Discrete Mathematics

lain Phillips

Introduction

This short work introduces the basics of discrete mathematics—in particular, sets, functions
and relations. It isintended for beginning students of computer science. They will find that a
knowledge of the concepts covered here will aid them in understanding many areas of
computer science, for instance, data types, databases, specification, functional and logic
programming.

Thismaterial was written as lecture notes to accompany a short course on Discrete Mathematics
given to first-year studentsin the Department of Computing at Imperia College. Thework is
self-contained, though rather concise. | shall be grateful if any inaccuracies are brought to my
notice.

These notes are pitched at afairly abstract level. Abstraction isapowerful tool for the
computer scientist, asit allows us to focus on what isimportant by removing the irrelevant,
and thereby make sense of the mass of information associated with agiven problem. It alows
usto solve aclass of problems once for all, instead of having to perform similar reasoning on
each of theindividual problems. However it can be intimidating to deal with abstract objects
until they become more familiar. If at any point things seem to be getting “too abstract” (too
many x'sand y's), the reader is recommended to make them more concrete by thinking of a
particular example, or series of examples.

Further Reading

J.L. Gersting, Mathematical Sructuresfor Computer Science, 3rd ed., Freeman 1993.

B.T. Denvir, Introduction to Discrete Mathematics for Software Engineering, Macmillan 1986.
J.K. Truss, Discrete Mathematics for Computer Scientists, Addison-Wesley 1991.

Many other books cover the material and are suitable.

Revised October 1994

Discrete Mathematics

Contents
1 Sets
1.1 Equadity
12 Subsets
1.3 Defining sets
14 Operatorson sets
1.5 Lawson operators and counterexamples
1.6 Other set-forming operations
1.7 Partitions
2 Relations
2.1 Representing relations
2.2 New reationsfrom old
2.3 Applicationsto relational databases
2.4 Propertiesof relations
2.5 Trangtive closure

3 Functions

31
3.2
3.3
34
35
3.6
3.7
3.8

Representing functions

Properties of functions

Functions and relations

Images of sets

The Pigeonhole Principle and cardinality
Composition of functions

Inverses of functions

Counting sets

4 More about Relations

4.1
4.2
4.3

Equivaence relations
Orderings
Termination and orderings

Discrete Mathematics

1. Sets

For the moment assume that sets are formed from a pool of individuals, which are thought of
assingleand indivisible. A setisacollection of such individuals. Wewritexi A to mean that
individual x isamember of theset A. xI A meansthat x isnot amember of A, in other words
-(xT A).

Thereisaclear correspondence between sets and types in alanguage such as Miranda. For
instance in Mirandathereis a predefined type bool (the Booleans, or truth values), and there
are two values of type bool, called True and False. We can regard bool as being the set with
members True, False, which we write{ True, False}. Where in Miranda we might write
True::bool, in set notation we write Truel bool.

1.1 Equality.

Whenever we introduce a structure (in this case sets), an important part of knowing what we
mean is to know when two objects of the structure are equal, in other words denote the same
thing. Assume that we know when two individuals are equal. When are two sets equal ?

Extensionality. Sets are quite transparent; they are nothing more or less than what they
contain.

The Principle of Extensionality: A set is determined by its extension, i.e. its members.
So two sets are equal if they contain the same objects:
For any sets A,B, A=B if and only if
for every individual x (xI AU xI B)
1.2 Subsets.

DEFINITION. Let A, B beany two sets. Then A isasubset of B iff for every x (xI AP

xI B)

Notation: A| B.

REMARKS (1) We can use a quite general argument: Assumeweknow A Bandd A. Then
a B.

For instance, if we know rodentsi mammals and squirrell rodents, then we can deduce

squirrell mammals.

(2) The principle of extensionality tells us that

1. Sets

A=B iffAl BandBi A
PROPOSITION. Let A,B,Chesets. If Al BandBI CthenAl C.

Proof AssumeA |l BandBi C. Takeanyd A. Wemustshowal C. But A B. Hence
al B. AlsoB | C. Henceal Casrequired.

1.3 Defining sets.
There are two basic ways:

(1) Enumeration. Just list the elements within braces{}.

For instance { cat,dog}
points = {N,S,E,W}
N ={0,1,2,...}
N isof course an infinite set (the “natural numbers’). The“...” indicates that the remaining

elements are enumerated by somerule (in this case “add one to the previous number”). Notice
that { dog, cat} and { cat, dog, cat} are the same sets as{cat, dog}, by extensionality. It does
not matter if we change the order or repeat e ements.

(2) Comprehension. Define a set by the property its members possess. Let P(x) be some
property, which we here think of as a predicate which may or may not hold for various values
of X. Then the corresponding set is all those individuals x for which P(x) holds.

Notation {x|P(X)} or{x:P(x)}
EXAMPLE {x | x isaprime number}

We can also define sets as subsets of sets we already know about: {xI A | P(x)} means the set
of all those membersx of A for which P(x). Itisequivaentto{x |xI A & P(x)}.

EXAMPLE Primes={xI N |xisprime}

Notice that the empty (or null) set A can be defined by comprehension:
AE={x|fdse}

We shall also use the notation {} .

REMARK The use of completely unrestricted comprehension has the problem that contradictory
or paradoxical sets can be defined (such as the Russell set of all those sets which are not
members of themselves). There are ways round this, and it need not worry us here.

Discrete Mathematics

1.4 Operators on sets.

Aswell as defining sets directly we can a'so build them up from sets aready defined.

Union AE B={x|xl Aorxl B}
I ntersection ACB={x|xI Aandx B}
Difference A-B={x|xl Aandx B}

Symmetric difference A DB = (A-B) E (B-A)

Clearly ACBI Al AEB.

DEFINITION. Two setsA,B are digoint iff ACB = A&

Noticethat AE B is the union of three digjoint sets: A-B, B-A, ACB.

DEFINITION. For any finite set A, thecardinality of A isthe number of elements contained in
A.

Notation: |A|
PROPOSITION. Let A,B beany finitesets. Then |JAEB|=|A|+|B| - |JACB]
Soif A,B are digoint then JAEB| = |A| + |B|.

Notice that it does not make sense to write e.g. JA| E |B|, since |A| and [B| are numbers, not
sets.

1.5 Laws on operators and counter examples.

E ,C,-, Dareall binary operators (they take two arguments). They remind us of the
arithmetica operators+, " ,-, |

There are two very convenient properties which abinary operator * can have:
DEFINITION. A binary operator * is

commutative iff for all x,y, Xx*y=y*x
associative iff for all x,y,z (X*y)*z =x*(y*2)

If * is associative we can omit the brackets and write x*y* z.

Which of these laws hold for the arithmetical operators? It iswell-known that + and~ are
commutative and associative. However - and , are neither commutative nor associative. To
see that - isnot commutativeit is enough to observethat 3-4* 4-3. Thisis because since the

1. Sets

commutativity property asserts that something istrue for all numbers x,y, to disproveititis
sufficient to produce one example where thisfails. Thisis known as a counterexample. We
can produce a counterexample to show that - is not associative:

(3-4)-5=-6
3-(4-5) =4
EXERCISE. Show that , isneither commutative nor associative by providing counterexamples.

Other universal statements (those beginning “for all ...”) can be disproved by counterexample.
For instance to show that A | B fails (for some particular A,B), exhibit an individual asuch
that al A but notal B.

DEFINITION. A universal statement is a statement of the form “for all x, P(x)”, where P(x) is
some statement. A counterexampleis an individual a such that P(a) is false (in other words not

P(a)).

