be greater than or smaller

than each other.  However we can relate them as follows:

PROPOSITION.  Let f: A→B where A,B are finite.

(a) If f is 1-1 then |A| ≤ |B|

(b) If f is onto then |A| ≥ |B|

(c) If f is a bijection then |A| = |B|

Proof  (a) is the contrapositive of the PP.  For (b) notice that if f is onto then f[A] = B, so that

in particular |f[A]| = |B|.  Also |A| ≥ |f[A]| by the preceding Proposition.  Therefore |A| ≥ |B| as

required.  Finally (c) clearly follows from combining (a) and (b). ]

3.6 Composition of functions

Composing functions by applying them successively is a well-known procedure.  Thus g(f(x))

represents the result of applying f to x and then applying g to the result.  In order for this to be

defined the value x must be in the domain of f, and f(x) must be in the domain of g.

Sometimes it is useful to give the new function taking x to g(f(x)) an explicit name:

DEFINITION.  Let f: A→B, g: B→C.  A new function g°f: A→C is defined by

g°f(x) = g(f(x))

Notice that the range of f has to be equal to the domain of g.  Notice also that g°f represents

“f followed by g”, unlike in the case of relational composition, where R°S represented

“R followed by S”.  Just as for relations, function composition is associative but not

commutative.

PROPOSITION.  Let f: A→B, g: B→C, h: C→D.  Then  h°(g°f) = (h°g)°f.

Proof .  This is easily established from the definition of functional composition: Take x∈A.

Then

(h°(g°f))(x) = h((g°f)(x)) = h(g(f(x))) = (h°g)(f(x)) = ((h°g)°f)(x)
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The proof may be illustrated by this diagram.

Each of the two triangles ABC, BDC

“commutes”, that is, the result is the same
whether one does f followed by g or g°f, and

whether one does g followed by h or h°g.

Therefore the parallelogram ABDC commutes.

]

A B

C D

f

g

h

h ° g

g ° f

PROPOSITION.  Let f: A→B, g: B→C.  If f,g are bijections, then so is g°f.

Proof .  Clearly g°f is total.  It is enough to show:

(1) if f,g are onto then so is g°f

(2) if f,g are 1-1 then so is g°f

The result will then follow.

Proof of (1): Assume f,g onto.  Take any c∈C.  Since g is onto we can take b∈B such that

g(b) = c.  Since f is onto we can take a∈A such that f(a) = b.  But then g°f(a) = g(f(a)) = g(b)

= c.  Hence g°f is onto.

Proof of (2): Assume f,g are 1-1.  Take any a1,a2∈A and suppose g°f(a1) = g°f(a2).  Then

g(f(a1)) = g(f(a2)) definition of g°f

f(a1) = f(a2) since g is 1-1

a1 = a2 since f is 1-1

This shows that g°f is 1-1. ]

3.7 Inverses of Functions

The inverse of a function f: A→B is a function g: B→A which undoes the action of f.  It turns

out that unlike in the case of relations, which always have inverses, a function is only invertible

if it is a bijection.

DEFINITION.  Let A be a set.  Define the identity function on A, idA: A→A, by idA(a) = a, all

a∈A.

DEFINITION.  Let f: A→B.  A function g: B→A is an inverse of f if

for all a∈A g(f(a)) = a

for all b∈B f(g(b)) = b

This is clearly equivalent to g°f = idA, f°g = idB.
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PROPOSITION.  Let f: A→B be a bijection, and define f-1: B→A by

f-1(b) = the unique a such that f(a) = b

Then f-1 is well-defined, and is an inverse of f (in fact the inverse in view of the next

Proposition).

Proof .  There is at least one a such that f(a) = b since f is onto.  There cannot be more than one

since f is 1-1.  Therefore f-1 is well-defined.  It clearly satisfies the conditions for being an

inverse of f.   ]

PROPOSITION.  Let f: A→B.  If f has an inverse g, then f is a bijection and the inverse is

unique (and is f-1 as defined above).

Proof .  Assume f has an inverse g.

To show that f is onto, take b∈B.  Then f(g(b)) = b.  So b is an image of f.

To show that f is 1-1, take a1,a2∈A.  Suppose f(a1) = f(a2).  Then g(f(a1)) = g(f(a2)).  But

then a1 = a2.

