Questão 1 (2,0 pontos): A equação $y^3-2y-5=0$ possui uma raiz próxima de y=2. A partir de $y_0=2$, calcule uma estimativa mais precisa da raiz, usando o método de Newton-Raphson. Pare quando $|y_{i+1}-y_i|<10^{-4}$. **Utilize 4 casas decimais e o arredondamento padrão**

Questão 2 (3,0 pontos): Considere o seguinte sistema linear:

$$6x_2+16x_3=18$$

$$12x_1+8x_2=23$$

$$-10x_1-13x_2+2x_3=-24$$

Verifique se é possível estabelecer uma condição suficiente para garantir a convergência do método de Gauss-Seidel para computar a solução do sistema. Caso seja possível, utilize o método de Gauss-Seidel, aplicando-o na configuração com garantia de convergência, para determinar a solução aproximada do sistema. Parta do vetor inicial $(x_1^{(0)}, x_2^{(0)}, x_3^{(0)}) = (1,1,1)$ e faça iterações até que, após a k-ésima iteração tenha-se a condição de parada $\max_{1 \le i \le 3} |x_i^{(k)} - x_i^{(k-1)}| < 0.05$ satisfeita. Caso não seja possível estabelecer uma condição suficiente de convergência, utilize o método direto de decomposição LU para resolver o sistema. Utilize 3 casas decimais e o arredondamento padrão.

Questão 3 (5,0 pontos): A tabela abaixo lista o número (em milhões) de veículos automotores leves vendidos no Brasil por ano.

	Ano				
	2001	2002	2006	2012	
# de veículos (milhões)	1,431	1,400	1,749	3,437	

Utilize o MMQ para, a partir de todos os pontos da tabela, prever o número de veículos automotores leves que serão vendidos em 2014, usando a função de ajustamento P(x)=ax+bln(x)+c. Para a resolução do Sistema Normal obtido no MMQ, <u>utilize o Método de Eliminação de Gauss</u>. Utilize 3 casas decimais e o arredondamento padrão. (Considere 2001 \rightarrow 1, ...)

Formulário:
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 $x_{i+1} = \frac{x_{i-1}f(x_i) - x_if(x_{i-1})}{f(x_i) - f(x_{i-1})}$

$$x_i^{(k+1)} = \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)}\right) / a_{ii}$$
 $x_i^{(k+1)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)}\right) / a_{ii}$
$$\left(u_{ij} = \left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, i \geq j\right) / a_{ii}\right)$$

$$\sum_{k=0}^m a_k \sum_{j=0}^n g_k(x_i) g_j(x_i) = \sum_{j=0}^n f(x_i) g_j(x_j), j = 0, \dots, m$$

GABARITO SIMPLIFICADO

Questão 1. Temos nossa função f(x) a qual queremos uma aproximação melhor da raiz como y^3-2y-5 . Logo $f'(x)=3y^2-2$. Então a sequência de valores obtida pelo método de Newton, usando $y_{i+1}=y_i-\frac{f(y_i)}{f'(y_i)}$, será, usando 4 casas decimais e o arredondamento padrão:

i	y_i	$ y_{i+1} - y_i $
0	2	0.1000
1	2.1000	0.0054
2	2.0946	0.0000*
3	2.0946	

Logo foram necessárias 3 iterações, ao final das quais a raiz aproximada obtida foi 2.0946.

Questão 2. O sistema conforme apresentado não verifica a condição suficiente de convergência "diagonal estritamente dominante". Note que ele possui até mesmo zero na diagonal principal (1ª. Equação). No entanto, simplesmente realizando pivotações de linhas é possível chegar no seguinte sistema equivalente, que é de diagonal dominante por linha, uma vez que o módulo do valor do elemento da diagonal principal de cada linha é superior à soma em módulo de todos os outros elementos da mesma linha que ele:

$$12x_1 + 8x_2 = 23$$

$$-10x_1 - 13x_2 + 2x_3 = -24$$

$$6x_2 + 16x_3 = 18$$

Sendo assim, nesse sistema pode ser aplicado o método de Gauss-Seidel com garantia de convergência. Dessa forma, temos as equações de iteração:

$$x_{1}^{(k)} = \frac{23 - 8x_{2}^{(k-1)}}{12}$$

$$x_{2}^{(k)} = \frac{24 - 10x_{1}^{(k)} + 2x_{3}^{(k-1)}}{13}$$

$$x_{3}^{(k)} = \frac{18 - 6x_{2}^{(k)}}{16}$$

Obtemos assim, usando 3 casas decimais e o arredondamento padrão:

k	$oldsymbol{\mathcal{X}}_1^{(k)}$	$\chi_2^{(k)}$	$x_3^{(k)}$	$\max_{1 \le i \le 3} x_i^{(k)} - x_i^{(k-1)} $
0	1	1	1	
1	1.250	1.038	0.736	0.264
2	1.225	1.017	0.744	0.025*

Portanto o vetor solução obtido é (1.225, 1.017, 0.744).

^{*} Condição de parada satisfeita

Questão 3. Considerando 2001 → 1 etc. Teremos o seguinte tabelamento:

	χ_i				
	1	2	6	12	
$f(x_i)$	1,431	1,400	1,749	3,437	

A função de ajustamento P(x)=ax+bln(x)+c já se enquadra no caso linear, Podemos fazer:

 $a_0 = a$, $g_0 = x$; $a_1 = b$, $g_1 = \ln(x)$; $a_2 = c$, $g_2 = 1$; o que resultará na seguinte tabela:

i	X_i	$f(x_i) = f(x_i)g_2(x_i)$	$g_0(x_i) = g_0(x_i)g_2(x_i)$	$g_0^2(x_i)$	$g_1(x_i) = g_2(x_i)g_1(x_i)$	$g_0(x_i)g_1(x_i)$	$g_2(x_i) = g_2^2(x_i)$	$f(x_i)g_0(x_i)$	$g_1^2(x_i)$	$f(x_i)g_1(x_i)$
0	1	1.431	1	1	0	0	1	1.431	0	0
1	2	1.4	2	4	0.693	1.386	1	2.8	0.48	0.97
2	6	1.749	6	36	1.792	10.752	1	10.494	3.211	3.134
3	12	3.437	12	144	2.485	29.82	1	41.244	6.175	8.541
Σ		8.017	21	185	4.97	41.958	4	55.969	9.866	12.645

Logo, a matriz estendida do sistema normal será:

Utilizando o método de Eliminação de Gauss, faremos primeiramente $R_2 - m_{21} \times R_1$, com $m_{21} = 41.958/185$ e $R_3 - m_{31} \times R_1$, com $m_{31} = 21/185$, obtendo a nova matriz:

Finalmente fazemos $R_3 - m_{32} \times R_2$, com $m_{32} = 0.207/0.35$, obtendo a matriz:

Donde obtemos: $a_2 = 1.133$; $a_1 = -0.81$ e $a_0 = 0.358$. A função de ajuste fica então: $P(x) = 0.358x - 0.81 \ln(x) + 1.133$. Fazendo P(14) obtemos a previsão de 4.007 milhões de carros vendidos em 2014.