Turning to the set operators, one can show that E and C are both commutative and associative.
Let us check that E is associative: Take any sets X,Y,Z. We wish to show that (XEY)EZ =
XE(YEZ). But

(XEY)EZ ={x|xI XEY orxl Z} definition of E
={x|(xI Xorxi Y)orxl z} definition of E
XE(YEZ) ={x|xI Xor(xI Yorxl 2)}

But we know that “or” is associative — it can be checked by truth tables that (AUB)UC «
AUBUC). Hence (XEY)EZ = XE(YEZ). Thiscould also have been shown by Venn
diagrams.

It isclear that E and C enjoy the same properties on sets that U and U have on propositions.
Two further laws on operators are of interest:
Distributivity. In arithmetic we know
X" (y+tz)=x"y+x" z
but in general
X+ 2t (x+ty) (x+2)

Wesay that © distributes over + (from the left, though thisisimmaterial ashere” is
commutative) but + does not distribute over ~ .

In the case of sets, for any A,B,C,

Discrete Mathematics
A C (BEC) = (ACB) E (ACC)
A E (BCC)=(AEB) C (AEC)
This may be proved viatrandation into logic or by Venn diagrams.

|dempotence. For any set A, AEA =A and ACA = A. Wesay that E and C areidempotent.

1.6 Other set forming operations.

Powerset. Given any set A we can form anew set P(A) consisting of all the subsets of A:
PA)={X|XI A}

Notice that the elements of P(A) are sets.

ExampLE. P{1,2}) ={/&{1}.{2}.{1,2}}

PROPOSITION. If A isafiniteset and |A| = nthen |P(A)| = 2.

Toseethislet A ={aq,...,an}. Weformasubset X of A by taking each element g in turn and

deciding whether or not to include it in X. This gives us n independent choices between two
possibilities (in or out). The number of different subsets we can form istherefore 2N (in other
words2” ... " 2[ntimesg]).

In generd there are mN ways of making n independent choices between m options.

Cartesan product.. An ordered pair (a,b) isapair of objects aand b where the order matters.
Thus (a,b)? (b,a) unlessa=b. Moreover (ab) isdifferent from {a,b}, since a set is unordered.
For any a,b,c,d,

(ab)=(c,d) iff a=c and b=d
DEFINITION. For sets A,B the Cartesian product A" B is{(ab) |al A anddl B}
Notation: We can write A2 instead of A" A.
EXAMPLES. (1) Thereal planeR2. Points are described by their coordinates (X,y)

(2) Computer marriage bureau. Let M be the set of all men registered and W the set of all
women registered. Then the set of all possible matchesisM”™ W.

PROPOSITION. If A,B arefinitesetsthen |A” B| = |A|.|B|.

To seethis, suppose A={&,...,am}, B={by,...,bn}. Draw atable with mrowsand n
columns of the membersof A" B

1. Sets

(aq,b1) (a1,b2)
(a,bq) (ap,b))

Such atable clearly has m.n entries.

We also want products of more than two sets. For any n an n-tuple is a sequence (a,...,ap) of
n objects where the order (and any repeats) matter. Thus

(8q,...,an) = (bq,...,bp) iff fori=1ton, g=Dbj

Given setsAg,...,An we can form the n-ary product A;” ..." Ap, which is defined to be the set
of al n-tuples (a,...,an) such that g1 A;j (i=1,..,n). The product of A with itself ntimesis
written AN,

EXAMPLES. (1) 3-D spaceR3

(2) timetable=day ~ time” room” courseNo
A typical element: (Monday,15.30,311,140)

PROPOSITION. If Ay,...,Apaefinitesatsthen |A;" ..." Ap| = |A1l|AS]... |Anl-

Products correspond exactly to the tuple types of Miranda. For instance (num,char) is
Miranda's way of forming the product num” char. Our timetable example might be rendered:

timetable ::= (day, time, room, courseNo)
(Monday,15.30,311,140) :: timetable

Thereis also a connection with the record types of Modula. Suppose we wish to have a
database which stores information about people. An array will be unsuitable, since the
information, such as height, age, colour of eyes, date of birth, will be of different types.
Instead in Modula we can define

Person = RECORD
who: Name;
height: REAL;
age: [0..120];
eyeColour: Colour;
dateOfBirth: Date
END

Such records are products:

Person = Name” REAL ~ [0..120] © Colour ~ Date

Discrete Mathematics

Records can be nested, so that in the above example, we might have

Date = RECORD
day: [1..31];
month: [1..12];
year: [1900..1990]
END

REMARK. We can now form the product of three setsin three different ways:
A°B"C (A"B)"C A" (B" O

These are dl different strictly speaking, sothat © as abinary operator is not associative.
However thereis aclear correspondence between the elements

(ab,c) ((ab).c) (a(b,0))
so that the sets are in a sense equivalent. Nevertheless they are structured differently.

EXAMPLE (Denvir). Each person has three names, drawn from aset N. We can represent the
full name either as

Namel ::= (FirstName, SecondName, Surname)
i.,e.N"N"N, or as

Name2 ::= (Forenames, Surname)
where

Forenames ::= (FirstName, SecondName)

i.e. (N"N)" N. Theinformation stored is clearly the same, but the structure is different.

1.7 Partitions
If we divide a set into non-overlapping chunks we get a partition of the set.
DEFINITION. Let Sbeaset. A partitionof Sisafamily A4,...,Ap, of subsets of S such that

* each Aj is non-empty

«the Aj cover S, that is, S= A1E... EA[

* the Aj are pairwise digoint, that is, every pair of sets selected from them isdigoint:
if it then AiQAj =/

Notation: It issometimes convenient to write A1E... EAp as Uj<pA;.

1. Sets

EXAMPLES. (1) Humans are partitioned into male and female
(2) Integers are partitioned into even and odd

We shall return to partitions when discussing equivalence relations.

2. Relations

We wish to capture the concept of objects being rdated, e.qg.

John loves Mary

St Albansis north of London

South Kensington is between Gloucester Road and Sloane Square
2< 15

Pimplements Q

In predicate logic, these are predicates or relations over individuals.

For our formal definition of relations we view arelation asaset. For instance, suppose the set
of al peopleis People. Weform aset “loves’ consisting of all ordered pairs of people where
the first loves the second:

(x,y)I loves iff xlovesy
Thuslovesi People” People.

Informally we shall tend to use the logical notation, writing loves(x,y) rather than (x,y)l loves.
DEFINITION (n® 1). An n-aryrelation is asubset of a Cartesian product A{" ..." Ap of n sets.

WeuseR,S,... to range over relations. If Ri A1 ...” Apwesay that Risarelation on
Ay ... Ap. Thetypeof RisA; ...” Ap. Instead of (ay,...,an)] R weusualy write
R(ay,...,a). Wesay that “&,...,an arerelated by R”.

A case of particular importance iswherethe relation Risbinary, thatisR 1 A" B, some A,B.
Wesay that RisarelationfromAtoB. If RI A" A wesay that Risabinary relation on A.
Similarly if RI ANthen Risan n-ary relation on A. Often it will be convenient to use infix
notation for binary relations and write aRb instead of R(a,b). For instance, “<” isabinary
relation on R and we usually write x<y rather than <(x,y).