To show that the inverse is unique, suppose that g,g' are both inverses of f.  We must show

that g=g'.  Take any b∈B.  Then f(g(b)) = f(g'(b)) since g,g' are inverses.  Hence g(b) = g'(b)

since f is 1-1.   ]

In view of the preceding proposition, one way of showing that a function is a bijection is to

show that it has an inverse.  Furthermore, if f is a bijection with inverse f-1, then f-1 has an

inverse, namely f, so that f-1 is also a bijection.

EXAMPLES.  (1) f: →  defined by f(x) = x3.  The inverse is f-1(x) = 
3

x.

(2) f:N→N  defined by

f(x) =  



 
x+1 if x even

x-1 if x odd

Then one can check that f°f(x) = x, considering cases as to whether x is even or odd.  So f is

its own inverse, and we deduce that f is a bijection.

DEFINITION.  Let A be a set.  A relation R ⊆ A× A is an equivalence relation  iff  R is

symmetric, reflexive and transitive.

DEFINITION.  For any sets X,Y define

X~Y  iff  there is a bijection from X to Y

We speak of X being similar to Y, or being in 1-1 correspondence with Y.
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PROPOSITION.  The relation ~ is an equivalence.

Proof .  ~ is reflexive: idX: X→X is clearly a bijection.

~ is symmetric: If X~Y then there is a bijection f:X→Y.  This has an inverse f-1 which is also a

bijection.

~ is transitive: This comes immediately from the Proposition at the end of Section 3.6.     ¼

3.8 Counting Sets

Let X be a finite set with cardinality n.  Then there is a “counting” bijection

f: {1,2,...,n}→X

Sometimes we express this by enumerating X as {a1,...,an}.  Let X,Y be two finite sets.  Then

|X| = |Y|  iff X~Y

In other words two sets have the same number of elements precisely if there is a 1-1

correspondence between them.

For computing it is convenient to deal with infinite sets, since it is awkward to have for

instance a largest natural number.  Of course these infinite sets can never be stored in their

entirety, and the practical limitations of the machine have to be considered at some stage; but it

is natural to consider a program e.g. to multiply numbers without at first insisting that the

Maxint of a particular implementation of the programming language be brought into the

discussion.

Even though a set such as N  is infinite, we can build it up by stages

0

0,1

0,1,2

.. .

in such a way that any number n will appear at some stage.  Infinite sets which can be built up

in finite portions by stages are particularly nice for computing, since we can hope that our

computer will be large enough to store the portion of the set which is needed for the particular

input values we wish to process.

Suppose that A is such a set.  Then A = [n≥0 An where each An is finite.  We can enumerate

A as {a0,a1,..,an,...} by simply adding in the new elements in each An, stage by stage.  We

have a “counting” of A by N  and A ~ N .

DEFINITION.  For any set X, X is countable  iff  X is finite or X ~ N .
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It is in fact the case that X is countable  iff  there exists a 1-1 function f: X→N .  Thus

countable sets are in a sense those which are representable by N .

Surprising things can happen with infinite sets.  With finite sets we know that if X is a proper

subset of Y, that is, X⊆Y and X≠Y, then |X|<|Y| and there can be no bijection between X and

Y.  But consider the set Even of even natural numbers.  Then Even is a proper subset of N .

But there is actually a bijection between Even and N, namely f:N→Even defined by f(n) = 2n.

In fact any infinite set can be put in bijection with a proper subset of itself.

Perhaps more surprisingly still, we can count sets which appear larger than N .  For instance

the integers  may be counted as

0,1,-1,2,-2,3,-3,...

This can be achieved by the bijection g: →N  defined by

g(x) = 



 
2x if x≥0

-1-2x if x<0

 is like 2 copies of N .  We can even count N2, which is like N  copies of N  (see the following

diagram).

0

1

2

3

0 1 2 3 4

4

Cantor showed that there are uncountable sets – sets which are too large to be countable.  If X

is uncountable then no matter how you try to count it you will always miss out some elements.

In other words, if f is any 1-1 map from N  into X then f is not onto.

It is important to realise that a set can still be countable even if a particular attempt to count it

fails.  For instance we have just seen that N2 is countable, but the function f: N→N2 defined

by f(n) = (n,0) is 1-1 but not onto.  If a set X is uncountable then by definition every attempt to

count it fails, and trying to add more elements to an enumeration will not help.
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The most important uncountable set is the reals .  In view of our earlier discussion, we cannot

build up the reals by finite stages, and this means that we cannot manipulate actual reals in the

way that we can natural numbers.  What we have to do is use approximations, such as floating

point decimals.  There are only countably many such approximations.