REMARKS. (1) A relation does not have to be “ meaningful”; any subset of a Cartesian product
isarelation. For instance“<” isabinary relationon N, and is the set

10

Discrete Mathematics

<={(0,1), (0,2), (1,2), ..., (47,108), ...}

But any other set of ordered pairs of natural numbers such as
R={(2,7), (101,12), (13,0)}

isalso abinary relationon N.

(2) We have formally defined “relation” interms of “set”. However theideaof arelation isjust
as fundamental asthat of a set, since in order to understand sets we have to have an informal
grasp of the membership relationT which relates objects to sets.

2.1 Representing relations.

Listing ordered pairs can get tedious and hard to follow. For binary relationsRi A" B we
have other representations.

(1) Diagram

A B
(a) We can represent aRb by drawing aline
from ato b, asin the diagram to the right. b
a
. B .

(b) Inthe case where R isabinary relation on A we can also use a directed graph, which
consists of a set of nodes joined by arrowed lines indicating a relationship between the nodes.

Weillustrate by means of an example. Let
A ={ag,...,aq} andlet

R = {(ap.ap).(az.a1).(a3.a2).(a3.a3)} -

Notice that the direction of the arrows matters. It isof course possible to use adiagram where
the source and target sets are drawn separately asin (a).

11

2. Relations

(c) We can represent arelation on R as an area yA
in the plane. The accompanying diagram >>\
represents R, where xRy iff x+y£7. //// b /
- &7
= =
// |~ /\
-~ —
-1 / —
// -

(2) Matrix (array). Supposethat |A|=m, |B|=n. We can represent R by an m" n matrix M of
booleans (T,F). Let A ={&y,...am}, B={b4,...bn}. Thenfori=1,...mandj=1,..,n
v T if ajRbj

.. |
M(,)) =i
() % F otherwise

It iscommon to use 1,0 instead of T,F. M(i,j) isthe entry for the ith row and jth column.

On acomputer, storing arelation as an array allows random access and easy manipulation, but
can be expensive in space if the relation is much smaller than A~ B. With asparserelation,

where there are not many ordered pairs, an aternativeis an array of linked lists, called an
adjacency list. Asan example, suppose that R isthe following binary relation on {1,2,3}:

{(1.1), (1,3), (2,1)}

R has only 3 out of the 9 possible ordered pairs. We create an array of three pointers, one for
each element of {1,2,3}, and list for each element which other elementsit isrelated to (adjacent
to in the directed graph), asin the following diagram.

1 -— 1 - 3 o
2 — 1 .
3 o

2.2 New relations from old

Since relations are sets they inherit certain operators, in particular union, intersection and
complement, defined as follows:

12

Discrete Mathematics

DEFINITION. Let R,ST A7 ... Ap. DefineRES,RCS, R | A1 ..." Apby

(a1,..-ap)l RES iff (aq,...ap)] Ror (ag,...ap)1 S
(a1,.--ap)l RCS iff (aq,...ap)] Rand (a,...ap)l S
(ag,...ap)l R iff (a,...an) T R

NOTES. (1) Toform aunion or intersection the relations must be of the same type. The type
of thecomplement R isthe same asthat of R.

(2) The notations R+S, R.S are sometimes used instead of RE S, RCS respectively.

(3) Union, intersection and complement on relations are the counterparts of the Boolean
operations of digunction, conjunction and negation in logic.

(4) Wecan dlso define R using set differencee R=Aq1"...” An-R
(5) Frequently complement isindicated by crossing out an infix relation: 1, | etc.

Aswell asinheriting structure from sets, relations have operations of their own which do not
apply to setsin general. We now define identity, inverse and composition.

DEFINITION. Given any set A, theidentity relation on A is defined by
ida ={(aa) |l A}
Clearly ida isjust “=" on A.
DEFINITION. GivenR [A" B definetheinverseof R by
bR-1a iff aRb
Plainly R-1{ B A.
NOTES. (1) Inverseisonly defined for binary relations. Any binary relation has an inverse.
(2) Inverse should not be confused with complement.
(3) Sometimesinverseisindicated by reversing an infix relation: > istheinverse of <, etc.
(4) In matrix termsinverse is transpose (not matrix inverse!)
(5) If weinvert arelation twice we recover the origina relation: (R'1)1=R.
EXAMPLE. Theinverse of “isthe parent of” is“isthe child of”:

x isthe parent of y iff yisthe child of x

13

2. Relations

DEFINITION (Composition). GivenRI A" B, Si B" CdefineReSI A" Chy
aReSc iff thereexistsbl B.aRbandbSc (any d A,cl C)
NOTES. (1) “ReS’ may beread as“R compose S’ or “Rcircle S’

(2) Thetypesof R and S must be compatible or else ReSis not defined.

(3) One may think of b as being an intermediate point on a path from ato c. Thusaisrelated to
c by ReSif thereisapath from ato ¢ viasome member b of B, using R and then S.

(4) In matrix terms is multiplication where we use Uinstead of © and Uinstead of +. For

instance
2T T et ngaeT TQ
EF F®T To 6F F o

becomes
ae1 1('1331 ng&l 19
€0 021 15 &0 05

(5) If Risahbinary relation on A it makes senseto form R e R'1 In genera thisis not the same
asida.

(6) If Ri A" Bthenidp°R = Reidg =R
EXAMPLE. grandparent = parent o parent

x isgrandparent of y iff $z (x isparent of z& zisparent of y)
PROPOSITION. ° isassociative
Proof We must show (ReS)eT = Re(SeT) whereRi A" B, Si B"C, Ti C Dsome
A,B,CD.

But X (ReS)eTw iff $z.x ReSzTw
iff $z%y. xRy SzTw
iff 3y$z. xRy SzTw
iff $y. xRy SeTw
iff X Ro(SeT) w

Notice the advantage of using infix notation in thisproof. 0O

14

Discrete Mathematics

REMARK. Wedon't really “need” operators like o, since we can aways replace them by their

definitions and work directly (using predicate logic, etc.). But the operators are a convenient
shorthand and laws such as associativity give us something of the ease and calculating power
of ordinary arithmetic.

We show that two laws do not hold by exhibiting counterexamples:

1. Ingeneral Rt Rl The simplest possible example: Take A ={a,b} (where at b) and define
R AZtobe{(ab)}. Then R-1={(b,a)} whichisplainly different from R.

2. Composition is not commutative. We must find R,S such that ReS! SeR. For both R-S
and S°R to be defined wemust have R A" B, ST B A. Let A=B={ab}. LetR={(a,a)},
S={(ab)}. Then ReS={(ab)} but S°.R = A (adiagram makesthis clear). We havethe

desired counterexample.

EXAMPLE (to illustrate composition of relations). Members of staff occupy various rooms
(possibly more than one). They have various keys, and these keys open various rooms. We
model this by defining three sets — staff, key, room — and three binary relations

occupiesi staff ~ room
hasKey | staff ~ key
opensi key room

We would like to know which staff members can open which rooms. Thiswill be arelation
canOpen| staff ~ room

Plainly scanOpenr iff shasKey k & k opensr, for some key k. But this means that
canOpen = hasKey ° opens

Notice that a member of staff may be able to open aroom using more than one key.

A question of interest is whether staff members can open the rooms they occupy. In other
words, isit true that

" sr. soccupiesr b scanOpenr

Thisis equivalent to asking whether occupiesi canOpen.

2.3 Applicationsto relational databases

In this section we describe some simple connections between our work on relations and
databases. We define the database operations of join, projection and selection. We only ded

15

2. Relations

with the static aspects of databases, not concerning ourselves with updating and maintaining
integrity.

A relational databaseisacollection of relations. The records in the database are the tuples
belonging to the various relations. Each relation has various attributes. As an example, a
university registry database may have arelation we shall call Student, which stores students
names and addresses, and their examination number, used for purposes of anonymity. The
attributes of Student are name, address and number. It isusua to present the tuples of a
relation in tables. For instance atable for Student might look like this:

name address number

Brown,B. 5LawnRd. 105
Jackson, B. 1 Oak Dr. 167
Smith, J. 9 EIm St 156
Walker,S. 4 AshGr. 189

Each tuple of the relation correspondsto arow in thetable. Each attribute correspondsto a
column. Associated with each attribute is a set (or domain) from which it takesitsvalues. Itis
clear that these database relations are just the same as the n-ary relations we have been
studying. In our example we may write

Student | name set” address set” number_set
using an obvious notation for the sets associated with each attribute.

Suppose that the registry database has another relation, called Exam, which records the results
for students taking the compilers exam. It has attributes number and grade. A table for Exam
might look like this:

number grade
105 A
156 A
189 C

Notice that Student and Exam share an attribute, namely number. We can combine the the two
realtions using an operation called jointo get a new relation called Student-Exam which
“matches’ the two relations on their common attribute:

16

Discrete Mathematics

name address number grade
Brown,B. 5LawnRd. 105 A
Smith, J. 9EIm St. 156 A
Walker,S. 4 AshGr. 189 C

Notice that candidate 167 did not sit the exam, and therefore does not appear in the join.
In the language of database theory, the new relation might be written
join Student and Examover number
We could define the join quite easily using our logical notation:
Student-Exam(n, & no, g) iff Student(n, a, no) & Exam(no, g)

We might wish to modify Student-Exam by hiding the examination number information to get a
new relation Results. Thismay be done by the database operation of projection. The table for
Results would look like:

name address grade

Brown, B. 5LawnRd. A
Smith, J. 9 Elm St. A
Walker, S. 4 Ash Gr. C

In database notation Results may be written

project Student-Exam over (name, address, grade)
In our logical notation we may write:

Results(n, a, g) iff $ no. Student-Name(n, &, no, g)

Notice that Results is got from Student and Name by a sort of generalized relational
composition. In fact compositions of binary relations can be constructed by ajoin followed by
aprojection. Going back to the keys example of the previous section, it can be seen that the
relation “canOpen” may be got from “hasKey” and “opens’ using database operations as

project (join hasKey and opensover key) over (staff, room)

Another thing we might wish to do isto select a part of arelation table whichis of interest.
Suppose in our registry example we wish to have the names of those who should be

17

2. Relations

considered for the prize, and so we select those candidates who got A in the exam. Starting
from the table Results, we get a table which we might call A-Results:

name address grade

Brown, B. 5LawnRd. A
Smith, J. 9 Elm St. A

In database notation we have
select Resultswher e grade ="A’
In logical notation we could write
A-Results(n, a, g) iff Results(n, a,g) & g=A

The relation A-Results gives us the names we want, but we could reduce clutter by applying a
further projection to get the relation PrizeCands with a single attribute:

name

Brown, B.
Smith, J.

Thisis of course
project A-resultsover names

We have now introduced three database operations (join, projection, selection) and seen how
each operation has a counterpart in logic.

2.4 Properties of Relations

We now define three standard properties which relations may possess. They will be of usein
our later study of relations which express equivalence between objects or ordering between
objects.

DEFINITION. Let R beabinary relation on A.

(i) Risreflexive iff " xI A. Rxx
(i) Rissymmetric iff " x,yl A.Rxy U Ryx
(iii) Ristranstive iff " x,y,zI A.Rxy & Ryzb Rxz

18

Discrete Mathematics

NOTES. (1) Theseareal universa properties

(2) We can define them equivalently in terms of the operations on relations introduced in the
previous section:

Risreflexive iff idal R

Rissymmetric iff R=R1
Ristranstive iff ReRI1 R

EXAMPLES. (1) = isreflexive, symmetric and transitive.
(2) £ on numbersis reflexive and transitive but not symmetric. Thesamefor i on sets.
(3) < on numbersistrangitive but not reflexive or symmetric.

2.5 Transitive Closure

Consider the following situation. There are various direct flights between various cities. We
wish to know for any two cities whether there is a possible trip from one to the other alowing
changes of plane. We can model this by defining a set city of citiesand abinary relation F on
city, such that

aFb iff thereisadirect flight fromatob

Thisrelation may be represented as a directed graph with the cities as nodes, asin the
following example:

Manchester Edinburgh

Knock - ‘\& //

Dublin —— London

Let F betherelation
aF*b iff thereisatrip from ato b allowing changes

Then clearly aFtb iff there is some path from ato b in the directed graph. For instance thereis
a path from Manchester to Rome, but no path from Rome to Manchester. Wewould liketo
caculate F* from F.

We can express the relation F* in terms of F using relational composition. First note that

19

2. Relations

aF*b iff thereisapath of length nfrom ato b, somen3 1
Now

aFb iff thereisapath of length 1 from ato b
aFeoF b iff thereisapath of length 2 from ato b (via some intermediate city)

Define F' = FoFe...oF (nFs). Thenfor any n3 1

aFb iff thereisapath of lengthnfromatob
Therefore aF*b iff $n® 1. aFNb. Moreover

Ft=FE F2E... E FNE...
= Un31Fn

DEFINITION. Let R beabinary relation onaset A. Thetrangtive closure of R isthe binary
relation on R defined by

Rt=Ups 1 RN

EXAMPLES. (1) Program modules can import other modules. They can also depend indirectly
on modules via some chain of importation, so that for instance M depends on M' if M imports
M" and M" imports M'. Model this by a set module of modules, and two relations, imports
and depends. Clearly

depends = imports™

(2) Two people are related if one isthe parent of the other, if they are married, or if thereisa
chain of such relationships joining them indirectly. Modél this by a set people, with three
relations. married, parent, and relative. Then

relative = (parent E parentl E married)*
Notice that married is symmetric: x married y iff y married x. Thisisnot the case for parent.

R* iscalled the transitive closure because it is transitive and because it is the smallest transitive
relation containing R. To cast more light on this we now examine an alternative way of
building the transitive closure. Imagine that we want to make R transitive, and we want to do
thisin the most “economical” fashion, by adding aslittle as possible. If R isalready transitive
we need do nothing. Otherwise there are a,b,c such that aRbRc but not aRc (so that a,b,c area
counterexample to R being transitive). We add the pair (a,c) into the relation. It is now that
much closer to being transitive. We can carry on doing this until there is no need to add further
pairs. We now have atransitive relation. Anything we added to R was forced upon us by the

20

Discrete Mathematics

requirement of trangitivity, and so we have obtained the smallest transitive relation containing
R.

It turns out that the relation we have created is equal to Rt as defined earlier. We do not prove
this here, though we note that it is a straightforward matter to check that R* istrangitive:
Suppose aR*b, and bR*c. Then there are paths from ato b and from b to ¢. Joining these up
plainly creates a path from ato ¢ so that aR*c.

Calculating trangtive closures. When calculating “ by hand” the easiest method isto draw the
directed graph for the given relation R, and then write down the matrix for R*. To see whether
(i,]) should be included, inspect the graph to seeif there is a path from the ith node to the jth
node. Clearly the word “inspect” istoo vague for thisto serve as an agorithm, and our
informal method is likely to be error prone on large graphs. We now consider how a computer
might calculate R,

We have defined R = Ups 1 RN. Thereforein order to calculate RT we can compute
successively

R RERZRERZ2ERS, ...