FACT.  P(N ) is uncountable – in fact so is P(X) for any infinite X.

For further information on infinite sets and countability see Truss, Section 2.4.

4. More about relations

In this section we discuss two particular kinds of relation, which arise when we wish to

compare objects, namely equivalence relations (which tell us when one object is “as good as”

another) and orderings (which tell us when one object is “better” than another).

4.1 Equivalence relations

Imagine for example that we have a set of programs and we have various demands to make of

them – various properties which they may or may not possess.  These might be such things as

• always terminates

• costs less than £100

• computes π to 100 decimal places

etc.  We deem two programs to be equivalent if they meet the same demands.  If this is the case

then even though they are not equal they may as well be, because there is no difference

between them as far as our demands are concerned.  So what we have is a weakened form of

equality.  It is not hard to see that this equivalence must be reflexive, symmetric and transitive.

This motivates the following definition, which is as in Section 3.7:

DEFINITION.  Let A be a set.  A relation R ⊆ A× A is an equivalence relation  iff  R is reflexive,

symmetric and transitive.

NOTATION.  Equivalence relations are often denoted by ~, E, etc.

EXAMPLES.  (1) Let A be any set.  The identity (equality) relation idA is an equivalence

relation.

(2) Given a set Student and a map age: Student→N , the binary relation on Student defined by

s1 sameAge s2  iff  age(s1) = age(s2)
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is an equivalence.

(3) Similarity ~ between sets (see Section 3.7 above).

(4) Logical equivalence between formulas defined by

A≡B  iff  A↔B

is an equivalence.

(5) Permutation of lists: The relation

l1 E l2  iff  l2 is a permutation of l1

is an equivalence.

Example (2) is a special case of the following:

PROPOSITION.  Let f:A→B and let E be an equivalence relation on B.  Then the relation R ⊆
A× A defined by

a1 R a2   iff   f(a1) E f(a2)

is also an equivalence.

Proof  Exercise  ]

DEFINITION.  Let E be an equivalence relation on a set A.  For any a∈A the equivalence class

of a (with respect to E) is defined as

[a]E = {x∈A | aEx}

We often write [a] where no confusion will arise.

THEOREM.  Let E be an equivalence relation on A.  Then for all a1,a2∈A,

[a1]=[a2]  iff a1Ea2

Moreover the family of sets [a] (all a∈A) forms a partition of A.

Conversely, given a partition A1,...,An of A we can define a relation R on A by

xRy  iff  x,y are in the same component of the partition

and this is an equivalence.  ]
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4.2 Orderings

Orderings on sets of numbers such as N ,  and  are familiar.  But we can also have orderings

on other sets.  For instance suppose that we have a set of programs and we wish to compare

them as to which are cheaper, or run faster, or are more accurate.  We shall use these sort of

orderings in Part 2 when we compare the efficiency of algorithms.  We can safely assert that

any ordering relation should be transitive:

if a<b and b<c then a<c

and it will not be symmetric (so a<b should not imply b<a) in any interesting case.  As to the

reflexive property we notice that there are two types of orderings, typified by < and ≤ on N .

The latter is reflexive, but the former is not – in fact it is irreflexive (defined below).

We discuss three notions of ordering – pre-orders, partial orders and linear orders.

DEFINITION.  Let R be a binary relation on a set A.  Then R is a pre-order iff R is reflexive and

transitive.

We write (A,R) when we wish to show the underlying set.

EXAMPLES (of pre-orders).  (1)  Define a relation on formulas by

A ≤ B  iff  A→B

Then ≤ is a pre-order.  For instance ff ≤ A ≤ tt (any A), and A≤ A∨B.