Interms of paths, RE R2E ... E RN represents all paths of length between 1 and n. But since
R* is defined as an infinite union it seems that we will have to carry on computing for ever,
which will not do. However the process will come to an end at some finite stage because
eventually nothing new will be added. Suppose the set on which R is defined has n elements.
Then we need not consider paths of length greater than n since they will involve repeats
(visiting the same node of the graph twice). So RM*1 isaready includedinRE RZE... E RN
and we need not calculate further as we have found R*. In fact we often don't have to go as
far asn. Intheairline example at the beginning of the section there are 8 cities, but the longest
paths without repeats are of length 3. Thus we compute FE F2E F3 and F4 and we find that F4
i FEF2EFS3, so that we can stop at that point. We may describe our procedure by the
following algorithm:

Input R

S=R

T=R

S:=ReS

whilenot Si T do
T=TES
S:=ReS

od

Output T

21

2. Relations

In the above whenever the whileloop isentered, S=RM1 T=RE RZE... E RN
(n=1,2,...). Itisnot hard to convert the agorithm into a Modula-2 program involving arrays.

There are many ways of improving the algorithm. For instance it is not necessary to store R.
A very much more efficient method is Warshall's algorithm (see Chapter 16 of Reasoned
Programming, by K. Broda, S. Eisenbach, H. Khoshnevisan, and S.J. Vickers).

It is sometimes useful to “reverse” the process of finding atransitive closure. In other words,
given atransitive relation R, the task isto find asmallest S such that St=R. The benefit isthat
Sissmaler, while having the same information content as R, since R can be reconstructed
from S. However in general there can be many solutionsfor S. Later on we shall solve this
problem in the easier setting of partia orders.

3. Functions

DEFINITION. Given setsA,B, afunctionf from A to B isamethod of associating with each
a A exactly one element of B, denoted f(a).

The word “method” is necessarily vague. We intend the notion of function to be grasped
directly. Our informal understanding of afunction isthat it transforms something into
something else (ainto f(a) in the above definition). This concept is particularly applicable to
computer programs, which transform inputs into outputs.

Thereisalot of terminology concerning functions, and not al of it is standardised. We let
f,g,h range over functions, and we write f:A® B to mean that f isafunctionfromA toB. Ais
the domain (or source type) of f, and B is the range (or co-domain or target type) of f. The
expression f(a) isf applied to theargument a. If f(a) = b, then f issaid to mapato b. We can
also say that b isthe image of aunder f, or that ais a pre-image (or inverse image) of b under f.

Note that elements of the domain always have a single image, but el ements of the co-domain
can have more than one pre-image or may have none. If thedomain A isaproduct A" ..." Ap

then we write f(ay, ...,an) instead of f((ay,...,an)). We say that f isafunction of n arguments.

When dealing with a function such as f:R® R defined by f(x) = x3, quite often it is convenient
not to give it aname, but simply to describeit by its rule for transforming the argument. Soin
this case we can refer to the function as x3. If we need to be more careful in indicating the
argument we can use the notation x — x3.

We have defined functions to be total (i.e. to have avalue for every argument in the domain),
following usual mathematical practice. A partial function is a function which need not be
defined on every member of its domain. It therefore assigns to each element of its domain at

22

Discrete Mathematics

most one element of the range. Miranda programs of course compute functions. On the whole
we would like these functions to be total, but it is easy to write programs which do not
terminate on some (or al) arguments, so that they define partial functions. Moreover when
designing a program P to compute square roots it is quite reasonabl e to have P return an error
message for negative inputs, and to regard P as computing a function which is undefined on
negative arguments.

Functions can act on sets other than sets of numbers. For instance let L be (the set of programs
in) some programming language. Define afunction length: L® N by

length(P) = number of linesin P (Pan L-program)

A compiler transforms programs written in one language L 1 into programs in another language
Lo. It may beregarded asafunction compile: L1® Lo.

3.1 Representing Functions
Functions can be represented by arrays, diagrams or tables.

(1) Arrays Weillustrate by means of an example. Suppose we declare A to bean
Array[1..20] of Integer. We mean that the array stores a unique integer for each value from 1
to 20. A therefore represents afunction f:[1..20]® Z (the mathematical name for the set of

integers), where f is defined by
f(i) = A[i] 1£i£20

(2) Diagram. We can represent f(a) = b by
drawing alinefromato b. Thisisthe same
diagram asfor ardation R from A to B, except
that there we were allowed to have a member of . .
A joined to any number of elements of B,

which is not allowed for functions.

(3) Table. Asan example we might record various values of the function age: People® N.
Thus

Name Age
John 21
Kathy 19
Leonard 18

23

3. Functions

3.2 Properties of Functions.

DEFINITION. Letf:A® B.

(i) fisonto iff " bl B$ad A.f(@=b

(i) fisoneone(1-1) iff " a,al A. f(a =f(a) b a=a
(i) fisabijection iff fisboth 1-1 and onto (and total)

Part (i) says that every element of the range has a pre-image. Part (ii) can be more easily
understood in terms of the following aternative definition

fisone-one(1-1) iff " a,al A. ata b f(a?! f(a)

In other words no two different elements of the domain can map to the same element of the
range. (The second form isthe contrapositive of thefirst; in logic P® Q isequivalent to
-Q® - P).

Notice that 1-1, onto and bijection are universal properties, and so to show that afunction does
not satisfy them it is enough to produce a counterexample.

EXAMPLE. Definef:N" N® N by f(x,y) = x+y. Show that f is onto but not 1-1.

Proof To show fisonto: Takeany nl N. We must find (mg,m2)I N” N such that
f(mz,m2) = n. But f(n,0) = n+0 = n, and so (n,0) is as required.

To show f isnot 1-1: We must produce a counterexample, in other words we must find
(mq,m>), (n1,n2) such that (m1,m2) * (n1,n2) but f(mg,m2)=f(n1,n2). There are many
possibilities: For instance (1,0) * (0,1) but f(1,0) = 1+0=1and f(0,1) = 0+1 = 1. In genera
since + is commutative, f(m,n) = f(n,m) and so (m,n), (n,m) is a counterexample whenever
mt n.

3.3 Functions and Relations
A function f: A® B can always beregarded asarelationRi A” B. We simply define
R(ab) iff f(@=b

But not every relation convertsto afunction like this. The reason isthat with arelation R, for a
givend A we allow thereto be several b's such that R(a,b) or none. But with afunction we

insist that there must be exactly one b such that f(a) = b.

However there isadifferent way of converting arelation into a function which always works.

DEFINITION. SupposeRI A; ...” Ay Thecharacteristic functionchr: Ay ...” Ap® {T,F}
is defined by

24

Discrete Mathematics

chr(&y,---,an) = |

i T if R(ay,...,an)
1 F

otherwise

In the binary case the characteristic function is clearly much the same as the corresponding
matrix, which was defined by

mip=] Lo DA
1 F otherwise

3.4 Images of Sets

Functions apply to individuals, but we can also talk of the image of aset X under afunction f.
Thisisthe collection of all images of members of X under f. If Pisa program which
computesf, and X is some set of various inputs which are fed to P, then we may wish to know
what are the possible outputs.

DEFINITION. Letf: A® B. For any Xi A, definetheimage of X under f to be
f{X] ={f(@ |&d X}

The set f[A] of al images of f is called the image set of f (some authors refer to this asthe
range of f, conflicting with our earlier definition).