(2) The relation on Student defined by

s1 noOlderThan s2  iff  age(s1) ≤ age(s 2)

PROPOSITION.  If f:A→Β and S is a pre-order on B then R defined by

 a1 R a2  iff  f(a1) S f(a2)

is a pre-order on A.  ]

Many pre-orders satisfy an additional property:

DEFINITION.  Let R ⊆ A× A.  R is anti-symmetric iff

∀x,y∈A. xRy ∧ yRx  ⇒ x=y

R is a partial order (po for short) iff R is reflexive, transitive and anti-symmetric.
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In other words, a po is an anti-symmetric pre-order.  It should be noted that anti-symmetric is

not the opposite of symmetric, since a relation can be both symmetric and anti-symmetric (for

example the empty relation or the identity relation on any set)

EXAMPLES (of partial orders).  (1) (N ,≤)  ( ,≤)  ( ,≤)

(2) ⊆ on sets

(3) Suppose (A,≤) is a po and B⊆A.  Then (B,≤) is a po, where we restrict ≤ to B, i.e. take

≤ ∩ B×B.  For instance, since (N ,≤) is a po, so is ({1,2,3},≤).

(4) Let (A,≤) be a po.  Define ≥ by

a≥b  iff  b≤a

(this is just the inverse relation).  Then (A,≥) is a po.  Thus ⊇ is a po on sets.

(5) Let + be the integers >0.  Define m|n iff m divides n exactly.  Then ( +,|) is a po.  What

can you say about where prime numbers occur in this ordering?

DEFINITION.  R ⊆ A× A is irreflexive  iff  ∀a∈A. not aRa.

R is a strict (strong, irreflexive) po iff R is irreflexive and transitive.  The usual po's are called

non-strict (weak, reflexive) to distinguish them.  Strict po's are often denoted by <.

EXAMPLES.  (N ,<)  ( ,<)

We can convert a strict po < into a non-strict one by defining

a≤b  iff  a<b or a=b

Conversely we can convert a non-strict po ≤ into a strict one by defining

a<b  iff  a≤b and a≠b

When we draw diagrams of pos it is natural to use directed graphs, since pos are binary

relations.  These diagrams get rather cluttered if every arrow is drawn in.  So it is usual to omit

the arrows from points to themselves and those arrows that can be deduced from knowing that

the relation is transitive.  Such diagrams are called Hasse diagrams.  In the following two

examples the direction of the lines has been omitted, with the convention that all lines are

directed upwards, in other words the upper element is greater than the lower.
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1

2

3 4

a

b
c

de

f

I II

In diagram I for instance 3<1, since this can be deduced from 3<2<1.  Of course this is not the

usual ordering on {1,2,3,4}.  We also know 1≤1 even though this is not specified in the

diagram.

We can make the connection between the relation in the diagrams and the po's precise as

follows:

DEFINITION.  Given a po (A,≤) define the immediate predecessor relation by

x <I y  iff  x<y and there is no z such that x<z<y

The immediate predecessor relation is what we usually draw in diagrams instead of ≤.  If A is

finite it is clear that for any pair (x,y) we can calculate whether x <I y by simply checking

through all possible values of z.  The ordering ≤ can be recovered from <I by taking its

reflexive and transitive closure:

≤ = (<I)* = (idA ∪ <I+)

(In general the reflexive and transitive closure of a relation R is denoted R*.)  We have in fact

solved the problem mentioned at the end of Section 2.5, as <I is the smallest relation S such

that S+= <.  Irreflexivity is crucial here.  Also this would not hold in general when A was

infinite—consider for instance the real numbers with the usual < ordering.

DEFINITION.  A po (A,≤) is a total ordering  iff  ∀x,y∈A. x≤y ∨ y≤x.

This may equivalently be stated: ∀x,y∈A. x<y ∨ y<x ∨ x=y.

Total orderings are also called linear orderings, because their diagrams are linear.

EXAMPLES.  (1)  (N ,<)  ( ,<)

(2) If (A,≤) is total and B⊆A then (B,≤) is total.

Neither of the two diagrams above is of a linear ordering: in I there is no relationship between 3

and 4, while in II, a and c are unrelated, as are e and d.
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DEFINITION.  Let (A,≤) be a po.

a is minimal iff for all b∈A. b/<a.

a is least iff for all b∈A. a≤b.

An element is minimal if there is nothing below it.  It is least if it is below everything else.

In diagram I, 3 and 4 are both minimal; neither is least.  In diagram II, f is least (as well as

minimal).

PROPOSITION.  If a is least in a po then a is minimal

Proof  Suppose a is least.  Suppose for a contradiction that b<a.  But a≤b since a is least.  This

contradicts anti-symmetry.  ]

PROPOSITION.  If A has a least element then it is unique.

Proof . Suppose a and b are least.  Then a≤b and b≤a.  Hence a=b.  ]

PROPOSITION.  Let (A,≤) be a finite po.  Then A has a minimal element.