Clearly f[X]i B. Furthermoref[A] = B iff f isonto. Notice that we effectively have anew
function g: PA® PB defined by

9(X) =f[X]
3.5 The Pigeonhole Principle and cardinality

Suppose that m objects are to be placed in n pigeonholes, where m>n. Then some pigeonhole
will have to contain more than one object. Thisis called the Pigeonhole Principle (PP).

EXAMPLE. If there are at least 367 peoplein aroom, then at least two share a birthday.

Let us rephrase the PP in the language of functions: Let O be the set of objects and P the set of
pigeonholes. An assignment of objectsto pigeonholesis described by afunction place: O® P.

The PP states that if |O| > |P| then placeis not 1-1.

PROPOSITION. Letf: A® B, Xi A. Then [f[X]|£ [X|.

Clearly there cannot be more images of aset X than there are members of X, since each
member has at most one image. In fact we can prove the Proposition using the PP:

Suppose for a contradiction that [f[X]| > |X|. Define aplace function p: f[X]® X by

25

3. Functions

p(b) = someasuch that f(a) = b

It does not matter which awe choose, but there clearly will be such an aby definition of f[X].
We are placing the members of f[X] in the pigeonholes X. By the PP, some pigeonhole has at
least two occupants. In other wordsthereissomeal X and b,bT f[X] with p(b) = p(b") = a

But thenf(a) =b and f(a) = b', which isacontradiction. O

Given afunction f: A® B in general the cardinalities of A and B may be greater than or smaller
than each other. However we can relate them as follows:

PROPOSITION. Letf: A® B where A,B arefinite.
(@ Iffisl-1then|A| £ |B|

(b) If fisonto then |A| 3 |B|

(o) If fisabijectionthen |A| = |B|

Proof (a) isthe contrapositive of the PP. For (b) notice that if f is onto then f[A] = B, so that
inparticular [f[A]|=|B|. Also|A|3 [f[A]| by the preceding Proposition. Therefore |A|3 |B| as
required. Finally (c) clearly follows from combining (a) and (b). O

3.6 Composition of functions

Composing functions by applying them successively is awell-known procedure. Thus g(f(x))
represents the result of applying f to x and then applying g to the result. In order for thisto be
defined the value x must be in the domain of f, and f(x) must be in the domain of g.
Sometimesit is useful to give the new function taking x to g(f(x)) an explicit name:

DEFINITION. Letf: A® B, g: B® C. A new function gof: A® C isdefined by
gof(x) = 9(f(x))

Notice that the range of f has to be equal to the domain of g. Notice also that gof represents
“f followed by g”, unlike in the case of relational composition, where RoS represented

“Rfollowed by S’. Just asfor relations, function composition is associative but not
commutative.

PROPOSITION. Letf: A® B, g: B® C, h: C® D. Then ho(gef) = (hog)of.

Proof . Thisiseasily established from the definition of functional composition: Take xI A.
Then

(he(g-f))(x) = h((g-)(x)) = h(g(f(x))) = (h=g)(f(x)) = ((h-g)-T)(x)

26

Discrete Mathematics

The proof may beillustrated by this diagram. A B

Each of thetwo triangles ABC, BDC heg
“commutes’, that is, the result isthe same g\\ gl \
whether one does f followed by g or gof, and

whether one does g followed by h or hog.

Therefore the parallelogram ABDC commutes.
m|

PROPOSITION. Letf: A® B, g: B® C. If f,garebijections, then so is gof.

Proof . Clearly gof istotal. It isenough to show:
(2) if f,g are onto then so is gof
(2) if f,g are 1-1 then so is gof

The result will then follow.

Proof of (1): Assumef,g onto. Takeany d C. Sincegisontowe cantakebl B such that
g(b) = c. Sincef isontowe cantakeal A such that f(a) =b. But then gof(a) = g(f(a)) = g(b)
=c. Hence gof isonto.

Proof of (2): Assumef,g are 1-1. Takeany a,axl A and suppose gof(ag) = gof(ap). Then

o(f(ap)) = g(f(ap)) definition of gof
f(a) =f(a) sincegis1-1
q=a sincefis1-1

This showsthat gof is1-1. O

3.7 Inverses of Functions

Theinverse of afunction f: A® B isafunction g: B® A which undoes the action of f. It turns
out that unlike in the case of relations, which always have inverses, afunction is only invertible
if itisabijection.

DEFINITION. Let A beaset. Definetheidentity functionon A, ida: A® A, by ida(a) = a, dll

a A.

DEFINITION. Letf: A® B. A function g: B® A isaninverseof f if

fordla A g(f(a)=a
forald B f(g(b)) =b

Thisisclearly equivaent to gof =ida, fog = idg.

27

3. Functions

PROPOSITION. Let f: A® B beabijection, and define f-1: B® A by
f-}(b) = the unique asuch that f(a) = b

Then f-1iswell-defined, and is an inverse of f (in fact theinversein view of the next
Proposition).

Proof . Thereisat least one asuch that f(a) = b sincef isonto. There cannot be more than one
sincef is1-1. Thereforefliswell-defined. It clearly satisfies the conditions for being an
inverseof f. O

PROPOSITION. Letf: A® B. If f hasaninverse g, then f isabijection and the inverseis
unique (and is -1 as defined above).

Proof . Assumef hasaninverseg.
To show that f isonto, take bl B. Then f(g(b)) = b. So bisanimage of f.
To show that f is1-1, take ag,apl A. Supposef(a) = f(ap). Then g(f(ay)) = g(f(ap)). But

then a = a.

To show that the inverseis unique, suppose that g,g' are both inverses of f. We must show
that g=g'. Takeany bl B. Then f(g(b)) = f(g'(b)) since g,g' are inverses. Hence g(b) = g'(b)
sincefisl-1. O

In view of the preceding proposition, one way of showing that afunction isabijectionisto
show that it has an inverse. Furthermore, if f isabijection with inverse f-1, then f-1 has an
inverse, namely f, so that f-1isaso abijection.

. . . 3
EXAMPLES. (1) f:R® R defined by f(x) = x3. Theinverseisf-1(x) = Vx.
(2) :N® N defined by

x+1 if X even

i
fx) = |
=11 ifxodd

Then one can check that fof(x) = X, considering cases asto whether x iseven or odd. Sof is
itsown inverse, and we deduce that f is a bijection.

DEFINITION. Let A beaset. ArelaionRI A” A isanequivalencerdation iff Ris
symmetric, reflexive and transitive.

DEFINITION. For any sets X,Y define
X~Y iff thereisabijectionfrom X toY

We speak of X being smilar to Y, or being in 1-1 correspondence with Y.

28

Discrete Mathematics

PROPOSITION. Therelation ~isan equivalence.

Proof . ~isreflexive: idy: X® X isclearly abijection.

~issymmetric: If X~Y then thereisabijectionf:X® Y. Thishasaninverseflwhichisasoa
bijection.

~istrangitive: This comesimmediately from the Proposition at the end of Section 3.6. [

3.8 Counting Sets

Let X be afinite set with cardinality n. Then thereisa*counting” bijection
f:{1,2,...n}® X

Sometimes we express this by enumerating X as{ay,...,an}. Let X,Y betwo finite sets. Then
X|=Y] iff X~Y

In other words two sets have the same number of elements precisely if thereisa1-1
correspondence between them.