Proof  Pick any a0∈A.  If a0 is not minimal we can pick a1 < a0.  If a1 is not minimal we can

pick a2 < a1.  In this way we get a decreasing chain  a0 > a1 > a2 >  ...  All the elements of the

chain are different, since x>y>z implies x>z and so x≠z.  Hence since A is finite the process

must stop at some an (n∈N ), which must be minimal in A.  ]

Notice that in the above proof we not only show the existence of minimal elements, but also

how to find one.

PROPOSITION.  Let (A,≤) be a finite linear ordering.  Then A has a least element.  ]

Suppose we have a set of tasks T to perform.  We wish to decide in what order to perform

them.  We are not totally free to choose, because some tasks have to be finished before others

can be started.  We can express this prerequisite structure by a partial ordering < on T.  We

want to find a total order <' on T which respects < in the sense that

if t<u then t<'u

Such a process is sometimes called topological sorting or linearisation.  A simple algorithm for

topological sorting is based on minimal elements.  To generate an appropriate order for the

tasks, first find all minimal elements of T (this may be done easily from a matrix representation

of (T,<) and remove them from T to get T'.  These are done first (in some arbitrary order).

Then find all minimal elements of T' and do these next.  Carry on until T is exhausted.  Plainly

there may be many different linearisations.
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EXAMPLE.  Given orderings on A,B we can define an ordering on the Cartesian product A×B

as follows:

(a,b)≤(a',b')  iff  a<a' or (a=a' & b≤b')

In other words, compare the a's first, and if they are the same then compare the b's.  For

instance we might wish to sort student records first by year and next alphabetically within a

year.  (NB There are other possible orderings on A×B.)

EXERCISE.  Let (A,≤), (B,≤) be linear orderings.  Show that (A×B,≤) as defined above is a

linear ordering.

EXAMPLE.  Words in a dictionary (strings of characters) are ordered by the lexicographic

ordering, which resembles the ordering on A×Β defined above.  This ordering has the

interesting feature that every word w has an immediate successor: w<I  wa (for example

sag<I  saga).  However immediate predecessors do not necessarily exist.  For instance “cat”

does not have one.  Why not? Which words do have an immediate predecessor?

4.3 Termination and orderings

How do we establish that a program terminates? The possibility of non-termination usually

arises from a while loop or a recursive call.  To deal with while loops we use a variant—a

counter which is decreased on every pass through the loop.  To deal with recursive calls we

can check that the function or procedure is called with a smaller argument.  Thus clearly

fac(0) = 1

fac(n+1) = n*fac(n)

terminates, while

nonterm(n) = n*nonterm(n+1)

does not.

To use an ordering (A,≤) to establish termination we need to know that we cannot keep on

getting smaller and smaller values in A for ever.  For instance the integers Z are no use as one

can keep on decreasing an integer value for ever.  Thus the following attempt at a multiplication

program for integers is invalid as evaluation will not terminate:

mult((x,y) = y + mult(x-1,y)

Plainly we cannot have infinite decreasing chains

a0>a1>a2>...>an>...
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DEFINITION.  An ordering (A,≤) is wellfounded (wf) if it has no infinite decreasing chain.

Obviously every finite ordering is wellfounded.  But there are infinite wf orderings.  The basic

one is N , and of course this is the one usually used for variants.

EXAMPLE.  Ackermann's function Ack:N×N→N

Ack(0,y) = y+1

Ack(x+1,0) = Ack(x,1)

Ack(x+1,y+1) = Ack(x,Ack(x+1,y))

The third equation causes this function computed by this program to grow extremely rapidly.

We wish to prove that this program always terminates, and therefore defines a total function.

Counting down on x is not good enough, since the third equation does not decrease x+1,

because of the embedded Ack(x+1,y).  Instead we use the ordering on N×N  defined above:

(x,y) < (x',y')  iff  x<x' or (x=x' & y<y')

Notice that

(x+1,0) > (x,1)

(x+1,y+1) > (x,Ack(x+1,y))

(x+1,y+1) > (x+1,y)

and so evaluation takes us down in the ordering.  Moreover the ordering is wellfounded—this

can be proved using the fact that N  is wf.  Even though a member such as (4,3) has infinitely

many others below it (e.g. (3,y) for every y), any decreasing chain must be finite.
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