For computing it is convenient to deal with infinite sets, sinceit is awkward to have for
instance alargest natural number. Of course these infinite sets can never be stored in their
entirety, and the practical limitations of the machine have to be considered at some stage; but it
isnatural to consider a program e.g. to multiply numbers without at first insisting that the
Maxint of a particular implementation of the programming language be brought into the
discussion.

Even though a set such as N isinfinite, we can build it up by stages

0
0,1
0,1,2

in such away that any number n will appear at some stage. Infinite sets which can be built up
in finite portions by stages are particularly nice for computing, since we can hope that our
computer will be large enough to store the portion of the set which is needed for the particular
input values we wish to process.

Suppose that A issuch aset. Then A = U3 g An Where each Ap isfinite. We can enumerate
A as{&,ay,..,an,...} by smply adding in the new elementsin each Ay, stage by stage. We
have a“counting” of A by N and A ~N.

DEFINITION. For any set X, X iscountable iff X isfiniteor X ~N.

29

3. Functions

Itisinfact the case that X is countable iff thereexistsa1-1functionf: X® N. Thus
countable sets are in a sense those which are representable by N

Surprising things can happen with infinite sets. With finite sets we know that if X isa proper
subset of Y, that is, X1 Y and X Y, then [X|<|Y | and there can be no bijection between X and

Y. But consider the set Even of even natural numbers. Then Even is a proper subset of N.
But there is actually a bijection between Even and N, namely f:N® Even defined by f(n) = 2n.

In fact any infinite set can be put in bijection with a proper subset of itself.

Perhaps more surprisingly still, we can count sets which appear larger than N. For instance
the integers Z may be counted as

0,1,-1,2,-2,3,-3,...
This can be achieved by the bijection g:Z® N defined by
A ifx20

X =
90=1 3o ifx<0

Z islike 2 copies of N. We can even count N2, which islike N copies of N (seethe following
diagram).

0 1 2 3 4
0 o—)

1 /

//
.

Cantor showed that there are uncountable sets — sets which are too large to be countable. 1f X
is uncountabl e then no matter how you try to count it you will always miss out some elements.
In other words, if f isany 1-1 map from N into X then f is not onto.

)
‘i—‘
Q
[)

It isimportant to realise that a set can <till be countable even if a particular attempt to count it
fails. For instance we have just seen that N2 is countable, but the function f: N® N2 defined

by f(n) = (n,0) is 1-1 but not onto. If aset X is uncountable then by definition every attempt to
count it fails, and trying to add more elements to an enumeration will not help.

30

Discrete Mathematics

The most important uncountable set istherealsR. In view of our earlier discussion, we cannot
build up the reals by finite stages, and this means that we cannot manipulate actual realsin the
way that we can natural numbers. What we have to do is use approximations, such as floating
point decimals. There are only countably many such approximations.

FACT. P(N) isuncountable—in fact so is P(X) for any infinite X.

For further information on infinite sets and countability see Truss, Section 2.4.

4. More about relations

In this section we discuss two particular kinds of relation, which arise when we wish to
compar e objects, namely equivalence relations (which tell us when one object is“as good as’
another) and orderings (which tell us when one object is “better” than another).

4.1 Equivalencerelations

Imagine for example that we have a set of programs and we have various demands to make of
them — various properties which they may or may not possess. These might be such things as

* dways terminates
* costs less than £100
» computes p to 100 decimal places

etc. We deem two programs to be equivalent if they meet the same demands. If thisisthe case
then even though they are not equal they may aswell be, because there is no difference
between them as far as our demands are concerned. So what we have is a weakened form of
equality. Itisnot hard to seethat this equivalence must be reflexive, symmetric and transitive.
This motivates the following definition, whichisasin Section 3.7:

DEFINITION. Let A beaset. ArelaionRI A" A isanequivalencerdation iff Risreflexive,
symmetric and transitive.

NOTATION. Equivalence relations are often denoted by ~, E, etc.

EXAMPLES. (1) Let A beany set. Theidentity (equality) relation ida isan equivalence
relation.

(2) Given aset Student and a map age: Student® N, the binary relation on Student defined by

sy sameAge sy iff age(s)) = age(sp)

31

4. More about relations

is an equivalence.

(3) Similarity ~ between sets (see Section 3.7 above).

(4) Logical equivalence between formulas defined by
A°B iff F A« B

is an equivalence.

(5) Permutation of lists: The relation
1 Elp iff loisapermutation of |1

is an equivalence.

Example (2) isa special case of the following:

PROPOSITION. Let f:A® B and let E be an equivalence relation on B. Thentherdation R
A" A defined by

a Ra iff f(a) Ef(ap)
isalso an equivalence.
Proof Exercise O

DEFINITION. Let E bean equivalencerelation on aset A. For any al A the equivalence class
of a(with respect to E) isdefined as

[ae={xI A|aEx}

We often write [a] where no confusion will arise.

THEOREM. Let E bean equivalencerelaionon A. Thenfor al ag,anl A,
[ar]=[ap] iff asEep

Moreover the family of sets[a] (all a A) formsa partition of A.
Conversdly, given apartition A1,...,An of A we can define arelation R on A by

xRy iff x,y areinthe same component of the partition

and thisisan equivalence. O

32

Discrete Mathematics

4.2 Orderings

Orderings on sets of numberssuch asN, Z and R are familiar. But we can also have orderings
on other sets. For instance suppose that we have a set of programs and we wish to compare
them as to which are cheaper, or run faster, or are more accurate. We shall use these sort of
orderings in Part 2 when we compare the efficiency of algorithms. We can safely assert that
any ordering relation should be trangtive:

if a<b and b<c then a<c

and it will not be symmetric (so a<b should not imply b<a) in any interesting case. Asto the
reflexive property we notice that there are two types of orderings, typified by <and £ on N.
The latter isreflexive, but the former isnot —in fact it isirreflexive (defined below).

We discuss three notions of ordering — pre-orders, partial orders and linear orders.

DEFINITION. Let R beabinary relationonaset A. Then Risapre-order iff Risreflexive and
transitive.

We write (A,R) when we wish to show the underlying set.
EXAMPLES (of pre-orders). (1) Define arelation on formulas by
A£B iff F A®B
Then £ isapre-order. For instance ff £ A £ tt (any A), and A£ AUB.
(2) Therelation on Student defined by
s1 noOlderThan sy iff age(s)) £ age(s o)
PROPOSITION. If f:A® B and Sisapre-order on B then R defined by
a1 Rap iff f(a) Sf(ap)
isapre-orderonA. O
Many pre-orders satisfy an additional property:
DEFINITION. LetRI A" A. Risanti-symmetric iff
"x,yl A.xRy UyRx b x=y

Risapartial order (po for short) iff R isreflexive, transitive and anti-symmetric.

33

4. More about relations

In other words, apo is an anti-symmetric pre-order. It should be noted that anti-symmetric is
not the opposite of symmetric, since arelation can be both symmetric and anti-symmetric (for
example the empty relation or the identity relation on any set)

EXAMPLES (of partial orders). (1) (N,£) (Z,£) (R,£)
(2) | onsets

(3) Suppose (A,£) isapo and Bl A. Then (B,£) isapo, where we restrict £ to B, i.e. take
£ C B’ B. Forinstance, since(N,£) isapo, sois({1,2,3},£).

(4) Let (A,E) beapo. Define3 by
&b iff bEa
(thisisjust theinverserelation). Then (A3)isapo. Thus E isapo on sets.

(5) Let Z* betheintegers >0. Define m|niff m divides n exactly. Then (Z*,]) isapo. What
can you say about where prime numbers occur in this ordering?

DEFINITION. R A" Alisirreflexive iff " a A. not aRa.

Risadrict (strong, irreflexive) po iff Risirreflexive and transitive. The usual po'sare called
non-strict (weak, reflexive) to distinguish them. Strict po's are often denoted by <.

EXAMPLES. (N,<) (R,<)

We can convert astrict po < into a non-strict one by defining
aEb iff a<bora=b

Conversely we can convert anon-strict po £ into a strict one by defining
a<b iff aEbanda b

When we draw diagrams of posit is natural to use directed graphs, since pos are binary
relations. These diagrams get rather cluttered if every arrow isdrawnin. So it isusua to omit
the arrows from points to themselves and those arrows that can be deduced from knowing that
therelation istrangitive. Such diagrams are called Hasse diagrams. In the following two
examples the direction of the lines has been omitted, with the convention that all lines are
directed upwards, in other words the upper element is greater than the lower.

34

Discrete Mathematics

f

In diagram | for instance 3<1, since this can be deduced from 3<2<1. Of coursethisis not the
usual orderingon{1,2,3,4}. We also know 1£1 even though thisis not specified in the
diagram.

We can make the connection between the relation in the diagrams and the po's precise as
follows:

DEFINITION. Given apo (A,£) define the immediate predecessor relation by
x <1y iff x<y and thereisno z such that x<z<y

The immediate predecessor relation iswhat we usually draw in diagramsinstead of £. If A is
finiteit is clear that for any pair (x,y) we can calculate whether x < y by simply checking
through all possible values of z. The ordering £ can be recovered from < by taking its
reflexive and trangitive closure:

£=(<)* =(da E <)

(In general the reflexive and transitive closure of arelation R is denoted R*.) We havein fact
solved the problem mentioned at the end of Section 2.5, as < isthe smallest relation S such
that St=<. Irreflexivity iscrucia here. Also thiswould not hold in general when A was
infinite—consider for instance the real numbers with the usual < ordering.

DEFINITION. A po (A,£) isatotal ordering iff " x,yl A.x£y Uy£x.
This may equivalently be stated: " x,yT A. x<y Uy<x Ux=y.

Total orderings are aso called linear orderings, because their diagrams are linear.
EXAMPLES. (1) (N,<) (R,<)
(2) If (A,£) istotal and Bi A then (B,£) istotal.

Neither of the two diagrams aboveis of alinear ordering: in | there is no relationship between 3
and 4, whilein 11, aand c are unrelated, as are e and d.

35

4. More about relations

DEFINITION. Let (A,£) beapo.
aisminimal iff for al bl A. bta.
aisleast iff for all bl A. aEb.

An dement isminimal if thereis nothing below it. Itisleast if it isbelow everything else.
Indiagram |, 3 and 4 are both minimal; neither isleast. Indiagram I, f isleast (aswell as
minimal).

PROPOSITION. If aisleastinapo thenaisminimal

Proof Supposeaisleast. Supposefor acontradiction that b<a. But aEb sinceaisleast. This
contradicts anti-symmetry. O

PROPOSITION. If A hasaleast element then it isunique.
Proof . Suppose aand b areleast. Then &Eb and bfa. Hencea=b. O
PROPOSITION. Let (A,£) beafinite po. Then A hasaminimal element.

Proof Pick any ajl A. If agisnot minimal we can pick & < ag. If a1 isnot minimal we can
pick & < a;. Inthisway we get adecreasing chain agp>a; > a > ... All the elements of the
chain are different, since x>y>z implies x>z and so x* z. Hence since A isfinite the process
must stop at some an (I N), which must be minimal in A. O

Notice that in the above proof we not only show the existence of minimal elements, but also
how to find one.

PROPOSITION. Let (A,£) beafinitelinear ordering. Then A hasaleast element. O

Suppose we have a set of tasks T to perform. We wish to decide in what order to perform
them. We are not totally free to choose, because some tasks have to be finished before others
can be started. We can express this prerequisite structure by a partial ordering<onT. We
want to find atotal order <' on T which respects < in the sense that

if t<u then t<'u

Such a process is sometimes called topological sorting or linearisation. A simple algorithm for
topological sorting is based on minimal elements. To generate an appropriate order for the
tasks, first find all minimal elements of T (this may be done easily from amatrix representation
of (T,<) and remove them from T to get T'. These are done first (in some arbitrary order).
Then find all minimal elements of T' and do these next. Carry on until T is exhausted. Plainly
there may be many different linearisations.

36

Discrete Mathematics

EXAMPLE. Given orderings on A,B we can define an ordering on the Cartesian product A" B
asfollows:

(ab)£(a,b) iff a<a or (a=a & bED')

In other words, compare the asfirst, and if they are the same then compare the b's. For
instance we might wish to sort student recordsfirst by year and next alphabetically within a
year. (NB There are other possible orderingson A" B.)

EXERCISE. Let (A,£), (B,£) belinear orderings. Show that (A" B,£) as defined aboveisa
linear ordering.

EXAMPLE. Wordsin adictionary (strings of characters) are ordered by the lexicographic
ordering, which resembles the ordering on A" B defined above. This ordering has the
interesting feature that every word w has an immediate successor: w<; wa (for example
sag<| saga). However immediate predecessors do not necessarily exist. For instance “cat”
does not have one. Why not? Which words do have an immediate predecessor?

4.3 Termination and orderings

How do we establish that a program terminates? The possibility of non-termination usually
arises from awhile loop or arecursive call. To deal with while loops we use a variant—a
counter which is decreased on every pass through the loop. To deal with recursive callswe
can check that the function or procedureis called with asmaller argument. Thus clearly

fac(0) =1
fac(n+1) = n*fac(n)

terminates, while
nonterm(n) = n* nonterm(n+1)
does not.

To use an ordering (A £) to establish termination we need to know that we cannot keep on
getting smaller and smaller valuesin A for ever. For instance the integers Z are no use as one
can keep on decreasing an integer value for ever. Thus the following attempt at a multiplication
program for integersisinvalid as evaluation will not terminate:

mult((x,y) =y + mult(x-1,y)
Painly we cannot have infinite decreasing chains

a>ar>ap>...>an>. ..

37

4. More about relations

DEFINITION. An ordering (A,£) iswellfounded (wf) if it has no infinite decreasing chain.

Obvioudly every finite ordering iswellfounded. But there are infinite wf orderings. The basic
oneisN, and of coursethisisthe one usualy used for variants.

EXAMPLE. Ackermann'sfunction Ack:N" N® N

Ack(0y) =y+1
Ack(x+1,0) = Ack(x,1)
Ack(x+1,y+1) = Ack(x,Ack(x+1y))

The third equation causes this function computed by this program to grow extremely rapidly.

We wish to prove that this program aways terminates, and therefore defines atotal function.
Counting down on x is not good enough, since the third equation does not decrease x+1,
because of the embedded Ack(x+1,y). Instead we usethe orderingon N” N defined above:

(xy) < (x,y) iff x<x'or (x=x'& y<y’)
Notice that

(x+1,0) > (x,1)
(x+1,y+1) > (X,Ack(x+1,y))
(Xx+1y+1) > (x+1y)

and so evaluation takes us down in the ordering. Moreover the ordering is wellfounded—this
can be proved using the fact that N iswf. Even though a member such as (4,3) hasinfinitely
many others below it (e.g. (3,y) for every y), any decreasing chain must be finite.

38

